MCF5372L [NXP]

MCF537x ColdFire® Microprocessor Data Sheet;
MCF5372L
型号: MCF5372L
厂家: NXP    NXP
描述:

MCF537x ColdFire® Microprocessor Data Sheet

文件: 总46页 (文件大小:1795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF5373DS  
Rev. 4, 11/2008  
MCF5373  
MAPBGA–256  
17mm x 17mm  
MAPBGA–196  
15mm x 15mm  
MCF537x ColdFire®  
Microprocessor Data Sheet  
QFP–160  
28mm x 28mm  
Features  
Version 3 ColdFire variable-length RISC processor core  
• System debug support  
• JTAG support for system level board testing  
• On-chip memories  
– 16-Kbyte unified write-back cache  
– 32-Kbyte dual-ported SRAM on CPU internal bus,  
accessible by core and non-core bus masters (e.g., DMA,  
FEC, and USB host and OTG)  
• Power management  
• Embedded Voice-over-IP (VoIP) system solution  
• SDR/DDR SDRAM Controller  
• Universal Serial Bus (USB) Host Controller  
• Universal Serial Bus (USB) On-the-Go (OTG) controller  
• Synchronous Serial Interface (SSI)  
• Fast Ethernet Controller (FEC)  
• Cryptography Hardware Accelerators  
• FlexCAN Module  
• Three Universal Asynchronous Receiver Transmitters  
(UARTs)  
• I2C Module  
• Queued Serial Peripheral Interface (QSPI)  
• Pulse Width Modulation (PWM) module  
• Real Time Clock  
• Four 32-bit DMA Timers  
• Software Watchdog Timer  
• Four Periodic Interrupt Timers (PITs)  
• Phase Locked Loop (PLL)  
• Interrupt Controllers (x2)  
• DMA Controller  
• FlexBus (External Interface)  
• Chip Configuration Module (CCM)  
• Reset Controller  
• General Purpose I/O interface  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
2
3
MCF537x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . . .3  
5.7.1 SDR SDRAM AC Timing Characteristics . . . . . 21  
5.7.2 DDR SDRAM AC Timing Characteristics. . . . . 23  
5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 26  
5.9 Reset and Configuration Override Timing . . . . . . . . . . 27  
5.10 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 28  
5.12 I2C Input/Output Timing Specifications . . . . . . . . . . . . 29  
5.13 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 31  
5.13.1 MII Receive Signal Timing . . . . . . . . . . . . . . . . 31  
5.13.2 MII Transmit Signal Timing. . . . . . . . . . . . . . . . 31  
5.13.3 MII Async Inputs Signal Timing . . . . . . . . . . . . 32  
5.13.4 MII Serial Management Channel Timing . . . . . 32  
5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 33  
5.15 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . 33  
5.16 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 34  
5.17 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 36  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1 Package Dimensions—196 MAPBGA. . . . . . . . . . . . . 40  
7.2 Package Dimensions—160 QFP. . . . . . . . . . . . . . . . . 41  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5  
3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.3 Supply Voltage Sequencing and Separation Cautions . .5  
3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .5  
3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .6  
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .6  
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
4.2 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.3 Pinout—160 QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .15  
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .16  
5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .17  
5.6 External Interface Timing Characteristics . . . . . . . . . . .18  
5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4
5
6
7
8
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
2
Freescale Semiconductor  
MCF537x Family Comparison  
USB OTG  
(To/From SRAM backdoor)  
FlexBus  
Chip  
Selects  
USB OTG  
USB Host  
SDRAMC  
S4  
S1  
USB Host  
M6  
M5  
M2  
External  
Interface  
XBS  
SDRAMC  
QSPI  
2
I C  
UART  
M1 S7 M0  
S6  
Cryptography  
Modules  
SDRAMC  
INTC0  
INTC1  
RNGA  
PWM  
DMA Timer  
SKHA  
MDHA  
(To/From PADI)  
FEC  
FEC  
CANRX  
CANTX  
SSI  
DREQn  
1
2
FlexCAN  
DMA Timers  
QSPI  
I C  
UARTs  
DACKn  
D[31:0]  
A[23:0]  
(To/From PADI)  
DMA  
R/W  
DIV  
EMAC  
CS[5:0]  
TA  
TS  
V3 ColdFire CPU  
BE/BWE[3:0]  
USB OTG  
USB Host  
PORTS  
SDRAMC  
SSI  
(To/From PADI)  
TRST  
16 KByte  
Cache  
TCLK  
TMS  
TDI  
JTAG  
TAP  
PWMs, EPORT,  
Watchdog, PITs  
TDO  
(1024x32)x4  
RESET  
RCON  
RSTOUT  
Reset  
PLL  
32 KByte  
SRAM  
JTAG_EN  
RTC  
(4096x32)x2  
Note:  
1
FlexCAN is only on the  
MCF53721 device  
(To/From XBS)  
Figure 1. MCF5373 Block Diagram  
1
MCF537x Family Comparison  
The following table compares the various device derivatives available within the MCF537x family.  
Table 1. MCF537x Family Configurations  
Module  
MCF5372 MCF5372L MCF53721 MCF5373 MCF5373L  
ColdFire Version 3 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
Core (System) Clock  
up to  
180 MHz  
up to  
180 MHz  
up to  
240 MHz  
up to 240 MHz  
Peripheral and External Bus Clock  
(Core clock ÷ 3)  
up to  
60 MHz  
up to  
60 MHz  
up to  
80 MHz  
up to 80 MHz  
up to 211  
Performance (Dhrystone/2.1 MIPS)  
Instruction/Data Cache  
up to 158  
up to 158 up to 211  
16 Kbytes  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
3
Ordering Information  
Table 1. MCF537x Family Configurations (continued)  
MCF5372 MCF5372L MCF53721 MCF5373 MCF5373L  
Module  
Static RAM (SRAM)  
32 Kbytes  
SDR/DDR SDRAM Controller  
USB 2.0 Host  
USB 2.0 On-the-Go  
Synchronous Serial Interface (SSI)  
Fast Ethernet Controller (FEC)  
Cryptography Hardware Accelerators  
Embedded Voice-over-IP System Solution  
FlexCAN 2.0B communication module  
UARTs  
3
3
3
3
3
I2C  
QSPI  
PWM Module  
Real Time Clock  
32-bit DMA Timers  
4
4
4
4
4
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
FlexBus External Interface  
General Purpose I/O (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
4
4
4
4
4
2
2
2
2
2
up to 62  
up to 62  
up to 46  
up to 46  
up to 62  
160  
196  
196  
160  
196  
QFP  
MAPBGA MAPBGA  
QFP  
MAPBGA  
2
Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Description  
Package  
Speed  
Temperature  
Number  
MCF5372CAB180  
MCF5372LCVM240  
MCF53721CVM240  
MCF5373CAB180  
MCF5373LCVM240  
MCF5372 RISC Microprocessor  
MCF5372 RISC Microprocessor  
MCF53721 RISC Microprocessor  
MCF5373 RISC Microprocessor  
MCF5373 RISC Microprocessor  
