LPC2104BBD48 [NXP]

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM; 单芯片32位微控制器; 128 KB ISP / IAP闪存与64 KB / 32 KB / 16 KB RAM
LPC2104BBD48
型号: LPC2104BBD48
厂家: NXP    NXP
描述:

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM
单芯片32位微控制器; 128 KB ISP / IAP闪存与64 KB / 32 KB / 16 KB RAM

闪存 微控制器
文件: 总32页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2104/2105/2106  
Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with  
64 kB/32 kB/16 kB RAM  
Rev. 04 — 05 February 2004  
Product data  
1. General description  
The LPC2104, 2105 and 2106 are based on a 16/32 bit ARM7TDMI-S CPU with  
real-time emulation and embedded trace support, together with 128 kbytes (kB) of  
embedded high speed flash memory. A 128 bit wide memory interface and a unique  
accelerator architecture enable 32 bit code execution at maximum clock rate. For  
critical code size applications, the alternative 16-bit Thumb Mode reduces code by  
more than 30% with minimal performance penalty.  
Due to their tiny size and low power consumption, these microcontrollers are ideal for  
applications where miniaturization is a key requirement, such as access control and  
point-of-sale. With a wide range of serial communications interfaces and on-chip  
SRAM options up to 64 kilobytes, they are very well suited for communication  
gateways and protocol converters, soft modems, voice recognition and low end  
imaging, providing both large buffer size and high processing power. Various 32 bit  
timers, PWM channels and 32 GPIO lines make these microcontrollers particularly  
suitable for industrial control and medical systems.  
2. Features  
2.1 Key features  
16/32 bit ARM7TDMI-S processor.  
16/32/64 kB on-chip Static RAM.  
128 kB on-chip Flash Program Memory. 128 bit wide interface/accelerator  
enables high speed 60 MHz operation.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
boot-loader software. Flash programming takes 1 ms per 512 byte line. Single  
sector or full chip erase takes 400 ms.  
Vectored Interrupt Controller with configurable priorities and vector addresses.  
EmbeddedICE-RT interface enables breakpoints and watchpoints. Interrupt  
service routines can continue to execute whilst the foreground task is debugged  
with the on-chip RealMonitor software.  
Embedded Trace Macrocell enables non-intrusive high speed real-time tracing of  
instruction execution.  
Multiple serial interfaces including two UARTs (16C550), Fast I2C (400 kbits/s)  
and SPI.  
Two 32-bit timers (7 capture/compare channels), PWM unit (6 outputs), Real Time  
Clock and Watchdog.  
Up to thirty-two 5 V tolerant general purpose I/O pins in a tiny LQFP48  
(7 × 7 mm2) package.  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
60 MHz maximum CPU clock available from programmable on-chip  
Phase-Locked Loop.  
On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.  
Two low power modes, Idle and Power-down.  
Processor wake-up from Power-down mode via external interrupt.  
Individual enable/disable of peripheral functions for power optimization.  
Dual power supply:  
CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ±8.3%).  
I/O power supply range of 3.0 V to 3.6 V (3.3 V ±10%) with 5 V tolerant I/O  
pads.  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2104BBD48 LQFP48  
LPC2105BBD48 LQFP48  
LPC2106BBD48 LQFP48  
plastic low profile quad flat package, 48 leads, SOT313-2  
body 7 × 7 × 1.4 mm  
plastic low profile quad flat package, 48 leads, SOT313-2  
body 7 × 7 × 1.4 mm  
plastic low profile quad flat package, 48 leads, SOT313-2  
body 7 × 7 × 1.4 mm  
LPC2106FHN48 HVQFN48 plastic thermal enhanced very thin quad flat  
package, no leads, 48 terminals, body  
7 × 7 × 0.85  
SOT619-1  
3.1 Ordering options  
Table 2:  
Part options  
Type number  
Flash memory  
128 kB  
RAM  
16 kB  
32 kB  
64 kB  
60 kB  
Temperature range  
0 to +70, LQFP  
LPC2104BBD48  
LPC2105BBD48  
LPC2106BBD48  
LPC2106FHN48  
128 kB  
0 to +70, LQFP  
128 kB  
0 to +70, LQFP  
128 kB  
40 to +85, HVQFN  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
2 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
4. Block diagram  
TEST/DEBUG  
INTERFACE  
SYSTEM  
PLL  
FUNCTIONS  
ARM7TDMI-S  
system  
clock  
VECTORED INTERRUPT  
CONTROLLER  
AHB BRIDGE  
ARM7 LOCAL BUS  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL SRAM  
CONTROLLER  
INTERNAL  
FLASH  
CONTROLLER  
AHB  
DECODER  
AHB TO VPB  
BRIDGE  
VPB  
DIVIDER  
16/32/64 kB  
SRAM  
128 kB  
FLASH  
(2)  
APB  
EINT0*  
SCL*  
2
EINT1*  
EINT2*  
EXTERNAL  
INTERRUPTS  
I C SERIAL  
SDA*  
INTERFACE  
SCK*  
MOSI*  
MISO*  
SSEL*  
CAP0..2*  
MAT0..2*  
CAPTURE/  
COMPARE  
TIMER 0  
SPI SERIAL  
INTERFACE  
CAP0..3*  
MAT0..3*  
TxD*  
RxD*  
CAPTURE/  
COMPARE  
TIMER 1  
UART0  
UART1  
TxD*  
RxD*  
GPIO (32 PINS)  
PWM1..6*  
GENERAL  
PURPOSE I/O  
MODEM CONTROL  
(6 PINS)*  
WATCHDOG  
TIMER  
PWM0  
REAL TIME  
CLOCK  
SYSTEM  
CONTROL  
002aaa412  
*Shared with GPIO  
(1) When test/debug interface is used, GPIO/other function sharing these pins are not available.  
(2) APB with Ready signal.  
Fig 1. Block diagram.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
3 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
5. Pinning information  
5.1 Pinning  
handbook, full pagewidth  
P0.19/MAT1.2/TCK  
P0.20/MAT1.3/TDI  
P0.21/PWM5/TDO  
NC  
1
2
3
4
5
6
7
8
9
36 P0.11/CTS1/CAP1.1  
35 P0.10/RTS1/CAP1.0  
34 P0.24/PIPESTAT1  
33 P0.23/PIPESTAT0  
32 P0.22/TRACECLK  
V
(CORE)  
RST  
DD1.8  
31  
V
SS3  
LPC2104/2105/2106  
V
30 P0.9/RxD1/PWM6  
29 P0.8/TxD1/PWM4  
28 P0.7/SSEL/PWM2  
27 DBGSEL  
SS1  
P0.27/TRACEPKT0/TRST  
P0.28/TRACEPKT1/TMS  
P0.29/TRACEPKT2/TCK 10  
X1 11  
X2 12  
26 RTCK  
25 NC  
002aaa411  
Fig 2. Pinning.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
4 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
5.2 Pin description  
Table 3:  
Pin description  
Symbol  
Pin  
Type  
Description  
P0.0 to P0.31  
13, 14, 18,  
21-24, 28-30,  
35-37, 41,  
44-48, 1-3,  
32-34, 38,  
39, 8-10, 15,  
16  
I/O  
Port 0: Port 0 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 0 pins depends upon the pin  
function selected via the Pin Connect Block.  
13  
14  
18  
21  
22  
23  
I/O  
O
