EM773 [NXP]

Energy metering IC; up to 32 kB flash and 8 kB SRAM; 电能计量IC ;高达32 KB的闪存和8 KB的SRAM
EM773
型号: EM773
厂家: NXP    NXP
描述:

Energy metering IC; up to 32 kB flash and 8 kB SRAM
电能计量IC ;高达32 KB的闪存和8 KB的SRAM

闪存 静态存储器
文件: 总51页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM773  
Energy metering IC; up to 32 kB flash and 8 kB SRAM  
Rev. 2 — 3 January 2012  
Product data sheet  
1. General description  
The EM773 is an ARM Cortex-M0 based, low-cost 32-bit energy metering IC, designed for  
8/16-bit smart metering applications. The EM773 offers programmability and on-chip  
metrology functionality combined with a low power, simple instruction set and memory  
addressing with reduced code size compared to existing 8/16-bit architectures.  
The EM773 operates at CPU frequencies of up to 48 MHz.  
The peripheral complement of the EM773 includes up to 32 kB of flash memory, up to  
8 kB of data memory, one Fast-mode Plus I2C-bus interface, one RS-485/EIA-485 UART,  
one SPI interface with SSP features, three general purpose counter/timers, up to 25  
general purpose I/O pins, and a metrology engine for energy measurement.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 48 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug.  
System tick timer.  
Memory:  
32 kB on-chip flash programming memory.  
8 kB SRAM.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Digital peripherals:  
Up to 25 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors, and a configurable open-drain mode.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
High-current output driver (20 mA) on one pin.  
High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus.  
Three general purpose counter/timers with a total of two capture inputs and 10  
match outputs.  
Programmable Windowed WatchDog Timer (WWDT).  
Analog peripherals:  
Metrology Engine for Smart Metering with two current inputs and a voltage input.  
EM773  
NXP Semiconductors  
Energy metering IC  
Serial interfaces:  
UART with fractional baud rate generation, internal FIFO, and RS-485 support.  
One SPI controller with SSP features and with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used  
as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, CPU clock, and the Watchdog clock.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, and Deep power-down modes.  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Processor wake-up from Deep-sleep mode via a dedicated start logic using up to  
13 of the functional pins.  
Power-On Reset (POR).  
Brownout detect with four separate thresholds for interrupt and forced reset.  
Unique device serial number for identification.  
Single 3.3 V power supply (1.8 V to 3.6 V).  
Available as 33-pin HVQFN33 package.  
3. Applications  
Smart Metering  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
2 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
EM773FHN33  
HVQFN33  
HVQFN: plastic thermal enhanced very thin quad flat package; no  
n/a  
leads; 33 terminals; body 7 7 0.85 mm  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
3 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
5. Block diagram  
XTALIN  
XTALOUT  
SWD  
RESET  
EM773  
IRC  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
TEST/DEBUG  
INTERFACE  
POR  
FUNCTIONS  
ARM  
CORTEX-M0  
clocks and  
controls  
FLASH  
32 kB  
SRAM  
8 kB  
ROM  
system bus  
slave  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
GPIO ports  
PIO0/1/2/3  
AHB-LITE BUS  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
DTR, CTS, RTS  
I_LOWGAIN  
I_HIGHGAIN  
VOLTAGE  
UART  
METROLOGY ENGINE  
SPI0  
SCK0, SSEL0  
MISO0, MOSI0  
CT32B0_MAT[2:0]  
CT32B0_CAP0  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
SCL  
SDA  
2
CT32B1_MAT[3:0]  
I C-BUS  
CT16B0_MAT[2:0]  
CT16B0_CAP0  
WDT  
IOCONFIG  
SYSTEM CONTROL  
PMU  
002aag726  
Fig 1. EM773 block diagram  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
4 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO2_0/DTR  
RESET/PIO0_0  
R/PIO1_2/CT32B1_MAT1  
R/PIO1_1/CT32B1_MAT0  
VOLTAGE  
PIO0_1/CLKOUT/CT32B0_MAT2  
XTALIN  
I_HIGHGAIN  
XTALOUT  
I_LOWGAIN  
V
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
DD  
PIO1_8  
33 V  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
002aag727  
Transparent top view  
Fig 2. Pin configuration HVQFN 33 package  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
5 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
6.2 Pin description  
Table 2.  