160 QFP  
196 MAPBGA  
196 MAPBGA  
160 QFP  
180 MHz  
240 MHz  
240 MHz  
180 MHz  
240 MHz  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
196 MAPBGA  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Hardware Design Considerations  
3
Hardware Design Considerations  
3.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 2 should be connected between the board V and the PLLV pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board IVDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. System PLL V Power Filter  
DD  
3.2  
USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be  
connected between the board EV or IV and each of the USBV pins. The resistor and capacitors should be placed as  
DD  
DD  
DD  
close to the dedicated USBV pin as possible.  
DD  
0 Ω  
Board EVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 3. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
3.3  
Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences. SDV (2.5V or  
DD  
DD  
DD  
3.3V) and EV are specified relative to IV  
.
DD  
DD  
3.3.1  
Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to  
DD  
DD  
DD  
the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up before IV  
DD  
DD  
DD  
DD  
DD  
must powered up. IV should not lead the EV , SDV , or PLLV by more than 0.4 V during power ramp-up or there is  
DD  
DD  
DD  
DD  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Pin Assignments and Reset States  
high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid  
turning on the internal ESD protection clamp diodes.  
3.3.2  
Power Down Sequence  
If IV /PLLV are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.  
DD  
DD  
There is no limit on how long after IV and PLLV power down before EV or SDV must power down. IV should  
DD  
DD  
DD  
DD  
DD  
not lag EV , SDV , or PLLV going low by more than 0.4 V during power down or there is undesired high current in the  
DD  
DD  
DD  
ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
4
Pin Assignments and Reset States  
4.1  
Signal Multiplexing  
The following table lists all the MCF537x pins grouped by function. The Dir column is the direction for the primary function  
of the pin only. Refer to Section 7, “Package Information,” for package diagrams. For a more detailed discussion of the  
MCF537x signals, consult the MCF5373 Reference Manual (MCF5373RM).  
NOTE  
In this table and throughout this document, a single signal within a group is designated  
without square brackets (i.e., A23), while designations for multiple signals within a group  
use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed  
numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Pins that are  
muxed with GPIO default to their GPIO functionality.  
Table 3. MCF5372/3 Signal Information and Muxing  
MCF5372L  
MCF5372  
MCF53721  
MCF5373L  
196 MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MCF5373  
160 QFP  
Reset  
RESET2  
RSTOUT  
I
95  
86  
K13  
L12  
EVDD  
EVDD  
O
Clock  
EVDD  
EVDD  
EVDD  
EVDD  
SDVDD  
EXTAL  
XTAL2  
I
91  
93  
40  
L14  
K14  
P13  
N13  
N1  
O
I
EXTAL32K  
XTAL32K  
FB_CLK  
O
O
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372L  
MCF53721  
MCF5373L  
MCF5372  
MCF5373  
160 QFP  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
196 MAPBGA  
Mode Selection  
RCON2  
I
I
72  
92  
P8  
EVDD  
EVDD  
DRAMSEL  
J11  
FlexBus  
SDVDD  
SDVDD  
A[23:22]  
A[21:16]  
FB_CS[5:4]  
O
O
134, 133  
132–127  
A9, B9  
C9, D9, A10,  
B10, C10, D10  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
A[15:14]  
A[13:11]  
A10  
SD_BA[1:0]3  
SD_A[13:11]3  
O
O
O
O
126, 123  
120–118  
11 7  
A11, B11  
C11, A12, B12  
A13  
A[9:0]  
SD_A[9:0]3  
116–107  
A14, B14, B13,  
C12, D11, C14,  
C13, D14–D12  
SD_D[31:16]4  
FB_D[31:17]4  
I/O  
I/O  
27–34, 46–53  
16–23, 57–63  
J2, J1, K4–K1,  
L4, L3, N2, P1,  
P2, N3, L5, P3,  
N4, P4  
SDVDD  
SDVDD  
D[31:16]  
D[15:1]  
F2, F1, G4–G1,  
H4, H3, L6, M6,  
N6, P6, L7, M7,  
N7  
D02  
BE/BWE[3:0]  
OE  
FB_D[16]4  
I/O  
O
O
I
64  
P7  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
PBE[3:0]  
SD_DQM[3:0]3  
26, 54, 24, 56  
J3, M5, H2, P5  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
66  
106  
65  
M8  
E14  
L8  
TA2  
R/W  
O
O
TS  
DACK0  
12  
E2  
Chip Selects  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
FB_CS[5:4]  
FB_CS[3:2]  
FB_CS1  
PCS[5:4]  
PCS[3:2]  
PCS1  
O
O
O
O
D8, C8  
B8, A8  
D7  
135  
136  
FB_CS0  
C7  
SDRAM Controller  
SDVDD  
SDVDD  
SD_A10  
SD_CKE  
O
O
43  
14  
M2  
F4  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Pin Assignments and Reset States  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF53721  
MCF5373L  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MCF5373  
160 QFP  
196 MAPBGA  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SD_CLK  
SD_CLK  
O
O
O
O
O
O
O
O
O
37  
38  
15  
25  
55  
44  
45  
35  
13  
L1  
M1  
F3  
H1  
N5  
M3  
M4  
L2  
SD_CS0  
SD_DQS3  
SD_DQS2  
SD_SCAS  
SD_SRAS  
SD_SDR_DQS  
SD_WE  
E1  
External Interrupts Port5  
IRQ72  
IRQ62  
PIRQ72  
PIRQ62  
I
I
102  
F13  
F12  
EVDD  
EVDD  
USBHOST_  
VBUS_EN  
IRQ52  
PIRQ52  
USBHOST_  
VBUS_OC  
I
F11  
EVDD  
IRQ42  
IRQ32  
IRQ22  
IRQ12  
PIRQ42  
PIRQ32  
PIRQ22  
PIRQ12  
SSI_MCLK  
I
I
I
I
101  
G14  
G13  
G12  
G11  
EVDD  
EVDD  
EVDD  
EVDD  
USB_CLKIN  
DREQ12  
SSI_CLKIN  
100  
FEC  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
FEC_MDC  
FEC_MDIO  
FEC_COL  
PFECI2C3  
PFECI2C2  
PFECH7  
PFECH6  
PFECH5  
PFECH4  
PFECH[3:0]  
PFECL7  
I2C_SCL2  
O
I/O  
I
4
3
B1  
I2C_SDA2  
A1  
144  
B6  
FEC_CRS  
I
145  
A6  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD[3:0]  
FEC_RXER  
FEC_TXCLK  
FEC_TXEN  
FEC_TXER  
FEC_TXD[3:0]  
I
146  
A5  
I
147  
B5  
I
148–151  
152  
C5, D5, A4, B4  
I
C4  
PFECL6  
I
153  
A3  
PFECL5  
O
O
O
154  
B3  
A2  
PFECL4  
155  
PFECL[3:0]  
157, 158, 1, 2  
D4, C3, B2, C2  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
8
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372L  
MCF53721  
MCF5373L  
MCF5372  
MCF5373  
160 QFP  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
196 MAPBGA  
USB Host & USB On-the-Go  
USB  
VDD  
USBOTG_M  
USBOTG_P  
USBHOST_M  
USBHOST_P  
I/O  
I/O  
I/O  
I/O  
H14  
H13  
J13  
J12  
USB  
VDD  
USB  
VDD  
USB  
VDD  
FlexCAN (MCF53721 only)  
CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing:  
I2C_SDA for CANRX and I2C_SCL for CANTX.  
PWM  
EVDD  
EVDD  
EVDD  
EVDD  
PWM7  
PWM5  
PWM3  
PWM1  
PPWM7  
PPWM5  
PPWM3  
PPWM1  
I/O  
I/O  
I/O  
I/O  
E13  
E12  
E11  
F14  
DT3OUT  
DT2OUT  
DT3IN  
DT2IN  
SSI  
The SSI signals do not have dedicated bond pads. Please refer to the following pins for muxing: IRQ4 for SSI_MCLK,  
IRQ1 for SSI_CLKIN, U1CTS for SSI_BCLK, U1RTS for SSI_FS, U1RXD for SSI_RXD, and U1TXD for SSI_TXD  
I2C  
I2C_SCL2  
I2C_SDA2  
PFECI2C1  
PFECI2C0  
CANTX6  
CANRX6  
U2TXD  
U2RXD  
I/O  
I/O  
E3  
E4  
EVDD  
EVDD  
DMA  
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:  
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.  
QSPI  
EVDD  
EVDD  
QSPI_CS2  
QSPI_CS1  
PQSPI5  
PQSPI4  
U2RTS  
PWM7  
O
O
78  
N12  
M12  
USBOTG_  
PU_EN  
EVDD  
EVDD  
EVDD  
EVDD  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI3  
PQSPI2  
PQSPI1  
PQSPI0  
PWM5  
I2C_SCL2  
U2CTS  
O
O
I
77  
75  
76  
M11  
P12  
P11  
N11  
QSPI_DOUT  
I2C_SDA2  
O
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Pin Assignments and Reset States  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372  
MCF5372L  
MCF53721  
MCF5373L  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MCF5373  
160 QFP  
196 MAPBGA  
UARTs  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
PUARTL2  
PUARTL1  
PUARTL0  
SSI_BCLK  
SSI_FS  
SSI_TXD2  
SSI_RXD2  
I
O
O
I
143  
142  
141  
140  
85  
C6  
D6  
A7  
B7  
I
M14  
M13  
N14  
P14  
O
O
I
84  
83  
80  
Note: The UART2 signals are multiplexed on the QSPI, DMA Timers, and I2C pins.  
DMA Timers  
EVDD  
EVDD  
EVDD  
EVDD  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2RXD  
U2TXD  
DACK1  
DREQ02  
I
I
I
I
8
7
6
5
D1  
C1  
D2  
D3  
BDM/JTAG7  
JTAG_EN8  
DSCLK  
PSTCLK  
BKPT  
TRST2  
TCLK2  
TMS2  
TDI2  
TDO  
I
I
96  
88  
70  
87  
90  
74  
G10  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
K11  
O
I
N8  
L13  
DSI  
I
K12  
DSO  
O
O
O
L11  
DDATA[3:0]  
PST[3:0]  
L9, M9, N9, P9  
L10, M10, N10,  
P10  
EVDD  
ALLPST  
O
73  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 3. MCF5372/3 Signal Information and Muxing (continued)  
MCF5372L  
MCF53721  
MCF5373L  
MCF5372  
MCF5373  
160 QFP  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
196 MAPBGA  
Test  
TEST8  
EVDD  
IVDD  
I
124  
E10  
EVDD  
Power Supplies  
9, 69, 71, 81, 94, E6, E7, F5–F7,  
103, 139, 160  
G5, H10, J8,  
K8–K9  
36, 79, 97, 125, E5, J9, K5, K10  
156  
PLL_VDD  
SD_VDD  
99  
J10  
11, 39, 41, 67, E8–E9, F8–F10,  
105, 121, 137  
J4–J7, H5, K6,  
K7  
USB_VDD  
VSS  
H12  
10, 42, 68, 82, G6–G9, H6–H9  
89, 104, 122,  
138, 159  
PLL_VSS  
USB_VSS  
98  
H11  
J14  
1
2
3
Refers to pin’s primary function.  
Pull-up enabled internally on this signal for this mode.  
The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor  
when accessing SDRAM memory space and are included here for completeness.  
4
5
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the  
DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate  
functions.  
6
7
MCF53721 only.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning  
these pins.  
8
Pull-down enabled internally on this signal for this mode.  
NOTE  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Pin Assignments and Reset States  
4.2  
Pinout—196 MAPBGA  
The pinout for the MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
A
B
C
D
E
F
FEC_  
MDIO  
FEC_  
TXER  
FEC_  
TXCLK  
FEC_  
RXD1  
FEC_  
RXCLK  
FEC_  
CRS  
U1TXD FB_CS2  
U1RXD FB_CS3  
A23  
A19  
A15  
A12  
A10  
A9  
FEC_  
MDC  
FEC_  
TXD1  
FEC_  
TXEN  
FEC_  
RXD0  
FEC_  
RXDV  
FEC_  
COL  
A22/  
A21  
A20  
A18  
A17  
A14  
A13  
A11  
A6  
A7  
A3  
A8  
A4  
FEC_  
TXD0  
FEC_  
TXD2  
FEC_  
RXER  
FEC_  
RXD3  
DT2IN  
DT3IN  
SD_WE  
D14  
U1CTS FB_CS0 FB_CS4  
U1RTS FB_CS1 FB_CS5  
FEC_  
TXD3  
FEC_  
RXD2  
DT1IN  
TS  
DT0IN  
A16  
A5  
A0  
A1  
A2  
I2C_SCL I2C_SDA  
IVDD  
EVDD  
EVDD  
VSS  
EVDD SD_VDD SD_VDD  
TEST  
PWM3  
PWM5  
IRQ6  
IRQ2  
PWM7  
IRQ7  
IRQ3  
TA  
D15  
D11  
SD_CS0 SD_CKE EVDD  
EVDD SD_VDD SD_VDD SD_VDD IRQ5  
JTAG_  
PWM1  
IRQ4  
G
H
J
G
H
J
D10  
D12  
D8  
D13  
D9  
EVDD  
VSS  
VSS  
VSS  
IRQ1  
EN  
SD_  
DQS3  
BE/  
BWE1  
PLL_  
VSS  
USBOTG  
_VDD  
USB  
OTG_P  
USB  
OTG_M  
SD_VDD  
VSS  
VSS  
VSS  
VSS  
EVDD  
BE/  
BWE3  
PLL_  
VDD  
DRAM  
SEL  
USB  
USB  
USBHOST  
_VSS  
D30  
D26  
D31  
D27  
SD_VDD SD_VDD SD_VDD SD_VDD EVDD  
IVDD  
HOST_P HOST_M  
K
L
K
L
TRST/  
DSCLK  
D28  
D24  
D29  
D25  
IVDD SD_VDD SD_VDD EVDD  
EVDD  
DDATA3  
DDATA2  
DDATA1  
IVDD  
PST3  
PST2  
PST1  
TDI/DSI RESET  
XTAL  
EXTAL  
U0CTS  
U0TXD  
SD_DR_  
DQS  
TDO/  
DSO  
TMS/  
RSTOUT  
SD_CLK  
D19  
D7  
D6  
D5  
D3  
D2  
D1  
R/W  
OE  
BKPT  
M
N
P
M
N
P
BE/  
BWE2  
QSPI_  
CS0  
QSPI_  
U0RTS  
CS1  
SD_CLK SD_A10 SD_CAS SD_RAS  
SD_  
DQS2  
TCLK/  
PSTCLK  
QSPI_  
DOUT  
QSPI_  
CS2  
XTAL  
32K  
FB_CLK  
D23  
D20  
D17  
BE/  
BWE0  
QSPI_  
DIN  
QSPI_  
CLK  
EXTAL  
32K  
D22  
1
D21  
2
D18  
3
D16  
4
D4  
6
D0  
7
RCON  
8
DDATA0  
9
PST0  
10  
U0RXD  
14  
5
11  
12  
13  
Figure 4. MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 Pinout Top View (196 MAPBGA)  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Pin Assignments and Reset States  
4.3  
Pinout—160 QFP  
The pinout for the MCF5372CAB180 and MCF5373CAB180 packages is shown below.  
FEC_TXD1  
FEC_TXD0  
FEC_MDIO  
FEC_MDC  
DT0IN  
DT1IN  
DT2IN  
DT3IN  
EVDD  
VSS 10  
SD_VDD 11  
TS 12  
1
2
3
4
5
6
7
8
9
120 A13  
119 A12  
118 A11  
117 A10  
116 A9  
115 A8  
114 A7  
113 A6  
112 A5  
111 A4  
110 A3  
109 A2  
108 A1  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SD_WE  
SD_CKE  
SD_CS0  
D15  
107 A0  
106 TA  
105 SD_VDD  
104 VSS  
D14  
103 EVDD  
102 IRQ7  
101 IRQ4  
100 IRQ1  
99 PLL_VDD  
98 PLL_VSS  
97 IVDD  
D13  
D12  
D11  
D10  
D9  
D8  
BE/BWE1  
SD_DQS1/3  
BE/BWE3  
D31  
96 JTAG_EN  
95 RESET  
94 EVDD  
93 XTAL  
D30  
92 DRAMSEL  
91 EXTAL  
90 TDI/DSI  
89 VSS  
D29  
D28  
D27  
D26  
88 TRST/DSCLK  
87 TMS/BKPT  
86 RSTOUT  
85 U0CTS  
84 U0RTS  
83 U0TXD  
82 VSS  
D25  
D24  
SD_DR_DQS  
IVDD  
SD_CLK  
SD_CLK  
SD_VDD  
FB_CLK  
81 EVDD  
Figure 5. MCF5372CAB180 and MCF5373CAB180 Pinout Top View (160 QFP)  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Electrical Characteristics  