P0.0 — Port 0 bit 0.  
TxD0 — Transmitter output for UART 0.  
PWM1 — Pulse Width Modulator output 1.  
P0.1 — Port 0 bit 1.  
O
I/O  
I
RxD0 — Receiver input for UART 0.  
PWM3 — Pulse Width Modulator output 3.  
P0.2 — Port 0 bit 2.  
SCL — I2C clock input/output. Open drain output (for I2C compliance).  
CAP0.0 — Capture input for Timer 0, channel 0.  
P0.3 — Port 0 bit 3.  
SDA — I2C data input/output. Open drain output (for I2C compliance).  
MAT0.0 — Match output for Timer 0, channel 0.  
P0.4 — Port 0 bit 4.  
O
I/O  
I/O  
I
I/O  
I/O  
O
I/O  
I/O  
I
SCK — Serial clock. SPI clock output from master or input to slave.  
CAP0.1 — Capture input for Timer 0, channel 1.  
P0.5 — Port 0 bit 5.  
I/O  
I/O  
MISO — Master In Slave Out. Data input to SPI master or data output from  
SPI slave.  
O
MAT0.1 — Match output for Timer 0, channel 1.  
P0.6 — Port 0 bit 6.  
24  
I/O  
I/O  
MOSI — Master Out Slave In. Data output from SPI master or data input to  
SPI slave.  
I
CAP0.2 — Capture input for Timer 0, channel 2.  
P0.7 — Port 0 bit 7.  
28  
29  
I/O  
I
SSEL — Slave Select. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
P0.8 — Port 0 bit 8.  
O
I/O  
O
O
TxD1 — Transmitter output for UART 1.  
PWM4 — Pulse Width Modulator output 4.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
5 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 3:  
Symbol  
Pin description…continued  
Pin  
Type  
I/O  
I
Description  
30  
P0.9 — Port 0 bit 9.  
RxD1 — Receiver input for UART 1.  
O
I/O  
O
I
PWM6 — Pulse Width Modulator output 6.  
P0.10 — Port 0 bit 10.  
35  
36  
37  
41  
44  
45  
46  
47  
48  
1
RTS1 — Request to Send output for UART 1.  
CAP1.0 — Capture input for Timer 1, channel 0.  
P0.11 — Port 0 bit 11.  
I/O  
I
CTS1 — Clear to Send input for UART 1.  
CAP1.1 — Capture input for Timer 1, channel 1.  
P0.12 — Port 0 bit 12.  
I
I/O  
I
DSR1 — Data Set Ready input for UART 1.  
MAT1.0 — Match output for Timer 1, channel 0.  
P0.13 — Port 0 bit 13.  
O
I/O  
O
O
I/O  
I
DTR1 — Data Terminal Ready output for UART 1.  
MAT1.1 — Match output for Timer 1, channel 1.  
P0.14 — Port 0 bit 14.  
DCD1 — Data Carrier Detect input for UART 1.  
EINT1 — External interrupt 1 input.  
I
I/O  
I
P0.15 — Port 0 bit 15.  
RI1 — Ring Indicator input for UART 1.  
EINT2 — External interrupt 2 input.  
O
I/O  
I
P0.16 — Port 0 bit 16.  
EINT0 — External interrupt 0 input.  
O
I/O  
I
MAT0.2 — Match output for Timer 0, channel 2.  
P0.17 — Port 0 bit 17.  
CAP1.2 — Capture input for Timer 1, channel 2.  
TRST — Test Reset for JTAG interface, primary JTAG pin group.  
P0.18 — Port 0 bit 18.  
I
I/O  
I
CAP1.3 — Capture input for Timer 1, channel 3.  
TMS — Test Mode Select for JTAG interface, primary JTAG pin group.  
P0.19 — Port 0 bit 19.  
I
I/O  
O
I
MAT1.2 — Match output for Timer 1, channel 2.  
TCK — Test Clock for JTAG interface, primary JTAG pin group.  
P0.20 — Port 0 bit 20.  
2
I/O  
O
I
MAT1.3 — Match output for Timer 1, channel 3.  
TDI — Test Data In for JTAG interface, primary JTAG pin group  
P0.21 — Port 0 bit 21.  
3
I/O  
O
O
I/O  
O
PWM5 — Pulse Width Modulator output 5.  
TDO — Test Data Out for JTAG interface, primary JTAG pin group.  
P0.22 — Port 0 bit 22.  
32  
TRACECLK — Trace Clock. Standard I/O port with internal pull-up.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
6 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 3:  
Symbol  
Pin description…continued  
Pin  
Type  
I/O  
O
Description  
33  
P0.23 — Port 0 bit 23.  
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with internal pull-up.  
P0.24 — Port 0 bit 24.  
34  
38  
39  
I/O  
O
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with internal pull-up.  
P0.25 — Port 0 bit 25.  
I/O  
O
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with internal pull-up.  
P0.26 — Port 0 bit 26.  
I/O  
O
TRACESYNC — Trace Synchronization Standard I/O port with internal  
pull-up.  
8
I/O  
O
I
P0.27 — Port 0 bit 27.  
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with internal pull-up.  
TRST — Test Reset for JTAG interface, secondary JTAG pin group.  
P0.28 — Port 0 bit 28.  
9
I/O  
O
I
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with internal pull-up.  
TMS — Test Mode Select for JTAG interface, secondary JTAG pin group  
P0.29 — Port 0 bit 29.  
10  
15  
16  
26  
I/O  
O
I
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with internal pull-up.  
TCK — Test Clock for JTAG interface, secondary JTAG pin group.  
P0.30 — Port 0 bit 30.  
I/O  
O
I
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with internal pull-up.  
TDI — Test Data In for JTAG interface, secondary JTAG pin group.  
P0.31 — Port 0 bit 31.  
I/O  
I
EXTIN0 — External Trigger Input. Standard I/O port with internal pull-up.  
TDO — Test Data out for JTAG interface, secondary JTAG pin group.  
O
I/O  
RTCK  
Returned Test Clock output: Extra signal added to the JTAG port. Assists  
debugger synchronization when processor frequency varies. Also used  
during debug mode entry to select primary or secondary JTAG pins with the  
48-pin package. Bi-directional pin with internal pull-up.  
DBGSEL  
RST  
27  
6
I
I
Debug Select: When LOW, the part operates normally. When HIGH, debug  
mode is entered. Input pin with internal pull-down.  
External Reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0.  
X1  
11  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
X2  
12  
O
I
VSS1 - VSS4  
VDD1.8  
7, 19, 31, 43  
5
Ground: 0 V reference.  
I
1.8 V Core Power Supply: This is the power supply voltage for internal  
circuitry.  
VDD3  
NC  
17, 40  
I
3.3 V Pad Power Supply: This is the power supply voltage for the I/O ports.  
Not Connected: These pins are not connected in the 48 pin package.  
4, 20, 25, 42  
-
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
7 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and  
related decode mechanism are much simpler than those of microprogrammed  
Complex Instruction Set Computers. This simplicity results in a high instruction  
throughput and impressive real-time interrupt response from a small and  
cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory  
systems can operate continuously. Typically, while one instruction is being executed,  
