MC10XS3412 [NXP]

Quad high-side switch (dual 10 mOhm, dual 12 mOhm);
MC10XS3412
型号: MC10XS3412
厂家: NXP    NXP
描述:

Quad high-side switch (dual 10 mOhm, dual 12 mOhm)

文件: 总60页 (文件大小:2026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC10XS3412  
Rev. 13.0, 8/2018  
NXP Semiconductors  
Technical Data  
Quad high-side switch  
(dual 10 mOhm, dual 12 mOhm)  
10XS3412  
The 10XS3412 is one in a family of devices designed for low-voltage automotive  
lighting applications. Its four low RDS(on) MOSFETs (dual 10 mOhm/dual  
12 mOhm) can control four separate 55/28 W bulbs, and/or Xenon modules,  
and/or LEDs.  
HIGH-SIDE SWITCH  
Programming, control and diagnostics are accomplished using a 16-bit SPI  
interface. Its output with selectable slew rate improves electromagnetic  
compatibility (EMC) behavior. Additionally, each output has its own parallel input  
or SPI control for pulse-width modulation (PWM) control. The 10XS3412 allows  
the user to program via the SPI the fault current trip levels and duration of  
acceptable lamp inrush. The device has Fail-safe mode to provide functionality  
of the outputs in case of MCU damage.  
Features  
• Four protected 10 mΩ and 12 mΩ high-side switches (at 25 °C)  
FK SUFFIX (PB-FREE)  
FK SUFFIX (PB-FREE)  
98ASA00426D  
• Operating voltage range of 6.0 to 20 V with sleep current < 5.0 μA,  
98ARL10596D  
24-PIN PQFN  
extended mode from 4.0 to 28 V  
24-PIN PQFN  
• 8.0 MHz 16-bit 3.3 V and 5.0 V SPI control and status reporting with daisy  
chain capability  
• PWM module using external clock or calibratable internal oscillator with  
programmable outputs delay management  
• Smart overcurrent shutdown, severe short-circuit, overtemperature  
protection with time limited autoretry, and Fail-safe mode in case of MCU  
damage  
• Output OFF or ON openload detection compliant to bulbs or LEDs and  
short to battery detection  
• Analog current feedback with selectable ratio and board temperature  
feedback  
V
VDD  
VPWR VDD  
VPWR  
DD  
10XS3412  
VDD  
VPWR  
HS0  
WAKE  
FS  
LOAD  
LOAD  
LOAD  
LOAD  
I/O  
SCLK  
CS  
SCLK  
CS  
SO  
RST  
SI  
IN0  
IN1  
IN2  
IN3  
CSNS  
FSI  
HS1  
HS2  
HS3  
SI  
I/O  
SO  
I/O  
I/O  
I/O  
MCU  
I/O  
A/D  
GND  
GND  
Figure 1. 10XS3412 simplified application diagram  
© NXP B.V. 2018.  
Table of Contents  
1
2
3
4
5
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Device variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5.2 Static electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.3 Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.4 Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2 Functional pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3 Functional internal block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Functional device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.1 SPI protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.2 Operational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.3 Protection and diagnostic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.4 Logic commands and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.2 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6
7
8
9
10 Additional documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.1Thermal addendum (Rev 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
10XS3412  
2
NXP Semiconductors  
1
Orderable parts  
Table 1. Orderable part variations  
Part number (1)  
Temperature (TA)  
Package  
MC10XS3412CHFK  
MC10XS3412JHFK  
-40 to 125 °C  
24-pin PQFN  
Notes  
1. To order parts in tape and reel, add the R2 suffix to the part number.  
2
Device variations  
Table 2. Device variations  
Characteristic  
Wake input clamp voltage, I < 2.5 mA  
Symbol  
Min  
Typ  
Max  
Unit  
CL(WAKE)  
• 10XS3412CHFK  
• 10XS3412JHFK  
V
19  
20  
25  
27  
32  
35  
V
CL(WAKE)  
Fault detection blanking time  
• 10XS3412CHFK  
tFAULT  
-
-
5.0  
5.0  
20  
10  
μs  
μs  
°C  
• 10XS3412JHFK  
Output shutdown delay time  
• 10XS3412CHFK  
tDETECT  
-
-
7.0  
7.0  
30  
20  
• 10XS3412JHFK  
Peak Package Reflow Temperature During Reflow, (2) (3)  
• 10XS3412CHFK  
,
Note 3  
TPPRT  
• 10XS3412JHFK  
Notes  
2. Pin soldering temperature limit is for 40 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause  
malfunction or permanent damage to the device.  
3. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all  
orderable parts, and review parametrics.  
10XS3412  
NXP Semiconductors  
3
3
Internal block diagram  
VDD  
VPWR  
VPWR  
Voltage Clamp  
Internal  
Regulator  
Over/Undervoltage  
Protections  
VDD Failure  
Detection  
Charge  
Pump  
POR  
I
UP  
VREG  
CS  
SCLK  
Selectable Slew Rate  
Gate Driver  
I
DWN  
Selectable Overcurrent  
Detection  
HS0  
SO  
SI  
RST  
WAKE  
FS  
Severe Short-circuit  
Detection  
Logic  
Short to VPWR  
Detection  
IN0  
Overtemperature  
Detection  
IN1  
IN2  
IN3  
Open-load  
Detections  
HS0  
R
R
I
DWN  
DWN  
DWN  
HS1  
HS1  
HS2  
HS3  
PWM  
Module  
Calibratable  
Oscillator  
HS2  
HS3  
VREG  
Programmable  
Watchdog  
FSI  
Temperature  
Feedback  
Selectable Output  
Current Recopy  
Overtemperature  
Prewarning  
Analog MUX  
VDD  
GND  
CSNS  
Figure 2. 10XS3412 simplified internal block diagram  
10XS3412  
4
NXP Semiconductors  
4
Pin connections  
Transparent Top View of Package  
13 12 11 10  
9
8
7
6
5
4
3
2
1
SO  
16  
17  
24  
FSI  
GND  
23  
GND  
14  
GND  
HS3  
18  
22  
HS2  
15  
VPWR  
19  
20  
21  
HS0  
HS1  
NC  
Figure 3. 10XS3412 pin connections  
Table 3. 10XS3412 pin definitions  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 24.  
Pin  
number  
Pin name Pin function  
Formal name  
Definition  
This pin reports an analog value proportional to the designated HS[0:3] output  
current or the temperature of the GND flag (pin 14). It is used externally to generate  
a ground-referenced voltage for the microcontroller (MCU) . Current recopy and  
temperature feedback is SPI programmable.  
Output current  
monitoring  
1
CSNS  
Output  
Input  
Each direct input controls the device mode. The IN[0:3] high-side input pins are used  
to directly control HS0:HS3 high-side output pins.  
The PWM frequency can be generated from IN0 pin to PWM module in case of  
external clock is set.  
2
3
5
6
IN0  
IN1  
IN2  
IN3  
Direct inputs  
Fault status  
(active low)  
This pin is an open drain configured output requiring an external pull-up resistor to  
7
8
9
FS  
Output  
Input  
V
DD for fault reporting.  
WAKE  
RST  
Wake  
Reset  
This input pin controls the device mode.  
This input pin is used to initialize the device configuration and fault registers, as well  
as place the device in a low-current Sleep mode.  
Input  
Chip select  
(active low)  
10  
11  
CS  
SCLK  
SI  
Input  
Input  
This input pin is connected to a chip select output of a master microcontroller (MCU).  
This input pin is connected to the MCU providing the required bit shift clock for SPI  
communication.  
Serial clock  
Serial input  
This pin is a command data input pin connected to the SPI serial data output of the  
MCU or to the SO pin of the previous device of a daisy-chain of devices.  
12  
Input  
This pin is an external voltage input pin used to supply power interfaces to the SPI  
bus.  
13  
VDD  
GND  
Power  
Ground  
Digital drain voltage  
Ground  
These pins, internally shorted, are the ground for the logic and analog circuitry of the  
device. These ground pins must be also shorted in the board.  
14, 17, 23  
10XS3412  
NXP Semiconductors  
5
Table 3. 10XS3412 pin definitions (continued)  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 24.  
Pin  
number  
Pin name Pin function  
Formal name  
Definition  
This pin connects to the positive power supply and is the source of operational power  
for the device.  
15  
VPWR  
SO  
Power  
Output  
Positive power supply  
Serial output  
This output pin is connected to the SPI serial data input pin of the MCU or to the SI  
pin of the next device of a daisy-chain of devices.  
16  
18  
19  
21  
22  
HS3  
HS1  
HS0  
HS2  
Protected 10 mΩ (HS0 and HS1) 12 mΩ (HS2 and HS3) high-side power output pins  
to the load.  
Output  
High-side outputs  
4, 20  
24  
NC  
FSI  
N/A  
No connect  
These pins may not be connected.  
Input  
Fail-safe input  
This input enables the watchdog timeout feature.  
10XS3412  
6
NXP Semiconductors  
5
Electrical characteristics  
5.1  
Maximum ratings  
Table 4. Maximum ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Ratings  
Symbol  
Value  
Unit  
ELECTRICAL RATINGS  
supply voltage range  
V
PWR  
• Load dump at 25 °C (400 ms)  
• Maximum operating voltage  
41  
28  
V
V
PWR(SS)  
• Reverse battery at 25 °C (2.0 min.)  
-18  
VDD supply voltage range  
Input/output voltage  
VDD  
-0.3 to 5.5  
V
V
(7)  
-0.3 to V +0.3  
DD  
WAKE input clamp current  
CSNS input clamp current  
I
2.5  
2.5  
mA  
mA  
CL(WAKE)  
I
CL(CSNS)  
HS [0:3] voltage  
• Positive  
V
I
41  
-16  
V
HS[0:3]  
• Negative  
Output current(4)  
6
A
HS[0:3]  
Output clamp energy using Single-pulse method(5)  
E
100  
mJ  
CL[0:3]  
ESD Voltage(6)  
• Human Body Model (HBM) for HS[0:3], VPWR and GND  
• Human Body Model (HBM) for other pins  
• Charge Device Model (CDM)  
V
V
±8000  
±2000  
ESD1  
ESD2  
V
Corner pins (1, 13, 19, 21)  
V
V
±750  
±500  
ESD3  
ESD4  
All other pins (2-12, 14-18, 20, 22-24)  
THERMAL RATINGS  
Operating temperature  
• Ambient  
TA  
TJ  
-40 to 125  
-40 to 150  
°C  
°C  
• Junction  
Storage temperature  
TSTG  
-55 to 150  
Notes  
4. Continuous high-side output current rating so long as maximum junction temperature is not exceeded. Calculation of maximum output current  
using package thermal resistance is required.  
5. Active clamp energy using single-pulse method (L = 2.0 mH, R = 0 Ω, V  
= 14 V, T = 150°C initial).  
J
L
PWR  
6. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), the Machine Model (MM) (CZAP  
200 pF, RZAP = 0 Ω), and the Charge Device Model (CDM), Robotic (CZAP = 4.0 pF).  
=
7. Input / Output pins are: IN[0:3], RSTB, FSI, CSNS, SI, SCLK, CSB, SO, FSB  
10XS3412  
NXP Semiconductors  
7
Table 4. Maximum ratings (continued)  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Ratings  
Symbol  
Value  
Unit  
THERMAL RESISTANCE  
Thermal Resistance(8)  
• Junction to Case  
R
R
<1.0  
30  
°C/W  
θJC  
θJA  
• Junction to Ambient  
(10)  
Peak Package Reflow Temperature During Reflow(9)  
• 10XS3412CHFK  
,
°C  
TPPRT  
Note 9  
• 10XS3412JHFK  
Notes  
8. Device mounted on a 2s2p test board per JEDEC JESD51-2. 15 °C/W of RθJA can be reached in a real application case (4 layers board).  
9. Pin soldering temperature limit is for 40 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause  
malfunction or permanent damage to the device.  
10. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all  
orderable parts, and review parametrics.  
10XS3412  
8
NXP Semiconductors  
5.2  
Static electrical characteristics  
Table 5. Static electrical characteristics  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
POWER INPUTS  
Battery supply voltage range  
• Fully operational  
V
6.0  
4.0  
20  
28  
V
PWR  
• Extended mode(11)  
Battery clamp voltage(12)  
V
41  
47  
53  
V
PWR(CLAMP)  
V
operating supply current  
• Outputs commanded ON, HS[0:3] open, IN[0:3] > V  
PWR  
I
mA  
PWR(ON)  
6.5  
20  
IH  
V
PWR supply current  
I
mA  
• Outputs commanded OFF, OFF openload detection disabled, HS[0:3] shorted  
to the ground with VDD= 5.5 V WAKE > VIH or RST > VIH and IN[0:3] < VIL  
PWR(SBY)  
6.5  
8.0  
Sleep state supply current  
VPWR = 12 V, RST = WAKE = IN[0:3] < VIL, HS[0:3] shorted to the ground  
• TA = 25 °C  
• TA = 85 °C  
I
μA  
PWR(SLEEP)  
1.0  
5.0  
30  
V
V
supply voltage  
V
3.0  
5.5  
V
DD  
DD(ON)  
supply current at V = 5.5 V  
DD  
DD  
• No SPI communication  
• 8.0 MHz SPI communication(13)  
I
1.6  
5.0  
2.2  
mA  
DD(ON)  
V
sleep state current at V = 5.5 V  
I
DD(SLEEP)  
5.0  
36  
μA  
V
DD  
DD  
Overvoltage shutdown threshold  
Overvoltage shutdown hysteresis  
Undervoltage shutdown threshold(14)  
V
28  
32  
0.8  
3.9  
-
PWR(OV)  
V
0.2  
3.3  
0.5  
3.4  
2.2  
1.5  
4.3  
0.9  
4.5  
2.8  
V
PWR(OVHYS)  
V
V
PWR(UV)  
V
and VDD power-on reset threshold  
V
V
PWR  
SUPPLY(POR)  
PWR(UV)  
V
Recovery undervoltage threshold  
supply failure threshold (for VPWR > VPWR(UV)  
Vpwr(UV)_UP  
4.1  
2.5  
V
)
V
V
DD  
DD(FAIL)  
Notes  
11. In extended mode, the functionality is guaranteed but not the electrical parameters. From 4.0 V to 6.0 V voltage range, the device is only protected  
with the thermal shutdown detection.  
12. Measured with the outputs open.  
13. Typical value guaranteed per design.  
14. Output will automatically recover with time limited autoretry to instructed state when VPWR voltage is restored to normal as long as the VPWR  
degradation level did not go below the undervoltage power-on reset threshold. This applies to all internal device logic that is supplied by VPWR  
and assumes that the external VDD supply is within specification.  
10XS3412  
NXP Semiconductors  
9
Table 5. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OUTPUTS HS0 TO HS3  
HS[0,1] output Drain-to-Source ON resistance (I = 5.0 A, T = 25 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