5
Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5373 microcontroller unit.  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications of MCF5373.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications  
will be met. Finalized specifications will be published after complete characterization and device qualifications have been  
completed.  
NOTE  
The parameters specified in this MCU document supersede any values found in the module  
specifications.  
5.1  
Maximum Ratings  
1, 2  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
SDVDD  
PLLVDD  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to +2.0  
– 0.3 to +3.6  
V
V
V
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
Digital Input Voltage 3  
Instantaneous Maximum Current  
ID  
25  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL - TH)  
– 40 to +85  
°C  
°C  
Storage Temperature Range  
Tstg  
– 55 to +150  
1
2
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (VSS or  
EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
and then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than  
IDD, the injection current may flow out of EVDD and could result in external power supply going  
out of regulation. Ensure external EVDD load shunts current greater than maximum injection  
current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power  
supply must maintain regulation within operating EVDD range during instantaneous and  
operating maximum current conditions.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Electrical Characteristics  
5.2  
Thermal Characteristics  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
256MBGA 196MBGA  
160QFP  
Unit  
Junction to ambient, natural convection  
Four layer board  
(2s2p)  
θJMA  
371,2  
341,2  
421,2  
381,2  
491,2  
°C/W  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
441,2  
°C/W  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
273  
164  
41,5  
105  
323  
194  
51,5  
105  
403  
394  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
121,5  
105  
1
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of θJmA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures  
can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature  
specification can be verified by physical measurement in the customer’s system using the Ψjt parameter, the device power  
dissipation, and the method described in EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
TA  
= Ambient Temperature, °C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Electrical Characteristics  
5.3  
ESD Protection  
1, 2  
Table 6. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive  
Grade Integrated Circuits.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4  
DC Electrical Specifications  
Table 7. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
IVDD  
PLLVDD  
EVDD  
1.4  
1.4  
3.0  
1.6  
1.6  
3.6  
V
V
V
V
PLL Supply Voltage  
CMOS Pad Supply Voltage  
SDRAM and FlexBus Supply Voltage  
SDVDD  
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.70  
2.25  
3.0  
1.95  
2.75  
3.6  
USB Supply Voltage  
USBVDD  
EVIH  
3.0  
2
3.6  
EVDD + 0.3  
0.8  
V
V
V
V
CMOS Input High Voltage  
CMOS Input Low Voltage  
CMOS Output High Voltage  
EVIL  
VSS – 0.3  
EVDD – 0.4  
EVOH  
IOH = –5.0 mA  
CMOS Output Low Voltage  
IOL = 5.0 mA  
EVOL  
0.4  
V
V
SDRAM and FlexBus Input High Voltage  
SDVIH  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.35  
1.7  
2
SDVDD + 0.3  
SDVDD + 0.3  
SDVDD + 0.3  
SDRAM and FlexBus Input Low Voltage  
SDVIL  
V
V
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
VSS – 0.3  
VSS – 0.3  
0.45  
0.8  
0.8  
VSS – 0.3  
SDRAM and FlexBus Output High Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOH = –5.0 mA for all modes  
SDVOH  
SDVDD – 0.35  
2.1  
2.4  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
SDRAM and FlexBus Output Low Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOL = 5.0 mA for all modes  
SDVOL  
V
0.3  
0.3  
0.5  
Input Leakage Current  
Iin  
1.0  
10  
1.0  
μA  
Vin = VDD or VSS, Input-only pins  
Weak Internal Pull-Up Device Current, tested at VIL Max.1  
IAPU  
Cin  
130  
μA  
Input Capacitance 2  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
5.5  
Oscillator and PLL Electrical Characteristics  
Table 8. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
PLL Reference Frequency Range  
Crystal reference  
1
fref_crystal  
fref_ext  
12  
12  
251  
401  
MHz  
MHz  
External reference  
Core frequency  
fsys  
fsys/3  
488 x 106  
163 x 106  
240  
80  
MHz  
MHz  
2
3
CLKOUT Frequency2  
Crystal Start-up Time3, 4  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode5  
4
5
VIHEXT  
VIHEXT  
VXTAL + 0.4  
EVDD/2 + 0.4  
V
V
All other modes (External, Limp)  
EXTAL Input Low Voltage  
Crystal Mode5  
VILEXT  
VILEXT  
VXTAL – 0.4  
EVDD/2 – 0.4  
V
V
All other modes (External, Limp)  
7
8
PLL Lock Time 3, 6  
tlpll  
tdc  
40  
1
50000  
60  
CLKIN  
%
Duty Cycle of reference 3  
9
XTAL Current  
IXTAL  
3
mA  
pF  
10  
11  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
Crystal capacitive load  
CS_XTAL  
CS_EXTAL  
CL  
1.5  
1.5  
pF  
See crystal  
spec  
12  
13  
Discrete load capacitance for XTAL  
CL_XTAL  
2*CL –  
CS_XTAL  
CPCB_XTAL  
pF  
7
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Electrical Characteristics  
Table 8. PLL Electrical Characteristics (continued)  
Min.  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
Value  
Discrete load capacitance for EXTAL  
CL_EXTAL  
2*CL–-  
pF  
14  
17  
CS_EXTAL –  
CPCB_EXTAL  
7
CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter  
Cjitter  
10  
TBD  
% fsys/3  
% fsys/3  
Frequency Modulation Range Limit 3, 10, 11  
(fsysMax must not be exceeded)  
Cmod  
fvco  
0.8  
2.2  
%fsys/3  
18  
19  
VCO Frequency. fvco = (fref * PFD)/4  
350  
540  
MHz  
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock  
frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.  
2
3
4
5
6
7
8
All internal registers retain data at 0 Hz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification is the PLL lock time only and does not include oscillator start-up time.  
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase  
the Cjitter percentage for a given interval.  
9
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.  