its successor is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
THUMB, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind THUMB is that of a super-reduced instruction set. Essentially,  
the ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit THUMB set.  
The THUMB set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because THUMB  
code operates on the same 32-bit register set as ARM code.  
THUMB code is able to provide up to 65% of the code size of ARM, and 160% of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-Chip Flash program memory  
The LPC2104, LPC2105 and LPC2106 incorporate a 128 kB Flash memory system.  
This memory may be used for both code and data storage. Programming of the Flash  
memory may be accomplished in several ways. It may be programmed In System via  
the serial port. The application program may also erase and/or program the Flash  
while the application is running, allowing a great degree of flexibility for data storage  
field firmware upgrades, etc. When on-chip bootloader is used, 120 kB of Flash  
memory is available for user code.  
6.3 On-Chip static RAM  
On-Chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bits, 16-bits, and 32-bits. The LPC2104 provides a 16 kB static RAM,  
the LPC2105 provides a 32 kB static RAM, and the LPC2106 provides a 64 kB static  
RAM.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
8 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.4 Memory map  
The LPC2104, LPC2105 and LPC2106 memory maps incorporate several distinct  
regions, as shown in the following figures.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in  
either Flash memory (the default) or on-chip static RAM. This is described in Section  
6.17 “System control”.  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
VPB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
16 KBYTE ON-CHIP STATIC RAM  
0x4001 0000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0002 0000  
0x0001 FFFF  
128 KBYTE ON-CHIP FLASH MEMORY  
0x0000 0000  
0.0 GB  
002aaa415  
Fig 3. LPC2104 memory map.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
9 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
VPB PERIPHERALS  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
32 KBYTE ON-CHIP STATIC RAM  
0x4000 8000  
0x4000 7FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0002 0000  
0x0001 FFFF  
128 KBYTE ON-CHIP FLASH MEMORY  
0x0000 0000  
0.0 GB  
002aaa414  
Fig 4. LPC2105 memory map.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
10 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
VPB PERIPHERALS  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
64 KBYTE ON-CHIP STATIC RAM  
0x4001 0000  
0x4000 FFFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0002 0000  
0x0001 FFFF  
128 KBYTE ON-CHIP FLASH MEMORY  
0x0000 0000  
0.0 GB  
002aaa413  
Fig 5. LPC2106 memory map.  
6.5 Interrupt controller  
The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and  
categorizes, them as FIQ, vectored IRQ, and non-vectored IRQ as defined by  
programmable settings. The programmable assignment scheme means that priorities  
of interrupts from the various peripherals can be dynamically assigned and adjusted.  
Fast Interrupt reQuest (FIQ) has the highest priority. If more than one request is  
assigned to FIQ, the VIC combines the requests to produce the FIQ signal to the  
ARM processor. The fastest possible FIQ latency is achieved when only one request  
is classified as FIQ, because then the FIQ service routine can simply start dealing  
with that device. But if more than one request is assigned to the FIQ class, the FIQ  
service routine can read a word from the VIC that identifies which FIQ source(s) is  
(are) requesting an interrupt.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
11 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be  
assigned to this category. Any of the interrupt requests can be assigned to any of the  
16 vectored IRQ slots, among which slot 0 has the highest priority and slot 15 has the  
lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to  
produce the IRQ signal to the ARM processor. The IRQ service routine can start by  
reading a register from the VIC and jumping there. If any of the vectored IRQs are  
requesting, the VIC provides the address of the highest-priority requesting IRQs  
service routine, otherwise it provides the address of a default routine that is shared by  
all the non-vectored IRQs. The default routine can read another VIC register to see  
what IRQs are active.  
6.5.1 Interrupt sources  
Table 4 lists the interrupt sources for each peripheral function. Each peripheral device  
has one interrupt line connected to the Vectored Interrupt Controller, but may have  
several internal interrupt flags. Individual interrupt flags may also represent more than  
one interrupt source.  
Table 4:  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
-
Reserved for software interrupts only  
Embedded ICE, DbgCommRx  
Embedded ICE, DbgCommTx  
Match 0 - 3 (MR0, MR1, MR2, MR3)  
Capture 0 - 3 (CR0, CR1, CR2, CR3)  
Match 0 - 3 (MR0, MR1, MR2, MR3)  
Capture 0 - 3 (CR0, CR1, CR2, CR3)  
Rx Line Status (RLS)  
ARM Core  
ARM Core  
Timer 0  
Timer 1  
UART 0  
5
6
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Rx Line Status (RLS)  
UART 1  
7
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Match 0 - 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
PWM0  
I2C  
8
9
SPI  
-
SPIF, MODF  
10  
11  
12  
13  
reserved  
PLL  
RTC  
PLL Lock (PLOCK)  
RTCCIF (Counter Increment), RTCALF (Alarm)  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
12 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 4:  
Block  
Interrupt sources…continued  
Flag(s)  
VIC channel #  
System Control External Interrupt 0 (EINT0)  
System Control External Interrupt 1 (EINT1)  
System Control External Interrupt 2 (EINT2)  
14  
15  
16  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than  
one function. Configuration registers control the multiplexers to allow connection  
between the pin and the on chip peripherals. Peripherals should be connected to the  
appropriate pins prior to being activated, and prior to any related interrupt(s) being  