36  
16  
10  
10  
PWR  
PWR  
PWR  
PWR  
R
mΩ  
DS_01(ON)  
HS[0,1] output Drain-to-Source ON resistance (I = 5.0 A, T = 150 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
62  
27  
17  
17  
PWR  
PWR  
PWR  
PWR  
R
R
R
mΩ  
mΩ  
mΩ  
DS_01(ON)  
SD_01(ON)  
DS_23(ON)  
HS[0,1] output Source-to-Drain ON resistance (I = -5.0 A, V  
HS  
= 18 V)(15)  
PWR  
• T = 25 °C  
15  
20  
A
• T = 150 °C  
A
HS[2,3] output Drain-to-Source ON resistance (I = 5.0 A, T = 25 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
44  
19  
12  
12  
PWR  
PWR  
PWR  
PWR  
HS[2,3] output Drain-to-Source ON resistance (I = 5.0 A, T = 150 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
75  
33  
21  
21  
PWR  
PWR  
PWR  
PWR  
R
R
mΩ  
DS_23(ON)  
SD_23(ON)  
HS[2,3] output Source-to-Drain ON resistance  
(I = -5.0 A, V  
= -18 V)(15)  
HS  
PWR  
18  
24  
mΩ  
mΩ  
• T = 25 °C  
A
• T = 150 °C  
A
Maximum severe short-circuit impedance detection(16)  
R
28  
64  
100  
SHORT  
Notes  
15. Source-Drain ON resistance (reverse Drain-to-Source ON resistance) with negative polarity V  
16. Short-circuit impedance calculated from HS[0:3] to GND pins. Value guaranteed per design.  
.
PWR  
10XS3412  
10  
NXP Semiconductors  
Table 5. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
OUTPUTS HS0 TO HS3 (continued)  
Symbol  
Min  
Typ  
Max  
Unit  
Output overcurrent detection levels (6.0 V < V  
28 W bit = 0  
< 20 V)  
A
HS[0:3]  
78  
94.0  
60.0  
52.5  
45.0  
37.5  
30.0  
22.5  
15.0  
12.0  
8.0  
110  
70  
OCHI1_0  
OCHI2_0  
OC1_0  
50  
44.1  
37.8  
31.5  
25.2  
18.9  
12.6  
10.0  
6.4  
60.9  
52.2  
43.5  
34.8  
26.1  
17.4  
14.0  
9.6  
OC2_0  
OC3_0  
OC4_0  
OCLO4_0  
OCLO3_0  
OCLO2_0  
OCLO1_0  
39  
25  
47.0  
30.0  
26.2  
22.5  
18.7  
15.0  
11.2  
7.5  
55  
35  
OCHI1_1  
OCHI2_1  
OC1_1  
28 W bit = 1  
22.0  
18.9  
15.7  
12.6  
9.4  
30.5  
26.1  
21.8  
17.4  
13.1  
9.0  
OC2_1  
OC3_1  
OC4_1  
OCLO4_1  
OCLO3_1  
OCLO2_1  
OCLO1_1  
6.0  
4.5  
6.0  
7.5  
3.0  
4.0  
5.0  
Current sense ratio (6.0 V <  
• 28 W bit = 0  
< 20 V, CSNS < 5.0 V)(17)  
HS[0:3]  
• CSNS_ratio bit = 0  
• CSNS_ratio bit = 1  
C
C
1/8700  
1/53000  
SR0_0  
SR1_0  
• 28 W bit = 1  
• CSNS_ratio bit = 0  
• CSNS_ratio bit = 1  
C
C
1/4350  
1/26500  
SR0_1  
SR1_1  
Current sense ratio (C  
with 28 W bit=0  
) accuracy (6.0 V < V  
< 20 V)  
HS[0:3]  
SR0  
• Output current  
-12  
-13  
-16  
-20  
12  
13  
16  
20  
12.5 A  
5.0 A  
3.0 A  
1.5 A  
C
%
SR0_0_ACC  
Notes  
17. Current sense ratio = ICSNS / IHS[0:3]  
10XS3412  
NXP Semiconductors  
11  
Table 5. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
OUTPUTS HS0 TO HS3 (continued)  
Symbol  
Min  
Typ  
Max  
Unit  
Current sense ratio (C  
with 28 W bit=1  
) accuracy (6.0 V < V < 20 V)  
HS  
SR0  
• Output current  
3.0 A  
C
%
SR0_1_ACC  
-16  
-20  
16  
20  
1.5 A  
C
C
current recopy accuracy with one calibration point (6.0 V < V  
• Output current  
< 20 V)(18)  
HS[0:3]  
SR0  
C
SR0_0_ACC(C  
AL)  
-5.0  
5.0  
%
5.0 A  
current recopy temperature drift (6.0 V < V  
< 20 V)  
HS[0:3]  
SR0  
with 28 W bit=0(19)  
• Output current  
Δ(C  
)/  
SR0_0  
%/°C  
Δ(T)  
0.04  
5.0 A  
Current sense ratio (C  
with 28 W bit=0  
) accuracy (6.0 V < V  
< 20 V)  
HS[0:3]  
SR1  
• Output current  
12.5 A  
C
%
V
SR1_0_ACC  
-17  
-12  
+17  
+12  
75 A  
Current sense clamp voltage  
• CSNS Open; I = 5.0 A with C  
V
CL(CSNS)  
ratio  
SR0  
VDD+0.25  
30  
VDD+1.0  
100  
HS[0:3]  
OFF openload detection source current(20)  
I
μA  
V
OLD(OFF)  
OFF openload fault detection voltage threshold  
ON openload fault detection current threshold  
V
2.0  
3.0  
300  
4.0  
OLD(THRES)  
I
100  
600  
mA  
OLD(ON)  
ON openload fault detection current threshold with LED  
I
mA  
V
OLD(ON_LED)  
V
= V  
- 0.75 V  
2.5  
5.0  
10  
HS[0:3]  
PWR  
Output short to V  
detection voltage threshold  
PWR  
V
OSD(THRES)  
VCL  
Output programmed OFF  
V
-1.2  
V
-0.8  
V
-0.4  
PWR  
PWR  
PWR  
Output negative clamp voltage  
V
• 0.5 A < I  
< 5.0 A, output programmed OFF  
-22  
155  
-16  
HS[0:3]  
Output overtemperature shutdown for 4.5 V < VPWR < 28 V  
T
175  
195  
°C  
SD  
Notes  
18. Based on statistical analysis. It is not production tested.  
19. Based on statistical data: delta(C  
tested.  
)/delta(T)={(measured ICSNS at T1 - measured ICSNS at T2) / measured ICSNS at room} / {T1-T2}. No production  
SR0  
20. Output OFF openload detection current is the current required to flow through the load for the purpose of detecting the existence of an openload  
condition when the specific output is commanded OFF. Pull-up current is measured for VHS=VOLD(THRES)  
10XS3412  
12  
NXP Semiconductors  
Table 5. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
CONTROL INTERFACE  
Input logic high voltage(21)  
Input logic low voltage(21)  
V
2.0  
-0.3  
5.0  
5.0  
VDD+0.3  
0.8  
V
IH  
V
IL  
V
Input logic pull-down current (SCLK, SI)(24)  
Input logic pull-up current (CS)(25)  
SO, FS tri-state capacitance(22)  
I
20  
μA  
μA  
pF  
kΩ  
pF  
DWN  
I
20  
UP  
C
20  
SO  
Input logic pull-down resistor (RST, WAKE and IN[0:3])  
Input capacitance(22)  
R
125  
250  
4.0  
500  
12  
DWN  
C
IN  
Wake input clamp voltage(23), I  
• 10XS3412CHFK  
< 2.5 mA  
CL(WAKE)  
V
19  
20  
25  
27  
32  
35  
V
CL(WAKE)  
• 10XS3412JHFK  
Wake input forward voltage  
V
V
V
F(WAKE)  
• I  
= -2.5 mA  
-2.0  
0
-0.3  
CL(WAKE)  
SO high state output voltage  
• I = 1.0 mA  
V
SOH  
V
-0.4  
DD  
OH  
SO and FS low state output voltage  
• I = -1.0 mA  
V
V
SOL  
0.4  
2.0  
OL  
SO, CSNS and FS tri-state leakage current  
I
μA  
SO(LEAK)  
RFS  
CS = VIH and 0 V < VSO < VDD, or FS = 5.5 V, or CSNS=0.0 V  
-2.0  
FSI external pull-down resistance(26)  
• Watchdog disabled  
10  
0
1.0  
kΩ  
• Watchdog enabled  
Infinite  
Notes  
21. Upper and lower logic threshold voltage range applies to SI, CS, SCLK, RST, IN[0:3] and WAKE input signals. The WAKE and RST signals may  
be supplied by a derived voltage referenced to V  
.
PWR  
22. Input capacitance of SI, CS, SCLK, RST, IN[0:3] and WAKE. This parameter is guaranteed by process monitoring but is not production tested.  
23. The current must be limited by a series resistance when using voltages > 7.0 V.  
24. Pull-down current is with VSI > 1.0 V and VSCLK > 1.0 V.  
25. Pull-up current is with VCS < 2.0 V. CS has an active internal pull-up to V  
.
DD  
26. In Fail-safe HS[0:3] depends respectively on ON[0:3]. FSI has an active internal pull-up to V  
~ 3.0 V.  
REG  
10XS3412  
NXP Semiconductors  
13  
5.3  
Dynamic electrical characteristics  
Table 6. Dynamic electrical characteristics  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
POWER OUTPUT TIMING HS0 TO HS3  
Output rising medium slew rate (medium speed slew rate / SR[1:0]=00)(27)  
Symbol  
Min  
Typ  
Max  
Unit  
SR  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
μs  
R_00  
• V = 14 V  
0.15  
0.07  
0.3  
0.3  
0.15  
0.6  
0.6  
0.3  
1.2  
0.6  
0.3  
PWR  
Output rising slow slew rate (low speed slew rate / SR[1:0]=01)(27)  
• V = 14 V  
SR  
R_01  
PWR  
Output falling fast slew rate (high speed slew rate / SR[1:0]=10)(27)  
• V = 14 V  
SR  
R_10  
PWR  
Output falling medium slew rate (medium speed slew rate / SR[1:0]=00)(27)  
• V = 14 V  
SR  
F_00  
0.15  
0.07  
0.3  
PWR  
Output falling slow slew rate (low speed slew rate / SR[1:0]=01)(27)  
• V = 14 V  
SR  
F_01  
0.15  
PWR  
Output rising fast slew rate (high speed slew rate / SR[1:0]=10)(27)  
• V = 14 V  
SR  
F_10  
0.3  
45  
0.6  
70  
1.2  
95  
PWR  
HS[0,1] output turn-on and turn-off delay time(28)  
• V = 14 V  
t
DLY_01  
PWR  
HS[2,3] output turn-on and turn-off delay time(28)  
• V = 14 V  
tDLY_23  
40  
0.8  
-25  
65  
1.0  
-5.0  
90  
1.2  
15  
μs  
PWR  
Driver output matching slew rate (SR /SR )  
R
F
ΔSR  
V
= 14 V @ 25 °C and for medium speed slew rate (SR[1:0]=00)  
PWR  
Driver output matching time (tDLY(ON) - tDLY(OFF)  
)
ΔtRF  
μs  
V
= 14 V, f = 240 Hz, PWM duty cycle = 50%, @ 25 °C for medium  
PWR  
PWM  
speed slew rate (SR[1:0]=00)  
Notes  
27. Rise and fall slew rates measured across a 5.0 Ω resistive load at high-side output = 30% to 70% (see Figure 4, page 21).  
28. Turn-on delay time measured from rising edge of any signal (IN[0:3] and CS) that would turn the output ON to V = V  
/ 2 with R = 5.0 Ω  
HS[0:3]  
PWR  
L
resistive load. Turn-OFF delay time measured from falling edge of any signal (IN[0:3] and CS) that would turn the output OFF to V  
=V  
PWR  
HS[0:3]  
/ 2 with R = 5.0 Ω resistive load.  
L
10XS3412  
14  
NXP Semiconductors  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
POWER OUTPUT TIMING HS0 TO HS3 (continued)  
Fault detection blanking time(29)  
• 10XS3412CHFK  
tFAULT  
-
-
5.0  
5.0  
20  
10  
μs  
μs  
• 10XS3412JHFK  
Output shutdown delay time(30)  
• 10XS3412CHFK  
tDETECT  
-
-
7.0  
7.0  
30  
20  
• 10XS3412JHFK  
CSNS valid time(31)  
Watchdog timeout(32)  
tCNSVAL  
tWDTO  
70  
100  
400  
μs  
217  
310  
ms  
ON openload fault cyclic detection period with LED  
• Internal clock (PWM_en bit = 1 & CLOCK_Set = 1)  
• External clock (PWM_en bit = 1 & CLOCK_Set = 0)  
TOLLED  
6.4  
-
8.3  
PWM period  
12  
-
ms  
Notes  
29. Time necessary to report the fault to FS pin.  
30. Time necessary to switch off the output in case of OT or OC or SC or UV fault detection (from negative edge of FS pin to HS voltage = 50% of VPWR  
31. Time necessary for CSNS to be within ±5% of the targeted value (from HS voltage = 50% of VPWR to ±5% of the targeted CSNS value).  
32. For FSI open, the Watchdog timeout delay measured from the rising edge of RST, to HS[0,2] output state depend on the corresponding input  
command.  
10XS3412  
NXP Semiconductors  
15  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Output overcurrent time step for 28 W bit = 0  
OC[1:0]=00 (slow by default)  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
tOC1_00  
tOC2_00  
tOC3_00  
tOC4_00  
tOC5_00  
tOC6_00  
tOC7_00  
4.40  
1.62  
2.10  
2.88  
4.58  
10.16  
73.2  
6.30  
2.32  
8.02  
3.00  
3.00  
3.90  
4.12  
5.36  
6.56  
8.54  
14.52  
104.6  
18.88  
134.0  
OC[1:0]=01 (fast)  
tOC1_01  
tOC2_01  
tOC3_01  
tOC4_01  
tOC5_01  
tOC6_01  
tOC7_01  
1.10  
0.40  
0.52  
0.72  
1.14  
2.54  
18.2  
1.57  
0.58  
0.75  
1.03  
1.64  
3.63  
26.1  
2.00  
0.75  
0.98  
1.34  
2.13  
4.72  
34.0  
OC[1:0]=10 (medium)  
tOC1_10  
tOC2_10  
tOC3_10  
tOC4_10  
tOC5_10  
tOC6_10  
tOC7_10  
2.20  
0.81  
1.05  
1.44  
2.29  
5.08  
36.6  
3.15  
1.16  
1.50  
2.06  
3.28  
7.26  
52.3  
4.01  
1.50  
1.95  
2.68  
4.27  
9.44  
68.0  
OC[1:0]=11 (very slow)  
tOC1_11  
tOC2_11  
tOC3_11  
tOC4_11  
tOC5_11  
tOC6_11  
tOC7_11  
8.8  
3.2  
12.6  
4.6  
16.4  
21.4  
7.8  
4.2  
6.0  
5.7  
8.2  
10.7  
17.0  
37.7  
272.0  
9.1  
13.1  
29.0  
209.2  
20.3  
146.4  
10XS3412  
16  
NXP Semiconductors  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Output overcurrent time step for 28 W bit = 1  
OC[1:0]=00 (slow by default)  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
tOC1_00  
tOC2_00  
tOC3_00  
tOC4_00  
tOC5_00  
tOC6_00  
tOC7_00  
3.4  
1.1  
1.4  
2.0  
3.4  
8.5  
62.4  
4.9  
1.6  
6.4  
2.1  
2.1  
2.8  
2.9  
3.8  
4.9  
6.4  
12.2  
89.2  
15.9  
116.0  
OC[1:0]=01 (fast)  
tOC1_01  
tOC2_01  
tOC3_01  
tOC4_01  
tOC5_01  
tOC6_01  
tOC7_01  
0.86  
0.28  
0.36  
0.51  
0.78  
2.14  
20.2  
1.24  
0.40  
0.52  
0.74  
1.12  
3.06  
22.2  
1.61  
0.52  
0.68  
0.96  
1.46  
3.98  
28.9  
OC[1:0]=10 (medium)  
tOC1_10  
tOC2_10  
tOC3_10  
tOC4_10  
tOC5_10  
tOC6_10  
tOC7_10  
1.7  
0.5  
0.7  
1.0  
1.7  
4.2  
31.2  
2.5  
0.8  
1.0  
1.5  
2.5  
6.1  
44.6  
3.3  
1.0  
1.3  
2.0  
3.3  
6.0  
58.0  
OC[1:0]=11 (very slow)  
tOC1_11  
tOC2_11  
tOC3_11  
tOC4_11  
tOC5_11  
tOC6_11  
tOC7_11  
6.8  
2.2  
9.8  
3.2  
12.8  
16.7  
5.5  
2.9  
4.2  
4.0  
5.8  
7.6  
6.8  
9.8  
12.8  
31.8  
232.0  
17.0  
124.8  
24.4  
178.4  
10XS3412  
NXP Semiconductors  
17  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Bulb cooling time step for 28 W bit = 0  
Symbol  
Min  
Typ  
Max  
Unit  
ms  
CB[1:0]=00 or 11 (medium)  
tBC1_00  
tBC2_00  
tBC3_00  
tBC4_00  
tBC5_00  
tBC6_00  
242  
126  
140  
158  
181  
211  
347  
181  
200  
226  
259  
302  
452  
236  
260  
294  
337  
393  
CB[1:0]=01 (fast)  
tBC1_01  
tBC2_01  
tBC3_01  
tBC4_01  
tBC5_01  
tBC6_01  
121  
63  
173  
90  
226  
118  
130  
147  
169  
197  
70  
100  
113  
129  
151  
79  
90  
105  
CB[1:0]=10 (slow)  
tBC1_10  
tBC2_10  
tBC3_10  
tBC4_10  
tBC5_10  
tBC6_10  
484  
252  
280  
316  
362  
422  
694  
362  
400  
452  
518  
604  
1904  
472  
520  
588  
674  
786  
for 28 W bit = 1  
CB[1:0]=00 or 11 (medium)  
tBC1_00  
tBC2_00  
tBC3_00  
tBC4_00  
tBC5_00  
291  
156  
178  
208  
251  
314  
417  
224  
255  
298  
359  
449  
542  
292  
332  
388  
467  
584  
tB  
C6_00  
CB[1:0]=01 (fast)  
tBC1_01  
tB  
146  
78  
209  
112  
127  
145  
180  
324  
272  
146  
166  
189  
234  
422  
C2_01  
tBC3_01  
tBC4_01  
tB  
88  
101  
126  
226  
C5_01  
tBC6_01  
CB[1:0]=10 (slow)  
tBC1_10  
tBC2_10  
tBC3_10  
tBC4_10  
tBC5_10  
tBC6_10  
