HCT9046 [NXP]

PLL with bandgap controlled VCO; PLL与带隙控制VCO
HCT9046
型号: HCT9046
厂家: NXP    NXP
描述:

PLL with bandgap controlled VCO
PLL与带隙控制VCO

文件: 总40页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
74HCT9046A  
PLL with bandgap controlled VCO  
1999 Jan 11  
Product specification  
Supersedes data of March 1994  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Tone decoding  
FEATURES  
GENERAL DESCRIPTION  
Data synchronization and  
conditioning  
Low power consumption  
The 74HCT9046A is a high-speed  
Si-gate CMOS device. It is specified  
in compliance with “JEDEC standard  
no. 7A”.  
Centre frequency up to  
17 MHz (typ.) at VCC = 5.5 V  
Voltage-to-frequency conversion  
Motor-speed control.  
Choice of two phase  
comparators(1):  
QUICK REFERENCE DATA  
– EXCLUSIVE-OR (PC1)  
– Edge-triggered JK flip-flop (PC2)  
No dead zone of PC2  
GND = 0 V; Tamb = 25 °C; tr = tf 6 ns.  
SYMBOL  
fc  
PARAMETER  
CONDITIONS  
TYP.  
16  
UNIT  
MHz  
Charge pump output on PC2,  
whose current is set by an external  
resistor Rb  
VCO centre frequency  
C1 = 40 pF;  
R1 = 3 k;  
VCC = 5 V  
Centre frequency tolerance ±10%  
CI  
input capacitance  
3.5  
20  
pF  
pF  
CPD  
power dissipation  
capacitance per  
package  
notes 1 and 2  
Excellent  
voltage-controlled-oscillator (VCO)  
linearity  
Low frequency drift with supply  
voltage and temperature variations  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW)  
a) PD = CPD × VCC2 × fi + Σ(CL × VCC2 × fo) where:  
On chip bandgap reference  
Glitch free operation of VCO, even  
at very low frequencies  
b) fi = input frequency in MHz; CL = output load capacity in pF;  
fo = output frequency in MHz; VCC = supply voltage in V;  
Σ(CL × VCC2 × fo) = sum of the outputs.  
Inhibit control for ON/OFF keying  
and for low standby power  
consumption  
2. Applies to the phase comparator section only (inhibit = HIGH). For power  
dissipation of the VCO and demodulator sections see Figs 26 to 28.  
Operation power supply voltage  
range 4.5 to 5.5 V  
ORDERING INFORMATION  
Zero voltage offset due to op-amp  
buffering  
PACKAGE  
EXTENDED  
TYPE NUMBER  
Output capability: standard  
ICC category: MSI.  
PINS PIN POSITION  
MATERIAL  
plastic  
CODE  
SOT38Z  
SOT109A  
74HCT9046AN  
74HCT9046AD  
16  
16  
DIL16  
SO16  
plastic  
APPLICATIONS  
FM modulation and demodulation  
where a small centre frequency  
tolerance is essential  
Frequency synthesis and  
multiplication where a low jitter is  
required (e.g. Video  
picture-in-picture)  
Frequency discrimination  
(1) Rb connected between pin 15 and  
ground: PC2 mode, with PCPOUT at  
pin 2.  
Pin 15 left open or connected to VCC  
:
PC1 mode with PC1OUT at pin 2.  
1999 Jan 11  
2
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
GND  
1
2
ground (0 V) (phase comparators)  
PC1OUT  
/
phase comparator 1 output/phase  
comparator pulse output  
PCPOUT  
COMPIN  
VCOOUT  
INH  
3
4
comparator input  
V
R
GND  
/
1
2
3
4
5
6
7
8
16  
15  
14  
13  
CC  
b
VCO output  
PC1  
PCP  
OUT  
5
inhibit input  
OUT  
SIG  
COMP  
VCO  
IN  
IN  
C1A  
6
capacitor C1 connection A  
capacitor C1 connection B  
ground (0 V) (VCO)  
VCO input  
PC2  
OUT  
INH  
OUT  
C1B  
7
9046A  
GND  
8
12 R2  
11 R1  
VCOIN  
DEMOUT  
R1  
9
C1  
A
10  
11  
12  
13  
demodulator output  
resistor R1 connection  
resistor R2 connection  
C1  
B
10 DEM  
OUT  
IN  
VCO  
9
GND  
R2  
MBD037 - 1  
PC2OUT  
phase comparator 2 output  
(current source adjustable with Rb)  
SIGIN  
Rb  
14  
15  
16  
signal input  
bias resistor (Rb) connection  
supply voltage  
Fig.1 Pin configuration.  
VCC  
LOGIC/FUNCTIONAL SYMBOLS AND DIAGRAMS  
Φ
PLL  
9046A  
PC1  
PCP  
/
OUT  
OUT  
2
COMP  
3
14  
15  
IN  
SIG  
IN  
Φ
PC1  
PCP  
/
OUT  
OUT  
COMP  
R
b
3
14  
6
2
IN  
PC2  
13  
OUT  
SIG  
IN  
PC2  
13  
OUT  
C1  
A
C1  
A
C1  
B
R1  
6
7
7
C1  
VCO  
DEM  
4
11  
12  
15  
9
B
OUT  
OUT  
DEM  
VCO  
10  
4
R1  
R2  
11  
12  
9
OUT  
OUT  
VCO  
R
b
R2  
VCO  
VCO  
10  
IN  
IN  
5
INH  
5
INH  
MBD038 - 1  
MBD039 - 1  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
1999 Jan 11  
3
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
C1  
COMP  
3
SIG  
14  
C1  
A
C1  
VCO  
OUT  
B
IN  
IN  
6
7
4
9046A  
PC1  
PCP  
/
OUT  
OUT  
R2 12  
R3  
PHASE  
COMPARATOR  
1
2
R2  
R1  
VCO  
PC2  
13  
15  
OUT  
R1 11  
PHASE  
COMPARATOR  
2
R
b
R4  
C2  
R
b
5
INH  
10  
9
DEM  
VCO  
IN  
OUT  
R
s
MBD040 - 1  
Fig.4 Functional diagram.  
1999 Jan 11  
4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
f
f
IN  
OUT  
4
C1  
C1  
3
14  
SIG  
6
7
C1  
VCO  
COMP  
IN  
A
B
OUT  
IN  
PC1  
PCP  
/
PC1  
OUT  
OUT  
2
V
ref2  
R2  
12  
11  
10  
R3  
VCO  
V
R2  
R1  
PCP  
logic  
1
up  
D
Q
Q
ref1  
CP  
R1  
R
D
PC2  
13  
15  
logic  
1
OUT  
D
Q
Q
CHARGE  
PUMP  
DEM  
OUT  
CP  
R4  
C2  
down  
V
V
ref2  
R
ref1  
D
R
s
R
b
R
b
BAND  
GAP  
V
ref2  
9
5
INH  
VCO  
IN  
MBD102 - 1  
Fig.5 Logic diagram.  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
frequency will not shift over the  
supply voltage range.  
The inhibit function differs. For the  
HCT4046A a HIGH level at the  
inhibit input (INH) disables the VCO  
and demodulator, while a LOW  
level turns both on. For the  
74HCT9046A a HIGH level on the  
inhibit input disables the whole  
circuit to minimize standby power  
consumption.  
FUNCTIONAL DESCRIPTION  
The 74HCT9046A is a  
phase-locked-loop circuit that  
A current switch charge pump  
output on PC2 allows a virtually  
ideal performance of PC2. The gain  
of PC2 is independent of the  
voltage across the low-pass filter.  