enabled. Activity of any enabled peripheral function that is not mapped to a related  
pin should be considered undefined.  
The Pin Control Module contains two registers as shown in Table 5.  
Table 5:  
Address  
Name  
Description  
Access  
0xE002C000  
0xE002C004  
PINSEL0  
PINSEL1  
Pin function select register 0  
Pin function select register 1  
Read/Write  
Read/Write  
6.7 Pin function select register 0 (PINSEL0 - 0xE002C000)  
The PINSEL0 register controls the functions of the pins as per the settings listed in  
Table 6. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions, direction is controlled automatically.  
Settings other than those shown in Table 6 are reserved, and should not be used  
Table 6:  
PINSEL0  
1:0  
Pin function select register 0 (PINSEL0 - 0xE002C000)  
Pin name Value  
Function  
Value after Reset  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
GPIO Port 0.0  
TxD (UART 0)  
PWM1  
0
3:2  
5:4  
7:6  
9:8  
GPIO Port 0.1  
RxD (UART 0)  
PWM3  
0
0
0
0
GPIO Port 0.2  
SCL (I2C)  
Capture 0.0 (Timer 0)  
GPIO Port 0.3  
SDA (I2C)  
Match 0.0 (Timer 0)  
GPIO Port 0.4  
SCK (SPI)  
Capture 0.1 (Timer 0)  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
13 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 6:  
Pin function select register 0 (PINSEL0 - 0xE002C000)…continued  
PINSEL0  
Pin name Value  
Function  
Value after Reset  
11:10  
P0.5  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
GPIO Port 0.5  
MISO (SPI)  
0
Match 0.1 (Timer 0)  
GPIO Port 0.6  
MOSI (SPI)  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
27:26  
29:28  
31:30  
P0.6  
0
0
0
0
0
0
0
0
0
0
Capture 0.2 (Timer 0)  
GPIO Port 0.7  
SSEL (SPI)  
P0.7  
PWM2  
P0.8  
GPIO Port 0.8  
TxD UART 1  
PWM4  
P0.9  
GPIO Port 0.9  
RxD (UART 1)  
PWM6  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
P0.15  
GPIO Port 0.10  
RTS (UART1)  
Capture 1.0 (Timer 1)  
GPIO Port 0.11  
CTS (UART1)  
Capture 1.1 (Timer 1)  
GPIO Port 0.12  
DSR (UART1)  
Match 1.0 (Timer 1)  
GPIO Port 0.13  
DTR (UART 1)  
Match 1.1 (Timer 1)  
GPIO Port 0.14  
CD (UART 1)  
EINT1  
GPIO Port 0.15  
RI (UART1)  
EINT2  
6.8 Pin function select register 1 (PINSEL1 - 0xE002C004)  
The PINSEL1 register controls the functions of the pins as per the settings listed in  
Table 7. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Function control for the pins P0.17 - P0.31 is effective only when the DBGSEL input is  
pulled LOW during RESET.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
14 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 7:  
Pin function select register 1 (PINSEL1 - 0xE002C004)  
PINSEL1  
Pin Name  
Value  
Function  
Value after  
Reset  
1:0  
P0.16  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.16  
EINT0  
0
Match 0.2 (Timer 0)  
GPIO Port 0.17  
Capture 1.2 (Timer 1)  
GPIO Port 0.18  
Capture 1.3 (Timer 1)  
GPIO Port 0.19  
Match 1.2 (Timer 1)  
GPIO Port 0.20  
Match 1.3 (Timer 1)  
GPIO Port 0.21  
PWM5  
3:2  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
0
0
0
0
0
5:4  
7:6  
9:8  
11:10  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
GPIO Port 0.22  
GPIO Port 0.23  
GPIO Port 0.24  
GPIO Port 0.25  
GPIO Port 0.26  
GPIO Port 0.27  
TRST  
0
0
0
0
0
0
25:24  
27:26  
29:28  
31:30  
P0.28  
P0.29  
P0.30  
P0.31  
GPIO Port 0.28  
TMS  
0
0
0
0
GPIO Port 0.29  
TCK  
GPIO Port 0.30  
TDI  
GPIO Port 0.31  
TDO  
6.9 General purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by  
the GPIO registers. Pins may be dynamically configured as inputs or outputs.  
Separate registers allow setting or clearing any number of outputs simultaneously.  
The value of the output register may be read back, as well as the current state of the  
port pins.  
6.9.1 Features  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
15 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.10 UARTs  
The LPC2104, LPC2105 and LPC2106 each contain two UARTs. One UART  
provides a full modem control handshake interface, the other provides only transmit  
and receive data lines.  
6.10.1 Features  
16 byte Receive and Transmit FIFOs.  
Register locations conform to ‘550 industry standard.  
Receiver FIFO trigger points at 1, 4, 8, and 14 bytes  
Built-in baud rate generator.  
Standard modem interface signals included on UART 1.  
6.11 I2C serial I/O controller  
I2C is a bi-directional bus for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address  
and can operate as either a receiver-only device (e.g. an LCD driver or a transmitter  
with the capability to both receive and send information (such as memory).  
Transmitters and/or receivers can operate in either master or slave mode, depending  
on whether the chip has to initiate a data transfer or is only addressed. I2C is a  
multi-master bus, it can be controlled by more than one bus master connected to it.  
I2C implemented in LPC2104, LPC2105 and LPC2106 supports bit rate up to  
400 kbit/s (Fast I2C).  
6.11.1 Features  
Standard I2C compliant bus interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of  
serial data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate  
via one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend  
and resume serial transfer.  
The I2C bus may be used for test and diagnostic purposes.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
16 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.12 SPI serial I/O controller  
The SPI is a full duplex serial interface, designed to be able to handle multiple  
masters and slaves connected to a given bus. Only a single master and a single slave  
can communicate on the interface during a given data transfer. During a data transfer  
the master always sends a byte of data to the slave, and the slave always sends a  
byte of data to the master.  
6.12.1 Features  
Compliant with Serial Peripheral Interface (SPI) specification.  
Synchronous, Serial, Full Duplex, Communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.13 General purpose timers  
The Timer is designed to count cycles of the peripheral clock (PCLK) and optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. It also includes four capture inputs to trap the timer value when an  