Symbol  
EM773 pin description table  
Pin  
Start  
logic  
input  
Type  
Reset  
state  
[1]  
Description  
PIO0_0 to PIO0_10  
RESET/PIO0_0  
I/O  
Port 0 — Port 0 is a 12-bit I/O port with individual  
direction and function controls for each bit. The  
operation of port 0 pins depends on the function  
selected through the IOCONFIG register block. Pin  
PIO0_11 is not available.  
2[2]  
yes  
I
I;PU  
RESET — External reset input with 20 ns glitch filter. A  
LOW-going pulse as short as 50 ns on this pin resets  
the device, causing I/O ports and peripherals to take on  
their default states, and processor execution to begin at  
address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin.  
PIO0_1/CLKOUT/  
CT32B0_MAT2  
3[3]  
yes  
yes  
I;PU  
PIO0_1 — General purpose digital input/output pin. A  
LOW level on this pin during reset starts the ISP  
command handler.  
O
-
CLKOUT — Clock out pin.  
O
-
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO0_2 — General purpose digital input/output pin.  
SSEL0 — Slave select for SPI0.  
PIO0_2/SSEL0/  
CT16B0_CAP0  
8[3]  
I/O  
I/O  
I
I;PU  
-
-
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3 — General purpose digital input/output pin.  
PIO0_3  
9[3]  
10[4]  
yes  
yes  
I/O  
I/O  
I;PU  
IA  
PIO0_4/SCL  
PIO0_4 — General purpose digital input/output pin  
(open-drain).  
I/O  
-
SCL — I2C-bus, open-drain clock input/output.  
High-current sink only if I2C Fast-mode Plus is selected  
in the I/O configuration register.  
PIO0_5/SDA  
11[4]  
yes  
I/O  
I/O  
IA  
-
PIO0_5 — General purpose digital input/output pin  
(open-drain).  
SDA — I2C-bus, open-drain data input/output.  
High-current sink only if I2C Fast-mode Plus is selected  
in the I/O configuration register.  
PIO0_6/SCK0  
PIO0_7/CTS  
15[3]  
16[3]  
yes  
yes  
I/O  
I/O  
I/O  
I;PU  
-
PIO0_6 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
I;PU  
PIO0_7 — General purpose digital input/output pin  
(high-current output driver).  
I
-
CTS — Clear To Send input for UART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
17[3]  
yes  
yes  
I/O  
I/O  
O
I;PU  
PIO0_8 — General purpose digital input/output pin.  
MISO0 — Master In Slave Out for SPI0.  
-
-
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9 — General purpose digital input/output pin.  
MOSI0 — Master Out Slave In for SPI0.  
PIO0_9/MOSI0/  
CT16B0_MAT1  
18[3]  
I/O  
I/O  
O
I;PU  
-
-
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
6 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 2.  
Symbol  
EM773 pin description table …continued  
Pin  
Start  
logic  
input  
Type  
Reset  
state  
[1]  
Description  
SWCLK/PIO0_10/SCK0/  
CT16B0_MAT2  
19[3]  
yes  
I
I;PU  
SWCLK — Serial wire clock.  
I/O  
I/O  
O
I
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
-
-
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
I_HIGHGAIN  
21[5]  
no  
I;PU  
I_HIGHGAIN — High gain current input for metrology  
engine.  
PIO1_1 to PIO1_9;  
PIO1_11  
I/O  
Port 1 — Port 1 is a 12-bit I/O port with individual  
direction and function controls for each bit. The  
operation of port 1 pins depends on the function  
selected through the IOCONFIG register block. Pins  
PIO1_0 and PIO1_10 are not available.  
VOLTAGE  
22[5]  
23[5]  
no  
no  
I
I;PU  
I;PU  
VOLTAGE — Voltage input for the metrology engine.  
R/PIO1_1/  
O
R — Reserved. Configure for an alternate function in  
CT32B1_MAT0  
the IOCONFIG block.  
I/O  
O
I
-
PIO1_1 — General purpose digital input/output pin.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
-
R/PIO1_2/  
24[5]  
no  
I;PU  
R — Reserved. Configure for an alternate function in  
CT32B1_MAT1  
the IOCONFIG block.  
I/O  
O
-
PIO1_2 — General purpose digital input/output pin.  