Further a passive low-pass filter in  
the loop achieves an active  
performance now. The influence of  
the parasitic capacitance of the  
PC2 output plays no role here,  
resulting in a true correspondence  
of the output correction pulse and  
the phase difference even up to  
phase differences as small as a few  
nanoseconds.  
comprises a linear VCO and two  
different phase comparators (PC1  
and PC2) with a common signal input  
amplifier and a common comparator  
input (see Fig.4). The signal input can  
be directly coupled to large voltage  
signals (CMOS level), or indirectly  
coupled (with a series capacitor) to  
small voltage signals. A self-bias  
input circuit keeps small voltage  
signals within the linear region of the  
input amplifiers. With a passive  
low-pass filter, the '9046A' forms a  
second-order loop PLL.  
VCO  
The VCO requires one external  
capacitor C1 (between C1A and C1B)  
and one external resistor R1  
(between R1 and GND) or two  
external resistors R1 and R2  
(between R1 and GND, and R2 and  
GND). Resistor R1 and capacitor C1  
determine the frequency range of the  
VCO. Resistor R2 enables the VCO  
to have a frequency offset if required  
(see Fig.5).  
Because of its linear performance  
without dead zone, higher  
impedance values for the filter,  
hence lower C-values, can now be  
chosen. Correct operation will not  
be influenced by parasitic  
capacitances as in the instance  
with voltage source output of the  
4046A.  
The principle of this  
phase-locked-loop is based on the  
familiar HCT4046A. However extra  
features are built in, allowing very  
high performance phase-locked-loop  
applications. This is done, at the  
expense of PC3, which is skipped in  
this HCT9046A. The PC2 is equipped  
with a current source output stage  
here. Further a bandgap is applied for  
all internal references, allowing a  
small centre frequency tolerance. The  
details are summed up in the next  
section called: “Differences with  
respect to the familiar HCT4046A”.  
If one is familiar with the HCT4046A  
already, it will do to read this section  
only.  
The high input impedance of the VCO  
simplifies the design of the low-pass  
filters by giving the designer a wide  
choice of resistor/capacitor ranges. In  
order not to load the low-pass filter, a  
demodulator output of the VCO input  
voltage is provided at pin 10  
(DEMOUT). The DEMOUT voltage  
equals that of the VCO input. If  
DEMOUT is used, a load resistor (Rs)  
should be connected from pin 10 to  
GND; if unused, DEMOUT should be  
No PC3 on pin 15 but instead a  
resistor connected to GND, which  
sets the load/unload currents of the  
charge pump (PC2).  
Extra GND pin at pin 1 to allow an  
excellent FM demodulator  
performance even at 10 MHz and  
higher.  
left open. The VCO output (VCOOUT  
can be connected directly to the  
comparator input (COMPIN), or  
connected via a frequency-divider.  
The VCO output signal has a duty  
factor of 50% (maximum expected  
)
Combined function of pin 2. If  
pin 15 is connected to VCC (no bias  
resistor Rb) pin 2 has its familiar  
function viz. output of PC1. If at  
pin 15 a resistor (Rb) is connected  
to GND it is assumed that PC2 has  
been chosen as phase comparator.  
Connection of Rb is sensed by  
internal circuitry and this changes  
the function of pin 2 into a lock  
detect output (PCPOUT) with the  
same characteristics as PCPOUT of  
pin 1 of the well known  
DIFFERENCES WITH RESPECT TO  
THE FAMILIAR HCT4046A  
A centre frequency tolerance of  
maximum ±10%.  
deviation 1%), if the VCO input is held  
at a constant DC level. A LOW level at  
the inhibit input (INH) enables the  
VCO and demodulator, while a HIGH  
level turns both off to minimize  
The on board bandgap sets the  
internal references resulting in a  
minimal frequency shift at supply  
voltage variations and temperature  
variations.  
standby power consumption.  
The value of the frequency offset is  
determined by an internal  
74HCT4046A.  
reference voltage of 2.5 V instead  
of VCC 0.7 V. In this way the offset  
1999 Jan 11  
6
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
The frequency capture range (2fc) is  
Phase comparators  
defined as the frequency range of  
input signals on which the PLL will  
lock if it was initially out-of-lock. The  
frequency lock range (2fL) is defined  
as the frequency range of the input  
signals on which the loop will stay  
locked if it was initially in lock. The  
capture range is smaller or equal to  
the lock range.  
The signal input (SIGIN) can be  
directly coupled to the self-biasing  
amplifier at pin 14, provided that the  
signal swing is between the standard  
HC family input logic levels.  
Capacitive coupling is required for  
signals with smaller swings.  
PHASE COMPARATOR 1 (PC1)  
With PC1, the capture range depends  
on the low-pass filter characteristics  
and can be made as large as the lock  
range. This configuration remains  
locked even with very noisy input  
signals. Typical behaviour of this type  
of phase comparator is that it may  
lock to input frequencies close to the  
harmonics of the VCO centre  
This circuit is an EXCLUSIVE-OR  
network. The signal and comparator  
input frequencies (fi) must have a  
50% duty factor to obtain the  
maximum locking range. The transfer  
characteristic of PC1, assuming  
ripple (fr = 2fi) is suppressed, is:  
frequency.  
V
VDEMOUT  
where:  
=
CC (Φ SIGIN ΦCOMPIN  
)
----------  
π
PHASE COMPARATOR 2 (PC2)  
This is a positive edge-triggered  
phase and frequency detector. When  