input signal transitions, optionally generating an interrupt.  
6.13.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
Up to four (TImer 1) and three (Timer 0) 32-bit capture channels, that can take a  
snapshot of the timer value when an input signal transitions. A capture event may  
also optionally generate an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four (Timer 1) and three (Timer 0) external outputs corresponding to match  
registers, with the following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.14 Watchdog timer  
The purpose of the Watchdog is to reset the microcontroller within a reasonable  
amount of time if it enters an erroneous state. When enabled, the Watchdog will  
generate a system reset if the user program fails to ‘feed’ (or reload) the Watchdog  
within a predetermined amount of time.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
17 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.14.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a Watchdog reset/interrupt to  
be disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate Watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (tpclk × 256 × 4) to (tpclk × 232 × 4) in multiples of  
t
pclk × 4.  
6.15 Real time clock  
The Real Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use  
little power, making it suitable for battery powered systems where the CPU is not  
running continuously (Idle mode).  
6.15.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra Low Power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and  
Day of Year.  
Programmable Reference Clock Divider allows adjustment of the RTC to match  
various crystal frequencies.  
6.16 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features,  
although only the PWM function is pinned out on the LPC2104, LPC2105 and  
LPC2106. The Timer is designed to count cycles of the peripheral clock (PCLK) and  
optionally generate interrupts or perform other actions when specified timer values  
occur, based on seven match registers. It also includes four capture inputs to save the  
timer value when an input signal transitions, and optionally generate an interrupt  
when those events occur. The PWM function is in addition to these features, and is  
based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to  
be used for more applications. For instance, multi-phase motor control typically  
requires three non-overlapping PWM outputs with individual control of all three pulse  
widths and positions.  
Two match registers can be used to provide a single edge controlled PWM output.  
One match register (MR0) controls the PWM cycle rate, by resetting the count upon  
match. The other match register controls the PWM edge position. Additional single  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
18 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
edge controlled PWM outputs require only one match register each, since the  
repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM  
outputs will all have a rising edge at the beginning of each PWM cycle, when an MR0  
match occurs.  
Three match registers can be used to provide a PWM output with both edges  
controlled. Again, the MR0 match register controls the PWM cycle rate. The other  
match registers control the two PWM edge positions. Additional double edge  
controlled PWM outputs require only two match registers each, since the repetition  
rate is the same for all PWM outputs.  
With double edge controlled PWM outputs, specific match registers control the rising  
and falling edge of the output. This allows both positive going PWM pulses (when the  
rising edge occurs prior to the falling edge), and negative going PWM pulses (when  
the falling edge occurs prior to the rising edge).  
6.16.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs.  
Single edge controlled PWM outputs all go HIGH at the beginning of each cycle  
unless the output is a constant LOW. Double edge controlled PWM outputs can  
have either edge occur at any position within a cycle. This allows for both positive  
going and negative going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs  
will occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive  
going or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation  
of erroneous pulses. Software must “release” new match values before they can  
become effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
19 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.17 System control  
6.17.1 Crystal oscillator  
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator  
output frequency is called FOSC and the ARM processor clock frequency is referred  
to as cclk for purposes of rate equations, etc. FOSC and cclk are the same value  
unless the PLL is running and connected. Refer to Section 6.17.2 “PLLfor additional  
information.  
6.17.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The  
input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current  
Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in  
practice, the multiplier value cannot be higher than 6 on this family of microcontrollers  
due to the upper frequency limit of the CPU). The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO  
within its frequency range while the PLL is providing the desired output frequency.  
The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock.  
Since the minimum output divider value is 2, it is insured that the PLL output has a  
50% duty cycle.The PLL is turned off and bypassed following a chip Reset and may  
be enabled by software. The program must configure and activate the PLL, wait for  
the PLL to Lock, then connect to the PLL as a clock source.  
6.17.3 Reset and wake-up timer  
Reset has two sources on the LPC2104, LPC2105 and LPC2106: the RST pin and  
Watchdog Reset. The RST pin is a Schmitt trigger input pin with an additional glitch  
filter. Assertion of chip Reset by any source starts the Wake-up Timer (see Wake-up  
Timer description below), causing the internal chip reset to remain asserted until the  
external Reset is de-asserted, the oscillator is running, a fixed number of clocks have  
passed, and the on-chip Flash controller has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0,  