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO — Serial wire debug input/output.  
-
SWDIO/PIO1_3/  
CT32B1_MAT2  
25[5]  
no  
no  
I/O  
I/O  
O
I;PU  
-
PIO1_3 — General purpose digital input/output pin.  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4 — General purpose digital input/output pin.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
-
PIO1_4/  
26  
I/O  
O
I;PU  
CT32B1_MAT3/WAKEUP  
-
-
I
WAKEUP — Deep power-down mode wake-up pin with  
20 ns glitch filter. This pin must be pulled HIGH  
externally to enter Deep power-down mode and pulled  
LOW to exit Deep power-down mode. A LOW-going  
pulse as short as 50 ns wakes up the part.  
PIO1_5/RTS/  
CT32B0_CAP0  
30[3]  
31[3]  
32[3]  
no  
no  
no  
I/O  
O
I;PU  
PIO1_5 — General purpose digital input/output pin.  
RTS — Request To Send output for UART.  
-
I
-
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6 — General purpose digital input/output pin.  
RXD — Receiver input for UART.  
PIO1_6/RXD/  
CT32B0_MAT0  
I/O  
I
I;PU  
-
O
-
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_7 — General purpose digital input/output pin.  
TXD — Transmitter output for UART.  
PIO1_7/TXD/  
CT32B0_MAT1  
I/O  
O
I;PU  
-
O
-
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8 — General purpose digital input/output pin.  
PIO1_9 — General purpose digital input/output pin.  
PIO1_8  
7[3]  
12[3]  
20  
no  
no  
no  
I/O  
I/O  
I
I;PU  
I;PU  
I;PU  
PIO1_9  
I_LOWGAIN  
I_LOWGAIN — Low gain current input for metrology  
engine.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
7 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 2.  
Symbol  
EM773 pin description table …continued  
Pin  
Start  
logic  
input  
Type  
Reset  
state  
[1]  
Description  
PIO1_11  
PIO2_0  
27  
no  
I/O  
I/O  
I;PU  
PIO1_11 — General purpose digital input/output pin.  
Port 2 — Port 2 is a 12-bit I/O port with individual  
direction and function controls for each bit. The  
operation of port 2 pins depends on the function  
selected through the IOCONFIG register block. Pins  
PIO2_1 to PIO2_11 are not available.  
PIO2_0/DTR  
1[3]  
no  
no  
I/O  
O
I;PU  
-
PIO2_0 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for UART.  
PIO3_0 to PIO3_5  
I/O  
Port 3 — Port 3 is a 12-bit I/O port with individual  
direction and function controls for each bit. The  
operation of port 3 pins depends on the function  
selected through the IOCONFIG register block. Pins  
PIO3_0, PIO3_1, PIO3_3 and PIO3_6 to PIO3_11 are  
not available.  
PIO3_2  
PIO3_4  
PIO3_5  
VDD  
28[3]  
13[3]  
14[3]  
6; 29  
no  
no  
no  
-
I/O  
I/O  
I/O  
I
I;PU  
I;PU  
I;PU  
-
PIO3_2 — General purpose digital input/output pin.  
PIO3_4 — General purpose digital input/output pin.  
PIO3_5 — General purpose digital input/output pin.  
3.3 V supply voltage to the internal regulator, the  
external rail, and the metrology engine.  
XTALIN  
4[6]  
-
I
-
Input to the oscillator circuit and internal clock generator  
circuits. Input voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
5[6]  
33  
-
-
O
-
-
-
Output from the oscillator amplifier.  
Thermal pad. Connect to ground.  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; (pins pulled up to full VDD level ); IA = inactive,  
no pull-up/down enabled.  
[2] See Figure 25 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to  
reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down  
mode. Pin is 5 V tolerant.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 24).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a analog input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 24).  
[6] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
8 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The EM773 contains 32 kB of on-chip flash memory.  
7.3 On-chip SRAM  
The EM773 contains a total of 8 kB on-chip static RAM memory.  
7.4 Memory map  
The EM773 incorporates several distinct memory regions, shown in the following figure.  