the PLL is using this comparator, the  
loop is controlled by positive signal  
transitions and the duty factors of  
SIGIN and COMPIN are not important.  
PC2 comprises two D-type flip-flops,  
control gating and a 3-state output  
stage with sink and source transistors  
acting as current sources, henceforth  
called charge pump output of PC2.  
The circuit functions as an up-down  
counter (Fig.5) where SIGIN causes  
an up-count and COMPIN a down  
count. The current switch charge  
pump output allows a virtually ideal  
performance of PC2, due to appliance  
of some pulse overlap of the up and  
down signals. See Fig.8a.  
VDEMOUT is the demodulator output  
at pin 10.  
VDEMOUT = VPC1OUT (via low-pass).  
The phase comparator gain is:  
V
Kp  
=
CC (V r)  
----------  
π
The average output voltage from  
PC1, fed to the VCO input via the  
low-pass filter and seen at the  
demodulator output at pin 10  
(VDEMOUT), is the resultant of the  
phase differences of signals (SIGIN)  
and the comparator input (COMPIN)  
as shown in Fig.6. The average of  
VDEMOUT is equal to 12VCC when  
there is no signal or noise at SIGIN  
and with this input the VCO oscillates  
at the centre frequency (fc). Typical  
waveforms for the PC1 loop locked at  
fc are shown in Fig.7. This figure also  
shows the actual waveforms across  
the VCO capacitor at pins 6 and 7  
(VC1A and VC1B) to show the relation  
between these ramps and the  
VCOOUT voltage.  
1999 Jan 11  
7
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD101 - 1  
V
CC  
V
DEMOUT(AV)  
1/2V  
CC  
0
o
o
o
0
90  
180  
Φ
PCIN  
VCC  
VDEMOUT = VPC1OUT = ---------- (Φ SIGIN ΦCOMPIN  
)
π
ΦPCIN  
= (ΦSIGIN ΦCOMPIN)  
Fig.6 Phase comparator 1; average output voltage as a function of input phase difference.  
SIGN  
IN  
COMP  
VCO  
IN  
OUT  
PC1  
VCO  
V
OUT  
V
CC  
IN  
GND  
pin 6  
C1A  
V
pin 7  
C1B  
MBD100  
Fig.7 Typical waveforms for PLL using phase comparator 1; loop-locked at fc.  
8
1999 Jan 11  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
The pump current IP is independent  
from the supply voltage and is set by  
the internal bandgap reference of  
2.5 V.  
Thus for PC2 no phase difference  
connected to the filter capacitance C2  
via this fictive R3' (see Fig.8b). Then  
during the PC2 output pulse the  
charge current equals:  
exists between SIGIN and COMPIN  
over the full frequency range of the  
VCO. Moreover, the power  
dissipation due to the low-pass filter is  
reduced because both output drivers  
are OFF for most of the signal input  
cycle. It should be noted that the PLL  
lock range for this type of phase  
comparator is equal to the capture  
range and is independent of the  
low-pass filter. With no signal present  
at SIGIN the VCO adjust, via PC2, to  
its lowest frequency.  
V
CC VC2 (0)  
----------------------------------  
R3'  
2.5  
Rb  
IP  
=
IP = 17 ×  
(A )  
-------  
With the initial voltage VC2(0) at:  
2.5  
Rb is the external bias resistor  
between pin 15 and ground.  
12VCC = 2.5 V, I P  
=
--------  
R3'  
The current and voltage transfer  
function of PC2 are shown in Fig.9.  
As shown before the charge current  
of the current switch of the 9046A is:  
The phase comparator gain is:  
IP  
2.5  
I P = 17 ×  
-------  
Rb  
By using current sources as charge  
pump output on PC2, the dead zone  
or backlash time could be reduced to  
zero. Also, the pulse widening due to  
the parasitic output capacitance plays  
no role here. This enables a linear  
transfer function, even in the vicinity  
of the zero crossing. The differences  
between a voltage switch charge  
pump and a current switch charge  
pump are shown in Fig.11.  
Kp  
=
(A r)  
-------  
2π  
Hence:  
R
Typical waveforms for the PC2 loop  
locked at fc are shown in Fig.10.  
R3' = b (Ω )  
------  
17  
When the frequencies of SIGIN and  
COMPIN are equal but the phase of  
SIGIN leads that of COMPIN, the up  
output driver at PC2OUT is held ‘ON’  
for a time corresponding to the phase  
difference (ΦPCIN). When the phase of  
SIGIN lags that of COMPIN, the down  
or sink driver is held ‘ON’.  
Using this equivalent resistance R3'  
for the filter design the voltage can  
now be expressed as a transfer  
function of PC2; assuming ripple  
(fr = fi) is suppressed, as:  
5
4π  
The design of the low-pass filter is  
somewhat different when using  
current sources. The external resistor  
R3 is no longer present when using  
PC2 as phase comparator. The  
current source is set by Rb. A simple  
capacitor behaves as an ideal  
integrator now, because the capacitor  
is charged by a constant current. The  
transfer function of the voltage switch  
charge pump may be used. In fact it is  
even more valid, because the transfer  
function is no longer restricted for  
small changes only. Further the  
current is independent from both the  
supply voltage and the voltage across  
the filter. For one that is familiar with  
the low-pass filter design of the  
4046A a relation may show how Rb  
relates with a fictive series resistance,  
called R3'.  
KPC2  
=
(V r)  
------  
When the frequency of SIGIN is higher  
than that of COMPIN, the source  
output driver is held ‘ON’ for most of  
the input signal cycle time and for the  
remainder of the cycle time both  
drivers are ‘OFF’ (3-state). If the  
SIGIN frequency is lower than the  
COMPIN frequency, then it is the sink  
driver that is held ‘ON’ for most of the  
cycle. Subsequently the voltage at the  
capacitor (C2) of the low-pass filter  
connected to PC2OUT varies until the  
signal and comparator inputs are  