which is the Reset vector. At that point, all of the processor and peripheral registers  
have been initialized to predetermined values.  
The wake-up timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute  
instructions. This is important at power on, all types of Reset, and whenever any of  
the aforementioned functions are turned off for any reason. Since the oscillator and  
other functions are turned off during Power-down mode, any wake-up of the  
processor from Power-down mode makes use of the Wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether  
it is safe to begin code execution. When power is applied to the chip, or some event  
caused the chip to exit Power-down mode, some time is required for the oscillator to  
produce a signal of sufficient amplitude to drive the clock logic. The amount of time  
depends on many factors, including the rate of VDD ramp (in the case of power on),  
the type of crystal and its electrical characteristics (if a quartz crystal is used), as well  
as any other external circuitry (e.g. capacitors), and the characteristics of the  
oscillator itself under the existing ambient conditions.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
20 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.17.4 External interrupt inputs  
The LPC2104, LPC2105 and LPC2106 include three External Interrupt Inputs as  
selectable pin functions. The External Interrupt Inputs can optionally be used to wake  
up the processor from Power-down mode.  
6.17.5 Memory Mapping Control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x00000000. Vectors may be mapped to the bottom of the  
on-chip Flash memory, or to the on-chip static RAM. This allows code running in  
different memory spaces to have control of the interrupts.  
6.17.6 Power Control  
The LPC2104, LPC2105 and LPC2106 support two reduced power modes: Idle  
mode and Power-down mode. In Idle mode, execution of instructions is suspended  
until either a Reset or interrupt occurs. Peripheral functions continue operation during  
Idle mode and may generate interrupts to cause the processor to resume execution.  
Idle mode eliminates power used by the processor itself, memory systems and  
related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal  
clocks. The processor state and registers, peripheral registers, and internal SRAM  
values are preserved throughout Power-down mode and the logic levels of chip  
output pins remain static. The Power-down mode can be terminated and normal  
operation resumed by either a Reset or certain specific interrupts that are able to  
function without clocks. Since all dynamic operation of the chip is suspended,  
Power-down mode reduces chip power consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.17.7 VPB bus  
The VPB Divider determines the relationship between the processor clock (cclk) and  
the clock used by peripheral devices (PCLK). The VPB Divider serves two purposes.  
The first is that the VPB bus cannot operate at the highest speeds of the CPU. In  
order to compensate for this, the VPB bus may be slowed down to one half or one  
fourth of the processor clock rate. The default condition at reset is for the VPB bus to  
run at one quarter of the CPU clock. The second purpose of the VPB Divider is to  
allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the VPB Divider is connected to the PLL output, the  
PLL remains active (if it was running) during Idle mode.  
6.18 Emulation and debugging  
The LPC2104, LPC2105 and LPC2106 support emulation and debugging via a JTAG  
serial port. A trace port allows tracing program execution. Each of these functions  
requires a trade-off of debugging features versus device pins. Because the LPC2104,  
LPC2105 and LPC2106 are provided in a small package, there is no room for  
permanently assigned JTAG or Trace pins. An alternate JTAG port allows an option to  
debug functions assigned to the pins used by the primary JTAG port.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
21 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
6.18.1 Embedded ICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging  
of the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the  
Remote Debug Protocol commands to the JTAG data needed to access the ARM  
core.  
The ARM core has a Debug Communication Channel function in-built. The debug  
communication channel allows a program running on the target to communicate with  
the host debugger or another separate host without stopping the program flow or  
even entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving  
data without affecting the normal program flow. The debug communication channel  
data and control registers are mapped in to addresses in the EmbeddedICE logic.  
6.18.2 Embedded trace  
Since the LPC2104, LPC2105 and LPC2106 have significant amounts of on-chip  
memory, it is not possible to determine how the processor core is operating simply by  
observing the external pins. The Embedded Trace Macrocell provides real-time trace  
capability for deeply embedded processor cores. It outputs information about  
processor execution to the trace port.  
The ETM is connected directly to the ARM core and not to the main AMBA system  
bus. It compresses the trace information and exports it through a narrow trace port.  
An external trace port analyzer must capture the trace information under software  
debugger control. Instruction trace (or PC trace) shows the flow of execution of the  
processor and provides a list of all the instructions that were executed. Instruction  
trace is significantly compressed by only broadcasting branch addresses as well as a  
set of status signals that indicate the pipeline status on a cycle by cycle basis. Trace  
information generation can be controlled by selecting the trigger resource. Trigger  
resources include address comparators, counters and sequencers. Since trace  
information is compressed the software debugger requires a static image of the code  
being executed. Self-modifying code can not be traced because of this restriction.  
6.18.3 RealMonitor™  
RealMonitor is a configurable software module, developed by ARM Inc., which  