Figure 3 shows the overall map of the entire address space from the user program  
viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128  
peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32  
peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows  
simplifying the address decoding for each peripheral.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
9 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
AHB peripherals  
16-127 reserved  
EM773  
0x5020 0000  
4 GB  
0xFFFF FFFF  
reserved  
0x5004 0000  
0x5003 0000  
0x5002 0000  
GPIO PIO3  
GPIO PIO2  
GPIO PIO1  
GPIO PIO0  
12-15  
8-11  
4-7  
0x5020 0000  
0x5000 0000  
AHB peripherals  
reserved  
0x5001 0000  
0x5000 0000  
0-3  
APB peripherals  
31 - 19 reserved  
0x4008 0000  
0x4008 0000  
0x4000 0000  
APB peripherals  
reserved  
1 GB  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
system control  
IOCONFIG  
18  
17  
SPI0  
16  
15  
flash controller  
0x4003 C000  
0x4003 8000  
0x2000 0000  
0.5 GB  
14  
PMU  
reserved  
0x1FFF 4000  
0x1FFF 0000  
16 kB boot ROM  
reserved  
13 - 7 reserved  
0x4001 C000  
0x4001 8000  
0x1000 2000  
0x1000 0000  
32-bit counter/timer 1  
32-bit counter/timer 0  
reserved  
8 kB SRAM  
6
5
4
3
2
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
16-bit counter/timer 0  
UART  
reserved  
WDT  
1
0
0x4000 4000  
0x4000 0000  
2
0x0000 8000  
0x0000 0000  
I C-bus  
32 kB on-chip flash  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
0 GB  
002aag728  
Fig 3. EM773 memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
In the EM773, the NVIC supports 32 vectored interrupts including up to 13 inputs to  
the start logic from individual GPIO pins.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
10 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 25 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, or rising edge or falling edge, or both.  
7.6 IOCONFIG block  
The IOCONFIG block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
The EM773 uses accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of up to 25 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.7.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with pull-ups enabled after reset with the exception of the  
I2C-bus pins PIO0_4 and PIO0_5.  
Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG  
block for each GPIO pin (except for pins PIO0_4 and PIO0_5).  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled in the IOCONFIG block.  
Programmable open-drain mode.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
11 of 51  
EM773  
NXP Semiconductors  
7.8 UART  
Energy metering IC  
The EM773 contains one UART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.8.1 Features  
Maximum UART data bit rate of 3.125 MBit/s.  
16 Byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
7.9 SPI serial I/O controller  
The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SPI supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.9.1 Features  
Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.10 I2C-bus serial I/O controller  
The EM773 contains one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
12 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.10.1 Features  
The I2C-interface is a standard I2C-bus compliant interface with open-drain pins. The  
I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.11 Metrology engine  
The EM773 contains a metrology engine designed to collect voltage and current inputs to  
calculate the active power, reactive power, apparent power and power factor of a load.  
The purpose of the metrology engine is for non-billing applications such as plug meters,  
smart appliances, industrial and consumer sub-meters, etc.  
7.11.1 Features  
1 % accurate for scalable input sources up to 230 V/50 Hz/16 A and  
110 V/60 Hz/20 A while maintaining this accuracy with a factor of 1 to 400 down from  
this maximum current.  
Automatically calculates active power in W, reactive power in VAr, apparent power in  
VA, power factor ratio, Vrms and Irms without ARM CPU intervention.  
Standard API for initializing, starting, stopping and reading data from the metrology  
engine using the ARM Cortex M0.  
7.12 General purpose external event counter/timers  
The EM773 includes two 32-bit counter/timers and one 16-bit counter/timer. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.12.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
13 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.13 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.14 Windowed WatchDog Timer  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.14.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). This gives a wide range of potential timing choices of  
watchdog operation under different power conditions.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
14 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
7.15 Clocking and power control  
7.15.1 Crystal oscillators  
The EM773 includes three independent oscillators. These are the system oscillator, the  
Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for  
more than one purpose as required in a particular application.  
Following reset, the EM773 will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
See Figure 4 for an overview of the EM773 clock generation.  