equal in both phase and frequency. At  
this stable point the voltage on C2  
remains constant as the PC2 output is  
in 3-state and the VCO input at pin 9  
is a high impedance. Also in this  
condition the signal at the phase  
Again this illustrates the supply  
voltage independent behaviour of  
PC2.  
Examples of PC2 combined with a  
passive filter are shown in Figs 12  
and 13. Figure 12 shows that PC2  
with only a C2 filter behaves as a  
high-gain filter. For stability the  
damped version of Fig.13 with series  
resistance R4 is preferred.  
Practical design values for Rb are  
between 25 and 250 kwith  
R3' = 1.5 to 15 kfor the filter design.  
Higher values for R3' require lower  
values for the filter capacitance which  
is very advantageous at low values  
the loop natural frequency ωn.  
comparator pulse output (PCPOUT  
)
This relation can be derived by  
assuming first that a voltage  
controlled switch PC2 of the 4046A is  
has a minimum output pulse width  
equal to the overlap time, so can be  
used for indicating a locked condition.  
1999 Jan 11  
9
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
V
CC  
up  
V
CC  
I
P
PC2  
OUT  
up  
I
P
PC2  
OUT  
R3'  
I
VC2  
OUT  
C2  
down  
P
down  
C2  
∆ Φ  
= Φ  
PCIN  
MBD099  
pulse overlap of  
MBD046 - 1  
approximately 15 ns  
a.  
b.  
a. At every ∆Φ, even at zero ∆Φ both switches are closed simultaneously for a short period (typically 15 ns).  
b. Comparable voltage-controlled switch.  
Fig.8 The current switch charge pump output of PC2.  
MSB306 - 1  
V
CC  
I
P
V
DEMOUT(AV)  
I
x R  
P
Φ
Φ
Φ
SIGIN COMPIN  
=
PCIN  
1/2V  
0
CC  
I
P
0
2
0
2
2
0
2
π
π
π
π
Φ
Φ
PCIN  
PCIN  
a.  
b.  
Two kinds of transfer functions may be regarded:  
IP  
a. The current transfer: pump current ------- Φ PCIN  
2π  
b. The voltage transfer; this transfer can be observed at PC2OUT by connecting a resistor (R = 10 k) between PC2OUT and 12VCC  
;
5
VDEMOUT = VPC2OUT = ------ Φ PCIN  
4π  
Fig.9 Phase comparator 2.  
1999 Jan 11  
10  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
SIG  
IN  
COMP  
IN  
VCO  
OUT  
UP  
OPC  
IN  
DOWN  
CURRENT AT  
PC2  
OUT  
high impedance OFF state,  
(zero current)  
PC2  
PCP  
/VCO  
IN  
OUT  
OUT  
MBD047 - 1  
The pulse overlap of the up and down signals (typically 15 ns).  
Fig.10 Timing diagram for PC2.  
2.75  
2.75  
VCO  
VCO  
IN  
IN  
(1)  
2.50  
2.50  
2.25  
(1)  
(2)  
2.25  
25  
0
25  
25  
0
25  
phase error (ns)  
phase error (ns)  
MBD043  
a.  
b.  
a. Response with traditional voltage-switch charge-pump PC2OUT (4046A).  
(1) Due to parasitic capacitance on PC2OUT  
(2) Backlash time (dead zone).  
.
b. Response with current switch charge-pump PC2OUT as applied in the HCT9046A.  
Fig.11 The response of a locked-loop in the vicinity of the zero crossing of the phase error.  
11  
1999 Jan 11  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
LOOP FILTER COMPONENT SELECTION  
A
I
P
I
F
P
(jω)  
17  
C2  
INPUT  
OUTPUT  
1/  
Aτ  
1
R
b
ω
1/  
Aτ  
MBD045 - 1  
1
a.  
b.  
c.  
Rb  
a. τ1 = ------ × C2 = R3' × C2  
17  
1
1
b. Amplitude characteristic: F(jω) = ---------------------------- -----------  
1 A + jωτ1 j ωτ1  
c. Pole zero diagram.  
Fig.12 Simple loop filter for PC2 without damping.  
A
I
P
I
F
P
(jω)  
17  
1/  
O
R4  
Aτ  
1
INPUT  
OUTPUT  
1/  
R
τ
b
2
m
C2  
ω
1/  
1 /  
Aτ  
τ
2
1
MBD044 - 1  
a.  
b.  
c.  
Rb  
a. τ1 = ------ × C2 = R3' × C2  
17  
τ2 = R4 × C2  
1 + jωτ2  
----------------------------  
1 A + jωτ1  
b. Amplitude characteristic: F(jω)  
=
c. Pole zero diagram.  
A = DC gain limit, due to leakage.  
Fig.13 Simple loop filter for PC2 with damping.  
12  
1999 Jan 11  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
RECOMMENDED OPERATING CONDITIONS FOR 74HCT  
SYMBOL  
PARAMETER  
DC supply voltage  
CONDITIONS  
MIN.  
4.5  
TYP. MAX. UNIT  
VCC  
VI  
5.0  
5.5  
V
DC input voltage  
0
0
VCC  
VCC  
+85  
V
VO  
DC output voltage  
V
Tamb  
operating ambient temperature  
see DC and AC Characteristics 40  
40  
°C  
+125 °C  
500 ns  
tr, tf  
input rise and fall times (pin 5)  
VCC = 4.5 V  
6
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134); voltages are referenced to GND (ground = 0 V).  
SYMBOL  
VCC  
PARAMETER  
DC supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+7  
UNIT  
V
IIK  
DC input diode current  
for VI < −0.5 V  
±20  
mA  
or VI > VCC + 0.5 V  
IOK  
DC output diode current  
for VO < −0.5 V  
±20  
mA  
or VO > VCC + 0.5 V  
IO  
DC output source or sink current  
DC VCC or GND current  
storage temperature  
for 0.5 V < VO < VCC + 0.5 V  
±25  
mA  
mA  
°C  
ICC; IGND  
Tstg  
±50  
65  
+150  
Ptot  
total power dissipation per package note 1  
plastic DIL  
above +70 °C: derate linearly  
with 12 mW/K  
750  
500  
mW  
mW  
plastic mini-pack (SO)  
above +70 °C: derate linearly  
with 8 mW/K  
Note  
1. Temperature range: 40 to +125 °C.  
1999 Jan 11  
13  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
DC CHARACTERISTICS FOR 74HCT  
Voltages are referenced to GND (ground = 0 V).  
T
amb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP. MAX. MIN. MAX. MIN. MAX.  
TEST CONDITIONS  
SYMBOL PARAMETER  
+25  
VCC  
(V)  
VI  
(V)  
OTHER  
Phase comparator section  
VIH  
DC coupled  
HIGH level input  
voltage SIGIN,  
COMPIN  
3.15 2.4  
3.15  
3.15  
V
V
4.5  
VIL  
DC coupled LOW  
level input  
voltage SIGIN,  
COMPIN  
2.1  
4.5  
1.35  
1.35  
1.35  
4.5  
VOH  
HIGH level  
output voltage  
PCPOUT, PCnOUT  
4.4  
4.4  
3.84  
4.4  
3.7  
V
V
V
V
4.5  
4.5  
4.5  
4.5  
5.5  
5.5  
4.5  
VIH  
or  
VIL  
IO = 20 µA  
IO = 4.0 mA  
IO = 20 µA  
IO = 4.0 mA  
3.98 4.32  
VIH  
or  
VIL  
VOL  
LOW level  
output voltage  
PCPOUT, PCnOUT  
0
0.1  
0.1  
0.33  
±38  
±5.0  
0.1  
0.4  
VIH  
or  
VIL  
0.15 0.26  
VIH  
or  
VIL  
II  
input leakage  
current SIGIN,  
COMPIN  
±30  
±0.5  
±45 µA  
±10.0 µA  
VCC  
or  
GND  
IOZ  
3-state  
OFF-state  
current PC2OUT  
VIH  
or  
VIL  
VO = VCC or  
GND  
RI  
input resistance  
SIGIN, COMPIN  
250  
kΩ  
VI at self-bias  
operating point;  
VI = 0.5 V;  
see Figs 14 to 16  
Rb  
IP  
bias resistance  
25  
250  
kΩ  
4.5  
charge pump  
current  
±0.53 ±1.06 ±2.12 −  
mA 4.5  
Rb = 40 kΩ  
1999 Jan 11  
14  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP. MAX. MIN. MAX. MIN. MAX.  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
+25  
VCC  
(V)  
VI  
(V)  
OTHER  
VCO section  
VIH  
DC coupled  
HIGH level input  
voltage INH  
2.0  
1.6  
1.2  
4.5  
2.0  
2.0  
V
V
V
V
V
V
V
4.5  
to 5.5  
VIL  
DC coupled LOW  
level input  
voltage INH  
0.8  
0.8  
0.8  
4.5  
to 5.5  
VOH  
HIGH level  
output voltage  
VCOOUT  
4.4  
4.4  
3.84  
4.4  
3.7  
4.5  
4.5  
4.5  
4.5  
4.5  
5.5  
VIH  
or  
VIL  
IO = 20 µA  
IO = 4.0 mA  
IO = 20 µA  
3.98 4.32  
VIH  
or  
VIL  
VOL  
LOW level  
output voltage  
VCOOUT  
0
0.1  
0.1  
0.33  
0.47  
±1.0  
0.1  
0.4  
0.54  
VIH  
or  
VIL  
0.15 0.26  
VIH  
or  
VIL  
IO = 4.0 mA  
IO = 4.0 mA  
VOL  
LOW level  
output voltage  
C1A, C1B  
0.40  
VIH  
or  
VIL  
II  
input leakage  
current INH and  
VCOIN  
±0.1  
±1.0 µA  
VCC  
or  
GND  
R1  
R2  
C1  
resistance  
resistance  
capacitance  
3
300  
300  
kΩ  
kΩ  
pF  
4.5  
4.5  
4.5  
3
40  
no  
limit  
VVCOIN  
operating  
voltage range at  
VCOIN  
1.1  
1.1  
1.1  
3.4  
3.9  
4.4  
V
V
V
4.5  
5.0  
5.5  
over the  
range  
specified  
for R1  
1999 Jan 11  
15  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Tamb (°C)  
40 to +85 40 to +125 UNIT  
MIN. TYP. MAX. MIN. MAX. MIN. MAX.  
TEST CONDITIONS  
SYMBOL  
PARAMETER  
+25  
VCC  
(V)  
VI  
(V)  
OTHER  
Demodulator section  
Rs  
resistance  
50  
300  
kΩ  
mV  
4.5  
at Rs >  
300 kthe  
leakage  
current can  
influence  
VDEMOUT  
VOFF  
offset voltage  
VCOIN to  
VDEMOUT  
±20  
25  
4.5  
4.5  
VI = VVCOIN  
= 12VCC  
values  
taken over  
Rs range,  
see Fig.17  
;
RD  
dynamic output  
resistance at  
DEMOUT  
VDEMOUT =  
12VCC  
Quiescent supply current  
ICC  
quiescent supply  
current  
(disabled)  
8.0  
80.0  
450  
160.0 µA  
5.5  
4.5  
pin 5 at VCC  
ICC  
additional  
100  
360  
490  
µA  
other inputs  
at VCC or  
GND  
quiescent supply  
current per input  
pin for unit load  
coefficient is 1;  
note 1;  
VI = VCC 2.1 V  
Note  
1. The value of additional quiescent supply current (ICC) for a unit load of 1 is given above. To determine ICC per  
input, multiply this value by the unit load coefficient shown in Table 1.  
Table 1 Unit load coefficient table.  
INPUT  
UNIT LOAD COEFFICIENT  
INH  
1.00  
1999 Jan 11  
16  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MGA956 - 1  
MBD108  
800  
I
I
I
R
(k)  
V  
I
600  
400  
200  
0
V
=
CC  
4.5 V  
self-bias operating point  
5.5 V  
V
I
1/2V  
0.25  
1/2V  
1/2V  
0.25  
CC  
CC  
CC  
V
(V)  
I
Fig.14 Typical input resistance curve at SIGIN,  
COMPIN.  
Fig.15 Input resistance at SIGIN; COMPIN with  
VI = 0.5 V at self-bias point.  
MGA958  
MGA957  
60  
5
V
= 5.5 V  
V
CC  
OFF  
(mV)  
40  
4.5 V  
I
I
(µA)  
20  
0
V
= 4.5 V  
0
CC  
4.5 V  
5.5 V  
5.5 V  
20  
40  
5
1/2 V  
CC  
2
1/2 V  
1/2 V 2  
CC  
(V)  
1/2 V  
CC  
0.25  
1/2 V  
CC  
1/2 V 0.25  
CC  
CC  
V
V
(V)  
I
VCOIN  
___ Rs = 50 k.  
- - - Rs = 300 k.  
Fig.16 Input current at SIGIN; COMPIN with  
Fig.17 Offset voltage at demodulator output as a  
function of VCOIN and Rs.  
VI = 0.5 V at self-bias point.  
1999 Jan 11  
17  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
AC CHARACTERISTICS FOR 74HCT  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.  
Tamb (°C)  
TEST CONDITION  
SYMBOL  
PARAMETER  
+25  
40 to +85  
40 to +125 UNIT  
VCC  
WAVEFORMS  
(V)  
MIN. TYP. MAX. MIN. MAX. MIN. MAX.  
Phase comparator section  
tPHL/tPLH  
tPHL/tPLH  
tPZH/tPZL  
propagation delay  
SIGIN, COMPIN to  
PC1OUT  
23  
35  
30  
40  
68  
56  
50  
85  
70  
60  
ns  
ns  
ns  
4.5  
Fig.18  
Fig.18  
Fig.19  
propagation delay  
SIGIN, COMPIN to  
PCPOUT  
102  
84  
4.5  
4.5  
3state output  
enable time SIGIN,  
COMPIN to  
PC2OUT  
tPHZ/tPLZ  
3state output  
enable time SIGIN,  
COMPIN to  
36  
65  
81  
98  
ns  
4.5  
Fig.19  
PC2OUT  
t
THL/tTLH  
output transition  
time  
7
15  
19  
22  
ns  
4.5  
4.5  
Fig.18  
Vi(p-p)  
AC coupled input  
sensitivity  
15  
mV  
fi = 1 MHz  
(peak-to-peak  
value) at SIGNIN or  
COMPIN  
1999 Jan 11  
18  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
T
amb (°C)  
TEST CONDITION  
SYMBOL  
PARAMETER  
+25  
40 to +85  
40 to +125 UNIT  
VCC  
WAVEFORMS  
(V)  
MIN. TYP. MAX. MIN. MAX. MIN. MAX.  
VCO section  
f/T  
frequency stability  
with temperature  
change  
0.06  
%/K 4.5  
VVCOIN =12VCC  
recommended  
range:  
;
R1 = 10 k;  
R2 = 10 k;  
C1 = 1 nF;  
Figs 20 to 22  
fc  
centre frequency  
tolerance  
10  
+10  
%
5.0  
VVCOIN = 3.9 V;  
R1 = 10 k;  
R2 = 10 k;  
C1 = 1 nF  
VVCOIN =12VCC  
R1 = 4.3 k;  
R2 = ∞;  
fc  
VCO centre  
frequency  
(duty factor = 50%)  
11.0 15.0  
MHz 4.5  
;
C1 = 40 pF;  
Figs 23 and 31  
fVCO  
VCO frequency  
linearity  
0.4  
50  
%
%
4.5  
4.5  
R1 = 100 k;  
R2 = ;  
C1 = 100 pF;  
Figs 24 and 25  
δVCO  
duty factor at  
VCOOUT  
1999 Jan 11  
19  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