enables real time debug. It is a lightweight debug monitor that runs in the background  
while users debug their foreground application. It communicates with the host using  
the DCC (Debug Communications Channel), which is present in the EmbeddedICE  
logic. The LPC2104, LPC2105 and LPC2106 contain a specific configuration of  
RealMonitor software programmed into the on-chip Flash memory.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
22 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
7. Limiting values  
Table 8:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
+2.5  
+3.6  
6.0  
Unit  
V
VDD1.8  
VDD3  
Vi  
Supply voltage, internal rail  
Supply voltage, external rail  
V
DC input voltage, 5 V tolerant I/O  
pins[3][4]  
V
Vi  
DC input voltage, other I/O pins[2][3]  
0.5  
VDD3  
0.5  
+
V
I
DC supply current per supply pin[5]  
DC ground current per ground pin[5]  
Storage temperature[6]  
-
100  
100  
125  
-
mA  
mA  
°C  
I
-
Tstg  
P
40  
1.5  
Power dissipation (based on  
package heat transfer, not device  
power consumption)  
W
[1] The following applies to the Limiting values:  
a) Stresses above those listed under Limiting values may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any conditions other  
than those described in Section 8 “Static characteristics” and Section 9 “Dynamic characteristics”  
of this specification is not implied.  
b) This product includes circuitry specifically designed for the protection of its internal devices from  
the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional  
precautions be taken to avoid applying greater than the rated maximum.  
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages  
are with respect to VSS unless otherwise noted.  
[2] Not to exceed 4.6 V.  
[3] Including voltage on outputs in 3-state mode.  
[4] Only valid when the VDD3 supply voltage is present.  
[5] The peak current is limited to 25 times the corresponding maximum current.  
[6] Dependent on package type.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
23 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
8. Static characteristics  
Table 9:  
Tamb = 0 °C to +70 °C for commercial, unless otherwise specified.  
Symbol Parameter Conditions  
VDD1.8 Supply voltage  
VDD3 External rail supply voltage  
Standard Port pins, RST, RTCK, and DBGSEL  
Static characteristics  
Min  
1.65  
3.0  
Typ[1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
3.3  
V
IIL  
LOW level input current, no Vi = 0  
pull-up  
-
-
-
-
-
3
3
3
-
µA  
µA  
µA  
mA  
IIH  
HIGH level input current, no Vi = VDD3  
pull down  
-
IOZ  
3-state output leakage, no  
pull-up/down  
Vo = 0, Vo = VDD3  
-
Ilatchup  
I/O latch-up current  
(0.5 VDD3) < V < (1.5 VDD3  
)
100  
Tj < 125 °C  
Vi  
Input voltage[3][4][5]  
0
-
5.5  
V
Vo  
Output voltage, output active  
HIGH level input voltage  
LOW level input voltage  
Hysteresis voltage  
HIGH level output voltage[6] IOH = 4 mA  
LOW level output voltage[6] IOL = 4 mA  
HIGH level output current[6] VOH = VDD3 0.4 V  
0
-
VDD3  
V
VIH  
VIL  
Vhys  
VOH  
VOL  
IOH  
IOL  
IOH  
2.0  
-
-
-
V
-
0.8  
V
-
0.4  
-
V
V
DD3 0.4  
-
-
-
-
-
-
V
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
LOW level output current[6]  
VOL = 0.4 V  
VOH = 0  
-
HIGH level short circuit  
current[7]  
45  
IOL  
IPD  
IPU  
LOW level short circuit  
current[7]  
Pull-down current (applies to Vi = 5 V[8]  
DBGSEL)  
VOL = VDD3  
-
-
50  
mA  
20  
50  
100  
µA  
Pull-up current (applies to  
P0.22 - P0.31)  
Vi = 0  
VDD3 < Vi< 5 V[8]  
25  
50  
0
65  
µA  
µA  
mA  
0
-
0
-
IDD1.8  
Active Mode  
VDD1.8 = 1.8 V, cclk = 60 MHz,  
30  
Tamb = 25 °C, code  
while(1){}  
executed from FLASH, no active  
peripherals  
Power-down Mode  
VDD1.8 = 1.8 V, Tamb = +25 °C,  
VDD1.8 = 1.8 V, Tamb = +85 °C  
-
-
10  
50  
-
µA  
µA  
500  
I2C pins  
VIH  
HIGH level input voltage  
LOW level input voltage  
Hysteresis voltage  
VTOL is from 4.5 V to 5.5 V  
VTOL is from 4.5 V to 5.5 V  
VTOL is from 4.5 V to 5.5 V  
0.7 VTOL  
-
-
V
V
V
V
VIL  
-
-
-
-
0.3 VTOL  
Vhys  
VOL  
0.5 VTOL  
-
-
LOW level output voltage[6] IOL = 3 mA  
0.4  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
24 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Table 9:  
Static characteristics…continued  
Tamb = 0 °C to +70 °C for commercial, unless otherwise specified.  
Symbol Parameter  
Conditions  
Vi = VDD3  
Vi = 5 V  
Min  
Typ[1]  
2
Max  
4
Unit  
µA  
Ilkg  
Input leakage to VSS  
-
-
10  
22  
µA  
Oscillator pins  
X1 input Voltages  
X2 output Voltages  
0
0
-
-
VDD1.8  
VDD1.8  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), nominal supply voltages.  
[2] Pin capacitance is characterized but not tested.  
[3] Including voltage on outputs in 3-state mode.  
[4] VDD3 supply voltages must be present.  
[5] 3-state outputs go into 3-state mode when VDD3 is grounded.  
[6] Accounts for 100 mV voltage drop in all supply lines.  
[7] Only allowed for a short time period.  
[8] Minimum condition for Vi = 4.5 V, maximum condition for Vi = 5.5 V.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
25 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
9. Dynamic characteristics  
Table 10: Characteristics  
Tamb = 0 °C to +70 °C for commercial, 40 °C to +85 °C for industrial, VDD1.8, VDD3 over specified ranges[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
External Clock  
fosc  
Oscillator frequency supplied by an  
external oscillator (signal generator)  
1
-
-
-
-
50  
30  
25  
25  
MHz  
MHz  
MHz  
MHz  
External clock frequency supplied by  
an external crystal oscillator  
1
External clock frequency if on-chip  
PLL is used  
10  
10  
External clock frequency if ISP is  
used for initial code download  
tC  
External oscillator clock period  
Clock HIGH time  
20  
-
-
-
-
-
1000  
ns  
ns  
ns  
ns  
ns  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Port Pins  
tRISE  
tc × 0.4  
-
Clock LOW time  
tc × 0.4  
-
Clock rise time  
-
-
5
5
Clock fall time  
Port output rise time (except P0.2,  
P0.3)  
-
-
-
-
-
-
ns  
ns  
tFALL  
Port output fall time (except P0.2,  
P0.3)  
I2C pins  
tf  
Output fall time from VIH to VIL  
20 +  
0.1 × Cb  
-
-
ns  
[2]  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