583  
312  
357  
417  
501  
628  
834  
448  
510  
596  
717  
898  
1085  
582  
665  
775  
933  
1170  
10XS3412  
18  
NXP Semiconductors  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
PWM MODULE TIMING  
Input PWM clock range on IN0  
fIN0  
7.68  
1.0  
100  
2.0  
200  
51.2  
4.0  
400  
1.0  
+10  
156  
26  
kHz  
kHz  
kHz  
kHz  
%
Input PWM clock low frequency detection range on IN0(33)  
Input PWM clock high frequency detection range on IN0(33)  
Output PWM frequency range  
fIN0(LOW)  
fIN0(HIGH)  
fPWM  
Output PWM frequency accuracy using calibrated oscillator  
Default output PWM frequency using internal oscillator  
CS calibration low minimum time detection range  
CS calibration low maximum time detection range  
Output PWM duty-cycle range for fpwm = 1.0 kHz for high speed slew rate(34)  
Output PWM duty-cycle range for fpwm = 400 Hz(34)  
Output PWM duty-cycle range for fpwm = 200 Hz (34)  
INPUT TIMING  
AFPWM(CAL)  
fPWM(0)  
-10  
84  
120  
20  
200  
Hz  
μs  
tCSB(MIN)  
tCSB(MAX)  
RPWM_1k  
RPWM_400  
RPWM_200  
14  
140  
6.0  
10  
260  
94  
μs  
%
98  
%
5.0  
98  
%
Direct input toggle timeout  
tIN  
175  
105  
250  
150  
325  
195  
ms  
ms  
AUTORETRY TIMING  
Autoretry period  
tAUTO  
TEMPERATURE ON THE GND FLAG  
Thermal prewarning detection(35)  
TOTWAR  
110  
1.15  
-3.5  
125  
1.20  
-3.7  
140  
1.25  
-3.9  
°C  
V
Analog temperature feedback at TA = 25 °C with RCSNS=2.5 kΩ  
Analog temperature feedback derating with RCSNS=2.5 kΩ(36)  
Notes  
TFEED  
DTFEED  
mV/°C  
33. Clock fail detector available for PWM_en bit is set to logic [1] and CLOCK_sel is set to logic [0].  
34. The PWM ratio is measured at VHS = 50% of VPWR and for the default SR value. It is possible to put the device fully-on (PWM duty-cycle 100%)  
and fully-off (duty-cycle 0%). For values outside this range, a calibration is needed between the PWM duty-cycle programming and the PWM on  
the output with R = 5.0 Ω resistive load.  
L
35. Typical value guaranteed per design.  
36. Value guaranteed per statistical analysis.  
10XS3412  
NXP Semiconductors  
19  
Table 6. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Characteristic  
SPI INTERFACE CHARACTERISTICS(37)  
Maximum frequency of SPI operation  
Symbol  
Min  
Typ  
Max  
Unit  
fSPI  
tWRST  
tCS  
10  
8.0  
MHz  
μs  
μs  
μs  
ns  
(38)  
Required low state duration for RST  
Rising edge of CS to falling edge of CS (required setup time)(39)  
Rising edge of RST to falling edge of CS (required setup time)(39)  
Falling edge of CS to rising edge of SCLK (required setup time)(39)  
Required high state duration of SCLK (required setup time)(39)  
Required low state duration of SCLK (required setup time)(39)  
Falling edge of SCLK to rising edge of CS (required setup time)(39)  
SI to falling edge of SCLK (required setup time)(40)  
Falling edge of SCLK to SI (required setup time)(40)  
SO rise time  
1.0  
5.0  
500  
50  
50  
60  
37  
49  
tENBL  
tLEAD  
tWSCLKh  
tWSCLKl  
tLAG  
ns  
ns  
ns  
tSI(SU)  
tSI(HOLD)  
ns  
ns  
tRSO  
tFSO  
ns  
ns  
• C = 80 pF  
13  
L
SO fall time  
• C = 80 pF  
L
13  
13  
13  
60  
60  
SI, CS, SCLK, incoming signal rise time(40)  
tRSI  
tFSI  
tSO(EN)  
tSO(DIS)  
ns  
ns  
ns  
ns  
SI, CS, SCLK, incoming signal fall time(40)  
Time from rising edge of SCLK to SO low-impedance(41)  
Time from rising edge of SCLK to SO high-impedance(42)  
Notes  
37. Parameters guaranteed by design.  
38. RST low duration measured with outputs enabled and going to OFF or disabled condition.  
39. Maximum setup time required for the 10XS3412 is the minimum guaranteed time needed from the microcontroller.  
40. Rise and Fall time of incoming SI, CS, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing.  
41. Time required for output status data to be available for use at SO. 1.0 kΩ on pull-up on CS.  
42. Time required for output status data to be terminated at SO. 1.0 kΩ on pull-up on CS.  
10XS3412  
20  
NXP Semiconductors  
5.4  
Timing diagrams  
IN[0:3]  
high logic level  
low logic level  
Time  
Time  
Time  
or  
CS  
high logic level  
low logic level  
VHS[0:3]  
V
PWR  
R
PWM  
50%V  
PWR  
tDLY(OFF)  
tDLY(ON)  
VHS[0:3]  
70% V  
PWR  
SRF  
SRR  
30% V  
PWR  
Time  
Figure 4. Output slew rate and time delays  
I
OCH1  
I
I
OCH2  
OC1  
OC2  
Load  
Current  
I
I
I
OC3  
OC4  
I
I
I
OCLO4  
OCLO3  
OCLO2  
I
OCLO1  
Time  
t
t
t
t
OC3  
OC1  
t
OC5  
t
OC6  
OC7  
t
OC4  
OC2  
Figure 5. Overcurrent shutdown protection  
10XS3412  
NXP Semiconductors  
21  
I
OCH1  
OCH2  
I
I
OC1  
OC2  
I
I
I
I
I
OC3  
OC4  
OCLO4  
OCLO3  
I
OCLO2  
I
OCLO1  
Previous OFF duration  
(tOFF  
)
t
t
t
B
C5  
B
C3  
B
C1  
t
B
C6  
t
B
C4  
t
B
C2  
Figure 6. Bulb cooling management  
V
IH  
RST  
10% VDD  
0.2 VDD  
VIL  
tCS  
t
ENBL  
t
WRST  
90% V  
DD  
V
IH  
C
10%V
DD  
V
IL  
t
RSI  
t
WSCLKh  
t
LEAD  
t
LAG  
VIH  
90% VDD  
V
IH  
SCLK  
10% VDD  
V
IL  
t
SI(SU)  
t
TwSCLKl  
WSCLKl  
t
FSI  
t
SI(HOLD)  
V
IH  
90%V
DD  
Don’t Care  
Don’t Care  
Don’t Care  
Valid  
Valid  
SI  
10% VDD  
V
IH  
Figure 7. Input timing switching characteristics  
10XS3412  
22  
NXP Semiconductors  
t
t
FSI  
RSI  
VOH  
90% V  
DD  
50%  
SCLK  
10% VDD  
VOL  
tSO(EN)  
10%VDD  
VOH  
90% V  
DD  
SO  
VOL  
Low to High  
tRSO  
tVALID  
tFSO  
SO  
VOH  
90% V  
DD  
High to Low  
10% VDD  
VOL  
tSO(DIS)  
Figure 8. SCLK waveform and valid SO data delay time  
10XS3412  
NXP Semiconductors  
23  
6
Functional description  
6.1  
Introduction  
The 10XS3412 is one in a family of devices designed for low-voltage automotive lighting applications. Its four low RDS(on) MOSFETs (dual  
10 mΩ, dual 12 mΩ) can control four separate 55 W / 28 W bulbs and/or Xenon modules.  
Programming, control and diagnostics are accomplished using a 16-bit SPI interface. Its output with selectable slew-rate improves  
electromagnetic compatibility (EMC) behavior. Additionally, each output has its own parallel input or SPI control for pulse-width modulation  
(PWM) control if desired. The 10XS3412 allows the user to program via the SPI the fault current trip levels and duration of acceptable  
lamp inrush. The device has Fail-safe mode to provide functionality of the outputs in case of MCU damage.  
6.2  
Functional pin description  
6.2.1 Output current monitoring (CSNS)  
The Current Sense pin provides a current proportional to the designated HS0:HS3 output or a voltage proportional to the temperature on  
the GND flag. That current is fed into a ground-referenced resistor (4.7 kΩ typical) and its voltage is monitored by an MCU's A/D. The  
output type is selected via the SPI. This pin can be tri-stated through the SPI.  
6.2.2 Direct inputs (IN0, IN1, IN2, IN3)  
Each IN input wakes the device. The IN0:IN3 high-side input pins are also used to directly control HS0:HS3 high-side output pins. In case  
of the outputs are controlled by PWM module, the external PWM clock is applied to IN0 pin. These pins are to be driven with CMOS levels,  
and they have a passive internal pull-down, RDWN  
.
6.2.3 Fault status (FS)  
This pin is an open drain configured output requiring an external pull-up resistor to VDD for fault reporting. If a device fault condition is  
detected, this pin is active LOW. Specific device diagnostics and faults are reported via the SPI SO pin.  
6.2.4 Wake  
The wake input wakes the device. An internal clamp protects this pin from high damaging voltages with a series resistor (10 kΩ typ). This  
input has a passive internal pull-down, RDWN  
.
6.2.5 Reset (RST)  
The reset input wakes the device. This is used to initialize the device configuration and fault registers, as well as place the device in a low-  
current Sleep mode. The pin also starts the watchdog timer when transitioning from logic [0] to logic [1]. This pin has a passive internal  
pull-down, RDWN  
.
6.2.6 Chip select (CS)  
The CS pin enables communication with the master microcontroller (MCU). When this pin is in a logic [0] state, the device is capable of  
transferring information to, and receiving information from, the MCU. The 10XS3412 latches in data from the Input Shift registers to the  
addressed registers on the rising edge of CS. The device transfers status information from the power output to the Shift register on the  
falling edge of CS. The SO output driver is enabled when CS is logic [0]. CS should transition from a logic [1] to a logic [0] state only when  
SCLK is a logic [0]. CS has an active internal pull-up from VDD, IUP  
.
10XS3412  
24  
NXP Semiconductors  
6.2.7 Serial clock (SCLK)  
The SCLK pin clocks the internal shift registers of the 10XS3412 device. The serial input (SI) pin accepts data into the input shift register  
on the falling edge of the SCLK signal while the serial output (SO) pin shifts data information out of the SO line driver on the rising edge  
of the SCLK signal. It is important the SCLK pin be in a logic low state whenever CS makes any transition. For this reason, it is  
recommended the SCLK pin be in a logic [0] whenever the device is not accessed (CS logic [1] state). SCLK has an active internal pull-  
down. When CS is logic [1], signals at the SCLK and SI pins are ignored and SO is tri-stated (high-impedance) (see Figure 10, page 27).  
SCLK input has an active internal pull-down, IDWN  
.
6.2.8 Serial input (SI)  
This is a serial interface (SI) command data input pin. Each SI bit is read on the falling edge of SCLK. A 16-bit stream of serial data is  
required on the SI pin, starting with D15 (MSB) to D0 (LSB). The internal registers of the 10XS3412 are configured and controlled using  
a 5-bit addressing scheme described in Table 11. Register addressing and configuration are described in Table 12. The SI input has an  
active internal pull-down, IDWN  
.
6.2.9 Digital drain voltage (VDD)  
This pin is an external voltage input pin used to supply power to the SPI circuit. In the event VDD is lost (VDD Failure), the device goes to  
Fail-safe mode.  
6.2.10 Ground (GND)  
These pins are the ground for the device.  
6.2.11 Positive power supply (VPWR)  
This pin connects to the positive power supply and is the source of operational power for the device. The VPWR contact is the backside  
surface mount tab of the package.  
6.2.12 Serial output (SO)  
The SO data pin is a tri-stateable output from the shift register. The SO pin remains in a high-impedance state until the CS pin is put into  
a logic [0] state. The SO data is capable of reporting the status of the output, the device configuration, the state of the key inputs, etc. The  
SO pin changes state on the rising edge of SCLK and reads out on the falling edge of SCLK. SO reporting descriptions are provided in  
Table 24.  
6.2.13 High-side outputs (HS3, HS1, HS0, HS2)  
Protected 10 mΩ and 12 mΩ high-side power outputs to the load.  
6.2.14 Fail-safe input (FSI)  
This pin incorporates an active internal pull-up current source from internal supply (VREG). This enables the watchdog timeout feature.  
When the FSI pin is opened, the watchdog circuit is enabled. After a Watchdog timeout occurs, the output states depends on IN[0:3].  
When the FSI pin is connected to GND, the watchdog circuit is disabled. The output states depends on IN[0:3] in case of VDD Failure  
condition, in case VDD failure detection is activated (VDD_FAIL_en bit sets to logic [1]).  
10XS3412  
NXP Semiconductors  
25  
6.3  
Functional internal block description  
MC10XS3412 - Functional Block Diagram  
Self-protected  
High Side Switches  
Power Supply  
MCU Interface and Output Control  
HS0 - HS3  
Parallel Control Inputs  
SPI Interface  
PWM Controller  
Self-protected High Side Switches  
Power Supply  
MCU Interface and Output Control  
Figure 9. Functional block diagram  
6.3.1 Power supply  
The 10XS3412 is designed to operate from 4.0 V to 28 V on the VPWR pin. Characteristics are provided from 6.0 V to 20 V for the device.  
The VPWR pin supplies power to internal regulator, analog, and logic circuit blocks. The VDD supply is used for Serial Peripheral Interface  
(SPI) communication in order to configure and diagnose the device. This IC architecture provides a low quiescent current Sleep mode.  
Applying VPWR and VDD to the device will place the device in the Normal mode. The device will transit to Fail-safe mode in case of failures  
on the SPI or/and on VDD voltage.  
6.3.2 High-side switches: HS0 – HS3  
These pins are the high-side outputs controlling automotive lamps located for the front of vehicle, such as 65 W/55 W bulbs and Xenon-  
HID modules. Those N-channel MOSFETs with 10 mΩ & 12 mΩ RDS(ON) are self-protected and present extended diagnostics in order to  
detect bulb outage and short-circuit fault condition. The HS output is actively clamped during turn off of inductive loads and inductive  
battery line. When driving DC motor or Solenoid loads demanding multiple switching, an external recirculation device must be used to  
maintain the device in its Safe Operating Area.  
6.3.3 MCU interface and output control  
In Normal mode, each bulb is controlled directly from the MCU through SPI. A pulse width modulation control module allows improvement  
of lamp lifetime with bulb power regulation (PWM frequency range from 100 to 400 Hz) and addressing the dimming application (day  