SIG , COMP  
IN  
(1)  
IN  
V
M
t
INPUTS  
t
PHL  
PLH  
PCP  
OUT  
, PC1 ,  
OUT  
(1)  
V
M
OUTPUTS  
MBD106  
t
t
TLH  
THL  
(1) VM  
= .  
12VCC; VI = GND to VCC  
Fig.18 Waveforms showing input (SIGIN and COMPIN) to output (PCPOUT and PC1OUT) propagation delays and  
the output transition times.  
SIG  
IN  
(1)  
V
M
INPUT  
COMP  
(1)  
IN  
V
M
INPUT  
t
t
PLZ  
PHZ  
90%  
t
t
PZL  
PZH  
PC2  
(1)  
OUT  
OUTPUT  
V
M
10%  
MGA941  
(1) VM  
= .  
12VCC; VI = GND to VCC  
Fig.19 Waveforms showing the 3-state enable and disable times for PC2OUT  
.
1999 Jan 11  
20  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD115  
MBD116  
20  
15  
10  
5
(%)  
f
f  
(%)  
10  
0
0
V
=
5
CC  
V
=
CC  
10  
20  
5.5 V  
4.5 V  
5.5 V  
4.5 V  
10  
15  
50  
0
50  
100  
T
150  
50  
0
50  
100  
T
150  
( C)  
o
o
( C)  
amb  
amb  
a.  
b.  
a. R1 = 3 k; R2 = ; C1 = 100 pF.  
b. R1 = 10 k; R2 = ∞; C1 = 100 pF.  
Fig.20 Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter.  
MBD124  
MBD117  
10  
15  
10  
5
5.5 V  
V
=
(%)  
f
CC  
f  
(%)  
4.5 V  
5
0
5
V
=
CC  
0
5.5 V  
5
10  
15  
4.5 V  
10  
20  
50  
0
50  
100  
T
150  
50  
0
50  
100  
T
150  
( C)  
o
o
( C)  
amb  
amb  
a.  
b.  
a. R1 = 300 k; R2 = ; C1 = 100 pF.  
b. R1 = ; R2 = 3 k; C1 = 100 pF.  
Fig.21 Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter.  
1999 Jan 11  
21  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD118  
MBD119  
8
10  
f
f
(%)  
(%)  
4
0
5
0
V
=
4
8
CC  
V
=
CC  
4.5 V  
5.5 V  
5
5.5 V  
4.5 V  
12  
10  
50  
0
50  
100  
T
150  
50  
0
50  
100  
150  
o
o
( C)  
T
( C)  
amb  
amb  
a.  
b.  
a. R1 = ; R2 = 10 k; C1 = 100 pF.  
b. R1 = ; R2 = 300 k; C1 = 100 pF.  
Fig.22 Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter.  
1999 Jan 11  
22  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD113  
MBD112  
30  
30  
f
f
VCO  
(kHz)  
VCO  
(MHz)  
V
=
CC  
4.5 V  
5.5 V  
20  
10  
0
20  
V
=
CC  
4.5 V  
10  
5.5 V  
0
0
2
4
6
0
2
4
6
V
(V)  
V
(V)  
VCOIN  
VCOIN  
a.  
b.  
MBD120 - 1  
MBD111 - 1  
800  
400  
handbook, halfpage  
handbook, halfpage  
f
f
VCO  
VCO  
(kHz)  
600  
(Hz)  
V
= 5.5 V  
CC  
V
= 5.5 V  
CC  
300  
4.5 V  
frequency  
4.5 V  
frequency  
400  
200  
200  
100  
0
0
0
0
2
4
6
2
4
6
V
(V)  
V
(V)  
VCOIN  
VCOIN  
d.  
c.  
a. R1 = 4.3 k; C1 = 39 pF.  
b. R1 = 4.3 k; C1 = 100 nF.  
c. R1 = 300 k; C1 = 39 pF.  
d. R1 = 300 k; C1 = 100 nF.  
Fig.23 Graphs showing VCO frequency as a function of the VCO input voltage (VVCOIN).  
1999 Jan 11  
23  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD114  
4
MGA937 - 1  
C1 = 1 µF  
4.5 V  
5.5 V  
f
f
VCO  
(%)  
f
2
C1 =  
39 pF  
0
f
c
f'  
c
4.5 V  
f
1
4
8
V
V
min  
max  
1/2V  
5.5 V  
CC  
V
VCOIN  
2
3
1
10  
10  
10  
R1 (k)  
f
1 + f2  
fc  
=
--------------  
2
fc fc  
linearity = --------------- × 100%  
fc  
R2 = and V = 0.5 V.  
Fig.24 Definition of VCO frequency linearity:  
Fig.25 Frequency linearity as a function of R1, C1  
and VCC  
V = 0.5 V over the VCC range.  
.
MBD110  
MBD121  
1
1
V
=
V
=
CC  
5.5 V  
CC  
5.5 V  
P
P
D
D
(W)  
(W)  
C1 = 39 pF  
C1 = 1 µF  
4.5 V  
C1 = 1 µF  
4.5 V  
C1 = 39 pF  
1
1
10  
10  
5.5 V  
C1 = 39 pF  
5.5 V  
4.5 V  
C1 = 1 µF  
4.5 V  
C1 = 39 pF  
2
2
10  
10  
0
100  
200  
300  
0
100  
200  
300  
R1 (k)  
R2 (k)  
R2 = .  
R1 = .  
Fig.26 Power dissipation as a function of  
component values.  
Fig.27 Power dissipation as a function of  
component values.  
1999 Jan 11  
24  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
APPLICATION INFORMATION  
This information is a guide for the approximation of values  
of external components to be used with the 74HCT9046A  
in a phase-locked-loop system.  
MBD109  
3
10  
P
DEM  
Values of the selected components should be within the  
rages shown in Table 2.  
(W)  
V
=
CC  
4.5 V  
5.5 V  
Table 2 Survey of components.  
4
10  
COMPONENT  
VALUE  
R1  
R2  
between 3 kand 300 kΩ  
between 3 kand 300 kΩ  
parallel value >2.7 kΩ  
>40 pF  
R1 + R2  
C1  
5
10  
2
3
10  
10  
10  
R
(k)  
s
Fig.28 Typical power dissipation.  
Table 3 Design considerations for VCO section.  
PHASE  
SUBJECT  
DESIGN CONSIDERATION  
VCO frequency characteristic  
COMPARATOR  
VCO frequency without  
extra offset  
With R2 = and R1 within the range 3 kΩ < R1 < 300 k, the  
characteristics of the VCO operation will be as shown in Fig.29a.  
(Due to R1, C1 time constant a small offset remains when R2 = ).  
PC1, PC2  
Selection of R1 and C1  
Given fc, determine the values of R1 and C1 using Fig.31.  
PC1  
PC2  
Given fmax and fc determine the values of R1 and C1 using Fig.31; use  
Fig.33 to obtain 2fL and then use this to calculate fmin  
.
VCO frequency  
VCO frequency characteristic  
with extra offset  
PC1, PC2  
PC1, PC2  
With R1 and R2 within the ranges 3 kΩ < R1 < 300 kΩ < R2 < 300 k,  
the characteristics of the VCO operation is as shown in Fig.29b.  
Selection of R1, R2 and C1  
Given fc and fL determine the value of product R1C1 by using Fig.33.  
Calculate foff from the equation foff = fc 1.6fL.  
Obtain the values of C1 and R2 by using Fig.32.  
Calculate the value of R1 from the value of C1 and the product R1C1.  
PLL conditions with no PC1  
VCO adjusts to fc with ΦPCIN = 90° and VVCOIN = 12VCC  
.
signal at the SIGIN input  
PC2  
VCO adjusts to foffset with ΦPCIN = 360° and VVCOIN = minimum.  
1999 Jan 11  
25  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MGA938 - 1  
f
VCO  
f
max  
f
c
2f  
due to  
R1,C1  
L
f
min  
1.1 V  
1/2V  
V
1.1 V  
VCO  
V
CC  
CC  
CC  
IN  
a.  
MGA939 - 1  
f
VCO  
f
max  
f
c
due to  
R1,C1  
2f  
L