26 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
9.1 Timing  
V
- 0.5 V  
0.45 V  
DD  
0.2 V  
+ 0.9  
DD  
- 0.1 V  
0.2 V  
DD  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
t
C
002aaa416  
Fig 6. External clock timing.  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
27 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
10. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 7. SOT313-2  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
28 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
HVQFN48: plastic thermal enhanced very thin quad flat package; no leads;  
48 terminals; body 7 x 7 x 0.85 mm  
SOT619-1  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
1/2 e  
e
v
M
M
b
C
C
A
B
C
1
w
13  
24  
L
25  
12  
e
e
E
2
h
1/2 e  
1
36  
terminal 1  
index area  
48  
37  
D
h
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
1
e
2
y
D
D
E
L
v
w
y
1
1
h
h
max.  
0.05 0.30  
0.00 0.18  
7.1  
6.9  
5.25  
4.95  
7.1  
6.9  
5.25  
4.95  
0.5  
0.3  
mm  
0.05  
0.1  
1
0.2  
0.5  
5.5  
5.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-18  
SOT619-1  
- - -  
MO-220  
- - -  
Fig 8. SOT619-1  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
29 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
11. Revision history  
Table 11: Revision history  
Rev Date  
CPCN  
-
Description  
04 20040205  
Product data (9397 750 12792); 853-2425 ECN 01-A15458f of 28 January 2004  
Modifications:  
Table 4 “Interrupt sources” on page 12; removed line in PWM.  
Table 10 “Characteristics” on page 26; adjusted values for fOSC and tC.  
Added HVQFN48 package.  
On-chip crystal oscillator operating range changed from “10 MHz to 25 MHz” to “1 MHz to  
30 MHz”  
03 20031007  
02 20030611  
01 20030425  
-
-
-
Product data (9397 750 12142); ECN 853-2425 30389 of 30 September 2003  
Product data (9397 750 11499); ECN 853-2425 29919 of 09 May 2003  
Product data (9397 750 11414); ECN 853-2425 29855 of 22 April 2003  
9397 750 12792  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 05 February 2004  
30 of 32  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
12. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Right to make changes — Philips Semiconductors reserves the right to  
13. Definitions  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
15. Licenses  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C components  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
14. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
16. Trademarks  
RealMonitor — is a trademark of ARM, Inc.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
31 of 32  
9397 750 12792  
Product data  
Rev. 04 — 05 February 2004  
LPC2104/2105/2106  
Philips Semiconductors  
Single-chip 32-bit microcontrollers  
Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 23  
Static characteristics . . . . . . . . . . . . . . . . . . . 24  
Dynamic characteristics. . . . . . . . . . . . . . . . . 26  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 30  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2
2.1  
3
3.1  
4
8
9
9.1  
10  
11  
12  
13  
14  
15  
16  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
6
Functional description . . . . . . . . . . . . . . . . . . . 8  
Architectural overview. . . . . . . . . . . . . . . . . . . . 8  
On-Chip Flash program memory . . . . . . . . . . . 8  
On-Chip static RAM . . . . . . . . . . . . . . . . . . . . . 8  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 11  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 12  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 13  
Pin function select register 0 (PINSEL0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
- 0xE002C000). . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin function select register 1 (PINSEL1  
6.8  
- 0xE002C004). . . . . . . . . . . . . . . . . . . . . . . . 14  
General purpose parallel I/O. . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
I2C serial I/O controller . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General purpose timers . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Real time clock . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pulse width modulator . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
System control . . . . . . . . . . . . . . . . . . . . . . . . 20  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 20  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reset and wake-up timer . . . . . . . . . . . . . . . . 20  
External interrupt inputs . . . . . . . . . . . . . . . . . 21  
Memory Mapping Control . . . . . . . . . . . . . . . . 21  
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VPB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Emulation and debugging. . . . . . . . . . . . . . . . 21  
Embedded ICE . . . . . . . . . . . . . . . . . . . . . . . . 22  
Embedded trace . . . . . . . . . . . . . . . . . . . . . . . 22  
RealMonitor™. . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.9  
6.9.1  
6.10  
6.10.1  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
6.13.1  
6.14  
6.14.1  
6.15  
6.15.1  
6.16  
6.16.1  
6.17  
6.17.1  
6.17.2  
6.17.3  
6.17.4  
6.17.5  
6.17.6  
6.17.7  
6.18  
6.18.1  
6.18.2  
6.18.3  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in the U.S.A.  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 05 February 2004  
Document order number: 9397 750 12792  

相关型号:

LPC2104FBD48

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP

LPC2104FBD48/00

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP

LPC2104FBD48/01

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP

LPC2104FBD48/01,15

LPC2104/2105/2106 - Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM QFP 48-Pin
NXP

LPC2105

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM
NXP

LPC2105/01

NXP Microcontrollers Selection Guide
NXP

LPC2105BBD48

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM
NXP

LPC2105BBD48,151

LPC2105BBD48
NXP

LPC2105BBD48-S

暂无描述
NXP

LPC2105FBD48

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP

LPC2105FBD48/00

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP

LPC2105FBD48/01

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP