MPC5601F0VLH4 [NXP]

32-BIT, FLASH, 64MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, MS-026BCD, LQFP-64;
MPC5601F0VLH4
型号: MPC5601F0VLH4
厂家: NXP    NXP
描述:

32-BIT, FLASH, 64MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, MS-026BCD, LQFP-64

控制器 CD 微控制器 微控制器和处理器
文件: 总95页 (文件大小:1689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5602P  
Rev. 4.1, 09/2011  
MPC5602P  
MPC5602P Microcontroller  
Data Sheet  
100 LQFP (14 mm x 14 mm)  
64 LQFP (10 mm x 10 mm)  
• Up to 64 MHz, single issue, 32-bit CPU core complex  
(e200z0h)  
– 1 FlexCAN interface (2.0B Active) with 32 message  
buffers  
– Compliant with Power Architecture embedded category  
Variable Length Encoding (VLE)  
• Memory organization  
– Up to 256 KB on-chip code flash memory with ECC and  
erase/program controller  
– Optional: additional 64 (4 × 16) KB on-chip data flash  
memory with ECC for EEPROM emulation  
– Up to 20 KB on-chip SRAM with ECC  
• Fail-safe protection  
– 1 safety port based on FlexCAN with 32 message  
buffers and up to 8 Mbit/s at 64 MHz capability usable  
as second CAN when not used as safety port  
• One 10-bit analog-to-digital converter (ADC)  
– Up to 16 input channels (16 ch on 100 LQFP and 12 ch  
on 64 LQFP)  
– Conversion time < 1 µs including sampling time at full  
precision  
– Programmable Cross Triggering Unit (CTU)  
– 4 analog watchdogs with interrupt capability  
• On-chip CAN/UART bootstrap loader with Boot Assist  
Module (BAM)  
– Programmable watchdog timer  
– Non-maskable interrupt  
– Fault collection unit  
• Nexus L1 interface  
• 1 FlexPWM unit  
• Interrupts and events  
– 8 complementary or independent outputs with ADC  
synchronization signals  
– Polarity control, reload unit  
– 16-channel eDMA controller  
– 16 priority level controller  
– Up to 25 external interrupts  
– Integrated configurable dead time unit and inverter fault  
input pins  
– 16-bit resolution  
– PIT implements four 32-bit timers  
– 120 interrupts are routed via INTC  
• General purpose I/Os  
– Lockable configuration  
– Individually programmable as input, output or special  
function  
• Clock generation  
– 4–40 MHz main oscillator  
– 37 on 64 LQFP  
– 64 on 100 LQFP  
– 16 MHz internal RC oscillator  
– Software-controlled FMPLL capable of up to 64 MHz  
Voltage supply  
• 1 general purpose eTimer unit  
– 6 timers each with up/down capabilities  
– 16-bit resolution, cascadeable counters  
– Quadrature decode with rotation direction flag  
– Double buffer input capture and output compare  
• Communications interfaces  
– 3.3 V or 5 V supply for I/Os and ADC  
– On-chip single supply voltage regulator with external  
ballast transistor  
• Operating temperature ranges: –40 to 125 °C or –40 to  
105 °C  
– Up to 2 LINFlex modules (1× Master/Slave, 1× Master  
only)  
– Up to 3 DSPI channels with automatic chip select  
generation (up to 8/4/4 chip selects)  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2010-2011. All rights reserved.  
Table of Contents  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . 33  
3.4 Recommended operating conditions. . . . . . . . . . . . . . 36  
3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.5.1 Package thermal characteristics . . . . . . . . . . . 40  
3.5.2 General notes for specifications at maximum  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.5.1 High performance e200z0 core processor. . . . . .7  
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . .8  
1.5.3 Enhanced direct memory access (eDMA) . . . . . .8  
1.5.4 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.5.5 Static random access memory (SRAM). . . . . . . .9  
1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . .9  
1.5.7 System status and configuration module (SSCM)10  
1.5.8 System clocks and clock generation . . . . . . . . .10  
1.5.9 Frequency-modulated phase-locked loop (FMPLL)  
10  
1.5.10 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.5.11 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . .11  
1.5.12 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . .11  
1.5.13 System timer module (STM) . . . . . . . . . . . . . . .11  
1.5.14 Software watchdog timer (SWT) . . . . . . . . . . . .11  
1.5.15 Fault collection unit (FCU). . . . . . . . . . . . . . . . .12  
1.5.16 System integration unit – Lite (SIUL). . . . . . . . .12  
1.5.17 Boot and censorship . . . . . . . . . . . . . . . . . . . . .12  
1.5.18 Error correction status module (ECSM). . . . . . .13  
1.5.19 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . .13  
1.5.20 Controller area network (FlexCAN) . . . . . . . . . .13  
1.5.21 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . .14  
1.5.22 Serial communication interface module (LINFlex)14  
1.5.23 Deserial serial peripheral interface (DSPI) . . . .15  
1.5.24 Pulse width modulator (FlexPWM) . . . . . . . . . .15  
1.5.25 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.5.26 Analog-to-digital converter (ADC) module. . . . .17  
1.5.27 Cross triggering unit (CTU) . . . . . . . . . . . . . . . .17  
1.5.28 Nexus Development Interface (NDI) . . . . . . . . .18  
1.5.29 Cyclic redundancy check (CRC) . . . . . . . . . . . .18  
1.5.30 IEEE 1149.1 JTAG controller. . . . . . . . . . . . . . .19  
1.5.31 On-chip voltage regulator (VREG). . . . . . . . . . .19  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . .19  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.2.1 Power supply and reference voltage pins . . . . .21  
2.2.2 System pins. . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.2.3 Pin multiplexing . . . . . . . . . . . . . . . . . . . . . . . . .23  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
junction temperature . . . . . . . . . . . . . . . . . . . . 40  
3.6 Electromagnetic interference (EMI) characteristics. . . 42  
3.7 Electrostatic discharge (ESD) characteristics . . . . . . . 42  
3.8 Power management electrical characteristics . . . . . . . 42  
3.8.1 Voltage regulator electrical characteristics. . . . 42  
3.8.2 Voltage monitor electrical characteristics . . . . . 44  
3.9 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 44  
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . 47  
3.10.1 NVUSRO register. . . . . . . . . . . . . . . . . . . . . . . 47  
3.10.2 DC electrical characteristics (5 V) . . . . . . . . . . 47  
3.10.3 DC electrical characteristics (3.3 V) . . . . . . . . . 50  
3.10.4 Input DC electrical characteristics definition . . 51  
3.10.5 I/O pad current specification. . . . . . . . . . . . . . . 52  
3.11 Main oscillator electrical characteristics . . . . . . . . . . . 53  
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 54  
3.13 16 MHz RC oscillator electrical characteristics . . . . . . 56  
3.14 Analog-to-digital converter (ADC) electrical characteristics  
56  
3.14.1 Input impedance and ADC accuracy . . . . . . . . 57  
3.14.2 ADC conversion characteristics . . . . . . . . . . . . 62  
3.15 Flash memory electrical characteristics. . . . . . . . . . . . 63  
3.15.1 Program/Erase characteristics. . . . . . . . . . . . . 63  
3.15.2 Flash memory power supply DC characteristics64  
3.15.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 65  
3.16 AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 65  
3.17 AC timing characteristics. . . . . . . . . . . . . . . . . . . . . . . 66  
3.17.1 RESET pin characteristics . . . . . . . . . . . . . . . . 66  
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 69  
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
3.17.4 External interrupt timing (IRQ pin) . . . . . . . . . . 73  
3.17.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 80  
4.1.1 100 LQFP mechanical outline drawing . . . . . . 80  
4.1.2 64 LQFP mechanical outline drawing . . . . . . . 84  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
2
3
4
5
6
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
2
Freescale Semiconductor  
1
Introduction  
1.1  
Document overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5601P/2P series of  
microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical  
characteristics. For functional characteristics, refer to the device reference manual.  
1.2  
Description  
This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive  
application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis  
applications—specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)—as well as airbag  
applications.  
®
This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture  
technology.  
The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture  
embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power  
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported  
with software drivers, operating systems and configuration code to assist with users implementations.  
1.3  
Device comparison  
Table 1 provides a summary of different members of the MPC5602P family and their features to enable a comparison among  
the family members and an understanding of the range of functionality offered within this family.  
Table 1. MPC5602P device comparison  
Feature  
MPC5601P  
MPC5602P  
Code flash memory (with ECC)  
Data flash memory / EE option (with ECC)  
SRAM (with ECC)  
192 KB  
256 KB  
64 KB (optional feature)  
12 KB  
20 KB  
Processor core  
32-bit e200z0h  
Instruction set  
VLE (variable length encoding)  
CPU performance  
0–64 MHz  
FMPLL (frequency-modulated phase-locked loop) module  
INTC (interrupt controller) channels  
PIT (periodic interrupt timer)  
eDMA (enhanced direct memory access) channels  
FlexCAN (controller area network)  
Safety port  
1
120  
1 (with four 32-bit timers)  
16  
11,2  
21,2  
Yes (via FlexCAN module) Yes (via second FlexCAN  
module)  
FCU (fault collection unit)  
CTU (cross triggering unit)  
eTimer  
Yes  
No  
Yes  
1 (16-bit, 6 channels)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
3
Table 1. MPC5602P device comparison (continued)  
Feature  
MPC5601P  
MPC5602P  
FlexPWM (pulse-width modulation) channels  
No  
8
(capture capability not  
supported)  
Analog-to-digital converter (ADC)  
LINFlex  
1 (10-bit, 16 channels)  
1
2
(1 × Master/Slave)  
(1 × Master/Slave,  
1 × Master only)  
DSPI (deserial serial peripheral interface)  
CRC (cyclic redundancy check) unit  
Junction temperature sensor  
JTAG controller  
1
3
Yes  
No  
Yes  
Nexus port controller (NPC)  
Yes (Nexus L1+)  
Supply  
Digital power supply  
Analog power supply  
Internal RC oscillator  
External crystal oscillator  
3.3 V or 5 V single supply with external transistor  
3.3 V or 5 V  
16 MHz  
4–40 MHz  
Packages  
64 LQFP  
100 LQFP  
Temperature  
Standard ambient temperature  
–40 to 125 °C  
1
Each FlexCAN module has 32 message buffers.  
2
One FlexCAN module can act as a safety port with a bit rate as high as 8 Mbit/s at 64 MHz.  
1.4  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5602P MCU. Table 2 summarizes the functions of the blocks.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
4
Freescale Semiconductor  
External ballast  
1.2 V regulator  
e200z0 Core  
32-bit  
general  
purpose  
registers  
control  
XOSC  
Integer  
execution  
unit  
Special  
purpose  
registers  
Exception  
handler  
Interrupt  
controller  
16 MHz  
RC oscillator  
Variable  
length  
encoded  
instructions  
Instruction  
unit  
FMPLL_0  
(System)  
Branch  
prediction  
unit  
Load/store  
unit  
JTAG  
Nexus port  
controller  
Nexus 1  
eDMA  
16 channels  
Data  
32-bit  
Instruction  
32-bit  
Master  
Master  
Master  
Crossbar switch (XBAR, AMBA 2.0 v6 AHB)  
Slave Slave  
Slave  
Code Flash Data Flash  
(with ECC) (with ECC)  
SRAM  
(with ECC)  
Peripheral bridge  
Legend:  
ADC  
BAM  
CRC  
CTU  
Analog-to-digital converter  
Boot assist module  
Cyclic redundancy check  
Cross triggering unit  
LINFlex  
MC_ME  
Serial communication interface (LIN support)  
MC_CGM Clock generation module  
Mode entry module  
MC_PCU Power control unit  
DSPI  
ECSM  
eDMA  
eTimer  
FCU  
Deserial serial peripheral interface  
Error correction status module  
Enhanced direct memory access  
Enhanced timer  
Fault collection unit  
Flash memory  
MC_RGM Reset generation module  
PIT  
Periodic interrupt timer  
System Integration unit Lite  
Static random-access memory  
System status and configuration module  
System timer module  
SIUL  
SRAM  
SSCM  
STM  
Flash  
FlexCAN Controller area network  
FlexPWM Flexible pulse width modulation  
SWT  
Software watchdog timer  
Wakeup unit  
External oscillator  
WKPU  
XOSC  
XBAR  
FMPLL  
INTC  
Frequency-modulated phase-locked loop  
Interrupt controller  
Crossbar switch  
JTAG  
JTAG controller  
Figure 1. MPC5602P block diagram  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
5
Table 2. MPC5602P series block summary  
Function  
Block  
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter  
Boot assist module (BAM)  
Block of read-only memory containing VLE code which is executed according to  
the boot mode of the device  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Controller area network (FlexCAN) Supports the standard CAN communications protocol  
Cross triggering unit (CTU)  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Crossbar switch (XBAR)  
Supports simultaneous connections between two master ports and three slave  
ports; supports a 32-bit address bus width and a 32-bit data bus width  
Cyclic redundancy check (CRC) CRC checksum generator  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Enhanced direct memory access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels  
Enhanced timer (eTimer)  
Provides enhanced programmable up/down modulo counting  
Error correction status module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset  
status register, wakeup control for exiting sleep modes, and optional features  
such as information on memory errors reported by error-correcting codes  
External oscillator (XOSC)  
Provides an output clock used as input reference for FMPLL_0 or as reference  
clock for specific modules depending on system needs  
Fault collection unit (FCU)  
Flash memory  
Provides functional safety to the device  
Provides non-volatile storage for program code, constants and variables  
Frequency-modulated  
phase-locked loop (FMPLL)  
Generates high-speed system clocks and supports programmable frequency  
modulation  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Periodic interrupt timer (PIT)  
Peripheral bridge (PBRIDGE)  
Power control unit (MC_PCU)  
Produces periodic interrupts and triggers  
Is the interface between the system bus and on-chip peripherals  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
6
Freescale Semiconductor  
Table 2. MPC5602P series block summary (continued)  
Function  
Block  
Pulse width modulator (FlexPWM) Contains four PWM submodules, each of which capable of controlling a single  
half-bridge power stage and two fault input channels  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
System status and configuration Provides system configuration and status data (such as memory size and status,  
module (SSCM)  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR1 and operating  
system tasks  
System watchdog timer (SWT)  
Wakeup unit (WKPU)  
Provides protection from runaway code  
Supports up to 18 external sources that can generate interrupts or wakeup  
events, of which 1 can cause non-maskable interrupt requests or wakeup events  
1
AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)  
Feature details  
1.5  
1.5.1  
High performance e200z0 core processor  