10 Modulation percentage applies over an interval of 10 μs, or equivalently the modulation rate is 100 KHz.  
11  
Modulation range determined by hardware design.  
5.6  
External Interface Timing Characteristics  
Table 9 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and output delay with  
respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values. Timings listed in Table 9  
are shown in Figure 7 and Figure 8.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Electrical Characteristics  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK (80MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
trise  
Vh = VIH  
Vl = VIL  
tfall  
Vh = VIH  
Vl = VIL  
Input Fall Time  
FB_CLK  
Inputs  
B4  
B5  
Figure 6. General Input Timing Requirements  
5.6.1  
FlexBus  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up  
to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external  
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose  
chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces.  
Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or  
longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.  
5.6.1.1  
FlexBus AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.  
Table 9. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Frequency of Operation  
fsys/3  
80  
Mhz  
ns  
FB1 Clock Period (FB_CLK)  
tFBCK ( cyc)  
tFBCHDCV  
tFBCHDCI  
t
12.5  
Address, Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)1  
FB2  
FB3  
1
7.0  
ns  
ns  
Address, Data, and Control Output Hold (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)1, 2  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Electrical Characteristics  
Num  
Table 9. FlexBus AC Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
FB4 Data Input Setup  
FB5 Data Input Hold  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
3.5  
0
ns  
ns  
ns  
ns  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
4
0
1
2
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC  
Timing Characteristics” for SD_CS[3:0] timing.  
The FlexBus supports programming an extension of the address hold. Please consult the Reference Manual  
for more information.  
NOTE  
The processor drives the data lines during the first clock cycle of the transfer  
with the full 32-bit address. This may be ignored by standard connected  
devices using non-multiplexed address and data buses. However, some  
applications may find this feature beneficial.  
The address and data busses are muxed between the FlexBus and SDRAM  
controller. At the end of the read and write bus cycles the address signals are  
indeterminate.  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
FB5  
FB_D[31:X]  
ADDR[31:X]  
DATA  
FB4  
FB_R/W  
FB_TS  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB6  
FB7  
FB_TA  
Figure 7. FlexBus Read Timing  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
Electrical Characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
ADDR[31:X]  
FB_D[31:X]  
DATA  
FB_R/W  
FB_TS  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB6  
FB7  
FB_TA  
Figure 8. FlexBus Write Timing  
5.7  
SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or  
double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.7.1  
SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock,  
when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a  
DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device  
for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read  
cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the  
SD_SDR_DQS signal and its usage.  
Table 10. SDR Timing Specifications  
Symbol  
Characteristic  
Frequency of Operation1  
Symbol  
Min  
Max  
Unit  
60  
80  
MHz  
ns  
SD1 Clock Period2  
tSDCK  
tSDCKH  
tSDCKH  
12.5  
0.45  
0.45  
16.67  
0.55  
0.55  
SD3 Pulse Width High3  
SD4 Pulse Width Low4  
SD_CLK  
SD_CLK  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Valid  
0.5 × SD_CLK  
SD5  
tSDCHACV  
ns  
+ 1.0  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Hold  
SD6  
tSDCHACI  
tDQSOV  
2.0  
ns  
ns  
ns  
SD7 SD_SDR_DQS Output Valid5  
Self timed  
SD_DQS[3:0] input setup relative to SD_CLK6  
SD8  
0.25 ×  
SD_CLK  
tDQVSDCH  
0.40 × SD_CLK  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Electrical Characteristics  
Symbol  
Table 10. SDR Timing Specifications (continued)  
Characteristic Symbol Min  
Max  
Unit  
SD9 SD_DQS[3:2] input hold relative to SD_CLK7  
tDQISDCH Does not apply. 0.5×SD_CLK fixed width.  
0.25 ×  
Data (D[31:0]) Input Setup relative to SD_CLK (reference  
SD10  
only)8  
tDVSDCH  
tDISDCH  
tSDCHDMV  
tSDCHDMI  
ns  
ns  
ns  
ns  
SD_CLK  
SD11 Data Input Hold relative to SD_CLK (reference only)  
1.0  
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid  
SD12  
0.75 × SD_CLK  
+ 0.5  
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold  
1.5  
1
The FlexBus and SDRAM clock operates at the same frequency of the internal bus clock. See the PLL chapter of the MCF5373  
Reference Manual for more information on setting the SDRAM clock rate.  
2
3
4
5
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation  
from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
6
7
8
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge  
does not affect the memory controller.  
Because a read cycle in SDR mode uses the DQS circuit within the device, it is most critical that the data valid window be  
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup  
spec is provided as guidance.  
SD2  
SD1  
SD_CLK  
SD3  
SD5  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
ROW  
SD4  
A[23:0]  
SD_BA[1:0]  
COL  
SD11  
SDDM  
D[31:0]  
SD12  
WD1  
WD2  
WD3  
WD4  
Figure 9. SDR Write Timing  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Electrical Characteristics  
SD2  
SD1  
SD_CLK  
SD5  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
SD3  
CMD  
ROW  
3/4 MCLK  
Reference  
SD4  
A[23:0],  
SD_BA[1:0]  
COL  
tDQS  
SDDM  
SD6  
SD_SDR_DQS (Measured at Output Pin)  
SD_DQS[3:2] (Measured at Input Pin)  
Board Delay  
SD8  
Board Delay  
SD7  
Delayed  
SD_CLK  
SD9  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD10  
Figure 10. SDR Read Timing  
5.7.2  
DDR SDRAM AC Timing Characteristics  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive  
data onto the memory bus. All timing numbers are relative to the four DQS byte lanes.  