running light). An analog feedback output provides a current proportional to the load current or the temperature of the board. The SPI is  
used to configure and to read the diagnostic status (faults) of high-side outputs. The reported fault conditions are: open load, short circuit  
to battery, short circuit to ground (overcurrent and severe short-circuit), thermal shutdown, and under/overvoltage. Thanks to accurate  
and configurable overcurrent detection circuitry and wire-harness optimization, the vehicle is lighter.  
In Fail-safe mode, each lamp is controlled with dedicated parallel input pins. The device is configured in default mode.  
10XS3412  
26  
NXP Semiconductors  
7
Functional device operation  
7.1  
SPI protocol description  
The SPI interface has a full duplex, three-wire synchronous data transfer with four I/O lines associated with it: Serial Input (SI), Serial  
Output (SO), Serial Clock (SCLK), and Chip Select (CS).  
The SI/SO pins of the 10XS3412 follow a first-in first-out (D15 to D0) protocol, with both input and output words transferring the most  
significant bit (MSB) first. All inputs are compatible with 5.0 or 3.3 V CMOS logic levels.  
CS  
SCLK  
SI  
D15  
D14  
D13  
D12 D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD8 OD7 OD6 OD5 OD4 OD3 OD2 OD1 OD0  
Notes 1. RST is a logic [1] state during the above operation.  
2. D15 D0 relate to the most recent ordered entry of data into the device.  
:
3. OD15:OD0 relate to the first 16 bits of ordered fault and status data out of the device.  
Figure 10. Single 16-bit word SPI communication  
7.2  
Operational modes  
The 10XS3412 has four operating modes: Sleep, Normal, Fail-safe and Fault. Table 7 and Figure 12 summarize details contained in  
succeeding paragraphs.  
The Figure 11 describes an internal signal called IN_ON[x] depending on IN[x] input.  
tIN  
IN[x]  
IN_ON[x]  
Figure 11. IN_ON[x] internal signal  
The 10XS3412 transits to operating modes according to the following signals:  
• wake-up = RST or WAKE or IN_ON[0] or IN_ON[1] or IN_ON[2] or IN_ON[3],  
• fail = (VDD Failure and VDD_FAIL_en) or (Watchdog timeout and FSI input not shorted to ground),  
• fault = OC[0:3] or OT[0:3] or SC[0:3] or UV or (OV and OV_dis).  
10XS3412  
NXP Semiconductors  
27  
Table 7. 10XS3412 operating modes  
Mode  
wake-up  
fail  
fault  
Comments  
Sleep  
0
1
x
x
Device is in Sleep mode. All outputs are OFF.  
Normal  
0
0
Device is currently in Normal mode. Watchdog is active if enabled.  
Device is currently in Fail-safe mode due to watchdog timeout or VDD  
Failure conditions. The output states depend on the corresponding  
input in case the FSI is open.  
Fail-safe  
1
1
1
0
1
Device is currently in Fault mode. The faulted output(s) is (are) OFF.  
The safe autoretry circuitry is active to turn-on again the output(s).  
Fault  
X
x = Don’t care.  
(fail=0) and (wake-up=1) and (fault=0)  
Sleep  
(wake-up=0)  
(wake-up=1) and  
(fail=1)  
and (fault=0)  
(wake-up=0)  
(wake-up=1)  
and (fault=1)  
(wake-up=0)  
(fail=1) and  
(wake-up=1)  
and (fault=1)  
(fail=0) and  
(wake-up=1)  
and (fault=1)  
Fault  
Normal  
(fail=0) and  
(wake-up=1)  
and (fault=0)  
(fail=1) and  
(wake-up=1)  
and (fault=0)  
Fail-safe  
(fail=0) and (wake-up=1) and (fault=0)  
(fail=1) and (wake-up=1) and (fault=0)  
Figure 12. Operating modes  
7.2.1 Sleep mode  
The 10XS3412 is in Sleep mode when:  
• VPWR and VDD are within the normal voltage range,  
• wake-up = 0,  
• fail = X,  
• fault = X.  
This is the Default mode of the device after first applying battery voltage (VPWR) prior to any I/O transitions. This is also the state of the  
device when the WAKE and RST and IN_ON[0:3] are logic [0]. In the Sleep mode, the output and all unused internal circuitry, such as the  
internal regulator, are off to minimize draw current. In addition, all SPI-configurable features of the device are as if set to logic [0].  
10XS3412  
28  
NXP Semiconductors  
7.2.2 Normal mode  
The 10XS3412 is in Normal mode when:  
• VPWR and VDD are within the normal voltage range,  
• wake-up = 1,  
• fail = 0,  
• fault = 0.  
In this mode, the NM bit is set to lfault_contrologic [1] and the outputs HS[0:3] are under control, as defined by hson signal:  
hson[x] = ( ( (IN[x] and DIR_dis[x]) or On bit[x] ) and PWM_en ) or (On bit [x] and Duty_cycle[x] and PWM_en).  
In this mode and also in Fail-safe, the fault condition reset depends on fault_control signal, as defined below:  
fault_control[x] = ( (IN_ON[x] and DIR_dis[x]) and PWM_en ) or (On bit [x]).  
7.2.2.1  
Programmable PWM module  
The outputs HS[0:3] are controlled by the programmable PWM module if PWM_en and On bits are set to logic [1].  
The clock frequency from IN0 input pin or from internal clock is the factor 27 (128) of the output PWM frequency (CLOCK_sel bit). The  
outputs HS[0:3] can be controlled in the range of 5% to 98% with a resolution of 7 bits of duty cycle (Table 8). The state of other IN pin is  
ignored.  
Table 8. Output PWM resolution  
On bit  
Duty cycle  
X
Output state  
OFF  
0
1
1
1
1
1
0000000  
0000001  
0000010  
n
PWM (1/128 duty cycle)  
PWM (2/128 duty cycle)  
PWM (3/128 duty cycle)  
PWM ((n+1)/128 duty cycle)  
fully ON  
1111111  
The timing includes seven programmable PWM switching delay (number of PWM clock rising edges) to improve overall EMC behavior of  
the light module (Table 9).  
Table 9. Output PWM switching delay  
Delay bits  
Output delay  
000  
001  
010  
011  
100  
101  
110  
111  
no delay  
16 PWM clock periods  
32 PWM clock periods  
48 PWM clock periods  
64 PWM clock periods  
80 PWM clock periods  
96 PWM clock periods  
112 PWM clock periods  
The clock frequency from IN0 is permanently monitored in order to report a clock failure in case of the frequency is out a specified  
frequency range (from fIN0(LOW) to fIN0(HIGH)). In case of clock failure, no PWM feature is provided, the On bit defines the outputs state and  
the CLOCK_fail bit reports [1].  
10XS3412  
NXP Semiconductors  
29  
7.2.2.2  
Calibratable internal clock  
The internal clock can vary as much as +/-30 percent corresponding to typical fPWM(0) output switching period.  
Using the existing SPI inputs and the precision timing reference already available to the MCU, the 10XS3412 allows clock period setting  
within +/-10 percent of accuracy. Calibrating the internal clock is initiated by defined word to CALR register. The calibration pulse is  
provided by the MCU. The pulse is sent on the CS pin after the SPI word is launched. At the moment, the CS pin transitions from logic [1]  
to [0] until from logic [0] to [1] determine the period of internal clock with a multiplicative factor of 128.  
CS  
SI  
SI command  
ignored  
CALR  
Internal  
clock duration  
Figure 13. Internal clock calibration diagram  
In case of negative CS pulse is outside a predefined time range (from tCSB(MIN) to tCSB(MAX)), the calibration event will be ignored and the  
internal clock will be unaltered or reset to default value (fPWM(0)) if this was not calibrated before.  
The calibratable clock is used, instead of the clock from IN0 input, when CLOCK_sel is set to [1].  
7.2.3 Fail-safe mode  
The 10XS3412 is in Fail-safe mode when:  
• VPWR is within the normal voltage range,  
• wake-up = 1,  
• fail = 1,  
• fault = 0.  
7.2.3.1  
Watchdog  
If the FSI input is not grounded, the watchdog timeout detection is active when either the WAKE or IN_ON[0:3] or RST input pin transitions  
from logic [0] to logic [1]. The WAKE input is capable of being pulled up to VPWR with a series of limiting resistance limiting the internal  
clamp current according to the specification.  
The watchdog timeout is a multiple of an internal oscillator. As long as the WD bit (D15) of an incoming SPI message is toggled within the  
minimum watchdog timeout period (WDTO), the device will operate normally.  
7.2.3.2  
Fail-safe conditions  
If an internal watchdog timeout occurs before the WD bit for FSI open (Table 10) or in case of VDD failure condition (VDD< VDD(FAIL))) for  
VDD_FAIL_en bit is set to logic [1], the device will revert to a Fail-safe mode until the WD bit is written to logic [1] (see Fail-safe to Normal  
mode transition paragraph) and VDD is within the normal voltage range.  
Table 10. SPI watchdog activation  
Typical RFSI (Ω)  
Watchdog  
0 (shorted to ground)  
(open)  
Disabled  
Enabled  
During the Fail-safe mode, the outputs will depend on the corresponding input. The SPI register content is reset to their default value  
(except POR bit) and fault protections are fully operational.  
10XS3412  
30  
NXP Semiconductors  
The Fail-safe mode can be detected by monitoring the NM bit is set to [0].  
7.2.4 Normal and Fail-safe mode transitions  
7.2.4.1  
Transition Fail-safe to Normal mode  
To leave the Fail-safe mode, VDD must be in nominal voltage and the microcontroller has to send a SPI command with WDIN bit set to  
logic [1] ; the other bits are not considered. The previous latched faults are reset by the transition into Normal mode (autoretry included).  
Moreover, the device can be brought out of the Fail-safe mode due to watchdog timeout issue by forcing the FSI pin to logic [0].  
7.2.4.2  
Transition Normal to Fail-safe mode  
To leave the Normal mode, a Fail-safe condition must occurred (fail=1). The previous latched faults are reset by the transition into Fail-  
safe mode (autoretry included).  
7.2.5 Fault mode  
The 10XS3412 is in Fault mode when:  
• VPWR and VDD are within the normal voltage range  
• wake-up = 1  
• fail = X  
• fault=1  
This device indicates the faults below as they occur by driving the FS pin to logic [0] for RST input is pulled up:  
• Overtemperature fault  
• Overcurrent fault  
• Severe short-circuit fault  
• Output(s) shorted to VPWR fault in OFF state  
• Openload fault in OFF state  
• Overvoltage fault (enabled by default)  
• Undervoltage fault  
The FS pin will automatically return to logic [1] when the fault condition is removed, except for overcurrent, severe short-circuit,  
overtemperature and undervoltage which will be reset by a new turn-on command (each fault_control signal to be toggled).  
Fault information is retained in the SPI fault register and is available (and reset) via the SO pin during the first valid SPI communication.  
The Open load fault in ON state is only reported through SPI register without effect on the corresponding output state (HS[x]) and the FS  
pin.  
7.2.6 Start-up sequence  
The 10XS3412 enters in Normal mode after start-up if following sequence is provided:  
• VPWR and VDD power supplies must be above their undervoltage thresholds,  
• generate wake-up event (wake-up=1) from 0 to 1 on RST. The device switches to Normal mode with SPI register content is reset  
(as defined in Table 12 and Table 24). All features of the 10XS3412 will be available after 50 μs typical and all SPI registers are set  
to default values (set to logic [0]). The UV fault is reported in the SPI status registers.  
And, in case of the PWM module is used (PWM_en bit is set to logic [1]) with an external reference clock:  
• apply PWM clock on IN0 input pin after maximum 200 μs (min. 50 μs).  
If the correct start-up sequence is not provided, the PWM function is not guaranteed.  
10XS3412  
NXP Semiconductors  
31  
7.3  
Protection and diagnostic features  
7.3.1 Protections  
7.3.1.1  
Overtemperature fault  
The 10XS3412 incorporates overtemperature detection and shutdown circuitry for each output structure.  
Two cases need to be considered when the output temperature is higher than TSD  
:
• If the output command is ON: the corresponding output is latched OFF. FS will be also latched to logic [0]. To delatch the fault and  
be able to turn ON again the outputs, the failure condition must disappear and the autoretry circuitry must be active or the  
corresponding output must be commanded OFF and then ON (toggling fault_control signal of corresponding output) or VSUPPLY(POR)  
condition if VDD = 0.  
• If the output command is OFF: FS will go to logic [0] till the corresponding output temperature will be below TSD  
.
For both cases, the fault register OT[0:3] bit into the status register will be set to [1]. The fault bits will be cleared in the status register after  
a SPI read command.  
7.3.1.2  
Overcurrent fault  
The 10XS3412 incorporates output shutdown in order to protect each output structure against resistive short-circuit condition. This  
protection is composed by eight predefined current levels (time dependent) to fit Xenon-HID manners by default or, 55 W or 28 W bulb  
profiles, selectable separately by Xenon bit and 28 W bits (as illustrated Figure 17, page 39).  
In the first turn-on, the lamp filament is cold and the current will be huge. fault_control signal transition from logic [0] to [1] or an autoretry  
define this event. In this case, the overcurrent protection will be fitted to inrush current, as shown in Figure 5. This overcurrent protection  
is programmable: OC[1:0] bits select overcurrent slope speed and OCHI1 current step can be removed in case of OCHI bit is set to [1].  
Over-current thresholds  
fault_control  
hson  
Figure 14. Overcurrent detection profile  