The e200z0 Power Architecture core provides the following features:  
High performance e200z0 core processor for managing peripherals and interrupts  
Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU  
Harvard architecture  
Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions  
— Results in smaller code size footprint  
— Minimizes impact on performance  
Branch processing acceleration using lookahead instruction buffer  
Load/store unit  
— 1-cycle load latency  
— Misaligned access support  
— No load-to-use pipeline bubbles  
Thirty-two 32-bit general purpose registers (GPRs)  
Separate instruction bus and load/store bus Harvard architecture  
Hardware vectored interrupt support  
Reservation instructions for implementing read-modify-write constructs  
Long cycle time instructions, except for guarded loads, do not increase interrupt latency  
Extensive system development support through Nexus debug port  
Non-maskable interrupt support  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
7
1.5.2  
Crossbar switch (XBAR)  
The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and three slave ports. The  
crossbar supports a 32-bit address bus width and a 32-bit data bus width.  
The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers  
must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master  
port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting  
that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with  
equal priority and will be granted access a slave port in round-robin fashion, based upon the ID of the last master to be granted  
access.  
The crossbar provides the following features:  
3 master ports:  
— e200z0 core complex instruction port  
— e200z0 core complex Load/Store Data port  
— eDMA  
3 slave ports:  
— Flash memory (Code and Data)  
— SRAM  
— Peripheral bridge  
32-bit internal address, 32-bit internal data paths  
Fixed Priority Arbitration based on Port Master  
Temporary dynamic priority elevation of masters  
1.5.3  
Enhanced direct memory access (eDMA)  
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data  
movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture  
includes a DMA engine which performs source and destination address calculations, and the actual data movement operations,  
along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.  
The eDMA module provides the following features:  
16 channels support independent 8-, 16- or 32-bit single value or block transfers  
Supports variable-sized queues and circular queues  
Source and destination address registers are independently configured to either post-increment or to remain constant  
Each transfer is initiated by a peripheral, CPU, or eDMA channel request  
Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block  
transfer  
DMA transfers possible between system memories, DSPIs, ADC, FlexPWM, eTimer and CTU  
Programmable DMA channel multiplexer allows assignment of any DMA source to any available DMA channel with  
as many as 30 request sources  
eDMA abort operation through software  
1.5.4  
Flash memory  
The MPC5602P provides 320 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used  
for instruction and/or data storage. The flash memory module is interfaced to the system bus by a dedicated flash memory  
controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The  
module contains four 128-bit wide prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array  
accesses are registered and are forwarded to the system bus on the following cycle, incurring two wait-states.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
8
Freescale Semiconductor  
The flash memory module provides the following features:  
As much as 320 KB flash memory  
— 6 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 128 KB) code flash memory  
— 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory  
— Full Read-While-Write (RWW) capability between code flash memory and data flash memory  
Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to  
prefetch code or data or both)  
Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page buffer miss at 64 MHz  
Hardware managed flash memory writes handled by 32-bit RISC Krypton engine  
Hardware and software configurable read and write access protections on a per-master basis  
Configurable access timing allowing use in a wide range of system frequencies  
Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for  
emulation of other memory types  
Software programmable block program/erase restriction control  
Erase of selected block(s)  
Read page sizes  
— Code flash memory: 128 bits (4 words)  
— Data flash memory: 32 bits (1 word)  
ECC with single-bit correction, double-bit detection for data integrity  
— Code flash memory: 64-bit ECC  
— Data flash memory: 32-bit ECC  
Embedded hardware program and erase algorithm  
Erase suspend and program abort  
Censorship protection scheme to prevent flash memory content visibility  
Hardware support for EEPROM emulation  
1.5.5  
Static random access memory (SRAM)  
The MPC5602P SRAM module provides up to 20 KB of general-purpose memory.  
ECC handling is done on a 32-bit boundary and is completely software compatible with MPC55xx family devices containing  
an e200z6 core and 64-bit wide ECC.  
The SRAM module provides the following features:  
Supports read/write accesses mapped to the SRAM from any master  
Up to 20 KB general purpose SRAM  
Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory  
Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8- and 16-bit writes if  
back-to-back with a read to same memory block  
1.5.6  
Interrupt controller (INTC)  
The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically  
scheduled hard real-time systems. The INTC handles 128 selectable-priority interrupt sources.  
For high-priority interrupt requests, the time from the assertion of the interrupt request by the peripheral to the execution of the  
interrupt service routine (ISR) by the processor has been minimized. The INTC provides a unique vector for each interrupt  
request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
9
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of  
interrupt request, the priority of each interrupt request is software configurable.  
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority  
ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so  
that all tasks which share the same resource can not preempt each other.  
The INTC provides the following features:  
Unique 9-bit vector for each separate interrupt source  
8 software triggerable interrupt sources  
16 priority levels with fixed hardware arbitration within priority levels for each interrupt source  
Ability to modify the ISR or task priority: modifying the priority can be used to implement the priority ceiling protocol  
for accessing shared resources.  
1 external high priority interrupt (NMI) directly accessing the main core and I/O processor (IOP) critical interrupt  
mechanism  
1.5.7  
System status and configuration module (SSCM)  
The system status and configuration module (SSCM) provides central device functionality.  
The SSCM includes these features:  
System configuration and status  
— Memory sizes/status  
— Device mode and security status  
— Determine boot vector  
— Search code flash for bootable sector  
— DMA status  
Debug status port enable and selection  
Bus and peripheral abort enable/disable  
1.5.8  
System clocks and clock generation  
The following list summarizes the system clock and clock generation on the MPC5602P:  
Lock detect circuitry continuously monitors lock status  
Loss of clock (LOC) detection for PLL outputs  
Programmable output clock divider (1, 2, 4, 8)  
FlexPWM module and eTimer module running at the same frequency as the e200z0h core  
Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application  
1.5.9  
Frequency-modulated phase-locked loop (FMPLL)  
The FMPLL allows the user to generate high speed system clocks from a 4–40 MHz input clock. Further, the FMPLL supports  
programmable frequency modulation of the system clock. The PLL multiplication factor, output clock divider ratio are all  
software configurable.  
The FMPLL has the following major features:  
Input clock frequency: 4–40 MHz  
Maximum output frequency: 64 MHz  
Voltage controlled oscillator (VCO)—frequency 256–512 MHz  
Reduced frequency divider (RFD) for reduced frequency operation without forcing the FMPLL to relock  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
10  
Freescale Semiconductor  
Frequency-modulated PLL  
— Modulation enabled/disabled through software  
— Triangle wave modulation  
Programmable modulation depth (±0.25% to ±4% deviation from center frequency): programmable modulation  
frequency dependent on reference frequency  
Self-clocked mode (SCM) operation  
1.5.10 Main oscillator  
The main oscillator provides these features:  
Input frequency range: 4–40 MHz  
Crystal input mode or oscillator input mode  
PLL reference  
1.5.11 Internal RC oscillator  
This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage  
at the capacitor is compared by the stable bandgap reference voltage.  
The RC oscillator provides these features:  
Nominal frequency 16 MHz  
±5% variation over voltage and temperature after process trim  
Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the  
PLL  
RC oscillator is used as the default system clock during startup  
1.5.12 Periodic interrupt timer (PIT)  
The PIT module implements these features:  
4 general-purpose interrupt timers  
32-bit counter resolution  
Clocked by system clock frequency  
Each channel usable as trigger for a DMA request  
1.5.13 System timer module (STM)  
The STM implements these features:  
One 32-bit up counter with 8-bit prescaler  
Four 32-bit compare channels  
Independent interrupt source for each channel  
Counter can be stopped in debug mode  
1.5.14 Software watchdog timer (SWT)  
The SWT has the following features:  
32-bit time-out register to set the time-out period  
Programmable selection of window mode or regular servicing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
11  
Programmable selection of reset or interrupt on an initial time-out  
Master access protection  
Hard and soft configuration lock bits  
Reset configuration inputs allow timer to be enabled out of reset  
1.5.15 Fault collection unit (FCU)  
The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.  
The FCU module has the following features:  
FCU status register reporting the device status  
Continuous monitoring of critical fault signals  
User selection of critical signals from different fault sources inside the device  
Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device  
and/or other circuitry (for example, a safety relay)  
Faults are latched into a register  
1.5.16 System integration unit – Lite (SIUL)  
The MPC5602P SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral  
multiplexing.  
The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and  
discrete input/output control of the I/O pins of the MCU.  
The SIUL provides the following features:  
Centralized general purpose input output (GPIO) control of up to 49 input/output pins and 16 analog input-only pads  
(package dependent)  
All GPIO pins can be independently configured to support pull-up, pull-down, or no pull  
Reading and writing to GPIO supported both as individual pins and 16-bit wide ports  
All peripheral pins, except ADC channels, can be alternatively configured as both general purpose input or output pins  
ADC channels support alternative configuration as general purpose inputs  
Direct readback of the pin value is supported on all pins through the SIUL  
Configurable digital input filter that can be applied to some general purpose input pins for noise elimination  
Up to 4 internal functions can be multiplexed onto 1 pin  
1.5.17 Boot and censorship  
Different booting modes are available in the MPC5602P: booting from internal flash memory and booting via a serial link.  
The default booting scheme uses the internal flash memory (an internal pull-down resistor is used to select this mode).  
Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software).  
A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device.  
A password mechanism is designed to grant the legitimate user access to the non-volatile memory.  
1.5.17.1 Boot assist module (BAM)  
The BAM is a block of read-only memory that is programmed once and is identical for all MPC560xP devices that are based  
on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been  
selected by the user.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
12  
Freescale Semiconductor  
The BAM provides the following features:  
Serial bootloading via FlexCAN or LINFlex  
Ability to accept a password via the used serial communication channel to grant the legitimate user access to the  
non-volatile memory  
1.5.18 Error correction status module (ECSM)  
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform  
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,  
and information on platform memory errors reported by error-correcting codes and/or generic access error information for  
certain processor cores.  
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes  
these features:  
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented  
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the  
MPC5602P.  
The sources of the ECC errors are:  
Flash memory  
SRAM  
1.5.19 Peripheral bridge (PBRIDGE)  
The PBRIDGE implements the following features:  
Duplicated periphery  
Master access privilege level per peripheral (per master: read access enable; write access enable)  
Write buffering for peripherals  
Checker applied on PBRIDGE output toward periphery  
Byte endianess swap capability  
1.5.20 Controller area network (FlexCAN)  
The MPC5602P MCU contains one controller area network (FlexCAN) module. This module is a communication controller  
implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used  
primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in  
the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message  
buffers.  
The FlexCAN module provides the following features:  
Full implementation of the CAN protocol specification, version 2.0B  
— Standard data and remote frames  
— Extended data and remote frames  
— Up to 8-bytes data length  
— Programmable bit rate up to 1 Mbit/s  
32 message buffers of up to 8-bytes data length  
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  
Programmable loop-back mode supporting self-test operation  
3 programmable mask registers  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
13  
Programmable transmit-first scheme: lowest ID or lowest buffer number  
Time stamp based on 16-bit free-running timer  
Global network time, synchronized by a specific message  
Maskable interrupts  
Independent of the transmission medium (an external transceiver is assumed)  
High immunity to EMI  
Short latency time due to an arbitration scheme for high-priority messages  
Transmit features  
— Supports configuration of multiple mailboxes to form message queues of scalable depth  
— Arbitration scheme according to message ID or message buffer number  
— Internal arbitration to guarantee no inner or outer priority inversion  
— Transmit abort procedure and notification  
Receive features  
— Individual programmable filters for each mailbox  
— 8 mailboxes configurable as a 6-entry receive FIFO  
— 8 programmable acceptance filters for receive FIFO  