f
min  
f
off  
0.6f  
L
due to  
R2,C1  
1.1 V  
1/2V  
V
1.1 V  
VCO  
V
CC  
CC  
CC  
IN  
b.  
a. Operating without offset; fc = centre frequency; 2fL = frequency lock range.  
b. Operating with offset; fc = centre frequency; 2fL = frequency lock range.  
Fig.29 Frequency characteristic of VCO.  
1999 Jan 11  
26  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Filter design considerations for PC1 and PC2 of the HCT9046A  
Figure 30 shows some examples of passive and active filters to be used with the phase comparators of the HCT9046A.  
Transfer functions of phase comparators and filters are given in Table 4.  
Table 4 Transfer functions of phase comparators and filters.  
PHASE  
COMPARATOR  
Fig.30 FILTER TYPE  
TRANSFER FUNCTION  
EXPLANATION  
PC1  
a.  
passive filter  
without  
damping  
1
V
F(jω)  
=
=
--------------------  
K PC1  
=
CCV r  
----------  
1 + jωτ1  
π
b.  
c.  
d.  
passive filter  
with damping  
τ1 = R3 × C2;  
τ2 = R4 × C2;  
τ3 = R4 × C3;  
A = 105 = DC gain amplitude  
1 + jωτ2  
---------------------------------------  
1 + jω (τ1 + τ2)  
F(jω)  
F (j ω )  
F (j ω )  
active filter  
with damping  
1 + jωτ2  
1 + jωτ2  
=
--------------------  
----------------------------  
jωτ1  
1 A + jωτ1  
PC2  
passive filter  
with damping  
1 + jωτ2  
5
1 + jωτ2  
K PC2  
=
V r  
------  
=
--------------------  
----------------------------  
4π  
jωτ1  
1 A + jωτ1  
τ1 = R3' × C2;  
τ2 = R4 × C2;  
τ3 = R4 × C3;  
R3' = Rb/17;  
A = 105 = limit DC gain  
e.  
active filter  
with damping  
1 + jωτ2  
1 + jωτ2  
F(jω)  
=
----------------------------  
--------------------  
jωτ1  
1 A + jωτ1  
Rb = 25 to 250 kΩ  
A = 105 = DC gain amplitude  
1999 Jan 11  
27  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
AMPLITUDE  
CHARACTERISTIC  
POLE ZERO  
DIAGRAM  
PC1  
CIRCUIT  
F
(jω)  
R3  
X
1/  
τ
1
1/τ  
C2  
1
a.  
F
(jω)  
R3  
1/τ  
1/τ  
3
2
O
X
1
C3  
R4  
1/ τ  
2
1/ τ  
τ
2
τ
τ
2
1
1
C2  
b.  
A
C3  
1/τ  
1/τ  
2
3
C2  
1/A τ  
X
O
1
R4  
1/τ  
2
1/A τ  
R3  
1
A
c.  
PC2  
A
R3'  
1/τ  
1/τ  
3
2
O
X 1/ Aτ  
1
R4  
C2  
AR3'  
1/τ  
2
1/Aτ  
1
d.  
A
C3  
R4  
1/τ  
1/τ  
3
2
C2  
O
X 1/ Aτ  
1
1/τ  
2
1/Aτ  
R3'  
1
A
MBD107 - 1  
e.  
Fig.30 Passive and active filters for HCT9046A.  
28  
1999 Jan 11  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
General design consideration.  
PHASE  
SUBJECT  
DESIGN CONSIDERATION  
COMPARATOR  
PLL locks on harmonics at  
centre frequency  
PC1  
PC2  
PC1  
PC2  
PC1  
PC2  
yes  
no  
high  
low  
Noise rejection at signal  
input  
fr = 2fi; large ripple content at ΦPCIN = 90°  
fr = fi; small ripple content at ΦPCIN = 0°  
AC ripple content when PLL  
is locked  
1999 Jan 11  
29  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD103 - 1  
8
10  
f
c
(Hz)  
R1 = 3 kΩ  
7
10  
R1 = 10 kΩ  
6
5
4
10  
10  
10  
R1 = 150 kΩ  
R1 = 300 kΩ  
V
=
CC  
5.5 V  
4.5 V  
3
10  
10  
5.5 V  
4.5 V  
2
5.5 V  
4.5 V  
5.5 V  
4.5 V  
10  
3
4
5
6
7
2
1
10  
10  
10  
10  
10  
10  
10  
C1 (pF)  
R2 = ; VVCOIN  
=
12VCC; INH = GND; Tamb = 25 °C.  
Fig.31 Typical value of VCO centre frequency (fc) as a function of C1.  
1999 Jan 11  
30  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD104  
8
10  
f
off  
(Hz)  
R2 = 3 kΩ  
7
10  
R2 = 10 kΩ  
6
5
4
10  
10  
10  
R2 = 150 kΩ  
R2 = 300 kΩ  
V
=
CC  
4.5 V - 5.5 V  
3
10  
10  
4.5 V - 5.5 V  
2
4.5 V - 5.5 V  
4.5 V - 5.5 V  
10  
2
3
4
5
6
7
1
10  
10  
10  
10  
10  
10  
10  
C1 (pF)  
R1 = ; VVCOIN  
=
12VCC; INH = GND; Tamb = 25 °C.  
Fig.32 Typical value of frequency offset as a function of C1.  
1999 Jan 11  
31  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
MBD105 - 1  
8
10  
2f  
L
(Hz)  
7
10  
6
10  
5
10  
4
10  
3
10  
2
10  
V
=
CC  
5.5 V  
4.5 V  
10  
10  
7
6
5
4
3
2
1
10  
10  
10  
10  
10  
10  
1
R1C1 (s)  
2fL  
Kv = ------------------------------------ 2 π (r s V)  
VVCOINrange  
VVCOIN = 1.1 to (VCC 1.1) V.  
Fig.33 Typical frequency lock range 2fL as a function of the product R1 and C1.  
1999 Jan 11  
32  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
seen that the damping ratio ζ = 0.707  
will produce an overshoot of less than  
20% and settle to within 5% at ωnt = 5.  
PLL design example  
The gain of the phase comparator  
PC2 is:  
The frequency synthesizer used in  
the design example shown in Fig.34  
has the following parameters:  
5
Kp  
=
= 0.4V r  
------------  
4 × π  
The required settling time is 1 ms.  
This results in:  
Output frequency: 2 MHz to 3 MHz.  
Frequency steps: 100 kHz.  
Settling time: 1 ms.  
Using PC2 with the passive filter as  
shown in Fig.34 results in a high gain  
loop with the same performance as a  
loop with an active filter. Hence loop  
filter equations as for a high gain loop  
should be used. The current source  
output of PC2 can be simulated then  
with a fictive filter resistance:  
= 5 × 103r s  
5
--  
t
5
ωn  
=
=
--------------  
0.001  
Rewriting the equation for natural  
frequency results in:  
Overshoot: <20%.  
Kp × Kv × Kn  
The open loop gain is:  
H (s) × G (s) = Kp × Kf × Ko × Kn  
τ1  
=
-------------------------------  
n) 2  
and the closed loop:  
Φu  
K p × K f × K o × K n  
Rb  
The maximum overshoot occurs at  
max = 30; hence Kn = 130:  
=
------  
-----------------------------------------------------  
R3' =  
------  
Φi  
1 + Kp × Kf × Ko × Kn  
17  
N
where:  
0.4 × 2.24 × 106  
Kp = phase comparator gain  
Kf = low-pass filter transfer gain  
Ko = Kv/s VCO gain  
The transfer functions of the filter is  
given by:  
τ 1  
=
= 0.0012  
-----------------------------------------  
50002 × 30  
1 + sτ2  
K f =  
-----------------  
When C2 = 470 nF, it follows:  
sτ2  
Kn = 1n divider ratio.  
τ1  
0.0012  
470 × 109  
R3' =  
=
= 2550  
---------------------------  
-------  
C2  
Where:  
τ1 = R3' × C2.  
The programmable counter ratio Kn  
can be found as follows:  
Hence the current source bias  
resistance Rb = 17 × 2550 = 43 k.  
fOUT  
2 MHz  
---------------------  
100 kHz  
τ2 = R4 × C2.  
N min  
=
=
= 20  
= 30  
-----------  
fstep  
The characteristic equation is:  
1 + Kp × Kf × Ko × Kn  
With ζ = 0.707 (0.5 × τ2 × ωn) it  
follows:  
fOUT  
3 MHz  
---------------------  
100 kHz  
Nmax  
=
=
-----------  
fstep  
This results in:  
0.707  
0.5 × 5000  
τ2  
=
= 0.00028  
---------------------------  
1 + sτ2  
K
1 + Kp  
vK = 0  
----------------- -----  
The VCO is set by the values of R1,  
R2 and C1; R2 = 10 k(adjustable).  
n
sτ1  
s
τ2  
0.00028  
470 × 109  
R4 =  
=
= 600 Ω  
---------------------------  
-------  
C2  
or:  
The values can be determined using  
the information in Table 3.  
τ
s 2 + sKpKvK 2 + K K K ⁄ τ = 0  
----  
For extra ripple suppression a  
capacitor C3 can be connected in  
parallel with R4, with an extra  
τ3 = R4 × C3.  
nτ1  
p
v
n
1
With fc = 2.5 MHz and fL = 500 kHz  
this gives the following values  
(VCC = 5.0 V):  
This can be written as:  
s2 + 2ζ ωns + (ωn) 2 = 0  
R1 = 30 k.  
R2 = 30 k.  
C1 = 100 pF.  
For stability reasons τ3 should be  
<0.1τ2, hence C3 < 0.1C2, or  
C3 = 39 nF.  
with the natural frequency ωn defined  
Kp × Kv × Kn  
as: ωn  
=
------------------------------- and the  
τ1  
The VCO gain is:  
damping value given as:  
2fL × 2π  
Kv  
=
=
----------------------------------------------  
ζ = 0.5 × τ2 × ωn  
(VCC 1.1) 1.1  
6
1 MHz  
----------------  
2.8  
× 2 π ≈ 2.24 × 10 r s V  
In Fig.35 the output frequency  
response to a step of input frequency  
is shown.  
The overshoot and settling time  
percentages are now used to  
determine ωn. From Fig.35 it can be  
1999 Jan 11  
33  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
K
K
K
o
p
f
100 kHz  
PHASE  
COMPARATOR  
PC2  
R3'  
4
13  
9
OSCILLATOR  
"HCU04"  
DIVIDE BY 10  
"190"  
14  
f
VCO  
12  
OUT  
(1)  
3
R4  
C2  
15  
R
11  
6
7
5
C3  
Φ
u
b
R1 R2  
K
n
1 MHz  
C1  
PROGRAMMABLE  
DIVIDER  
MBD098  
"4059"  
R1 = 30 k.  
R2 = 30 k.  
C1 = 100 pF.  
R3' = 2550 .  
Rb = 43 k.  
R4 = 600 .  
C2 = 470 nF.  
C3 = 39 nF.  
(1) R3' = fictive resistance  
Rb  
R3' =  
------  
17  
Fig.34 Frequency synthesizer.  
MGA959  
1.6  
0.6  
= 0.3  
0.5  
0.707  
1.0  
ζ
1.4  
1.2  
0.4  
0.2  
0
(t)  
(t)  
∆ Φ  
e
∆ ω  
e
∆ ω /ω  
∆ Φ /ω  
n
e
n
e
= 5.0  
ζ
1.0  
0.8  
= 2.0  
ζ
0.2  
0.6  
0.4  
0.2  
0.4  
0.6  
0.8  
0
1.0  
0
1
2
3
4
5
6
7
8
ω
t
n
Fig.35 Type 2, second order frequency step response.  
34  
1999 Jan 11  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Since the output frequency is proportional to the VCO  
control voltage, the PLL frequency response can be  
observed with an oscilloscope by monitoring pin 9 of the  
VCO. The average frequency response, as calculated by  
the Laplace method, is found experimentally by smoothing  
this voltage at pin 9 with a simple RC filter, whose time  
constant is long compared with the phase detector  
sampling rate but short compared with the PLL response  
time.  
MGA952  
3.1  
proportional  
to output  
frequency  
(MHz)  
N = 30  
3.0  
N stepped from 29 to 30  
2.9  
Further information  
step input  
For an extensive description and application example  
please refer to “Application note” ordering number  
9398 649 90011. Also available a “Computer design  
program for PLLs” ordering number 9398 961 10061.  
2.1  
N stepped from 21 to 20  
2.0  
1.9  
0
0.5  
1.0  
1.5  
2.0  
2.5  
time (ms)  
Fig.36 Frequency compared to the time response.  
1999 Jan 11  
35  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
1999 Jan 11  
36  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-23  
97-05-22  
SOT109-1  
076E07S  
MS-012AC  
1999 Jan 11  
37  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
SOLDERING  
Introduction  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Through-hole mount packages  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Surface mount packages  
REFLOW SOLDERING  
MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Jan 11  
38  
Philips Semiconductors  
Product specification  
PLL with bandgap controlled VCO  
74HCT9046A  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
suitable(2)  
not suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(3)  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable  
Surface mount  
BGA, SQFP  
suitable  
suitable  
suitable  
suitable  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(4)(5)  
not recommended(6)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Jan 11  
39  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA61  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
245002/00/03/pp40  
Date of release: 1999 Jan 11  
Document order number: 9397 750 05007  

相关型号:

HCTA-CC

Create Your Own Rework System
OKI

HCTA-NW1

Create Your Own Rework System
OKI

HCTA-TH1

Create Your Own Rework System
OKI

HCTA-VC11-5

Create Your Own Rework System
OKI

HCTA-VC50-5

Create Your Own Rework System
OKI

HCTA-VC64-5

Create Your Own Rework System
OKI

HCTA-VC80-5

Create Your Own Rework System
OKI

HCTF

High Current Thermal Fuse
VISHAY

HCTFCP

Suitable for insert assembly systems
VISHAY

HCTI-10-20.0

High Current Toroidal Inductors
BEL

HCTI-100-7.0

High Current Toroidal Inductors
BEL

HCTI-1000-2.4

High Current Toroidal Inductors
BEL