In steady state, the wire harness will be protected by OCLO2 current level by default. Three other DC overcurrent levels are available:  
OCLO1 or OCLO3 or OCLO4 based on the state of the OCLO[1,0] bits.  
If the load current level ever reaches the overcurrent detection level, the corresponding output will latch the output OFF and FS will be  
also latched to logic [0]. To delatch the fault and be able to turn ON again the corresponding output, the failure condition must disappear  
and the autoretry circuitry must be active or the corresponding output must be commanded OFF and then ON (toggling fault_control signal  
of corresponding output) or VSUPPLY(POR) condition if VDD = 0.  
The SPI fault report (OC[0:3] bits) is removed after a read operation.  
In Normal mode using internal PWM module, the 10XS3412 incorporates also a cooling bulb filament management if OC_mode and  
Xenon are set to logic [1]. In this case, the 1st step of multi-step overcurrent protection will depend to the previous OFF duration, as  
illustrated in Figure 6. The following figure illustrates the current level will be used in function to the duration of previous OFF state (toff).  
The slope of cooling bulb emulator is configurable with OCOFFCB[1:0] bits.  
10XS3412  
32  
NXP Semiconductors  
Depending on toff  
Over-current thresholds  
Cooling  
toff  
fault_control  
hson  
Figure 15. Bulb cooling principle  
7.3.1.3  
Severe short-circuit fault  
The 10XS3412 provides output shutdown in order to protect each output in case of severe short-circuit during of the output switching.  
If the short-circuit impedance is below R , the device will latch the output OFF, FS will go to logic [0] and the fault register SC[0:3] bit  
SHORT  
will be set to [1]. To delatch the fault and be able to turn ON again the outputs, the failure condition must disappear and the corresponding  
output must be commanded OFF and then ON (toggling fault_control signal of corresponding output) or VSUPPLY(POR) condition if VDD = 0.  
The SPI fault report (SC[0:3] bits) is removed after a read operation.  
7.3.1.4  
Overvoltage fault (enabled by default)  
By default, the overvoltage protection is enabled. The 10XS3412 shuts down all outputs and FS will go to logic [0] during an overvoltage  
fault condition on the VPWR pin (VPWR > VPWR(OV)). The outputs remain in the OFF state until the overvoltage condition is removed (VPWR  
< VPWR(OV) - VPWR(OVHYS)). When experiencing this fault, the OVF fault bit is set to logic [1] and cleared after either a valid SPI read.  
The overvoltage protection can be disabled through SPI (OV_dis bit is disabled set to logic [1]). The fault register reflects any overvoltage  
condition (VPWR > VPWR(OV)). This overvoltage diagnosis, as a warning, is removed after a read operation, if the fault condition disappears.  
The HS[0:3] outputs are not commanded in RDS(ON) above the OV threshold.  
In Fail-safe mode, the overvoltage activation depends on the RST logic state: enable for RST = 1 and disable for RST = 0. The device is  
still protected with overtemperature protection in case the overvoltage feature is disabled.  
7.3.1.5  
Undervoltage fault  
The output(s) will latch off at some battery voltage below VPWR(UV). As long as the VDD level stays within the normal specified range, the  
internal logic states within the device will remain (configuration and reporting).  
In the case where battery voltage drops below the undervoltage threshold (VPWR < VPWR(UV)), the outputs will turn off, FS will go to logic  
[0], and the fault register UV bit will be set to [1].  
Two cases need to be considered when the battery level recovers (VPWR > VPWR(UV)_UP):  
• If outputs command are low, FS will go to logic [1] but the UV bit will remain set to 1 until the next read operation (warning report).  
• If the output command is ON, FS will remain at logic [0]. To delatch the fault and be able to turn ON again the outputs, the failure  
condition must disappear and the autoretry circuitry must be active or the corresponding output must be commanded OFF and then  
ON (toggling fault_control signal of corresponding output) or VSUPPLY(POR) condition if VDD = 0.  
In extended mode, the output is protected by overtemperature shutdown circuitry. All previous latched faults, occurred when VPWR was  
within the normal voltage range, are guaranteed if VDD is within the operational voltage range or until VSUPPLY(POR) if VDD = 0. Any new  
OT fault is detected (VDD failure included) and reported through SPI above VPWR(UV). The output state is not changed as long as the  
VPWR voltage does not drop any lower than 3.5 V typical.  
All latched faults (overtemperature, overcurrent, severe short-circuit, over and undervoltage) are reset if:  
• VDD < VDD(FAIL) with VPWR in nominal voltage range,  
• VDD and VPWR supplies is below VSUPPLY(POR) voltage value.  
10XS3412  
NXP Semiconductors  
33  
(fault_control=0)  
(open-loadOFF=1  
or ShortVpwr=1  
or OV=1)  
(Open-load OFF=1  
or ShortVpwr=1  
or OV=1)  
(fault_control=1 and OV=0)  
(fault_control=0 or OV=1)  
(fault_control=0)  
(Open-load ON=1)  
OFF  
if hson=0  
(SC=1)  
ON  
if hson=1  
Latched  
OFF  
(count=16)  
(Retry=1)  
(SC=1)  
(Open-load ON=1)  
(after Retry Period and OV=0)  
(OV=1)  
Auto-retry  
OFF  
Auto-retry  
ON  
if hson=1  
(Retry=1)  
=> count=count+1  
(Open-load OFF=1  
or ShortVpwr=1  
or OV=1)  
(fault_control=0)  
Figure 16. Autoretry state machine  
7.3.2 Autoretry  
The autoretry circuitry is used to reactivate the output(s) automatically in case of overcurrent or overtemperature or undervoltage failure  
conditions to provide a high availability of the load.  
Autoretry feature is available in Fault mode. It is activated in case of internal retry signal is set to logic [1]:  
retry[x] = OC[x] or OT[x] or UV.  
The feature retries to switch-on the output(s) after one autoretry period (tAUTO) with a limitation in term of number of occurrence (16 for  
each output). The counter of retry occurrences is reset in cases of mode transitions (see Normal and Fail-safe mode transitions) and  
Retry_dis bit toggling. At each autoretry, the overcurrent detection will be set to default values in order to sustain the inrush current.  
The Figure 16 describes the autoretry state machine.  
7.3.3 Diagnostic  
7.3.3.1  
Output shorted to VPWR fault  
The 10XS3412 incorporates output shorted to VPWR detection circuitry in OFF state. Output shorted to VPWR fault is detected if output  
voltage is higher than V and reported as a fault condition when the output is disabled (OFF). The output shorted to VPWR fault  
OSD(THRES)  
is latched into the status register after the internal gate voltage is pulled low enough to turn OFF the output. The OS[0:3] and OL_OFF[0:3]  
fault bits are set in the status register and FS pin reports in real time the fault. If the output shorted to VPWR fault is removed, the status  
register will be cleared after reading the register.  
The open output shorted to VPWR protection can be disabled through SPI (OS_DIS[0:3] bit).  
7.3.3.2  
Openload faults  
The 10XS3412 incorporates three dedicated openload detection circuitries on the output to detect in OFF and in ON state.  
10XS3412  
34  
NXP Semiconductors  
7.3.3.3  
Openload detection in OFF state  
The OFF output openload fault is detected when the output voltage is higher than V  
pulled up with internal current source  
OLD(THRES)  
(IOLD(OFF)) and reported as a fault condition when the output is disabled (OFF). The OFF Output openload fault is latched into the status  
register or when the internal gate voltage is pulled low enough to turn OFF the output. The OL_OFF[0:3] fault bit is set in the status register.  
If the open load fault is removed (FS output pin goes to high), the status register will be cleared after reading the register.  
The OFF output openload protection can be disabled through SPI (OLOFF_DIS[0:3] bit).  
7.3.3.4  
Openload detection in ON state  
The ON output openload current thresholds can be chosen by SPI to detect a standard bulbs or LEDs (OLLED[0:3] bit set to logic [1]). In  
the cases where load current drops below the defined current threshold, the OLON bit is set to logic [1], and the output stays ON and FS  
will not be disturbed.  
7.3.3.5  
Openload detection in ON state for LED  
Open load for LEDs only (OLLED[0:3] set to logic [1]) is detected periodically each tOLLED (fully-on, D[7:0]=FF). To detect OLLED in the  
fully-on state, the output must be ON at least tOLLED and PWM module must be enabled (PWM_en = 1 in GCR register).  
To delatch the diagnosis, the condition should be removed and SPI read operation is needed (OL_ON[0:3] bit). The ON output openload  
protection can be disabled through SPI (OLON_DIS[0:3] bit).  
7.3.4 Analog current recopy and temperature feedback  
The CSNS pin is an analog output reporting a current proportional to the designed output current or a voltage proportional to the  
temperature of the GND flag (pin #14). The routing is SPI programmable (TEMP_en, CSNS_en, CSNS_s[1,0] and CSNS_ratio_s bits).  
In case the current recopy is active, the CSNS output delivers current only during ON time of the output switch without overshoot. The  
maximum current is 2.0 mA typical. The typical value of external CSNS resistor connected to the ground is 4.7 kΩ.  
The current recopy is not active in Fail-safe mode.  
7.3.4.1  
Temperature prewarning detection  
In Normal mode, the 10XS3412 provides a temperature prewarning reported via SPI in case of the temperature of the GND flag is higher  
than TOTWAR. This diagnosis (OTW bit set to [1]) is latched in the SPI DIAGR0 register. To delatch, a read SPI command is needed.  
7.3.5 Active clamp on VPWR  
The device provides an active gate clamp circuit in order to limit the maximum transient VPWR voltage at VPWR(CLAMP). In case of an  
overload on an output, the corresponding output is turned off, which leads to a high-voltage at VPWR with an inductive VPWR line. When  
VPWR voltage exceeds VPWR(CLAMP) threshold, the turn-off on the corresponding output is deactivated and all HS[0:3] outputs are  
switched ON automatically to demagnetize the inductive Battery line.  
For a long battery line between the battery and the device (> 20 meters), the smart high-side switch output may exceed the energy  
capability in case of a short-circuit. It is recommended to implement a voltage transient suppressor to drain the battery line energy.  
7.3.6 Reverse battery on VPWR  
The output survives the application of reverse voltage as low as -18 V. Under these conditions, the ON resistance of the output is 2 times  
higher than typical ohmic value in forward mode. No additional passive components are required except on VDD current path.  
7.3.7 Ground disconnect protection  
In the event the 10XS3412 ground is disconnected from load ground, the device protects itself and safely turns OFF the output regardless  
of the state of the output at the time of disconnection (maximum VPWR=16 V). A 10 kΩ resistor needs to be added between the MCU and  
each digital input pin in order to ensure that the device turns off in case of ground disconnect and to prevent this pin from exceeding  
maximum ratings.  
10XS3412  
NXP Semiconductors  
35  
7.3.8 Loss of supply lines  
7.3.8.1  
Loss of VDD  
If the external VDD supply is disconnected (or not within specification: VDD<VDD(FAIL)) with VDD_FAIL_en bit is set to logic [1]), all SPI  
register content is reset.  
The outputs can still be driven by the direct inputs IN[0:3] if VPWR is within specified voltage range. The 10XS3412 uses the battery input  
to power the output MOSFET-related current sense circuitry and any other internal logic providing Fail-safe device operation with no VDD  
supplied. In this state, the overtemperature, overcurrent, severe short-circuit, short to VPWR and OFF openload circuitry are fully  
operational with default values corresponding to all SPI bits are set to logic [0]. No current is conducted from VPWR to VDD  
.
7.3.8.2  
Loss of VPWR  
If the external VPWR supply is disconnected (or not within specification), the SPI configuration, reporting, and daisy chain features are  
provided for RST is set to logic [1] under VDD in nominal conditions. The SPI pull-up and pull-down current sources are not operational.  
This fault condition can be diagnosed with UV fault in the SPI STATR_s registers. The previous device configuration is maintained. No  
current is conducted from VDD to VPWR.  
7.3.8.3  
Loss of VPWR and VDD  
If the external VPWR and VDD supplies are disconnected (or not within specification: (VDD and VPWR) < VSUPPLY(POR)), all SPI register  
contents are reset with default values corresponding to all SPI bits are set to logic [0] and all latched faults are also reset.  
7.3.9 EMC performances  
All following tests are performed on NXP evaluation board in accordance with the typical application schematic.  
The device is protected in case of positive and negative transients on the VPWR line (per ISO 7637-2).  
The 10XS3412 successfully meets Class 5 of the CISPR25 emission standard, and 200 V/m or BCI 200 mA injection level for immunity  
tests.  
7.4  
Logic commands and registers  
7.4.1 Serial input communication  