Table 11. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
tDDCK  
tDDSK  
tDDCKH  
tDDCKL  
60  
80  
Mhz  
ns  
DD1 Clock Period1  
12.5  
0.45  
0.45  
16.67  
0.55  
0.55  
DD2 Pulse Width High2  
DD3 Pulse Width Low3  
SD_CLK  
SD_CLK  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid3  
0.5 × SD_CLK  
DD4  
DD5  
tSDCHACV  
ns  
+ 1.0  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
tCMDVDQ  
tDQDMV  
2.0  
1.25  
ns  
SD_CLK  
ns  
DD6 Write Command to first DQS Latching Transition  
Data and Data Mask Output Setup (DQ-->DQS) Relative  
DD7  
1.5  
to DQS (DDR Write Mode)4, 5  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Electrical Characteristics  
Num  
Table 11. DDR Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Data and Data Mask Output Hold (DQS-->DQ) Relative to  
DQS (DDR Write Mode)6  
tDQDMI  
1.0  
ns  
DD8  
DD9 Input Data Skew Relative to DQS (Input Setup)7  
tDVDQ  
tDIDQ  
1
ns  
ns  
Input Data Hold Relative to DQS8  
DD10  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time)  
DD12 DQS input read preamble width  
tDQLSDCH  
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
0.5  
0.9  
ns  
1.1  
0.6  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
DD13 DQS input read postamble width  
DD14 DQS output write preamble width  
DD15 DQS output write postamble width  
SD_CLK is one SDRAM clock in (ns).  
0.4  
0.25  
0.4  
0.6  
1
2
3
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature,  
and voltage variations.  
4
This specification relates to the required input setup time of today’s DDR memories. The processor’s output setup should be  
larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].  
5
6
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are  
valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative  
MEM_DQS[0].  
7
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line  
becomes invalid.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 11. DDR Write Timing  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 12. DDR Read Timing  
5.8  
General Purpose I/O Timing  
1
Table 12. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
FB_CLK High to GPIO Output Valid  
FB_CLK High to GPIO Output Invalid  
GPIO Input Valid to FB_CLK High  
FB_CLK High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
1
GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Electrical Characteristics  
FB_CLK  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 13. GPIO Timing  
5.9  
Reset and Configuration Override Timing  
Table 13. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 14. RESET and Configuration Override Timing  
NOTE  
Refer to the CCM chapter of the MCF5373 Reference Manual for more information.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Electrical Characteristics  
5.10 USB On-The-Go  
The MCF5373 device is compliant with industry standard USB 2.0 specification.  
5.11 SSI Timing Specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
1
Table 14. SSI Timing – Master Modes  
Num  
Description  
SSI_MCLK cycle time2  
Symbol  
Min  
Max  
Units  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
tMCLK 8 × tSYS  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time3  
45%  
tBCLK 8 × tSYS  
SSI_BCLK pulse width  
45%  
-2  
55%  
15  
tBCLK  
ns  
SSI_BCLK to SSI_FS output valid  
SSI_BCLK to SSI_FS output invalid  
SSI_BCLK to SSI_TXD valid  
ns  
-4  
15  
ns  
SSI_BCLK to SSI_TXD invalid / high impedence  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
ns  
15  
0
ns  
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
ns  
1
2
All timings specified with a capactive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock  
(SYSCLK).  
3
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the  
minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure  
that SSI_BCLK does not exceed 4 x fSYS  
Table 15. SSI Timing – Slave Modes  
Description Symbol  
.
1
Num  
S11 SSI_BCLK cycle time  
Min  
Max  
Units  
tBCLK 8 × tSYS  
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high/low  
45%  
10  
3
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD/SSI_FS output valid  
ns  
15  
ns  
S16 SSI_BCLK to SSI_TXD/SSI_FS output invalid/high  
impedence  
-2  
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
10  
3
ns  
ns  
1
All timings specified with a capactive load of 25pF.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
Electrical Characteristics  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 15. SSI Timing – Master Modes  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 16. SSI Timing – Slave Modes  
2
5.12 I C Input/Output Timing Specifications  
2
Table 16 lists specifications for the I C input timing parameters shown in Figure 17.  
2
Table 16. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Electrical Characteristics  
Table 16. I C Input Timing Specifications between SCL and SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Units  
I5  
I6  
I7  
I8  
I9  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
1
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 17 lists specifications for the I C output timing parameters shown in Figure 17.  
2
Table 17. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I2 1 Clock low period  
Characteristic  
Min  
Max  
Units  
6
10  
7
3
tcyc  
tcyc  
µs  
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I4 1 Data hold time  
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I6 1 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I7 1 Data setup time  
I8 1 Start condition setup time (for repeated start condition only)  
I9 1 Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR; however, the numbers  
given in Table 17 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
Specified at a nominal 50-pF load.  
Figure 17 shows timing for the values in Table 17 and Table 16.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 17. I C Input/Output Timings  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Electrical Characteristics  
5.13 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.  
5.13.1 MII Receive Signal Timing  
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency  
must exceed twice the FEC_RXCLK frequency.  
Table 18 lists MII receive channel timings.  
Table 18. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup  
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold  
FEC_RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
FEC_RXCLK period  
FEC_RXCLK period  
FEC_RXCLK pulse width low  
Figure 18 shows MII receive signal timings listed in Table 18.  
M3  
FEC_RXCLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RXDV  
FEC_RXER  
M1  
M2  
Figure 18. MII Receive Signal Timing Diagram  
5.13.2 MII Transmit Signal Timing  
Table 19 lists MII transmit channel timings.  
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency  
must exceed twice the FEC_TXCLK frequency.  
Table 19. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid  
FEC_TXCLK pulse width high  
5
ns  
25  
ns  
35%  
35%  
65%  
65%  
FEC_TXCLK period  
FEC_TXCLK period  
FEC_TXCLK pulse width low  
Figure 19 shows MII transmit signal timings listed in Table 19.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Electrical Characteristics  
M7  
FEC_TXCLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TXEN  
FEC_TXER  
M6  
Figure 19. MII Transmit Signal Timing Diagram  
5.13.3 MII Async Inputs Signal Timing  
Table 20 lists MII asynchronous inputs signal timing.  
Table 20. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FEC_CRS, FEC_COL minimum pulse width  
1.5  
FEC_TXCLK period  
FEC_CRS  
FEC_COL  
M9  
Figure 20. MII Async Inputs Timing Diagram  
5.13.4 MII Serial Management Channel Timing  
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5  
MHz.  
Table 21. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)  
M12 FEC_MDIO (input) to FEC_MDC rising edge setup  
M13 FEC_MDIO (input) to FEC_MDC rising edge hold  
M14 FEC_MDC pulse width high  
10  
0
25  
ns  
ns  
ns  
40% 60% FEC_MDC period  
40% 60% FEC_MDC period  
M15 FEC_MDC pulse width low  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Electrical Characteristics  
M14  
M15  
FEC_MDC (output)  
FEC_MDIO (output)  
M10  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 21. MII Serial Management Channel Timing Diagram  
5.14 32-Bit Timer Module Timing Specifications  
Table 22 lists timer module AC timings.  
Table 22. Timer Module AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.15 QSPI Electrical Specifications  
Table 23 lists QSPI timings.  
Table 23. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Electrical Characteristics  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QSPI_DIN  
QS3  
QS4  
QS5  
Figure 22. QSPI Timing  
5.16 JTAG and Boundary Scan Timing  
Table 24. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/3  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
0
ns  
ns  
J12 TCLK Low to TDO High Z  
0
ns  
J13 TRST Assert Time  
100  
10  
ns  
J14 TRST Setup Time (Negation) to TCLK High  
ns  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Electrical Characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 23. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 24. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 25. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 26. TRST Timing  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
35  
Current Consumption  
5.17 Debug AC Timing Specifications  
Table 25 lists specifications for the debug AC timing parameters shown in Figure 27.  
Table 25. Debug AC Timing Specification  
Num  
Characteristic  
PSTCLK cycle time  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
2
1.5  
1
2
3.0  
t
SYS = 1/fSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized  
DSCLK input relative to the rising edge of PSTCLK.  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 27. Real-Time Trace AC Timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 28. BDM Serial Port AC Timing  
6
Current Consumption  
All current consumption data is lab data measured on a single device using an evaluation board. Table 26 shows the typical  
power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
36  
Freescale Semiconductor  
Current Consumption  
1,2  
Table 26. Current Consumption in Low-Power Modes  
58 MHz  
(Typ)3  
64 MHz  
(Typ)3  
72 MHz  
(Typ)3  
80 MHz  
(Typ)3  
80 MHz  
Units  
Mode  
Voltage  
(Peak)4  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.9  
3.92  
1.04  
4.0  
1.04  
4.8  
4.0  
1.04  
4.8  
4.0  
1.08  
4.8  
Stop Mode 3 (Stop 11)5  
Stop Mode 2 (Stop 10)4  
Stop Mode 1(Stop 01)4  
Stop Mode 0 (Stop 00)4  
Wait/Doze  
1.04  
4.69  
4.72  
2.69  
2.69  
2.70  
4.81  
17.85  
24.33  
18.06  
25.21  
30.81  
42.3  
65.4  
2.70  
4.81  
19.91  
26.13  
20.12  
27.03  
34.47  
50.5  
73.4  
2.75  
4.81  
4.72  
4.73  
15.28  
21.65  
15.47  
22.49  
26.79  
33.61  
56.3  
16.44  
21.68  
16.63  
22.52  
28.85  
33.61  
60.7  
20.42  
mA  
26.16  
20.67  
39.8  
97.4  
62.6  
Run  
132.3  
1
2
3
All values are measured with a 3.30V EVDD, 3.30V SDVDD and 1.5V IVDD power supplies. Tests performed at room  
temperature with pins configured for high drive strength.  
Refer to the Power Management chapter in the MCF537x Reference Manual for more information on low-power  
modes.  
All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low  
power mode. All code executed from flash.  
4
5
All peripheral clocks on before entering low power mode. All code is executed from flash.  
See the description of the low-power control register (LCPR) in the MCF537x Reference Manual for more  
information on stop modes 0–3.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Stop 0 - Flash  
Stop 1 - Flash  
Stop 2 - Flash  
Stop 3 - Flash  
Wait/Doze - Flash  
Run - Flash  
0
58  
64  
72  
80  
80(peak)  
fsys/3 (MHz)  
Figure 29. Current Consumption in Low-Power Modes  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
37  
Current Consumption  
1
Table 27. Typical Active Current Consumption Specifications  
Typical2 Active  
fsys/3 Frequency  
1.333 MHz  
2.666 MHz  
58 MHz  
Voltage  
Peak3  
Unit  
(Flash)  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
7.73  
2.87  
7.74  
3.56  
8.60  
5.52  
49.3  
91.70  
54.0  
97.0  
63.7  
104.7  
73.7  
112.9  
8.57  
4.37  
40.10  
65.90  
44.40  
69.50  
53.6  
mA  
64 MHz  
72 MHz  
74.6  
63.0  
80 MHz  
79.6  
1
All values are measured with a 3.30 V EVDD, 3.30 V SDVDD and 1.5 V IVDD power  
supplies. Tests performed at room temperature with pins configured for high drive  
strength.  
2
3
CPU polling a status register. All peripheral clocks except UART0, FlexBus,  
INTC0, reset controller, PLL, and edge port disabled.  
Peak current measured while running a while(1) loop with all modules active.  
Figure 30 shows the estimated maximum power consumption.  
Estimated Power Consumption vs. Core Frequency  
300  
250  
200  
150  
100  
50  
0
0
40  
80  
120  
160  
200  
240  
Core Frequency (MHz)  
Figure 30. Estimated Maximum Power Consumption  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
38  
Freescale Semiconductor  
Package Information  
7
Package Information  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF537x devices.  
NOTE  
The mechanical drawings are the latest revisions at the time of publication of this  
document. The most up-to-date mechanical drawings can be found at the product summary  
page located at http://www.freescale.com/coldfire.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
39  
Package Information  
7.1  
Package Dimensions—196 MAPBGA  
Figure 31 shows the MCF5373LCVM240, MCF5372LCVM240, and MCF53721CVM240 package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpretdimensionsandtolerances  
per ASME Y14.5M, 1994.  
Laser mark for pin 1  
identification in  
this area  
3. Dimension B is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is defined  
bythesphericalcrownsofthesolder  
balls.  
M
K
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
Millimeters  
DIM Min Max  
A 1.32 1.75  
A1 0.27 0.47  
A2 1.18 REF  
E
b
D
E
e
0.35 0.65  
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
M
Top View  
0.20  
13X e  
S
Metalized mark for  
pin 1 identification  
in this area  
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
13X e  
A2  
A
G
H
J
A1  
0.15 Z  
4
Z
K
L
Detail K  
Rotated 90 Clockwise  
°
M
N
P
3
196X  
b
Bottom View  
0.30 Z X Y  
0.10 Z  
View M-M  
Figure 31. 196 MAPBGA Package Dimensions (Case No. 1128A-01)  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
40  
Freescale Semiconductor  
Package Information  
7.2  
Package Dimensions—160 QFP  
Figure 32 and Figure 33 show the MCF5372CAB180 and MCF5373CAB180 package dimensions.  
Top View  
Figure 32. 160QFP Package Dimensions (Sheet 1 of 2)  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
41  
Package Information  
Figure 33. 160QFP Package Dimensions (Sheet 2 of 2)  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
42  
Freescale Semiconductor  
Revision History  
8
Revision History  
Table 28. MCF5373DS Document Revision History  
Rev. No.  
Substantive Changes  
Date of Release  
0
• Initial release  
11/2005  
12/2005  
0.1  
• Swapped pin locations PLL_VSS (J11->H11) and DRAMSEL  
(H11->J11) in Table 1. Figure 4 is correct.  
0.2  
0.3  
1
• Added not to Section 7, “Package Information.”  
• Added “top view” and “bottom view” where appropriate in mechanical  
drawings and pinout figures.  
3/2006  
4/2006  
7/2007  
Figure 6: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”  
• Changed 160QFP pinouts in Figure 5 and Table 2: Removed IRQ3  
pin, shifted pins 89–99 up one pin to 90–100. Pin 89 is now VSS.  
Table 2: Rearranged GPIO signal names for FEC pins.  
• Removed ULPI specifications as the device does not support ULPI.  
• Updated thermal characteristic values in Table 7.  
• Updated DC electricals values in Table 7.  
• Updated Section 3.3, “Supply Voltage Sequencing and Separation  
Cautions” and subsections.  
• Updated and added Oscillator/PLL characteristics in Table 8.  
Table 9: Swapped min/max for FB1; Removed FB8 & FB9.  
• Updated SDRAM write timing diagram, Figure 9.  
Table 11: Added values for frequency of operation and DD1.  
• Replaced figure & table Section 5.11, “SSI Timing Specifications,”  
with slave & master mode versions.  
• Removed second sentence from Section 5.13.2, “MII Transmit Signal  
Timing,regarding no minimum frequency requirement for TXCLK.  
• Removed third and fourth paragraphs from Section 5.13.2, “MII  
Transmit Signal Timing,as this feature is not supported on this  
device.  
• Updated figure & table Section 5.17, “Debug AC Timing  
Specifications.”  
• Renamed & moved previous version’s Section 5.5 “Power  
Consumption” to Section 6, “Current Consumption.Added additional  
real-world data to this section as well.  
2
• Added MCF53721 device information throughout: features list, family  
configuration table, ordering information table, signals description  
table, and relevant package diagram titles  
8/2007  
• Remove Footnote 1 from Table 11.  
• Changed document type from Advance Information to Technical Data.  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
43  
Revision History  
Table 28. MCF5373DS Document Revision History (continued)  
Substantive Changes  
Rev. No.  
3
Date of Release  
• Removed cryptography from Table 1 for the MCF53721 device.  
• Corrected D0 spec in Table 25 from 1.5 x tsys to 2 x tsys for min and  
max balues.  
4/2008  
• Updated FlexBus read and write timing diagrams in Figure 7 and  
Figure 8.  
• Corrected package information in Table 2 for MCF5373LCVM240  
device from “256 MAPBGA” to “196 MAPBGA”.  
• Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST  
VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and  
SSI_CLKIN signals in Table 6.  
4
Changed the following specs in Table 10 and Table 11:  
• Minimum frequency of operation from TBD to 60MHz  
• Maximum clock period from TBD to 16.67 ns  
11/2008  
Added FlexCAN for the MCF53721 device in features list, block diagram,  
Signal Information and Muxing table, and GPIO timing diagram  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
44  
Freescale Semiconductor  
Revision History  
MCF537x ColdFire® Microprocessor Data Sheet, Rev. 4  
Freescale Semiconductor  
45  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF5373DS  
Rev. 4  
11/2008  

相关型号:

MCF5372LCVM240

Microprocessor Data Sheet
FREESCALE

MCF5372LCVM240

MCF5329 V3CORE
NXP

MCF5372LCVM240J

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,196PIN,PLASTIC
NXP

MCF5373

Microprocessor Data Sheet
FREESCALE

MCF5373

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5373CAB180

Microprocessor Data Sheet
FREESCALE

MCF5373CAB180

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5373DS

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5373L

Microprocessor Data Sheet
FREESCALE

MCF5373L

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF5373LCVM240

Microprocessor Data Sheet
FREESCALE

MCF5373LCVM240

MCF5329 V3CORE
NXP