Programmable clock source  
— System clock  
— Direct oscillator clock to avoid PLL jitter  
1.5.21 Safety port (FlexCAN)  
The MPC5602P MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN  
module of the safety port provides the following features:  
Identical to the FlexCAN module  
Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN modules (no physical transceiver  
required)  
32 message buffers of up to 8-bytes data length  
Can be used as a second independent CAN module  
1.5.22 Serial communication interface module (LINFlex)  
The LINFlex (local interconnect network flexible) on the MPC5602P features the following:  
Supports LIN Master mode (both instances), LIN Slave mode (only one instance) and UART mode  
LIN state machine compliant to LIN1.3, 2.0 and 2.1 specifications  
Handles LIN frame transmission and reception without CPU intervention  
LIN features  
— Autonomous LIN frame handling  
— Message buffer to store Identifier and up to 8 data bytes  
— Supports message length of up to 64 bytes  
— Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out)  
— Classic or extended checksum calculation  
— Configurable Break duration of up to 36-bit times  
— Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)  
— Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection  
— Interrupt-driven operation with 16 interrupt sources  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
14  
Freescale Semiconductor  
LIN slave mode features:  
— Autonomous LIN header handling  
— Autonomous LIN response handling  
— Optional discarding of irrelevant LIN responses using ID filter  
UART mode:  
— Full-duplex operation  
— Standard non return-to-zero (NRZ) mark/space format  
— Data buffers with 4-byte receive, 4-byte transmit  
— Configurable word length (8-bit or 9-bit words)  
— Error detection and flagging  
— Parity, Noise and Framing errors  
— Interrupt-driven operation with four interrupt sources  
— Separate transmitter and receiver CPU interrupt sources  
— 16-bit programmable baud-rate modulus counter and 16-bit fractional  
— 2 receiver wake-up methods  
1.5.23 Deserial serial peripheral interface (DSPI)  
The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the  
MPC5602P MCU and external devices.  
The DSPI modules provide these features:  
Full duplex, synchronous transfers  
Master or slave operation  
Programmable master bit rates  
Programmable clock polarity and phase  
End-of-transmission interrupt flag  
Programmable transfer baud rate  
Programmable data frames from 4 to 16 bits  
Up to 8 chip select lines available:  
— 8 on DSPI_0  
— 4 each on DSPI_1 and DSPI_2  
8 clock and transfer attributes registers  
Chip select strobe available as alternate function on one of the chip select pins for deglitching  
FIFOs for buffering up to 4 transfers on the transmit and receive side  
Queueing operation possible through use of the I/O processor or eDMA  
General purpose I/O functionality on pins when not used for SPI  
1.5.24 Pulse width modulator (FlexPWM)  
The pulse width modulator module (PWM) contains four PWM submodules each of which is set up to control a single  
half-bridge power stage. There are also three fault channels.  
This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC),  
both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper  
motors.  
The FlexPWM block implements the following features:  
16-bit resolution for center, edge-aligned, and asymmetrical PWMs  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
15  
Clock frequency same as that used for e200z0h core  
PWM outputs can operate as complementary pairs or independent channels  
Can accept signed numbers for PWM generation  
Independent control of both edges of each PWM output  
Synchronization to external hardware or other PWM supported  
Double buffered PWM registers  
— Integral reload rates from 1 to 16  
— Half cycle reload capability  
Multiple ADC trigger events can be generated per PWM cycle via hardware  
Write protection for critical registers  
Fault inputs can be assigned to control multiple PWM outputs  
Programmable filters for fault inputs  
Independently programmable PWM output polarity  
Independent top and bottom deadtime insertion  
Each complementary pair can operate with its own PWM frequency and deadtime values  
Individual software-control for each PWM output  
All outputs can be programmed to change simultaneously via a “Force Out” event  
PWMX pin can optionally output a third PWM signal from each submodule  
Channels not used for PWM generation can be used for buffered output compare functions  
Channels not used for PWM generation can be used for input capture functions  
Enhanced dual-edge capture functionality  
eDMA support with automatic reload  
2 fault inputs  
Capture capability for PWMA, PWMB, and PWMX channels not supported  
1.5.25 eTimer  
The MPC5602P includes one eTimer module which provides six 16-bit general purpose up/down timer/counter units with the  
following features:  
Clock frequency same as that used for the e200z0h core  
Individual channel capability  
— Input capture trigger  
— Output compare  
— Double buffer (to capture rising edge and falling edge)  
— Separate prescaler for each counter  
— Selectable clock source  
— 0–100% pulse measurement  
— Rotation direction flag (quad decoder mode)  
Maximum count rate  
— External event counting: max. count rate = peripheral clock/2  
— Internal clock counting: max. count rate = peripheral clock  
Counters are:  
— Cascadable  
— Preloadable  
Programmable count modulo  
Quadrature decode capabilities  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
16  
Freescale Semiconductor  
Counters can share available input pins  
Count once or repeatedly  
Pins available as GPIO when timer functionality not in use  
1.5.26 Analog-to-digital converter (ADC) module  
The ADC module provides the following features:  
Analog part:  
1 on-chip analog-to-digital converter  
— 10-bit AD resolution  
— 1 sample and hold unit  
— Conversion time, including sampling time, less than 1 µs (at full precision)  
— Typical sampling time is 150 ns minimum (at full precision)  
— DNL/INL ±1 LSB  
— TUE < 1.5 LSB  
— Single-ended input signal up to 3.3 V/5.0 V  
— 3.3 V/5.0 V input reference voltage  
— ADC and its reference can be supplied with a voltage independent from V  
DDIO  
— ADC supply can be equal or higher than V  
DDIO  
— ADC supply and ADC reference are not independent from each other (both internally bonded to same pad)  
— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles  
Digital part:  
16 input channels  
4 analog watchdogs comparing ADC results against predefined levels (low, high, range) before results are stored in  
the appropriate ADC result location  
2 modes of operation: Motor Control mode or Regular mode  
Regular mode features  
— Register based interface with the CPU: control register, status register and 1 result register per channel  
— ADC state machine managing 3 request flows: regular command, hardware injected command and software  
injected command  
— Selectable priority between software and hardware injected commands  
— DMA compatible interface  
CTU-controlled mode features  
— Triggered mode only  
— 4 independent result queues (1×16 entries, 2×8 entries, 1×4 entries)  
— Result alignment circuitry (left justified and right justified)  
— 32-bit read mode allows to have channel ID on one of the 16-bit part  
— DMA compatible interfaces  
1.5.27 Cross triggering unit (CTU)  
The cross triggering unit allows automatic generation of ADC conversion requests on user selected conditions without CPU  
load during the PWM period and with minimized CPU load for dynamic configuration.  
It implements the following features:  
Double buffered trigger generation unit with up to 8 independent triggers generated from external triggers  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
17  
Trigger generation unit configurable in sequential mode or in triggered mode  
Each trigger can be appropriately delayed to compensate the delay of external low pass filter  
Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation  
Double buffered ADC command list pointers to minimize ADC-trigger unit update  
Double buffered ADC conversion command list with up to 24 ADC commands  
Each trigger capable of generating consecutive commands  
ADC conversion command allows to control ADC channel, single or synchronous sampling, independent result queue  
selection  
1.5.28 Nexus Development Interface (NDI)  
The NDI (Nexus Development Interface) block provides real-time development support capabilities for the MPC5602P Power  
Architecture based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for  
MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several  
individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces  
to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard.  
The development support provided includes access to the MCU’s internal memory map and access to the processor’s internal  
registers during run time.  
The NDI provides the following features:  
Configured via the IEEE 1149.1  
All Nexus port pins operate at V  
Nexus 2+ features supported  
— Static debug  
(no dedicated power supply)  
DDIO  
— Watchpoint messaging  
— Ownership trace messaging  
— Program trace messaging  
— Real time read/write of any internally memory mapped resources through JTAG pins  
— Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of  
information  
— Watchpoint triggering, watchpoint triggers program tracing  
Auxiliary Output Port  
— 4 MDO (Message Data Out) pins  
— MCKO (Message Clock Out) pin  
— 2 MSEO (Message Start/End Out) pins  
— EVTO (Event Out) pin  
Auxiliary Input Port  
— EVTI (Event In) pin  
1.5.29 Cyclic redundancy check (CRC)  
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:  
Support for CRC-16-CCITT (x25 protocol):  
16  
12  
5
x + x + x + 1  
Support for CRC-32 (Ethernet protocol):  
32  
26  
23  
22  
16  
12  
11  
10  
8
7
5
4
2
x + x + x + x + x + x + x + x + x + x + x + x + x + x + 1  
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
18  
Freescale Semiconductor  
1.5.30 IEEE 1149.1 JTAG controller  
The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent  
to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format.  
The JTAGC block is compliant with the IEEE standard.  
The JTAG controller provides the following features:  
IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO)  
Selectable modes of operation include JTAGC/debug or normal system operation.  
5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:  
— BYPASS  
— IDCODE  
— EXTEST  
— SAMPLE  
— SAMPLE/PRELOAD  
5-bit instruction register that supports the additional following public instructions:  
— ACCESS_AUX_TAP_NPC  
— ACCESS_AUX_TAP_ONCE  
3 test data registers:  
— Bypass register  
— Boundary scan register (size parameterized to support a variety of boundary scan chain lengths)  
— Device identification register  
TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry  
1.5.31 On-chip voltage regulator (VREG)  
The on-chip voltage regulator module provides the following features:  
Uses external NPN (negative-positive-negative) transistor  
Regulates external 3.3 V/5.0 V down to 1.2 V for the core logic  
Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V  
2
Package pinouts and signal descriptions  
2.1  
Package pinouts  
The LQFP pinouts are shown in the following figures. For pin signal descriptions, please refer to Table 5.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
19  
A[4]  
NMI  
A[6]  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VPP_TEST  
D[14]]  
2
A[7]  
3
D[12]  
D[13  
VSS_LV_COR1  
VDD_LV_COR1  
A[3]  
A[8]  
A[5]  
VDD_HV_IO1  
VSS_HV_IO1  
D[9]  
4
5
6
7
8
64 LQFP  
VDD_HV_IO2  
VSS_HV_IO2  
TDO  
VDD_HV_OSC  
VSS_HV_OSC  
XTAL  
9
10  
11  
12  
13  
14  
15  
16  
TCK  
EXTAL  
TMS  
RESET  
TDI  
D[8]  
C[12]  
VSS_LV_COR0  
VDD_LV_COR0  
C[11]  
Figure 2. 64-pin LQFP pinout(top view)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
20  
Freescale Semiconductor  
75 A[4]  
NMI  
A[6]  
1
74 VPP_TEST  
73 D[14]  
2
D[1]  
3
72 C[14]  
A[7]  
4
71 C[13]  
C[4]  
5
70 D[12]  
A[8]  
6
69 N.C.  
C[5]  
7
68 N.C.  
A[5]  
8
67 D[13]  
C[7]  
9
66 VSS_LV_COR1  
65 VDD_LV_COR1  
64 A[3]  
C[3]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
N.C.  
N.C.  
63 VDD_HV_IO2  
62 VSS_HV_IO2  
61 TDO  
VDD_HV_IO1  
VSS_HV_IO1  
D[9]  
100 LQFP  
60 TCK  
VDD_HV_OSC  
VSS_HV_OSC  
XTAL  
59 TMS  
58 TDI  
57 A[2]  
EXTAL  
RESET  
D[8]  
56 C[12]  
55 C[11]  
54 D[11]  
D[5]  
D[6]  
VSS_LV_COR0  
VDD_LV_COR0  
53 D[10]  
52 A[1]  
51 A[0]  
Figure 3. 100-pin LQFP pinout (top view)  
2.2  
Pin description  
The following sections provide signal descriptions and related information about the functionality and configuration of the  
MPC5602P devices.  
2.2.1  
Power supply and reference voltage pins  
Table 3 lists the power supply and reference voltage for the MPC5602P devices.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
21  
Table 3. Supply pins  
Supply  
Pin  
Symbol  
Description  
64-pin 100-pin  
VREG control and power supply pins. Pins available on 64-pin and 100-pin packages  
BCTRL  
Voltage regulator external NPN ballast base control pin  
Voltage regulator supply voltage  
31  
32  
47  
50  
VDD_HV_REG  
(3.3 V or 5.0 V)  
ADC_0 reference and supply voltage. Pins available on 64-pin and 100-pin packages  
1
VDD_HV_ADC0  
ADC_0 supply and high reference voltage  
ADC_0 ground and low reference voltage  
28  
39  
40  
VSS_HV_ADC0  
29  
Power supply pins (3.3 V or 5.0 V). Pins available on 64-pin and 100-pin packages  
Input/output supply voltage  
VDD_HV_IO1  
VSS_HV_IO1  
VDD_HV_IO2  
VSS_HV_IO2  
VDD_HV_IO3  
VSS_HV_IO3  
6
13  
14  
63  
62  
87  
88  
16  
17  
Input/output ground  
7
Input/output supply voltage and data Flash memory supply voltage  
Input/output ground and Flash memory HV ground  
Input/output supply voltage and code Flash memory supply voltage  
Input/output ground and code Flash memory HV ground  
40  
39  
55  
56  
9
VDD_HV_OSC  
VSS_HV_OSC  
Crystal oscillator amplifier supply voltage  
Crystal oscillator amplifier ground  
10  
Power supply pins (1.2 V). Pins available on 64-pin and 100-pin packages  
VDD_LV_COR0  
VSS_LV_COR0  
VDD_LV_COR1  
VSS_LV_COR1  
VDD_LV_COR2  
VSS_LV_COR2  
1.2 V supply pins for core logic and PLL. Decoupling capacitor must be  
connected between these pins and the nearest VSS_LV_COR pin.  
16  
15  
42  
43  
58  
59  
25  
24  
65  
66  
92  
93  
1.2 V supply pins for core logic and PLL. Decoupling capacitor must be  
connected between these pins and the nearest VDD_LV_COR pin.  
1.2 V supply pins for core logic and data Flash. Decoupling capacitor  
must be connected between these pins and the nearest VSS_LV_COR pin.  
1.2 V supply pins for core logic and data Flash. Decoupling capacitor  
must be connected between these pins and the nearest VDD_LV_COR pin.  
1.2 V supply pins for core logic and code Flash. Decoupling capacitor  
must be connected between these pins and the nearest VSS_LV_COR pin.  
1.2 V supply pins for core logic and code Flash. Decoupling capacitor  
must be connected betwee.n these pins and the nearest VDD_LV_COR pin.  
1
Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a  
double-bonding connection on VDD_HV_ADCx/VSS_HV_ADCx pins.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
22  
Freescale Semiconductor  
2.2.2  
System pins  
Table 4 and Table 5 contain information on pin functions for the MPC5602P devices. The pins listed in Table 4 are  
single-function pins. The pins shown in Table 5 are multi-function pins, programmable via their respective pad configuration  
register (PCR) values.  
Table 4. System pins  
Pad speed1  
Pin  
Symbol  
Description  
Direction  
SRC = 0 SRC = 1 64-pin 100-pin  
Dedicated pins  
NMI  
Non-maskable Interrupt  
Input only  
Slow  
1
1
XTAL  
Analog output of the oscillator amplifier  
circuit—needs to be grounded if oscillator is  
used in bypass mode  
11  
18  
EXTAL  
Analog input of the oscillator amplifier circuit,  
when the oscillator is not in bypass mode  
Analog input for the clock generator when the  
oscillator is in bypass mode  
12  
19  
TDI  
TMS  
TCK  
TDO  
JTAG test data input  
JTAG state machine control  
JTAG clock  
Input only  
Input only  
Input only  
Output only  
Slow  
Slow  
Slow  
Slow  
35  
36  
37  
38  
58  
59  
60  
61  
JTAG test data output  
Fast  
Reset pin  
RESET  
Bidirectional reset with Schmitt trigger  
characteristics and noise filter  
Bidirectional Medium  
13  
20  
74  
Test pin  
VPP_TEST Pin for testing purpose only. To be tied to ground  
in normal operating mode.  
47  
1
SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.  
2.2.3  
Pin multiplexing  
Table 5 defines the pin list and muxing for the MPC5602P devices.  
Each row of Table 5 shows all the possible ways of configuring each pin, via alternate functions. The default function assigned  
to each pin after reset is the ALT0 function.  
MPC5602P devices provide three main I/O pad types, depending on the associated functions:  
Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission.  
Medium pads provide fast enough transition for serial communication channels with controlled current to reduce  
electromagnetic emission.  
Fast pads provide maximum speed. They are used for improved NEXUS debugging capability.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
For more information, see “Pad AC Specifications” in the device data sheet.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
23  
Table 5. Pin muxing  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
I/O  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
Port A (16-bit)  
A[0]  
A[1]  
A[2]  
PCR[0]  
PCR[1]  
PCR[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[0]  
ETC[0]  
SCK  
F[0]  
EIRQ[0]  
SIUL  
eTimer_0  
DSPI_2  
FCU_0  
SIUL  
I/O  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
51  
52  
57  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[1]  
ETC[1]  
SOUT  
F[1]  
SIUL  
eTimer_0  
DSPI_2  
FCU_0  
SIUL  
I/O  
I/O  
O
O
I
EIRQ[1]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[2]  
ETC[2]  
A[3]  
SIN  
SIUL  
eTimer_0  
FlexPWM_0  
DSPI_2  
MC_RGM  
SIUL  
I/O  
I/O  
O
I
ABS[0]  
EIRQ[2]  
I
I
A[3]  
A[4]  
PCR[3]  
PCR[4]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[3]  
ETC[3]  
CS0  
B[3]  
ABS[1]  
EIRQ[3]  
SIUL  
eTimer_0  
DSPI_2  
FlexPWM_0  
MC_RGM  
SIUL  
I/O  
I/O  
I/O  
O
I
I
Slow  
Slow  
Medium  
Medium  
41  
48  
64  
75  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[4]  
CS1  
ETC[4]  
FAB  
EIRQ[4]  
SIUL  
DSPI_2  
eTimer_0  
MC_RGM  
SIUL  
I/O  
O
I/O  
I
I
A[5]  
A[6]  
A[7]  
PCR[5]  
PCR[6]  
PCR[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[5]  
CS0  
CS7  
SIUL  
DSPI_1  
DSPI_0  
SIUL  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
5
2
3
8
2
4
EIRQ[5]  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[6]  
SCK  
EIRQ[6]  
SIUL  
DSPI_1  
SIUL  
I/O  
I/O  
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[7]  
SOUT  
EIRQ[7]  
SIUL  
DSPI_1  
SIUL  
I/O  
O
I
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
24  
Freescale Semiconductor  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
A[8]  
A[9]  
PCR[8]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[8]  
SIN  
EIRQ[8]  
SIUL  
DSPI_1  
SIUL  
I/O  
I
Slow  
Medium  
4
6
I
PCR[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[9]  
CS1  
B[3]  
SIUL  
DSPI_2  
I/O  
O
O
I
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
60  
52  
53  
54  
61  
94  
81  
82  
83  
95  
FlexPWM_0  
FlexPWM_0  
FAULT[0]  
A[10] PCR[10]  
A[11] PCR[11]  
A[12] PCR[12]  
A[13] PCR[13]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[10]  
CS0  
B[0]  
X[2]  
EIRQ[9]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
I/O  
O
O
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[11]  
SCK  
A[0]  
A[2]  
EIRQ[10]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
I/O  
O
O
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[12]  
SOUT  
A[2]  
B[2]  
EIRQ[11]  
SIUL  
DSPI_2  
FlexPWM_0  
FlexPWM_0  
SIUL  
I/O  
O
O
O
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[13]  
SIUL  
FlexPWM_0  
DSPI_2  
FlexPWM_0  
SIUL  
I/O  
O
I
B[2]  
SIN  
FAULT[0]  
EIRQ[12]  
I
I
A[14] PCR[14]  
A[15] PCR[15]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[14]  
TXD  
SIUL  
Safety Port_0  
I/O  
O
I
Slow  
Slow  
Medium  
Medium  
63  
64  
99  
SIUL  
EIRQ[13]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[15]  
SIUL  
I/O  
I
100  
RXD  
EIRQ[14]  
Safety Port_0  
SIUL  
I
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
25  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
Port B (16-bit)  
B[0] PCR[16]  
B[1] PCR[17]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[16]  
TXD  
SIUL  
FlexCAN_0  
I/O  
O
I
Slow  
Slow  
Medium  
Medium  
49  
50  
76  
77  
DEBUG[0]  
EIRQ[15]  
SSCM  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[17]  
SIUL  
I/O  
I
DEBUG[1]  
RXD  
EIRQ[16]  
SSCM  
FlexCAN_0  
SIUL  
I
B[2] PCR[18]  
B[3] PCR[19]  
B[6] PCR[22]  
B[7] PCR[23]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[18]  
TXD  
SIUL  
LIN_0  
SSCM  
SIUL  
I/O  
O
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
51  
62  
20  
79  
80  
96  
29  
DEBUG[2]  
EIRQ[17]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[19]  
SIUL  
SSCM  
LIN_0  
I/O  
I
DEBUG[3]  
RXD  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[22]  
CLKOUT  
CS2  
SIUL  
Control  
DSPI_2  
I/O  
O
O
I
EIRQ[18]  
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[23]  
AN[0]  
RXD  
SIUL  
ADC_0  
LIN_0  
Input only  
Input only  
Input only  
B[8] PCR[24]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[24]  
AN[1]  
ETC[5]  
SIUL  
22  
24  
31  
35  
ADC_0  
eTimer_0  
B[9] PCR[25]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[25]  
AN[11]  
SIUL  
ADC_0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
26  
Freescale Semiconductor  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
B[10] PCR[26]  
B[11] PCR[27]  
B[12] PCR[28]  
B[13] PCR[29]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[26]  
AN[12]  
SIUL  
ADC_0  
Input only  
25  
26  
27  
30  
36  
37  
38  
42  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[27]  
AN[13]  
SIUL  
ADC_0  
Input only  
Input only  
Input only  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[28]  
AN[14]  
SIUL  
ADC_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[29]  
SIUL  
ADC_0  
AN[6]  
emu. AN[0] emu. ADC_16  
RXD  
LIN_1  
B[14] PCR[30]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[30]  
SIUL  
ADC_0  
Input only  
44  
AN[7]  
emu. AN[1] emu. ADC_16  
ETC[4]  
EIRQ[19]  
eTimer_0  
SIUL  
B[15] PCR[31]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[31]  
SIUL  
ADC_0  
Input only  
43  
AN[8]  
emu. AN[2] emu. ADC_16  
EIRQ[20]  
SIUL  
Port C (16-bit)  
C[0] PCR[32]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[32]  
SIUL  
ADC_0  
Input only  
45  
AN[9]  
emu. AN[3] emu. ADC_16  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
27  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
C[1] PCR[33]  
C[2] PCR[34]  
C[3] PCR[35]  
C[4] PCR[36]  
C[5] PCR[37]  
C[6] PCR[38]  
C[7] PCR[39]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[33]  
SIUL  
ADC_0  
Input only  
19  
21  
28  
30  
10  
5
AN[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[34]  
SIUL  
ADC_0  
Input only  
AN[3]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[35]  
CS1  
TXD  
SIUL  
DSPI_0  
LIN_1  
SIUL  
I/O  
O
O
I
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
EIRQ[21]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[36]  
CS0  
X[1]  
DEBUG[4]  
EIRQ[22]  
SIUL  
DSPI_0  
FlexPWM_0  
SSCM  
I/O  
I/O  
O
I
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[37]  
SCK  
SIUL  
DSPI_0  
SSCM  
SIUL  
I/O  
I/O  
I
7
DEBUG[5]  
EIRQ[23]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[38]  
SOUT  
B[1]  
DEBUG[6]  
EIRQ[24]  
SIUL  
DSPI_0  
FlexPWM_0  
SSCM  
I/O  
O
O
I
98  
9
SIUL  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[39]  
A[1]  
DEBUG[7]  
SIN  
SIUL  
FlexPWM_0  
SSCM  
I/O  
O
I
DSPI_0  
C[8] PCR[40]  
C[9] PCR[41]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[40]  
CS1  
SIUL  
DSPI_1  
I/O  
O
O
Slow  
Slow  
Medium  
Medium  
57  
91  
84  
CS6  
DSPI_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[41]  
CS3  
SIUL  
DSPI_2  
I/O  
O
O
X[3]  
FlexPWM_0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
28  
Freescale Semiconductor  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
C[10] PCR[42]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[42]  
CS2  
A[3]  
FAULT[1]  
SIUL  
DSPI_2  
I/O  
O
O
I
Slow  
Medium  
78  
FlexPWM_0  
FlexPWM_0  
C[11] PCR[43]  
C[12] PCR[44]  
C[13] PCR[45]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[43]  
ETC[4]  
CS2  
SIUL  
eTimer_0  
DSPI_2  
I/O  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
33  
34  
55  
56  
71  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[44]  
ETC[5]  
CS3  
SIUL  
eTimer_0  
DSPI_2  
I/O  
I/O  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[45]  
SIUL  
CTU_0  
I/O  
I
EXT_IN  
EXT_SYNC FlexPWM_0  
I
C[14] PCR[46]  
C[15] PCR[47]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[46]  
EXT_TGR  
SIUL  
CTU_0  
I/O  
O
Slow  
Slow  
Medium  
Medium  
72  
85  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[47]  
A[1]  
EXT_IN  
SIUL  
I/O  
O
I
FlexPWM_0  
CTU_0  
EXT_SYNC FlexPWM_0  
I
Port D (16-bit)  
D[0] PCR[48]  
D[1] PCR[49]  
D[2] PCR[50]  
D[3] PCR[51]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[48]  
SIUL  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
86  
3
B[1]  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[49]  
SIUL  
I/O  
O
EXT_TRG  
CTU_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[50]  
SIUL  
I/O  
O
97  
89  
X[3]  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[51]  
SIUL  
I/O  
O
A[3]  
FlexPWM_0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
29  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
D[4] PCR[52]  
D[5] PCR[53]  
D[6] PCR[54]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[52]  
SIUL  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
90  
22  
23  
B[3]  
FlexPWM_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[53]  
CS3  
SIUL  
DSPI_0  
FCU_0  
I/O  
O
O
F[0]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[54]  
CS2  
SIUL  
DSPI_0  
I/O  
O
I
FAULT[1]  
FlexPWM_0  
D[7] PCR[55]  
D[8] PCR[56]  
D[9] PCR[57]  
D[10] PCR[58]  
D[11] PCR[59]  
D[12] PCR[60]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[55]  
CS3  
SIUL  
I/O  
O
O
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
Medium  
17  
14  
8
26  
21  
15  
53  
54  
70  
DSPI_1  
FCU_0  
DSPI_0  
F[1]  
CS4  
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[56]  
CS2  
SIUL  
DSPI_1  
I/O  
O
O
CS5  
DSPI_0  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[57]  
X[0]  
TXD  
SIUL  
FlexPWM_0  
LIN_1  
I/O  
O
O
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[58]  
SIUL  
FlexPWM_0  
I/O  
O
45  
A[0]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[59]  
SIUL  
FlexPWM_0  
I/O  
O
B[0]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[60]  
X[1]  
RXD  
SIUL  
FlexPWM_0  
I/O  
O
I
LIN_1  
D[13] PCR[61]  
D[14] PCR[62]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[61]  
SIUL  
FlexPWM_0  
I/O  
O
Slow  
Slow  
Medium  
Medium  
44  
46  
67  
73  
A[1]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[62]  
SIUL  
FlexPWM_0  
I/O  
O
B[1]  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
30  
Freescale Semiconductor  
Table 5. Pin muxing (continued)  
I/O  
Pad speed5  
Pin  
Port  
PCR  
Alternate  
Functions  
Peripheral3  
pin register function1,2  
direction4  
SRC = 0 SRC = 1 64-pin 100-pin  
D[15] PCR[63]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[63]  
SIUL  
ADC_0  
Input only  
41  
AN[10]  
emu. AN[4] emu. ADC_16  
Port E (16-bit)  
E[0] PCR[64]  
E[1] PCR[65]  
E[2] PCR[66]  
E[3] PCR[67]  
E[4] PCR[68]  
E[5] PCR[69]  
E[6] PCR[70]  
E[7] PCR[71]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[64]  
AN[15]  
SIUL  
ADC_0  
Input only  
Input only  
Input only  
Input only  
Input only  
Input only  
Input only  
Input only  
18  
23  
30  
46  
27  
32  
42  
44  
43  
45  
41  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[65]  
SIUL  
ADC_0  
AN[4]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[66]  
SIUL  
ADC_0  
AN[5]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[67]  
SIUL  
ADC_0  
AN[6]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[68]  
SIUL  
ADC_0  
AN[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[69]  
SIUL  
ADC_0  
AN[8]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[70]  
SIUL  
ADC_0  
AN[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[71]  
AN[10]  
SIUL  
ADC_0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
31  
1
2
ALT0 is the primary (default) function for each port after reset.  
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module.  
PCR.PA = 00 ALT0; PCR.PA = 01 ALT1; PCR.PA = 10 ALT2; PCR.PA = 11 ALT3. This is intended to  
select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of  
the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
3
4
Module included on the MCU.  
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
5
6
Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.  
ADC0.AN emulates ADC1.AN. This feature is used to provide software compatibility between MPC5602P and  
MPC5604P. Refer to ADC chapter of reference manual for more details.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
32  
Freescale Semiconductor  
3
Electrical characteristics  
3.1  
Introduction  
This section contains device electrical characteristics as well as temperature and power considerations.  
This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This can be done by the  
DD  
SS  
internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins.  
The following tables provide the device characteristics and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
CAUTION  
All of the following parameter values can vary depending on the application and must be  
confirmed during silicon characterization or silicon reliability trial.  
3.2  
Parameter classification  
The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications  
listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate.  
Table 6. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.3  
Absolute maximum ratings  
1
Table 7. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Device ground  
0
0
V
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
33  
1
Table 7. Absolute maximum ratings (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
2
VDD_HV_IOx  
SR 3.3 V/5.0 V input/output supply  
voltage (supply).  
–0.3  
6.0  
V
Code flash memory supply with  
VDD_HV_IO3 and data flash memory  
with VDD_HV_IO2  
VSS_HV_IOx  
SR 3.3 V/5.0 V input/output supply  
voltage (ground).  
–0.1  
0.1  
V
V
Code flash memory ground with  
VSS_HV_IO3 and data flash memory  
with VSS_HV_IO2  
VDD_HV_OSC SR 3.3 V/5.0 V crystal oscillator amplifier  
supply voltage (supply)  
–0.3  
–0.3  
6.0  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
VSS_HV_OSC SR 3.3 V/5.0 V crystal oscillator amplifier  
supply voltage (ground)  
–0.1  
–0.3  
–0.3  
–0.1  
0.1  
V
V
VDD_HV_ADC0 SR 3.3 V/5.0 V ADC_0 supply and high- VDD_HV_REG  
<
>
VDD_HV_REG + 0.3  
reference voltage  
2.7 V  
VDD_HV_REG  
2.7 V  
6.0  
0.1  
VSS_HV_ADC0 SR 3.3 V/5.0 V ADC_0 ground and low-  
reference voltage  
V
V
VDD_HV_REG SR 3.3 V/5.0 V voltage-regulator supply  
voltage  
–0.3  
–0.3  
6.0  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
TVDD  
SR Slope characteristics on all VDD during  
power up3  
0.25  
1.5  
V/µs  
V
VDD_LV_CORx CC 1.2 V supply pins for core logic  
(supply)  
–0.1  
–0.1  
VSS_LV_CORx SR 1.2 V supply pins for core logic  
(ground)  
0.1  
V
VIN  
SR Voltage on any pin with respect to  
ground (VSS_HV_IOx  
–0.3  
–0.3  
6.0  
V
)
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.34  
IINJPAD  
IINJSUM  
SR Input current on any pin during  
overload condition  
–10  
–50  
10  
50  
mA  
mA  
SR Absolute sum of all input currents  
during overload condition  
TSTG  
TJ  
SR Storage temperature  
–55  
150  
150  
°C  
°C  
SR Junction temperature under bias  
40  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
34  
Freescale Semiconductor  
1
2
Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
The difference between each couple of voltage supplies must be less than 300 mV,  
VDD_HV_IOy – VDD_HV_IOx< 300 mV.  
Guaranteed by device validation.  
Only when VDD_HV_IOx < 5.2 V  
3
4
Figure 4 shows the constraints of the different power supplies.  
VDD_HV_xxx  
6.0 V  
VDD_HV_IOx  
–0.3 V  
–0.3 V  
6.0 V  
Figure 4. Power supplies constraints (–0.3 V VDD_HV_IOx 6.0 V)  
The MPC5602P supply architecture allows the ADC supply to be managed independently from the standard V  
Figure 5 shows the constraints of the ADC power supply.  
supply.  
DD_HV  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
35  
VDD_HV_ADCx  
6.0 V  
VDD_HV_REG  
–0.3 V  
–0.3 V  
2.7 V  
6.0 V  
Figure 5. Independent ADC supply (–0.3 V VDD_HV_REG 6.0 V)  
3.4  
Recommended operating conditions  
Table 8. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS  
SR Device ground  
0
0
V
V
2
VDD_HV_IOx  
SR 5.0 V input/output supply  
voltage  
4.5  
5.5  
VSS_HV_IOx  
SR Input/output ground  
voltage  
0
0
V
V
VDD_HV_OSC  
SR 5.0 V crystal oscillator  
amplifier supply voltage  
4.5  
5.5  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_OSC  
VDD_HV_REG  
SR 5.0 V crystal oscillator  
amplifier reference voltage  
0
0
V
V
SR 5.0 V voltage regulator  
supply voltage  
4.5  
5.5  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VDD_HV_ADC0  
SR 5.0 V ADC_0 supply and  
high reference voltage  
4.5  
5.5  
V
Relative to  
VDD_HV_REG – 0.1  
VDD_HV_REG  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
36  
Freescale Semiconductor  
Table 8. Recommended operating conditions (5.0 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS_HV_ADC0  
SR ADC_0 ground and low  
reference voltage  
0
0
V
3,4  
3
VDD_LV_REGCOR  
CC Internal supply voltage  
SR Internal reference voltage  
CC Internal supply voltage  
SR Internal reference voltage  
0
0
V
V
VSS_LV_REGCOR  
3,4  
VDD_LV_CORx  
0
0
V
3
VSS_LV_CORx  
V
TA  
SR Ambient temperature  
under bias  
40  
125  
°C  
1
2
3
Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and  
I/Os DC electrical specification may not be guaranteed.  
The difference between each couple of voltage supplies must be less than 100 mV,  
VDD_HV_IOy – VDD_HV_IOx< 100 mV.  
To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an  
on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted  
to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external  
ballast emitter.  
4
The low voltage supplies (VDD_LV_xxx) are not all independent.  
– VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low  
voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted.  
– VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx  
.
Table 9. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS  
SR Device ground  
0
0
V
V
2
VDD_HV_IOx  
SR 3.3 V input/output supply  
voltage  
3.0  
3.6  
VSS_HV_IOx  
SR Input/output ground  
voltage  
0
0
V
V
VDD_HV_OSC  
SR 3.3 V crystal oscillator  
amplifier supply voltage  
3.0  
3.6  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VSS_HV_OSC  
VDD_HV_REG  
SR 3.3 V crystal oscillator  
amplifier reference voltage  
0
0
V
V
SR 3.3 V voltage regulator  
supply voltage  
3.0  
3.6  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1  
VDD_HV_ADC0  
SR 3.3 V ADC_0 supply and  
high reference voltage  
3.0  
5.5  
5.5  
V
Relative to  
VDD_HV_REG 0.1  
VDD_HV_REG  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
37  
Table 9. Recommended operating conditions (3.3 V) (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max1  
VSS_HV_ADC0  
SR ADC_0 ground and low  
reference voltage  
0
0
V
3,4  
3
VDD_LV_REGCOR  
CC Internal supply voltage  
0
0
V
V
VSS_LV_REGCOR SR Internal reference voltage  
3,4  
VDD_LV_CORx  
VSS_LV_CORx  
TA  
CC Internal supply voltage  
0
0
V
3
SR Internal reference voltage  
V
SR Ambient temperature  
under bias  
40  
125  
°C  
1
2
3
Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics  
and I/Os DC electrical specification may not be guaranteed.  
The difference between each couple of voltage supplies must be less than 100 mV,  
VDD_HV_IOy – VDD_HV_IOx< 100 mV.  
To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced  
by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must  
be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected  
to the external ballast emitter.  
4
The low voltage supplies (VDD_LV_xxx) are not all independent.  
– VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the  
low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally  
shorted.  
– VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx  
.
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
38  
Freescale Semiconductor  
Figure 6 shows the constraints of the different power supplies.  
VDD_HV_xxx  
5.5 V  
3.3 V  
3.0 V  
VDD_HV_IOx  
5.5 V  
3.0 V  
3.3 V  
Note: IO AC and DC characteristics are guaranteed only in the range of 3.0–3.6 V when  
PAD3V5V is low, and in the range of 4.5–5.5 V when PAD3V5V is high.  
Figure 6. Power supplies constraints (3.0 V VDD_HV_IOx 5.5 V)  
The MPC5602P supply architecture allows the ADC supply to be managed independently from the standard V  
Figure 7 shows the constraints of the ADC power supply.  
supply.  
DD_HV  
VDD_HV_ADCx  
5.5 V  
3.0 V  
VDD_HV_REG  
3.0 V  
5.5 V  
Figure 7. Independent ADC supply (3.0 V VDD_HV_REG 5.5 V)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
39  
3.5  
Thermal characteristics  
3.5.1  
Package thermal characteristics  
Table 10. LQFP thermal characteristics  
Typical value  
Symbol  
Parameter  
Conditions  
Unit  
100-pin  
64-pin  
RJA Thermal resistance junction-to-ambient, natural  
convection1  
Single layer board—1s  
Four layer board—2s2p  
Four layer board—2s2p  
Single layer board—1s  
Operating conditions  
Operating conditions  
63  
51  
33  
15  
33  
1
57  
41  
22  
13  
22  
1
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RJB Thermal resistance junction-to-board2  
RJCtop Thermal resistance junction-to-case (top)3  
JB  
JC  
Junction-to-board, natural convection4  
Junction-to-case, natural convection5  
1
2
3
4
5
Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for  
this package.  
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for  
the specified package. When Greek letters are not available, the symbols are typed as RthJB or Theta-JB.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used  
for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.  
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as  
Psi-JC.  
3.5.2  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from Equation 1:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
T = ambient temperature for the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value  
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which  
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction-to-case thermal resistance  
and a case-to-ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 2  
JA  
JC  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
40  
Freescale Semiconductor  
where:  
R
R
R
= junction-to-ambient thermal resistance (°C/W)  
= junction-to-case thermal resistance (°C/W)  
= case-to-ambient thermal resistance (°C/W)  
JA  
JC  
CA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the  
JC  
case-to-ambient thermal resistance, R  
. For instance, the user can change the size of the heat sink, the air flow around the  
CA  
device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the  
printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using Equation 3:  
T = T + (x P )  
Eqn. 3  
J
T
JT  
D
where:  
T = thermocouple temperature on top of the package (°C)  
T
= thermal characterization parameter (°C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134U.S.A.  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at (800)  
854-7179 or (303) 397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller  
Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic  
Packaging and Production, pp. 53–58, March 1998.  
B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in  
Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
41  
3.6  
Electromagnetic interference (EMI) characteristics  
Table 11. EMI testing specifications  
Level  
(Typ)  
Symbol  
Parameter  
Conditions  
Clocks  
Frequency  
Unit  
VEME Radiated emissions VDD = 5.0 V; TA = 25 °C  
Other device configuration,  
fOSC = 8 MHz  
150 kHz–150 MHz 11 dBµV  
f
CPU = 64 MHz  
150–1000 MHz  
IEC level  
13  
M
8
No PLL frequency  
test conditions and EM testing modulation  
per standard IEC61967-2  
fOSC = 8 MHz  
150 kHz–150 MHz  
150–1000 MHz  
IEC level  
dBµV  
f
CPU = 64 MHz  
12  
N
±4% PLL frequency  
modulation  
VDD = 3.3 V; TA = 25 °C  
fOSC = 8 MHz  
150 kHz–150 MHz  
150–1000 MHz  
IEC level  
9
dBµV  
f
CPU = 64 MHz  
12  
M
7
Other device configuration,  
test conditions and EM testing modulation  
per standard IEC61967-2  
No PLL frequency  
fOSC = 8 MHz  
150 kHz–150 MHz  
150–1000 MHz  
IEC level  
dBµV  
fCPU = 64 MHz  
±4% PLL frequency  
modulation  
12  
N
3.7  
Electrostatic discharge (ESD) characteristics  
1,2  
Table 12. ESD ratings  
Symbol  
Parameter  
Conditions  
Value  
Unit  
VESD(HBM)  
VESD(CDM)  
SR Electrostatic discharge (Human Body Model)  
SR Electrostatic discharge (Charged Device Model)  
2000  
V
V
750 (corners)  
500 (other)  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
3.8  
Power management electrical characteristics  
Voltage regulator electrical characteristics  
3.8.1  
The internal voltage regulator requires an external NPN (BCP68, BCX68 or BC817) ballast to be connected as shown in  
Figure 8. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to  
limit the serial inductance of the board to less than 5 nH.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
42  
Freescale Semiconductor  
NOTE  
The voltage regulator output cannot be used to drive external circuits. Output pins are to be  
used only for decoupling capacitance.  
V
must be generated using internal regulator and external NPN transistor. It is  
DD_LV_COR  
not possible to provide V  
through external regulator.  
DD_LV_COR  
For the MPC5602P microcontroller, 10 µF should be placed between each of the three V  
/V  
supply pairs  
DD_LV_CORx SS_LV_CORx  
and also between the V  
/V  
pair. Additionally, 40 µF should be placed between the  
DD_LV_REGCOR SS_LV_REGCOR  
V
/V  
pins.  
DD_HV_REG SS_HV_REG  
V
= 3.0 V to 3.6 V / 4.5 V to 5.5 V, T = 40 to 125 °C, unless otherwise specified.  
DD  
A
VDD_HV_REG  
MPC5602P  
CDEC3  
BCP68,  
BCX68,  
BC817  
BCTRL  
VDD_LV_COR  
CDEC2  
CDEC1  
Figure 8. Voltage regulator configuration  
Table 13. Voltage regulator electrical characteristics  
Value  
Min Typ Max  
Symbol  
C
Parameter  
Conditions  
Unit  
VDD_LV_REGCOR CC P Output voltage under maximum Post-trimming  
1.15  
1.32  
V
load run supply current  
configuration  
CDEC1  
SR — External decoupling/stability  
ceramic capacitor  
Bipolar BCP68 or BCX68 or  
BC817SU  
Three capacitances of 10 µF  
19.5  
30  
µF  
µF  
Bipolar BC817  
One capacitance of 22 µF  
14.3  
22  
RREG  
SR — Resulting ESR of either one or Absolute maximum value  
all three CDEC1 between 100 kHz and 10 MHz  
45 m  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
43  
Table 13. Voltage regulator electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
CDEC2  
CDEC3  
SR — External decoupling/stability  
ceramic capacitor  
Four capacitances of 440 nF 1200 1760  
each  
nF  
µF  
SR — External decoupling/stability  
ceramic capacitor on  
Two capacitances of 10 µF  
each  
2 × 10  
VDD_HV_REG  
3.8.2  
Voltage monitor electrical characteristics  
The device implements a power on reset module to ensure correct power-up initialization, as well as three low voltage detectors  
to monitor the V and the V voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply  
DD  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range  
DD  
LVDLVCOR monitors low voltage digital power domain  
Table 14. Low voltage monitor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VPORH  
T
P
P
P
P
P
P
P
P
P
P
P
Power-on reset threshold  
1.5  
1.0  
2.7  
V
V
V
V
V
V
V
V
V
V
V
V
VPORUP  
Supply for functional POR module  
TA = 25 °C  
VREGLVDMOK_H  
VREGLVDMOK_L  
VFLLVDMOK_H  
VFLLVDMOK_L  
VIOLVDMOK_H  
VIOLVDMOK_L  
VIOLVDM5OK_H  
VIOLVDM5OK_L  
VMLVDDOK_H  
VMLVDDOK_L  
Regulator low voltage detector high threshold  
Regulator low voltage detector low threshold  
Flash low voltage detector high threshold  
Flash low voltage detector low threshold  
I/O low voltage detector high threshold  
I/O low voltage detector low threshold  
I/O 5 V low voltage detector high threshold  
I/O 5 V low voltage detector low threshold  
Digital supply low voltage detector high  
Digital supply low voltage detector low  
2.95  
2.6  
2.95  
2.6  
2.95  
2.6  
4.4  
3.8  
1.145  
1.08  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 °C to TA MAX, unless otherwise specified  
3.9  
Power up/down sequencing  
To prevent an overstress event or a malfunction within and outside the device, the MPC5602P implements the following  
sequence to ensure each module is started only when all conditions for switching it ON are available:  
A POWER_ON module working on voltage regulator supply controls the correct start-up of the regulator. This is a  
key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5 V. Associated  
POWER_ON (or POR) signal is active low.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
44  
Freescale Semiconductor  
Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage  
regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active.  
A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active  
high and released to all modules including I/Os, flash memory and 16 MHz RC oscillator needed during power-up  
phase and reset phase. When POWER_OK is low the associated modules are set into a safe state.  
VLVDHV3H  
VPORH  
3.3V  
VDD_HV_REG  
VPOR_UP  
0V  
3.3V  
POWER_ON  
LVDM (HV)  
0V  
3.3V  
0V  
VMLVDOK_H  
VDD_LV_REGCOR  
1.2V  
0V  
3.3V  
LVDD (LV)  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
~1us  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
P0  
P1  
Figure 9. Power-up typical sequence  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
45  
VLVDHV3L  
3.3V  
VPORH  
VDD_HV_REG  
0V  
3.3V  
LVDM (HV)  
POWER_ON  
0V  
3.3V  
0V  
1.2V  
0V  
VDD_LV_REGCOR  
LVDD (LV)  
3.3V  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
1.2V  
0V  
IDLE  
P0  
Figure 10. Power-down typical sequence  
VLVDHV3H  
VLVDHV3L  
3.3V  
VDD_HV_REG  
0V  
3.3V  
LVDM (HV)  
POWER_ON  
0V  
3.3V  
0V  
1.2V  
0V  
VDD_LV_REGCOR  
LVDD (LV)  
3.3V  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
~1us  
Internal Reset Generation Module  
1.2V  
0V  
FSM  
IDLE  
P0  
P1  
Figure 11. Brown-out typical sequence  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
46  
Freescale Semiconductor  
3.10 DC electrical characteristics  
3.10.1 NVUSRO register  
Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are  
controlled via bit values in the non-volatile user options (NVUSRO) register.  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
3.10.1.1 NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 15 shows how NVUSRO[PAD3V5V]  
controls the device configuration.  
Table 15. PAD3V5V field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
Default manufacturing value before flash initialization is ‘1’ (3.3 V).  
3.10.1.2 NVUSRO[OSCILLATOR_MARGIN] field description  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 16 shows how  
NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
Table 16. OSCILLATOR_MARGIN field description  
Value1  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
Default manufacturing value before flash initialization is ‘1’.  
3.10.2 DC electrical characteristics (5 V)  
Table 17 gives the DC electrical characteristics at 5 V (4.5 V < V  
< 5.5 V, NVUSRO[PAD3V5V] = 0).  
DD_HV_IOx  
Table 17. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VIL  
D
P
P
D
T
Low level input voltage  
0.41  
0.35 VDD_HV_IOx  
V
V
V
V
V
V
VIH  
High level input voltage  
0.65 VDD_HV_IOx  
0.1 VDD_HV_IOx  
VDD_HV_IOx + 0.41  
VHYS  
Schmitt trigger hysteresis  
VOL_S  
P
Slow, low level output voltage  
IOL = 3 mA  
0.1 VDD_HV_IOx  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
47  
Table 17. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
VOH_S  
VOL_M  
VOH_M  
VOL_F  
VOH_F  
IPU  
P
P
P
P
P
P
Slow, high level output voltage  
Medium, low level output voltage  
Medium, high level output voltage  
Fast, low level output voltage  
Fast, high level output voltage  
Equivalent pull-up current  
IOH = 3 mA  
IOL = 3 mA  
IOH = 3 mA  
IOL = 14 mA  
IOH = 14 mA  
VIN = VIL  
0.8 VDD_HV_IOx  
V
V
0.1 VDD_HV_IOx  
0.8 VDD_HV_IOx  
V
0.1 VDD_HV_IOx  
V
0.8 VDD_HV_IOx  
V
130  
µA  
VIN = VIH  
10  
IPD  
P
Equivalent pull-down current  
VIN = VIL  
10  
µA  
VIN = VIH  
130  
1
IIL  
IIL  
P
P
D
Input leakage current  
(all bidirectional ports)  
TA = 40 to 125 °C  
1  
µA  
µA  
pF  
Input leakage current  
(all ADC input-only ports)  
TA = 40 to 125 °C  
0.5  
0.5  
10  
CIN  
Input capacitance  
1
“SR” parameter values must not exceed the absolute maximum ratings shown in Table 7.  
Table 18. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value1  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ Max  
IDD_LV_CORx  
T
P
T
RUN—Maximum mode2  
VDD_LV_CORx externally  
forced at 1.3 V  
40 MHz  
64 MHz  
40 MHz  
64 MHz  
44  
52  
38  
45  
1.5  
1
55  
65  
46  
54  
10  
10  
10  
19  
mA  
RUN—Typical mode3  
P
T
HALT mode4  
STOP mode5  
IDD_FLASH  
Flash during read  
VDD_HV_FL at 5.0 V  
8
Flash during erase operation VDD_HV_FL at 5.0 V  
on 1 flash module  
15  
IDD_ADC  
IDD_OSC  
T
T
ADC  
VDD_HV_ADC0 at 5.0 V  
fADC = 16 MHz  
ADC_0  
8 MHz  
3
4
Oscillator  
VDD_HV_OSC at 5.0 V  
2.6  
3.2  
1
2
All values to be confirmed after characterization/data collection.  
Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient.  
I/O supply current excluded.  
3
Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current  
excluded.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
48  
Freescale Semiconductor  
4
5
Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power  
mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.  
STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data  
flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
49  
3.10.3 DC electrical characteristics (3.3 V)  
Table 19 gives the DC electrical characteristics at 3.3 V (3.0 V < V  
Figure 12.  
< 3.6 V, NVUSRO[PAD3V5V] = 1); see  
DD_HV_IOx  
1
Table 19. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value  
Symbol C  
Parameter  
Conditions  
Unit  
Min  
Max  
VIL  
VIH  
D Low level input voltage  
0.42  
V
V
P
0.35 VDD_HV_IOx  
P High level input voltage  
D
0.65 VDD_HV_IOx  
V
VDD_HV_IOx + 0.42  
V
VHYS T Schmitt trigger hysteresis  
0.1 VDD_HV_IOx  
0.5  
V
VOL_S P Slow, low level output voltage  
VOH_S P Slow, high level output voltage  
VOL_M P Medium, low level output voltage  
VOH_M P Medium, high level output voltage  
VOL_F P Fast, low level output voltage  
VOH_F P Fast, high level output voltage  
IOL = 1.5 mA  
IOH = 1.5 mA  
IOL = 2 mA  
IOH = 2 mA  
IOL = 11 mA  
IOH = 11 mA  
VIN = VIL  
VIN = VIH  
VIN = VIL  
VIN = VIH  
TA = 40 to 125 °C  
V
VDD_HV_IOx 0.8  
V
0.5  
V
VDD_HV_IOx 0.8  
V
0.5  
V
VDD_HV_IOx 0.8  
V
IPU  
P Equivalent pull-up current  
130  
µA  
10  
IPD  
P Equivalent pull-down current  
10  
µA  
130  
1
IIL  
IIL  
P Input leakage current (all  
bidirectional ports)  
µA  
µA  
pF  
P Input leakage current (all ADC  
input-only ports)  
TA = 40 to 125 °C  
0.5  
10  
CIN  
D Input capacitance  
1
2
These specifications are design targets and subject to change per device characterization.  
“SR” parameter values must not exceed the absolute maximum ratings shown in Table 7.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
50  
Freescale Semiconductor  
Table 20. Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value1  
Symbol  
C
Parameter  
Conditions  
Unit  
Typ  
Max  
IDD_LV_CORx  
T
RUN—Maximum mode2  
VDD_LV_CORx externally  
forced at 1.3 V  
40 MHz  
64 MHz  
40 MHz  
64 MHz  
44  
52  
38  
45  
1.5  
1
55  
65  
46  
54  
10  
10  
4
mA  
RUN—Typical mode3  
P
HALT mode4  
STOP mode5  
ADC  
IDD_ADC  
IDD_OSC  
T
T
VDD_HV_ADC0 at 3.3 V  
fADC = 16 MHz  
ADC_0  
3
Oscillator  
VDD_HV_OSC at 3.3 V  
8 MHz  
2.6  
3.2  
1
2
All values to be confirmed after characterization/data collection.  
Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient.  
I/O supply current excluded.  
3
4
5
Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current  
excluded.  
Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power  
mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.  
STOP “P” mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data  
flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.  
3.10.4 Input DC electrical characteristics definition  
Figure 12 shows the DC electrical characteristics behavior as function of time.  
Figure 12. Input DC electrical characteristics definition  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
51  
3.10.5 I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 21.  
Table 21. I/O supply segment  
Supply segment  
Package  
1
2
3
4
5
100 LQFP  
64 LQFP  
pin15–pin26  
pin8–pin17  
pin27–pin46  
pin18–pin30  
pin51–pin61  
pin33–pin38  
pin64–pin86  
pin41–pin54  
pin89–pin10  
pin57–pin5  
Table 22. I/O consumption  
Conditions1  
Value  
Min Typ Max  
Symbol  
C
Parameter  
Unit  
,2  
ISWTSLW  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
for SLOW  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(2)  
ISWTMED  
CC D Dynamic I/O current CL = 25 pF  
for MEDIUM  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
mA  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
(2)  
ISWTFST  
CC D Dynamic I/O current CL = 25 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
110 mA  
50  
for FAST  
configuration  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
IRMSSLW  
CC D Root medium square CL = 25 pF, 2 MHz  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
2.3 mA  
3.2  
I/O current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
IRMSMED CC D Root medium square CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,  
6.6 mA  
13.4  
18.3  
5
I/O current for  
MEDIUM  
configuration  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
CL = 100 pF, 13 MHz  
11  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
52  
Freescale Semiconductor  
Table 22. I/O consumption (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
IRMSFST  
CC D Root medium square CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,  
22  
33  
56  
14  
20  
35  
70  
65  
mA  
I/O current for FAST  
configuration  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
IAVGSEG  
SR D Sum of all the static  
I/O current within a  
supply segment  
V
DD = 5.0 V ± 10%, PAD3V5V = 0  
DD = 3.3 V ± 10%, PAD3V5V = 1  
mA  
V
1
2
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
3.11 Main oscillator electrical characteristics  
The MPC5602P provides an oscillator/resonator driver.  
Table 23. Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
fOSC SR — Oscillator frequency  
4
6.5  
1
40  
25  
30  
26  
23  
19  
16  
8
MHz  
mA/V  
V
gm  
VOSC  
tOSCSU  
CL  
P Transconductance  
T Oscillation amplitude on XTAL pin  
T Start-up time1,2  
8
ms  
CC T XTAL load capacitance3  
4 MHz  
5
pf  
T
T
T
T
T
8 MHz  
5
12 MHz  
16 MHz  
20 MHz  
40 MHz  
5
5
5
5
1
The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and  
excessive capacitive loads can cause long start-up time.  
2
3
Value captured when amplitude reaches 90% of XTAL  
This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals  
specified for this oscillator, load capacitors should not exceed these limits.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
53  
Table 24. Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
fOSC SR — Oscillator frequency  
4
4
1
8
5
5
5
5
5
5
40  
20  
30  
26  
23  
19  
16  
8
MHz  
mA/V  
V
gm  
VOSC  
tOSCSU  
CL  
P Transconductance  
T Oscillation amplitude on XTAL pin  
T Start-up time1,2  
ms  
CC T XTAL load capacitance3  
4 MHz  
pf  
T
T
T
T
T
8 MHz  
12 MHz  
16 MHz  
20 MHz  
40 MHz  
1
The start-up time is dependent upon crystal characteristics, board leakage, etc. High ESR and  
excessive capacitive loads can cause long start-up time.  
2
3
Value captured when amplitude reaches 90% of XTAL  
This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals  
specified for this oscillator, load capacitors should not exceed these limits.  
Table 25. Input clock characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
fOSC  
fCLK  
trCLK  
tDC  
SR Oscillator frequency  
4
50  
40  
64  
MHz  
MHz  
ns  
SR Frequency in bypass  
SR Rise/fall time in bypass  
SR Duty cycle  
1
47.5  
52.5  
%
3.12 FMPLL electrical characteristics  
Table 26. FMPLL electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
fref_crystal  
fref_ext  
D
D
PLL reference frequency range2  
Crystal reference  
4
40  
16  
MHz  
MHz  
fPLLIN  
Phase detector input frequency range  
(after pre-divider)  
4
fFMPLLOUT  
fFREE  
D
P
Clock frequency range in normal mode  
Free-running frequency  
16  
20  
64  
MHz  
MHz  
Measured using clock  
division—typically /16  
150  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
54  
Freescale Semiconductor  
Table 26. FMPLL electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
tCYC  
fLORL  
fLORH  
fSCM  
D
D
D
D
T
System clock period  
1.6  
24  
20  
4  
1 / fSYS  
3.7  
56  
ns  
Loss of reference frequency window3  
Lower limit  
Upper limit  
MHz  
Self-clocked mode frequency4,5  
150  
4
MHz  
% fCLKOUT  
ns  
CJITTER  
CLKOUT period Short-term jitter10  
fSYS maximum  
PLLIN = 16 MHz  
jitter6,7,8,9  
Long-term jitter  
f
10  
(average over 2 ms  
interval)  
(resonator), fPLLCLK at  
64 MHz, 4000 cycles  
tlpll  
tdc  
fLCK  
fUL  
D
D
D
D
D
D
D
PLL lock time11, 12  
40  
200  
60  
6
µs  
Duty cycle of reference  
Frequency LOCK range  
Frequency un-LOCK range  
Modulation depth  
%
6  
% fSYS  
% fSYS  
% fSYS  
18  
18  
fCS  
Center spread  
Down spread  
±0.25 ±4.013  
fDS  
0.5  
8.0  
fMOD  
Modulation frequency14  
70  
kHz  
1
2
3
VDD_LV_CORx = 1.2 V ±10%; VSS = 0 V; TA = –40 to 125 °C, unless otherwise specified  
Considering operation with PLL not bypassed.  
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked  
mode.  
4
5
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside  
the fLOR window.  
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in  
enhanced mode.  
6
7
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDD_LV_COR0 and VSS_LV_COR0 and variation in crystal oscillator  
frequency increase the CJITTER percentage for a given interval.  
8
9
Proper PC board layout procedures must be followed to achieve specifications.  
Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of  
CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
10 Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.  
11 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits.  
12 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
13 This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz).  
14 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
55  
3.13 16 MHz RC oscillator electrical characteristics  
Table 27. 16 MHz RC oscillator electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
fRC  
P RC oscillator frequency  
TA = 25 °C  
16  
5
MHz  
%
RCMVAR P Fast internal RC oscillator variation over  
temperature and supply with respect to fRC at  
TA = 25 °C in high-frequency configuration  
5  
3.14 Analog-to-digital converter (ADC) electrical characteristics  
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
56  
Freescale Semiconductor  
Offset Error (E )  
Gain Error (E )  
G
O
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error (E )  
O
Figure 13. ADC characteristics and error definitions  
3.14.1 Input impedance and ADC accuracy  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high-frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; it sources charge during  
the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be  
measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
57  
ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kis obtained (R = 1  
S
EQ  
/ (fc × C ), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
S
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
Eqn. 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
--------------------------------------------------------------------------  
V
-- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance  
SW1  
: Sampling switch impedance  
AD  
C : Pin capacitance (two contributions, C and C )  
P2  
P
P1  
C : Sampling capacitance  
S
Figure 14. Input equivalent circuit  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit reported in Figure 14): A charge sharing phenomenon  
A
is installed when the sampling phase is started (A/D switch closed).  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
58  
Freescale Semiconductor  
Voltage Transient on CS  
V
CS  
V
A
V <0.5 LSB  
V
A2  
1
2
1 < (RSW + RAD) CS << ts  
V
A1  
2 = RL (CS + CP1 + CP2)  
t
t
s
Figure 15. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
P1 P2 S S  
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
Eqn. 5  
C C  
P
S
--------------------  
   