SPI communication is accomplished using 16-bit messages. A message is transmitted by the MCU starting with the MSB D15 and ending  
with the LSB, D0 (Table 11). Each incoming command message on the SI pin can be interpreted using the following bit assignments: the  
MSB, D15, is the watchdog bit (WDIN). In some cases, output selection is done with bits D14:D13. The next three bits, D12:D10, are  
used to select the command register. The remaining nine bits, D8:D0, are used to configure and control the outputs and their protection  
features.  
Multiple messages can be transmitted in succession to accommodate those applications where daisy-chaining is desirable, or to confirm  
transmitted data, as long as the messages are all multiples of 16 bits. Any attempt made to latch in a message that is not 16 bits will be  
ignored.  
The 10XS3412 has defined registers, which are used to configure the device and to control the state of the outputs. Table 12 summarizes  
the SI registers.  
Table 11. SI message bit assignment  
Bit sig  
SI msg bit  
Message bit description  
Watchdog in: toggled to satisfy watchdog requirements.  
MSB  
D15  
D14:D13  
D12:D10  
D9  
Register address bits used in some cases for output selection (Table 12).  
Register address bits.  
Not used (set to logic [0]).  
LSB  
D8:D0  
Used to configure the inputs, outputs, and the device protection features and SO status content.  
10XS3412  
36  
NXP Semiconductors  
Table 12. Serial input address and configuration bit map  
SI Data  
D5  
SI Register  
D1  
4
D1 D1 D1  
D15  
D13  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
D0  
2
1
0
WDI  
N
STATR_s  
PWMR_s  
CONFR0_s  
CONFR1_s  
OCR_s  
X
X
0
0
0
0
0
0
0
0
0
0
0
0
ON_s  
0
0
PWM6_s  
0
0
SOA4  
PWM4_s  
SR1_s  
SOA3  
PWM3_s  
SR0_s  
SOA2  
SOA1  
SOA0  
WDI  
N
A
A
A
A
A
A
A
A
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
1
28W_s  
PWM5_s  
DIR_dis_s  
PWM2_s  
DELAY2_s  
PWM1_s  
PWM0_s  
1
1
1
1
0
0
0
0
WDI  
N
0
0
DELAY1_s DELAY0_s  
Retry_  
WDI  
N
OLOFF_dis_ OLLED_en CSNS_ratio  
0
Retry_dis_s OS_dis_s OLON_dis_s  
s
_s  
_s  
unlimited_s  
WDI  
N
Xenon_  
s
BC1_s  
BC0_s  
OC1_s  
OC0_s  
CSNS_en  
1
OCHI_s  
CSNS1  
1
OCLO1_s  
OCLO0_s OC_mode_s  
WDI  
N
VDD_F  
AIL_en  
GCR  
0
0
PWM_en CLOCK_sel TEMP_en  
CSNS0  
0
X
1
OV_dis  
1
WDI  
N
CALR  
0
0
1
0
1
0
Register  
state after  
RST=0 or  
0
0
0
X
X
X
0
0
0
0
0
0
0
0
0
0
V
or  
DD(FAIL)  
V
SUPPLY(POR)  
condition  
x=Don’t care.  
s=Output selection with the bits A1A0 as defined in Table 13.  
7.4.2 Device register addressing  
The following section describes the possible register addresses (D[14:10]) and their impact on device operation.  
7.4.2.1  
Address XX000—Status register (STATR_S)  
The STATR register is used to read the device status and the various configuration register contents without disrupting the device  
operation or the register contents. The register bits D[4:0] determine the content of the first sixteen bits of SO data. In addition to the device  
status, this feature provides the ability to read the content of the PWMR_s, CONFR0_s, CONFR1_s, OCR_s, GCR and CALR registers  
(see Serial output communication (device status return data).  
7.4.2.2  
Address A A 001—Output PWM control register (PWMR_S)  
1 0  
The PWMR_s register allows the MCU to control the state of corresponding output through the SPI. Each output “s” is independently  
selected for configuration based on the state of the D14:D13 bits (Table 13).  
Table 13. Output selection  
A1 (D14)  
A0 (D13)  
HS selection  
0
0
1
1
0
1
0
1
HS0 (default)  
HS1  
HS2  
HS3  
A logic [1] on bit D8 (28W_s) selects the 28 W overcurrent protection profile: the overcurrent thresholds are divided by 2 and, the inrush  
and cooling responses are dedicated to 28 W lamp.  
Bit D7 sets the output state. A logic [1] enables the corresponding output switch and a logic [0] turns it OFF (if IN input is also pulled down).  
Bits D6:D0 set the output PWM duty-cycle to one of 128 levels for PWM_en is set to logic [1], as shown Table 8.  
10XS3412  
NXP Semiconductors  
37  
7.4.2.3  
Address A A 010—Output configuration register (CONFR0_S)  
1 0  
The CONFR0_s register allows the MCU to configure corresponding output switching through the SPI. Each output “s” is  
independently selected for configuration based on the state of the D14:D13 bits (Table 13).  
For the selected output, a logic [0] on bit D5 (DIR_DIS_s) will enable the output for direct control. A logic [1] on bit D5 will disable  
the output from direct control (in this case, the output is only controlled by On bit).  
D4:D3 bits (SR1_s and SR0_s) are used to select the high or medium or low speed slew rate for the selected output, the default  
value [00] corresponds to the medium speed slew rate (Table 14).  
Table 14. Slew rate speed selection  
SR1_s (D4)  
SR0_s (D3)  
Slew rate speed  
0
0
1
1
0
1
0
1
medium (default)  
low  
high  
Not used  
Incoming message bits D2:D0 reflect the desired output that will be delayed of predefined PWM clock rising edges number, as  
shown Table 9, (only available for PWM_en bit is set to logic [1]).  
7.4.2.4  
Address A A 011Output configuration register (CONFR1_S)  
1 0  
The CONFR1_s register allows the MCU to configure corresponding output fault management through the SPI. Each output “s”  
is independently selected for configuration based on the state of the D14:D13 bits (Table 13).  
A logic [1] on bit D6 (RETRY_unlimited_s) disables the autoretry counter for the selected output, the default value [0]  
corresponds to enable autoretry feature without time limitation.  
A logic [1] on bit D5 (RETRY_dis_s) disables the autoretry for the selected output, the default value [0] corresponds to enable  
this feature.  
A logic [1] on bit D4 (OS_dis_s) disables the output hard shorted to VPWR protection for the selected output, the default value  
[0] corresponds to enable this feature.  
A logic [1] on bit D3 (OLON_dis_s) disables the ON output openload detection for the selected output, the default value [0]  
corresponds to enable this feature (Table 15).  
A logic [1] on bit D2 (OLOFF_dis_s) disables the OFF output openload detection for the selected output, the default value [0]  
corresponds to enable this feature.  
A logic [1] on bit D1 (OLLED_en_s) enables the ON output openload detection for LEDs for the selected output, the default value  
[0] corresponds to ON output openload detection is set for bulbs (Table 15).  
10XS3412  
38  
NXP Semiconductors  
Table 15. ON openload selection  
OLON_dis_s (D3)  
OLLED_en_s (D1)  
ON openload detection  
0
0
1
0
1
X
enable with bulb threshold (default)  
enable with LED threshold  
disable  
A logic [1] on bit D0 (CSNS_ratio_s) selects the high ratio on the CSNS pin for the corresponding output. The default value [0] is  
the low ratio (Table 16).  
Table 16. Current sense ratio selection  
CSNS_high_s (D0)  
Current sense ratio  
0
1
CRS0 (default)  
CRS1  
7.4.2.5  
Address A A 100—Output overcurrent register (OCR)  
1 0  
The OCR_s register allows the MCU to configure corresponding output overcurrent protection through the SPI. Each output “s”  
is independently selected for configuration based on the state of the D14:D13 bits (Table 13).  
A logic [1] on bit D8 (Xenon_s) enables the bulb overcurrent profile, as described Figure 17.  
Xenon bit set to logic [0]:  
I
OCH1  
I
OCH2  
I
OC1  
I
OC2  
I
I
I
I
OCLO4  
OCLO3  
OCLO2  
OCLO1  
Time  
t
t
t
t
OC7  
t
OC3  
OC1  
t
t
OC5  
OC6  
OC4  
OC2  
Xenon bit set to logic [1]:  
I
I
OCH1  
OCH2  
I
I
I
I
OC1  
OC2  
OC3  
OC4  
I
I
I
I
OCLO4  
OCLO3  
OCLO2  
OCLO1  
Time  
t
t
t
t
OC7  
t
OC3  
OC1  
t
t
OC5  
OC6  
OC4  
OC2  
Figure 17. Overcurrent profile depending on Xenon bit  
D[7:6] bits allow to MCU to programmable bulb cooling curve and D[5:4] bits inrush curve for selected output, as shown Table 17  
and Table 18.  
10XS3412  
NXP Semiconductors  
39  
Table 17. Cooling curve selection  
BC1_s (D7)  
BC0_s (D6)  
Profile curves speed  
0
0
1
1
0
1
0
1
medium (default)  
slow  
fast  
medium  
Table 18. Inrush curve selection  
OC1_s (D5)  
OC0_s (D4)  
Profile curves speed  
slow (default)  
fast  
0
0
1
1
0
1
0
1
medium  
very slow  
A logic [1] on bit D3 (OCHI_s bit) the OCHI1 level is replaced by OCHI2 during tOC1, as shown Figure 18.  
I
OCH1  
I
OCH2  
I
OC1  
OC2  
OC3  
OC4  
OCLO4  
OCLO3  
OCLO2  
OCLO1  
I
I
I
I
I
I
I
Time  
t
t
t
t
OC7  
t
OC3  
OC1  
t
OC5  
OC6  
OC4  
t
OC2  
Figure 18. Overcurrent profile with OCHI bit set to ‘1’  
The wire harness is protected by one of four possible current levels in steady state, as defined in Table 19.  
Table 19. Output steady state selection  
OCLO1 (D2)  
OCLO0 (D1)  
Steady state current  
0
0
1
1
0
1
0
1
OCLO2 (default)  
OCLO3  
OCLO4  
OCLO1  
Bit D0 (OC_mode_sel) allows to select the overcurrent mode, as described Table 20.  
Table 20. Overcurrent mode selection  
OC_mode_s (D0)  
Overcurrent mode  
0
1
only inrush current management (default)  
inrush current and bulb cooling management  
7.4.2.6  
Address 00101—Global configuration register (GCR)  
The GCR register allows the MCU to configure the device through the SPI.  
Bit D8 allows the MCU to enable or disable the VDD failure detector. A logic [1] on VDD_FAIL_en bit allows transitioning to Fail-safe mode  
for VDD < VDD(FAIL).  
10XS3412  
40  
NXP Semiconductors  
Bit D7 allows the MCU to enable or disable the PWM module. A logic [1] on PWM_en bit allows control of the outputs HS[0:3] with PWMR  
register (the direct input states are ignored).  
Bit D6 (CLOCK_sel) allows to select the clock used as reference by PWM module, as described in the following Table 21.  
Table 21. PWM module selection  
PWM_en (D7)  
CLOCK_sel (D6)  
PWM module  
0
X
PWM module disabled (default)  
PWM module enabled with external clock from  
IN0  
1
1
0
1
PWM module enabled with internal calibrated  
clock  
Bits D5:D4 allow the MCU to select one of two analog feedbacks on the CSNS output pin, as shown in Table 22.  
Table 22. CSNS reporting selection  
TEMP_en (D5) CSNS_en (D4)  
CSNS reporting  
0
X
1
0
1
0
CSNS tri-stated (default)  
current recopy of selected output (D3:2] bits)  
temperature on GND flag  
Table 23. Output current recopy selection  
CSNS1 (D3)  
CSNS0 (D2)  
CSNS reporting  
0
0
1
1
0
1
0
1
HS0 (default)  
HS1  
HS2  
HS3  
The GCR register disables the overvoltage protection (D0). When this bits is [0], the overvoltage is enabled (default value).  
7.4.2.7  
Address 00111—Calibration register (CALR)  
The CALR register allows the MCU to calibrate internal clock, as explained in Figure 16.  
7.4.3 Serial output communication (device status return data)  
When the CS pin is pulled low, the output register is loaded. Meanwhile, the data is clocked out MSB- (OD15-) first as the new message  
data is clocked into the SI pin. The first sixteen bits of data clocking out of the SO, and following a CS transition, is dependent upon the  
previously written SPI word.  
Any bits clocked out of the Serial Output (SO) pin after the first 16 bits will be representative of the initial message bits clocked into the SI  
pin since the CS pin first transitioned to a logic [0]. This feature is useful for daisy-chaining devices as well as message verification.  
A valid message length is determined following a CS transition of [0] to [1]. If there is a valid message length, the data is latched into the  
appropriate registers. A valid message length is a multiple of 16 bits. At this time, the SO pin is tri-stated and the fault status register is  
now able to accept new fault status information.  
SO data will represent information ranging from fault status to register contents, user selected by writing to the STATR bits OD4, OD3,  
OD2, OD1, and OD0. The value of the previous bits SOA4 and SOA3 will determine which output the SO information applies to for the  
registers which are output specific; viz., Fault, PWMR, CONFR0, CONFR1, and OCR registers.  
Note that the SO data will continue to reflect the information for each output (depending on the previous SOA4, SOA3 state) that was  
selected during the most recent STATR write until changed with an updated STATR write.  
The output status register correctly reflects the status of the STATR-selected register data at the time that the CS is pulled to a logic [0]  
during SPI communication, and/or for the period of time since the last valid SPI communication, with the following exception:  
• The previous SPI communication was determined to be invalid. In this case, the status will be reported as though the invalid SPI  
communication never occurred.  
• The VPWR voltage is below 4.0 V, the status must be ignored by the MCU.  
10XS3412  
NXP Semiconductors  
41  
7.4.4 Serial output bit assignment  
The 16 bits of serial output data depend on the previous serial input message, as explained in the following paragraphs. Table 24,  
summarizes SO returned data for bits OD15:OD0.  
• Bit OD15 is the MSB; it reflects the state of the Watchdog bit from the previously clocked-in message.  
• Bits OD14:OD10 reflect the state of the bits SOA4:SOA0 from the previously clocked in message.  
• Bit OD9 is set to logic [1] in Normal mode (NM).  
• The contents of bits OD8:OD0 depend on bits D4:D0 from the most recent STATR command SOA4:SOA0 as explained in the  
paragraphs following Table 24.  
Table 24. Serial output bit map description  
Previous STATR  
SO Returned Data  
SO SO SO SO SO OD  
A4 A3 A2 A1 A0 15  
OD  
14  
OD  
13  
OD  
12  
OD  
11  
OD  
10  
OD9 OD8  
OD7  
OD6  
OD5  
OD4  
OD3  
OD2  
OD1  
OD0  
STATR_s  
PWMR_s  
A
A
A
A
0
0
0
0
0
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM POR  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM 28W_s  
UV  
OV  
OLON_s OLOFF_s  
OS_s  
PWM3_s  
SR0_s  
OT_s  
SC_s  
OC_s  
1
1
0
0
ON_s PWM6_s PWM5_s PWM4_s  
DIR_dis_  
PWM2_s  
DELAY2_s  
PWM1_s  
DELAY1_s  
PWM0_s  
DELAY0_s  
CONFR0_s  
CONFR1_s  
A
A
A
A
0
0
1
1
0
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
X
X
X
X
SR1_s  
1
1
0
0
s
Retry_  
Retry_dis  
_s  
CSNS_ratio_  
s
X
OS_dis_s OLON_dis_s  
OLOFF_dis_s OLLED_en_s  
unlimited  
_s  
Xenon  
_s  
OCR_s  
GCR  
A
A
1
1
0
0
0
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
BC1_s  
BC0_s  
OC1_s  
OC0_s  
OCHI_s  
CSNS1  
OCLO1_s  
CSNS0  
OCLO0_s OC_mode_s  
1
0
VDD_F PWM_ CLOCK_  
AIL_en  
CSNS_e  
n
0
0
TEMP_en  
X
OV_dis  
OTW  
WD_en  
0
en  
sel  
DIAGR0  
DIAGR1  
DIAGR2  
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
X
X
X
X
X
X
0
X
IN3  
X
CAL_fail  
X
IN2  
X
CLOCK_fail  
X
X
X
X
X
0
X
X
0
IN0  
0
IN1  
0
Register state  
afterRST=0or  
N/A N/A N/A N/A N/A  
0
0
0
0
0
0
0
0
0
0
V
or  
0
0
DD(FAIL)  
V
SUPPLY(POR)  
condition  
s=Output selection with the bits A1A0 as defined in Table 13  
7.4.4.1  
Previous address SOA4:SOA0=A A 000 (STATR_S)  
1 0  
The returned data OD8 reports logic [1] in case of previous Power ON Reset condition (VSUPPLY(POR)). This bit is only reset by a read  
operation.  
Bits OD7:OD0 reflect the current state of the Fault register (FLTR) corresponding to the output previously selected with the bits  
SOA4:SOA3 = A1A0 (Table 24).  
• OC_s: overcurrent fault detection for a selected output,  
• SC_s: severe short-circuit fault detection for a selected output,  
• OS_s: output shorted to VPWR fault detection for a selected output,  
• OLOFF_s: openload in OFF state fault detection for a selected output,  
• OLON_s: openload in ON state fault detection (depending on current level threshold: bulb or LED) for a selected output,  
• OV: overvoltage fault detection,  
• UV: undervoltage fault detection  
• POR: power on reset detection.  
The FS pin reports all faults. For latched faults, this pin is reset by a new Switch OFF command (toggling fault_control signal).  
10XS3412  
42  
NXP Semiconductors  
7.4.4.2  
Previous address SOA4:SOA0=A A 001 (PWMR_S)  
1 0  
The returned data contains the programmed values in the PWMR register for the output selected with A1A0.  
7.4.4.3  
Previous address SOA4:SOA0=A A 010 (CONFR0_S)  
1 0  
The returned data contains the programmed values in the CONFR0 register for the output selected with A1A0.  
7.4.4.4  
Previous address SOA4:SOA0=A A 011 (CONFR1_S)  
1 0  
The returned data contains the programmed values in the CONFR1 register for the output selected with A1A0.  
7.4.4.5  
Previous address SOA4:SOA0=A A 100 (OCR_S)  
1 0  
The returned data contains the programmed values in the OCR register for the output selected with A1A0.  
7.4.4.6  
Previous address SOA4:SOA0=00101 (GCR)  
The returned data contains the programmed values in the GCR register.  
7.4.4.7  
Previous address SOA4:SOA0=00111 (DIAGR0)  
The returned data OD2 reports logic [1] in case of PWM clock on IN0 pin is out of specified frequency range.  
The returned data OD1 reports logic [1] in case of calibration failure.  
The returned data OD0 reports logic [1] in case of an overtemperature prewarning (temperature of the GND flag is above TOTWAR).  
7.4.4.8  
Previous address SOA4:SOA0=01111 (DIAGR1)  
The returned data OD4: OD1 report in real time the state of the direct input IN[3:0].  
The OD0 indicates if the watchdog is enabled (set to logic [1]) or not (set to logic [0]). OD4:OD1 report the output state in case of Fail-safe  
state due to watchdog timeout as explained in the following Table 25.  
Table 25. Watchdog activation report  
WD_en (OD0)  
SPI watchdog  
0
1
disabled  
enabled  
7.4.4.9  
Previous Address SOA4:SOA0=10111 (DIAGR2)  
The returned data is the product ID. Bits OD2:OD0 are set to 000 for protected dual 10 mΩ and 12 mΩ high-side switches.  
7.4.5 Default device configuration  
The default device configuration is explained below:  
• HS output is commanded by corresponding IN input or On bit through SPI. The medium slew rate is used,  
• HS output is fully protected by the Xenon overcurrent profile by default, the severe short-circuit protection, the undervoltage and the  
overtemperature protection. The autoretry feature is enabled,  
• Openload in ON and OFF state and HS shorted to VPWR detections are available,  
• No current recopy and no analog temperature feedback active,  
• Overvoltage protection is enabled,  
• SO reporting fault status from HS0,  
• VDD failure detection is disabled.  
10XS3412  
NXP Semiconductors  
43  
8
Typical applications  
The following figure shows a typical automotive lighting application (only one vehicle corner) using an external PWM clock from the  
main MCU. A redundancy circuitry has been implemented to substitute light control (from MCU to watchdog) in case of a Fail-safe  
condition.  
It is recommended to locate a 22 nF decoupling capacitor to the module connector.  
VPWR  
VDD  
Voltage regulator  
10µF  
100nF  
10µF  
100nF  
VPWR  
VDD  
VDD  
VPWR  
ignition  
switch  
VDD  
VPWR  
VDD  
100nF  
100nF  
10k  
10k  
100nF  
VDD  
WAKE  
HS0  
HS1  
HS2  
22nF  
I/O  
FS  
LOAD 0  
IN0  
IN1  
IN2  
IN3  
MCU  
22nF  
22nF  
22nF  
10XS3412  
10k  
LOAD 1  
LOAD 2  
LOAD 3  
SCLK  
10k  
SCLK  
CS  
RST  
CS  
10k  
10k  
I/O  
SO  
SI  
SI  
SO  
HS3  
A/D  
CSNS  
FSI  
10k  
GND  
22nF  
4.7k  
10k  
10k  
10k  
10k  
VPWR  
Watchdog  
direct light commands (pedal, comodo,...)  
Figure 19. Typical application schematic  
10XS3412  
44  
NXP Semiconductors  
9
Packaging  
9.1  
Soldering information  
The 10XS3412 is packaged in a surface mount power package intended to be soldered directly on the printed circuit board.  
The AN2467 provides guidelines for printed circuit board design and assembly.  
9.2  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Package  
Suffix  
Package outline drawing number  
CHFK  
JHFK  
98ARL10596D  
98ASA00426D  
24-pin PQFN  
10XS3412  
NXP Semiconductors  
45  
FK SUFFIX  
24-PIN PQFN  
98ARL10596D  
ISSUE D  
10XS3412  
46  
NXP Semiconductors  
FK SUFFIX  
24-PIN PQFN  
98ARL10596D  
ISSUE D  
10XS3412  
NXP Semiconductors  
47  
FK SUFFIX  
24-PIN PQFN  
98ARL10596D  
ISSUE D  
10XS3412  
48  
NXP Semiconductors  
FK SUFFIX  
24-PIN PQFN  
98ARL10596D  
ISSUE D  
10XS3412  
NXP Semiconductors  
49  
FK SUFFIX  
24-PIN PQFN  
98ASA00426D  
ISSUE X0  
10XS3412  
50  
NXP Semiconductors  
FK SUFFIX  
24-PIN PQFN  
98ASA00426D  
ISSUE X0  
10XS3412  
NXP Semiconductors  
51  
FK SUFFIX  
24-PIN PQFN  
98ASA00426D  
ISSUE X0  
10XS3412  
52  
NXP Semiconductors  
FK SUFFIX  
24-PIN PQFN  
98ASA00426D  
ISSUE X0  
10XS3412  
NXP Semiconductors  
53  
10 Additional documentation  
10XS3412  
10.1 Thermal addendum (Rev 2.0)  
10.1.1 Introduction  
24-PIN  
PQFN  
This thermal addendum is provided as a supplement to the 10XS3412 technical data  
sheet. The addendum provides thermal performance information that may be critical in  
the design and development of system applications. All electrical, application and  
packaging information is provided in the data sheet.  
10.1.2 Package and thermal considerations  
This 10XS3412 is a dual die package. There are two heat sources in the package  
independently heating with P1 and P2. This results in two junction temperatures, TJ1  
and TJ2, and a thermal resistance matrix with RθJAmn  
.
98ARL10596D  
24-PIN PQFN (12 x 12)  
For m, n = 1, RθJA11 is the thermal resistance from Junction 1 to the reference  
temperature while only heat source 1 is heating with P1.  
Note For package dimensions, refer to  
98ARL10596D.  
For m = 1, n = 2, RθJA12 is the thermal resistance from Junction 1 to the reference  
temperature while heat source 2 is heating with P2. This applies to RθJ21 and RθJ22  
,
respectively.  
RθJA11 RθJA12  
RθJA21 RθJA22  
TJ1  
TJ2  
P1  
P2  
.
=
The stated values are solely for a thermal performance comparison of one package to another in a standardized environment. This  
methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were  
obtained by measurement and simulation according to the standards listed below.  
10.1.3 Standards  
Table 26. Thermal performance comparison  
1 = Power Chip, 2 = Logic Chip [°C/W]  
Thermal  
m = 1,  
n = 1  
m = 1, n = 2  
m = 2, n = 1  
m = 2,  
n = 2  
Resistance  
(1)(2)  
26.04  
13.21  
46.42  
0.67  
18.18  
6.40  
35.49  
23.94  
53.82  
0.00  
RθJAmn  
RθJBmn  
RθJAmn  
RθJCmn  
(2)(3)  
(1)(4)  
(5)  
37.03  
0.95  
Notes:  
1. Per JEDEC JESD51-2 at natural convection, still air condition.  
2. 2s2p thermal test board per JEDEC JESD51-7and  
JESD51-5.  
3. Per JEDEC JESD51-8, with the board temperature on the center trace near the power outputs.  
4. Single layer thermal test board per JEDEC JESD51-3 and JESD51-5.  
5. Thermal resistance between the die junction and the exposed pad, “infinite” heat sink attached to exposed pad.  
10XS3412  
54  
NXP Semiconductors  
0.2mm  
0.2mm  
0.5mm dia.  
Figure 20. Detail of copper traces under device with thermal vias  
76.2mm  
Figure 21. 1s JEDEC thermal test board layout  
10XS3412  
NXP Semiconductors  
55  
76.2mm  
Figure 22. 2s2p JDEC thermal test board  
(Red - top layer, Yellow - two buried layers)  
Transparent Top View  
13 12 11 10  
9
8
7
6
5
4
3
2
1
16  
17  
24  
SO  
FSI  
23  
GND  
GND  
14  
GND  
HS3  
18  
22  
HS2  
15  
VPWR  
MC10XS3412 Pin Connections  
24-PIN PQFN (12 x 12)  
0.9 mm Pitch  
12.0mm 12.0mm Body  
19  
20  
21  
HS0  
HS1  
NC  
Figure 23. Thermal test board  
10XS3412  
56  
NXP Semiconductors  
10.1.4 Device on thermal test board  
Material:  
Single layer printed circuit board  
FR4, 1.6 mm thickness  
Cu traces, 0.07 mm thickness  
Cu buried traces thickness 0.035 mm  
Outline:  
76.2 mm x 114.3 mm board area, including edge connector for thermal testing,  
74 mm x 74 mm buried layers area  
Area A:  
Cu heat-spreading areas on board surface  
Natural convection, still air  
Ambient Conditions:  
Table 27. Thermal resistance performance  
1 = Power Chip, 2 = Logic Chip (°C/W)  
Area A  
Thermal resistance  
(mm2)  
m = 1,  
n = 1  
m = 1, n = 2  
m = 2, n = 1  
m = 2,  
n = 2  
0
46.42  
41.60  
40.02  
38.86  
38.04  
37.03  
32.90  
31.63  
30.68  
29.99  
53.82  
51.27  
55.05  
49.47  
48.63  
150  
300  
RθJAmn  
450  
600  
RθJA is the thermal resistance between die junction and ambient air.  
This device is a dual die package. Index m indicates the die that is heated. Index n refers to the number of the die where the junction  
temperature is sensed.  
65.00  
60.00  
55.00  
50.00  
45.00  
40.00  
35.00  
30.00  
25.00  
0
100  
200  
300  
400  
500  
600  
Heat spreading area [sqmm]  
RJA11  
RJA12=RJA21  
RJA22  
Figure 24. Steady state thermal resistance in dependence on heat spreading area;  
1s JEDEC thermal test board with spreading areas  
10XS3412  
NXP Semiconductors  
57  
100  
10  
1
0.1  
0.000001  
0.0001  
0.01  
1
100  
10000  
Time[s]  
RJA11  
RJA12  
RJA22  
Figure 25. Transient thermal 1W step response; device on  
1s JEDEC standard thermal test board with heat spreading areas 600 sq. mm  
100  
10  
1
0.1  
0.000001  
0.0001  
0.01  
1
100  
10000  
Time [s]  
RJA11  
RJA12  
RJA22  
Figure 26. Transient thermal 1W step response;  
device on 2s2p JEDEC standard thermal test board  
10XS3412  
58  
NXP Semiconductors  
11 Revision history  
Revision  
Date  
Description of changes  
Initial release  
7.0  
10/2008  
Revised wording of VPWR Supply Voltage Range in Maximum Rating Table on page 5.  
Changed Maximum rating for Output Source-to-Drain ON Resistance in Static Electrical Characteristics  
Table on page 8.  
8.0  
9.0  
10/2008  
7/2009  
Added MC10XS3412DPNA part number. The “D” version has different soldering limits.  
Corrected minor formatting  
Separated definitions for the 10XS3412C and 10XS3412D in the Static and Dynamic Tables and created  
a Device Variation Table on page 2.  
10.0  
10/2009  
Added MC10XS3412CHFK and removed MC10XS3412CPNA from the ordering information  
Added MC10XS3412DHFK and removed MC10XS3412DPNA from the ordering information  
Updated the pin soldering temperature limit from 10 seconds to 40 seconds (Note (2) and (9)).  
Updated Freescale form and style  
11.0  
12.0  
5/2012  
2/2013  
Removed MC10XS3412DPNA from the ordering information  
Added MC10XS3412JHFK  
Added a new Max Solder Reflow temp of the JHFK package.  
Added the package drawing for 98ASA00426D  
Updated as per CIN 201808007I  
• Corrected TOLLED values in Table 6, Dynamic electrical characteristics  
• Updated Openload detection in ON state for LED (added clarification for the usage of openload LED  
function and changed D[6:0]=7F to D[7:0]=FF)  
13.0  
8/2018  
10XS3412  
NXP Semiconductors  
59  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2018.  
Document Number: MC10XS3412  
Rev. 13.0  
8/2018  

相关型号:

MC10XS3412CHFK

Quad High Side Switch (Dual 10 mOhm, Dual 12 mOhm)
FREESCALE

MC10XS3412CHFK

Quad high-side switch (dual 10 mOhm, dual 12 mOhm)
NXP

MC10XS3412CPNA

Quad High Side Switch (Dual 10 mOhm, Dual 12 mOhm)
FREESCALE

MC10XS3412DHFK

Quad High Side Switch (Dual 10 mOhm, Dual 12 mOhm)
FREESCALE

MC10XS3412DPNA

Quad High Side Switch (Dual 10 mOhm, Dual 12 mOhm)
FREESCALE

MC10XS3412JHFK

Quad high-side switch (dual 10 mOhm, dual 12 mOhm)
NXP

MC10XS3435

Quad High Side Switch (Dual 10 mOhm, Dual 35 mOhm)
FREESCALE

MC10XS3435BHFK

Quad High Side Switch (Dual 10 mOhm, Dual 35 mOhm)
FREESCALE

MC10XS3435BHFKR2

4 CHANNEL, BUF OR INV BASED PRPHL DRVR, BCC24
NXP

MC10XS3435BPNA

Quad High Side Switch (Dual 10 mOhm, Dual 35 mOhm)
FREESCALE

MC10XS3435DHFK

Quad High Side Switch (Dual 10 mOhm, Dual 35 mOhm)
FREESCALE

MC10XS3435DHFKR2

4 CHANNEL, BUF OR INV BASED PRPHL DRVR, BCC24
NXP