= R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t  
is always much longer than the internal time constant:  
s
Eqn. 6  
R  
+ R  
C « ts  
1
SW  
AD  
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
C + C + C = V C + C  
A1  
S
P1  
P2  
A
P1  
P2  
A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
R C + C + C  
P1 P2  
2
L
S
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
59  
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time t , a constraints on R sizing is obtained:  
s
L
Eqn. 9  
10 = 10 R C + C + C ts  
P1 P2  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
C + C + C + C = V C + V C + C + C   
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (t ). The filter is typically designed to act as anti-aliasing.  
s
Analog Source Bandwidth (V )  
A
t
f
2 R C (Conversion Rate vs. Filter Pole)  
F F  
c
Noise  
f (Anti-aliasing Filtering Condition)  
F
0
2 f f (Nyquist)  
0
C
f
0
f
Anti-Aliasing Filter (f = RC Filter pole)  
Sampled Signal Spectrum (f = conversion Rate)  
C
F
f
f
f
C
F
0
f
f
Figure 16. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (T ). Again the conversion period t is longer than the sampling time t ,  
C
c
s
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time t , so the charge level on C cannot be modified by the analog signal source during the time in which the sampling  
s
S
switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
60  
Freescale Semiconductor  
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
F
V
C
+ C + C + C  
A2  
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
2048 C  
F
S
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
61  
3.14.2 ADC conversion characteristics  
Table 28. ADC conversion characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fCK  
SR — ADC clock frequency (depends on  
ADC configuration)  
33  
60 MHz  
(The duty cycle depends on ADC  
clock2 frequency)  
fs  
ts  
SR — Sampling frequency  
— D Sampling time4  
125  
1.53 MHz  
f
ADC = 20 MHz, INPSAMP = 3  
28.2  
ns  
µs  
µs  
µs  
fADC = 9 MHz, INPSAMP = 255  
tc  
— P Conversion time5  
fADC = 20 MHz6, INPCMP = 1 0.650  
tADC_PU SR — ADC power-up delay (time needed for  
ADC to settle exiting from software  
1.5  
power down; PWDN bit = 0)  
7
CS  
— D ADC input sampling capacitance  
— D ADC input pin capacitance 1  
— D ADC input pin capacitance 2  
5  
2.5  
3
pF  
pF  
pF  
k  
k  
k  
mA  
7
7
CP1  
CP2  
1
7
RSW1  
— D Internal resistance of analog source VDD_HV_ADC0 = 5 V ± 10%  
VDD_HV_ADC0 = 3.3 V ± 10%  
0.6  
3
7
RAD  
IINJ  
— D Internal resistance of analog source  
T Input current injection  
2
Current injection on one ADC  
input, different from the  
converted one. Remains  
within TUE specification  
5
INL  
CC P Integral non-linearity  
No overload  
1.5  
1.0  
±1  
±1  
1.5 LSB  
1.0 LSB  
DNL CC P Differential non-linearity  
No overload  
EO  
EG  
CC T Offset error  
CC T Gain error  
LSB  
LSB  
TUE CC P Total unadjusted error without current  
injection  
2.5  
2.5 LSB  
TUE CC T Total unadjusted error with current  
injection  
3  
3
LSB  
1
VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = 40 °C to TA MAX, unless otherwise specified and analog input voltage  
from VSS_HV_ADC0 to VDD_HV_ADC0  
.
2
3
4
AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.  
When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which the precision is lost.  
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of  
the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock ts depend on programming.  
5
This parameter includes the sampling time ts.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
62  
Freescale Semiconductor  
6
7
20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.  
See Figure 14.  
3.15 Flash memory electrical characteristics  
3.15.1 Program/Erase characteristics  
Table 29. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
Min  
Typ1  
Max3  
Max2  
Twprogram P Word Program Time for data flash memory4  
30  
22  
70  
50  
500  
500  
17.5  
4.1  
µs  
µs  
s
Tdwprogram P Double Word Program Time for code flash memory4  
TBKPRG  
P Bank Program (256 KB)4,5  
P Bank Program (64 KB)4,5  
0.73  
0.49  
300  
0.83  
1.2  
500  
s
T16kpperase P 16 KB Block Pre-program and Erase Time for code  
flash memory  
5000  
ms  
16 KB Block Pre-program and Erase Time for data  
flash memory  
700  
800  
5000  
T32kpperase P 32 KB Block Pre-program and Erase Time  
T128kpperase P 128 KB Block Pre-program and Erase Time  
400  
800  
600  
5000  
7500  
ms  
ms  
1300  
1
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
2
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
5
Actual hardware programming times. This does not include software overhead.  
Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will  
require more than one pulse, adding a small overhead to total bank programming time (see “Initial Max” column).  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
63  
Table 30. Flash memory module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
100,000  
Typ  
P/E  
C Number of program/erase cycles per  
block for 16 KB blocks over the operating  
temperature range (TJ)  
cycles  
P/E  
P/E  
C Number of program/erase cycles per  
block for 32 KB blocks over the operating  
temperature range (TJ)  
10,000 100,000 cycles  
1,000 100,000 cycles  
C Number of program/erase cycles per  
block for 128 KB blocks over the operating  
temperature range (TJ)  
Retention C Minimum data retention at 85 °C average Blocks with 0–1,000 P/E cycles  
20  
10  
5
years  
years  
years  
ambient temperature1  
Blocks with 10,000 P/E cycles  
Blocks with 100,000 P/E cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
Table 31. Flash memory read access timing  
Symbol  
C
Parameter  
Conditions1  
Max value Unit  
fmax  
C Maximum working frequency for code flash memory at given  
number of wait states in worst conditions  
2 wait states  
0 wait states  
8 wait states  
66  
18  
66  
MHz  
fmax  
C Maximum working frequency for data flash memory at given  
number of wait states in worst conditions  
MHz  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
3.15.2 Flash memory power supply DC characteristics  
Table 32 shows the power supply DC characteristics on external supply.  
Table 32. Flash memory power supply DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IFLPW CC D Sum of the current consumption on VDD_HV_IOx  
and VDD_LV_CORx during low-power mode  
Code flash memory  
900 µA  
IFPWD CC D Sum of the current consumption on VDD_HV_IOx  
and VDD_LV_CORx during power-down mode  
Code flash memory  
Data flash memory  
150 µA  
150  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
64  
Freescale Semiconductor  
3.15.3 Start-up/Switch-off timings  
Table 33. Start-up time/Switch-off time  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
TFLARSTEXIT CC T Delay for Flash module to exit reset mode  
T
Code flash memory  
Data flash memory  
125 µs  
125  
0.5  
TFLALPEXIT CC D Delay for Flash module to exit low-power mode Code flash memory  
TFLAPDEXIT CC T Delay for Flash module to exit power-down  
Code flash memory  
Data flash memory  
Code flash memory  
30  
mode  
T
30  
TFLALPENTRY CC D Delay for Flash module to enter low-power  
mode  
0.5  
1
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.  
3.16 AC specifications  
3.16.1 Pad AC specifications  
Table 34. Output pin transition times  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ttr  
CC D Output transition time output pin2  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
50  
100  
125  
40  
ns  
SLOW configuration  
T
D
D
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
T
50  
D
75  
ttr  
CC D Output transition time output pin2  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
10  
ns  
MEDIUM configuration  
T
20  
D
D
T
40  
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
12  
25  
D
40  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
65  
Table 34. Output pin transition times (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min Typ Max  
ttr  
CC D Output transition time output pin2  
FAST configuration  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
CL = 25 pF  
CL = 50 pF  
CL = 100 pF  
VDD = 5.0 V ± 10%,  
PAD3V5V = 0  
SIUL.PCRx.SRC = 1  
4
6
ns  
12  
4
VDD = 3.3 V ± 10%,  
PAD3V5V = 1  
SIUL.PCRx.SRC = 1  
7
12  
4
3
tSYM CC T Symmetric transition time, same drive VDD = 5.0 V ± 10%, PAD3V5V = 0  
strength between N and P transistor  
ns  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
5
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 °C to TA MAX, unless otherwise specified.  
CL includes device and package capacitances (CPKG < 5 pF).  
Transition timing of both positive and negative slopes will differ maximum 50%.  
VDD_HV_IOx/2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
VOL  
Pad  
Output  
Figure 17. Pad output delay  
3.17 AC timing characteristics  
3.17.1 RESET pin characteristics  
The MPC5602P implements a dedicated bidirectional RESET pin.  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
66  
Freescale Semiconductor  
V
DD  
V
DDMIN  
VRESET  
V
IH  
V
IL  
device reset forced by VRESET  
device start-up phase  
tPOR  
Figure 18. Start-up reset requirements  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 19. Noise filtering on reset signal  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
67  
Table 35. RESET electrical characteristics  
Value2  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD + 0.4  
V
V
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
0.4  
0.1VDD  
0.35VDD  
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
VOL CC P Output low level  
Push Pull, IOL = 2 mA,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
(recommended)  
0.1VDD  
Push Pull, IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V ± 10%, PAD3V5V = 13  
Push Pull, IOL = 1 mA,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
(recommended)  
ttr  
CC D Output transition time  
output pin4 MEDIUM  
configuration  
CL = 25 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
40  
1
ns  
CL = 50 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 100 pF,  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
CL = 25 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 50 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
CL = 100 pF,  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
WFRST SR P RESET input filtered  
pulse  
ns  
ns  
WNFRST SR P RESET input not filtered  
pulse  
500  
tPOR CC D Maximum delay before Monotonic VDD_HV supply ramp  
ms  
internal resetis released  
after all VDD_HV reach  
nominal supply  
|IWPU  
|
CC P Weak pull-up current  
absolute value  
VDD = 3.3 V ± 10%, PAD3V5V = 1  
VDD = 5.0 V ± 10%, PAD3V5V = 0  
10  
10  
10  
150  
150  
250  
µA  
V
DD = 5.0 V ± 10%, PAD3V5V = 15  
1
2
3
VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of  
device reference manual).  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
68  
Freescale Semiconductor  
4
5
CL includes device and package capacitance (CPKG < 5 pF).  
The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET  
and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
3.17.2 IEEE 1149.1 interface timing  
Table 36. JTAG pin AC electrical characteristics  
Value  
No.  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Max  
1
2
tJCYC  
CC D TCK cycle time  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJDC  
CC D TCK clock pulse width (measured at VDD_HV_IOx/2)  
CC D TCK rise and fall times (40%–70%)  
CC D TMS, TDI data setup time  
3
tTCKRISE  
4
tTMSS, TDIS  
tTMSH, TDIH  
tTDOV  
tTDOI  
t
40  
50  
50  
5
t
CC D TMS, TDI data hold time  
25  
0
6
CC D TCK low to TDO data valid  
7
CC D TCK low to TDO data invalid  
CC D TCK low to TDO high impedance  
CC D TCK falling edge to output valid  
8
tTDOHZ  
tBSDV  
tBSDVZ  
40  
9
10  
CC D TCK falling edge to output valid out of high  
impedance  
11  
12  
13  
tBSDHZ  
tBSDST  
tBSDHT  
CC D TCK falling edge to output high impedance  
CC D Boundary scan input valid to TCK rising edge  
CC D TCK rising edge to boundary scan input invalid  
50  
50  
50  
ns  
ns  
ns  
TCK  
2
3
2
1
3
Figure 20. JTAG test clock input timing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
69  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 21. JTAG test access port timing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
70  
Freescale Semiconductor  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 22. JTAG boundary scan timing  
3.17.3 Nexus timing  
1
Table 37. Nexus debug port timing  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
1
2
tTCYC  
tNTDIS  
CC D TCK cycle time  
42  
5
20  
tCYC  
ns  
CC D TDI data setup time  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
5
ns  
3
25  
25  
10  
ns  
ns  
4
5
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
ns  
ns  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
71  
1
2
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.  
Lower frequency is required to be fully compliant to standard.  
1
MCKO  
2
3
4
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 23. Nexus output timing  
TCK  
EVTI  
EVTO  
5
Figure 24. Nexus event trigger and test clock timing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
72  
Freescale Semiconductor  
TCK  
6
7
TMS, TDI  
9
8
TDO  
Figure 25. Nexus TDI, TMS, TDO timing  
3.17.4 External interrupt timing (IRQ pin)  
1
Table 38. External interrupt timing  
Value  
No.  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Max  
1
2
3
tIPWL  
tIPWH  
tICYC  
CC  
CC  
CC  
D
D
D
IRQ pulse width low  
4
4
tCYC  
tCYC  
tCYC  
IRQ pulse width high  
IRQ edge to edge time2  
4 + N3  
1
IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200 pF with  
SRC = 0b00  
2
3
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
N = ISR time to clear the flag  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
73  
IRQ  
1
2
3
Figure 26. External interrupt timing  
3.17.5 DSPI timing  
1
Table 39. DSPI timing  
Value  
No. Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
1
tSCK CC  
D
DSPI cycle time  
Master (MTFE = 0)  
60  
60  
16  
26  
ns  
Slave (MTFE = 0)  
2
3
4
5
6
tCSC CC  
tASC CC  
tSDC CC  
D
D
D
D
D
CS to SCK delay  
After SCK delay  
ns  
ns  
SCK duty cycle  
0.4 * tSCK 0.6 * tSCK ns  
tA  
CC  
Slave access time  
Slave SOUT disable time  
SS active to SOUT valid  
30  
16  
ns  
ns  
tDIS CC  
SS inactive to SOUT high  
impedance or invalid  
7
8
9
tPCSC CC  
tPASC CC  
tSUI CC  
D
D
D
PCSx to PCSS time  
PCSS to PCSx time  
Data setup time for inputs  
13  
13  
35  
4
ns  
ns  
ns  
Master (MTFE = 0)  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
35  
35  
5  
4
10  
tHI  
CC  
D
Data hold time for inputs  
ns  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
11  
5  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
74  
Freescale Semiconductor  
1
Table 39. DSPI timing (continued)  
Value  
No. Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Max  
11 tSUO CC  
D
Data valid (after SCK edge) Master (MTFE = 0)  
Slave  
2  
6
12  
36  
12  
12  
ns  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
12 tHO CC  
D
Data hold time for outputs  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
6
2  
1
All timing are provided with 50 pF capacitance on output, 1 ns transition time on input signal  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 39.  
Figure 27. DSPI classic SPI timing – Master, CPHA = 0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
75  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 28. DSPI classic SPI timing – Master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 29. DSPI classic SPI timing – Slave, CPHA = 0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
76  
Freescale Semiconductor  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 30. DSPI classic SPI timing – Slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 39.  
Figure 31. DSPI modified transfer format timing – Master, CPHA = 0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
77  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 39.  
Figure 32. DSPI modified transfer format timing – Master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 39.  
Figure 33. DSPI modified transfer format timing – Slave, CPHA = 0  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
78  
Freescale Semiconductor  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 39.  
Figure 34. DSPI modified transfer format timing – Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 39.  
Figure 35. DSPI PCS Strobe (PCSS) timing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
79  
4
Package characteristics  
Package mechanical data  
4.1  
4.1.1  
100 LQFP mechanical outline drawing  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
80  
Freescale Semiconductor  
Figure 36. 100 LQFP package mechanical drawing (part 1)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
81  
Figure 37. 100 LQFP package mechanical drawing (part 2)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
82  
Freescale Semiconductor  
Figure 38. 100 LQFP package mechanical drawing (part 3)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
83  
4.1.2  
64 LQFP mechanical outline drawing  
Figure 39. 64 LQFP package mechanical drawing (part 1)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
84  
Freescale Semiconductor  
Figure 40. 64LQFP package mechanical drawing (part 2)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
85  
Figure 41. 64LQFP package mechanical drawing (part 3)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
86  
Freescale Semiconductor  
5
Ordering information  
Figure 42. Commercial product code structure  
Example code:  
M
PC  
56  
0
2
P
E
F0  
M
LL  
4
R
Qualification Status  
Power Architecture Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Optional Fields  
Fab & Mask Revision  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
M = MC status  
S = Automotive qualified  
P = PC status  
Flash Size (z0 core)  
1 = 192 KB  
2 = 256 KB  
Temperature spec.  
V = –40 to 105 °C  
M = –40 to 125 °C  
Product  
P = MPC560xP family  
Package Code  
LH = 64 LQFP  
LL = 100 LQFP  
Automotive Platform  
56 = Power Architecture in 90 nm  
Optional fields  
Core Version  
0 = e200z0  
E = Data Flash (blank if none)  
Frequency  
4 = 40 MHz  
6 = 64 MHz  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
87  
6
Document revision history  
Table 40 summarizes revisions to this document.  
Table 40. Revision history  
Revision  
Date  
Description of  
1
2
05 Aug 2009 Initial release.  
07 Apr 2010 Editorial updates  
Updated the following items in the “MPC5602P device comparison” table:  
• The heading  
• The “SRAM” row  
• The “FlexCAN” row  
• The “CTU” row  
• The “FlexPWM” row  
• The “LINFlex” row  
• The “DSPI” row  
• The “Nexus” row  
• Deleted the footnote No. 3  
Added the “Wakeup unit” block in the MPC5602P block diagram  
Updated the “Absolute Maximum Ratings“ table  
Updated the “Recommended operating conditions (5.0 V)“ table  
Updated the “Recommended operating conditions (3.3 V)“ table  
Updated the “Thermal characteristics for 100-pin LQFP“ table:  
JT: changed the typical value  
Updated the “EMI testing specifications“ table: replaced all values in “Level (Max)“  
column with TBD  
Updated the “Electrical characteristics“ section:  
• Added the “Introduction” section  
• Added the “Parameter classification“ section  
• Added the “NVUSRO register“ section  
• Added the “Power supplies constraints (–0.3 V VDD_HV_IOx 6.0 V)” figure  
• Added the “Independent ADC supply (–0.3 V VDD_HV_REG 6.0 V)“ figure  
• Added the “Power supplies constraints (3.0 V VDD_HV_IOx 5.5 V)“ figure  
• Added the “Independent ADC supply (3.0 V VDD_HV_REG 5.5 V)“ figure  
Updated the “Power management electrical characteristics” section  
Updated the “Power Up/Down sequencing” section  
Updated the “DC electrical characteristics“ section  
• Deleted the “NVUSRO register” section  
• Updated the “DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)“ section:  
– Deleted all rows concerning RESET  
– Deleted “IVPP“ row  
– Added the max value for CIN  
• Updated the “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 0)“ section:  
– Deleted all rows concerning RESET  
– Deleted “IVPP“ row  
– Added the max value for CIN  
Added the “I/O pad current specification“ section  
Updated the Orderable part number summarytable.  
2
07 Apr 2010 Added “Appendix A”  
(continued)  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
88  
Freescale Semiconductor  
Table 40. Revision history (continued)  
Description of  
Revision  
Date  
3
16 Dec 2010 “Introduction” section:  
• Changed title (was “Overview“)  
• Updated contents  
“MPC5602P device comparison” table:  
• Added sentence above table  
• Removed “FlexRay” row  
“MPC5602P block diagram”: added the following blocks: MC_CGM, MC_ME, MC_PCU,  
MC_RGM, CRC, and SSCM  
Added “MPC5602P series block summary” table  
“Pin muxing” section: removed information on “Symmetric pads”  
“Electrical characteristics” section:  
• Updated “Caution” note  
• Demoted “NVUSRO register” section to subsection of “DC electrical characteristics”  
section  
• “NVUSRO register” section: deleted “NVUSRO[WATCHDOG_EN] field description“  
section  
Updated “EMI testing specifications” table  
“Low voltage monitor electrical characteristics” table: updated VMLVDDOK_H max value  
“DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)” table: removed VOL_SYM  
and VOH_SYM rows  
,
“Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)” table:  
• IDD_LV_CORE, RUN—Maximum mode, 40/64 MHz: updated typ/max values  
• IDD_LV_CORE, RUN—Airbag mode, 40/64 MHz: updated typ/max values  
• IDD_LV_CORE, RUN—Maximum mode, “P” parameter classification: removed  
• IDD_FLASH: removed rows  
• IDD_ADC, Maximum mode: updated typ/max values  
• IDD_OSC: updated max value  
Updated “DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)” table  
“Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)” table:  
• IDD_LV_CORE, RUN—Maximum mode, 40/64 MHz: updated typ/max values  
• IDD_LV_CORE, RUN—Airbag mode, 40/64 MHz: updated typ/max values  
• IDD_FLASH: removed rows  
• IDD_ADC, Maximum mode: updated typ/max values  
• IDD_OSC: updated max value  
Added “I/O consumption” table  
Removed “I/O weight” table  
Updated “Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)” table  
Updated “Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)” table  
“Input clock characteristics” table: updated fCLK max value  
“PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V,  
TA = TL to TH)” table:  
• Updated supply voltage range for VDDPLL in the table title  
• Updated fSCM max value  
• Updated CJITTER row  
• Updated fMOD max value  
Updated “16 MHz RC oscillator electrical characteristics” table  
Updated “ADC conversion characteristics” table  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
89  
Table 40. Revision history (continued)  
Description of  
Revision  
Date  
3
16 Dec 2010 “Program and erase specifications” table:  
• Twprogram: updated initial max and max values  
• TBKPRG, 64 KB: updated initial max and max values  
• added information about “erase time” for Data Flash  
“Flash module life” table:  
(continued)  
• P/E, 32 KB: added typ value  
• P/E, 128 KB: added typ value  
Replaced “Pad AC specifications (5.0 V, NVUSRO[PAD3V5V] = 0)” and “Pad AC  
specifications (3.3 V, INVUSRO[PAD3V5V] = 1)” tables with “Output pin transition  
times” table  
“JTAG pin AC electrical characteristics” table:  
• tTDOV: updated max value  
• tTDOHZ: added min value and removed max value  
“Nexus debug port timing” table: removed the rows “tMCYC”, “tMDOV”, “tMSEOV”, and  
“tEVTOV  
Updated “External interrupt timing (IRQ pin)” table  
Updated “FlexCAN timing” table  
Updated “DSPI timing” table  
Updated “Ordering information” section  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
90  
Freescale Semiconductor  
Table 40. Revision history (continued)  
Description of  
Revision  
Date  
4
11 May 2011 Editorial and formatting changes throughout  
Section 1, “Introduction: Reorganized contents  
MPC5602P block diagram: reorganized blocks above and below peripheral bridge; made  
arrow going from peripheral bridge to crossbar switch bidirectional  
Updated Section 1.5, “Feature list:  
• changed core feature from “64 MHz” to “Up to 64 MHz”  
• memory organization  
• moved “16-channel eDMA controller” item to “Interrupts and events” item  
• LINFlex: changed “2 LINFlex modules” to “Up to 2 LINFlex modules”  
• DSPI: changed “3 DSPI channels“ to “Up to 3 DSPI channels”  
• ADC: changed “16 input channels“ to “Up to 16 input channels”  
Added Section 1.5, “Feature details  
64-pin and 100-pin LQFP pinout diagrams: replaced instances of HV_AD0 with  
HV_ADC0  
System pins: updated “XTAL” and “EXTAL” rows  
Updated LQFP thermal characteristics  
Updated EMI testing specifications  
Section 3.8.1, “Voltage regulator electrical characteristics: removed BCP56 from named  
BJTs; replaced two configuration diagrams and two electrical characteristics tables  
with single diagram and single table  
Voltage regulator electrical characteristics: updated VDD_LV_REGCOR row  
Low voltage monitor electrical characteristics: updated VMLVDDOK_H max value—was  
1.15 V; is 1.145 V  
Supply current (5.0 V, NVUSRO[PAD3V5V] = 0): changed symbol IDD_LV_CORE to  
IDD_LV_CORx; changed parameter classification from T to P for IDD_LV_CORx  
RUN—Maximum mode at 64 MHz; added IDD_FLASH characteristics; replaced  
instances of “Airbag” mode with “Typical mode”  
Supply current (3.3 V, NVUSRO[PAD3V5V] = 1): changed symbol IDD_LV_CORE to  
IDD_LV_CORx; replaced instances of “Airbag” mode with “Typical mode”  
DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1): corrected parameter  
description for VOL_F—was “Fast, high level output voltage”; is “Fast, low level output  
voltage”  
Added Section 3.10.4, “Input DC electrical characteristics definition  
Main oscillator output electrical characteristics tables: replaced instances of EXTAL with  
XTAL; added load capacitance parameter  
FMPLL electrical characteristics: updated conditions and table title; removed fsys row;  
updated fFMPLLOUT values; replaced instances of VDDPLL with VDD_LV_COR0; replaced  
instances of VSSPLL with VSS_LV_COR0  
16 MHz RC oscillator electrical characteristics: removed rows RCMTRIM and RCMSTEP  
ADC characteristics and error definitions: updated symbols  
ADC conversion characteristics: updated symbols; added row tADC_PU  
Added Section 3.15.2, “Flash memory power supply DC characteristics  
Added Section 3.15.3, “Start-up/Switch-off timings  
Removed section “Generic timing diagrams”  
4
11 May 2011 Updated Start-up reset requirements diagram  
Removed FlexCAN timing characteristics  
(cont’d)  
RESET electrical characteristics: added row for tPOR  
In the range of figures “DSPI Classic SPI Timing — Master, CPHA = 0” to “DSPI PCS  
Strobe (PCSS) Timing”: added note  
Table A-1: added “DUT”, “NPN”, and “RISC”  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
91  
Table 40. Revision history (continued)  
Description of  
Revision  
Date  
4.1  
15 Sep 2011 Deleted the “Freescale Confidential Proprietary, NDA Required” label (the document is  
Public).  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
92  
Freescale Semiconductor  
Appendix A Abbreviations  
Table A-1 lists abbreviations used in this document.  
Table A-1. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Device under test  
DUT  
ECC  
Error code correction  
Event out  
EVTO  
GPIO  
MC  
General purpose input / output  
Modulus counter  
MCKO  
MCU  
MDO  
MSEO  
MTFE  
NPN  
Message clock out  
Microcontroller unit  
Message data out  
Message start/end out  
Modified timing format enable  
Negative-positive-negative  
Non-volatile user options register  
Post trimming frequency  
Pulse width modulation  
Reduced instruction set computer  
Serial communications clock  
Serial data out  
NVUSRO  
PTF  
PWM  
RISC  
SCK  
SOUT  
TBC  
To be confirmed  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
Freescale Semiconductor  
93  
MPC5602P Microcontroller Data Sheet, Rev. 4.1  
94  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2010-2011. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5602P  
Rev. 4.1  
09/2011  

相关型号:

MPC5601F0VLL6R

32-BIT, FLASH, 64MHz, RISC MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, LQFP-100
NXP

MPC5601PEF0MLH4R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0MLH6

32-BIT, FLASH, 64MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, MS-026BCD, LQFP-64
NXP

MPC5601PEF0MLH6R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0MLL4R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0MLL6

32-BIT, FLASH, 64MHz, RISC MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM, 0.50 MM PITCH, ROHS COMPLIANT, LQFP-100
NXP

MPC5601PEF0MLL6R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0VLH4R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0VLH6R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0VLL4R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5601PEF0VLL6R

MPC5602P Microcontroller Data Sheet
FREESCALE

MPC5602B

Qorivva MPC560xB/C/D Family
FREESCALE