AHB clock 0  
(system)  
system clock  
SYSTEM CLOCK  
DIVIDER  
18  
AHB clocks 1 to 18  
(memories  
and peripherals)  
SYSAHBCLKCTRL[1:18]  
(AHB clock enable)  
SPI0 PERIPHERAL  
SPI0  
CLOCK DIVIDER  
IRC oscillator  
main clock  
UART PERIPHERAL  
UART  
CLOCK DIVIDER  
watchdog oscillator  
IRC oscillator  
WDT CLOCK  
WDT  
MAINCLKSEL  
DIVIDER  
(main clock select)  
watchdog oscillator  
WDTUEN  
(WDT clock update enable)  
IRC oscillator  
SYSTEM PLL  
system oscillator  
IRC oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
system oscillator  
watchdog oscillator  
CLKOUT pin  
SYSPLLCLKSEL  
(system PLL clock select)  
CLKOUTUEN  
(CLKOUT update enable)  
002aag729  
Fig 4. EM773 clock generation block diagram  
7.15.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the EM773 uses the IRC as the clock source. Software  
may later switch to one of the other available clock sources.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
15 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
7.15.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
7.15.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 %.  
7.15.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The PLL  
output frequency must be lower than 100 MHz. The output divider may be set to divide by  
2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.15.3 Clock output  
The EM773 features a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.15.4 Wake-up process  
The EM773 begin operation at power-up and when awakened from Deep power-down  
mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation  
to resume quickly. If the system oscillator or the PLL is needed by the application,  
software will need to enable these features and wait for them to stabilize before they are  
used as a clock source.  
7.15.5 Power control  
The EM773 support a variety of power control features. There are three special modes of  
processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down mode.  
The CPU clock rate may also be controlled as needed by changing clock sources,  
reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a  
trade-off of power versus processing speed based on application requirements. In  
addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
16 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
7.15.5.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
EM773 for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
7.15.5.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.15.5.3 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the watchdog oscillator and the  
BOD circuit running for self-timed wake-up and BOD protection. Deep-sleep mode allows  
for additional power savings.  
Up to 13 pins total serve as external wake-up pins to the start logic to wake up the chip  
from Deep-sleep mode.  
Unless the watchdog oscillator is selected to run in Deep-sleep mode, the clock source  
should be switched to IRC before entering Deep-sleep mode, because the IRC can be  
switched on and off glitch-free.  
7.15.5.4 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
WAKEUP pin. The EM773 can wake up from Deep power-down mode via the WAKEUP  
pin.  
A LOW-going pulse as short as 50 ns wakes up the part from Deep power-down mode.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
17 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
7.16 System control  
7.16.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 2 as input to the start logic has an individual interrupt in the NVIC interrupt  
vector table. The start logic pins can serve as external interrupt pins when the chip is  
running. In addition, an input signal on the start logic pins can wake up the chip from  
Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.16.2 Reset  
Reset has four sources on the EM773: the RESET pin, the Watchdog reset, Power-On  
Reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
An external pull-up resistor is required on the RESET pin if Deep power-down mode is  
used.  
7.16.3 Brownout detection  
The EM773 includes four levels for monitoring the voltage on the VDD pin. If this voltage  
falls below one of the four selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
in order to cause a CPU interrupt; if not, software can monitor the signal by reading a  
dedicated status register. Four additional threshold levels can be selected to cause a  
forced reset of the chip.  
7.16.4 Code security (Code Read Protection - CRP)  
This feature of the EM773 allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and  
In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the EM773 user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors can  
not be erased.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
18 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the UART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details see the EM773 user manual.  
7.16.5 APB interface  
The APB peripherals are located on one APB bus.  
7.16.6 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.16.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.16.1).  
7.17 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four  
breakpoints and two watchpoints is supported.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
19 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
8. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
1.8  
Max  
3.6  
Unit  
V
supply voltage (core and external rail)  
input voltage  
[2]  
VI  
5 V tolerant I/O  
pins; only valid  
when the VDD  
supply voltage is  
present  
0.5  
+5.5  
V
[3]  
[3]  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD) < VI <  
(1.5VDD);  
Tj < 125 C  
[4]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per package)  
-
-
based on package  
heat transfer, not  
device power  
consumption  
[5]  
VESD  
electrostatic discharge voltage  
human body  
6500  
+6500  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
20 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
9. Static characteristics  
Table 4.  
Static characteristics  
T
amb = 40 C to +85 C, unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
Power consumption in low-current mode[10]  
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
system clock = 12 MHz  
[2][3][4]  
[5][6]  
-
-
-
2
7
1
-
-
-
mA  
mA  
mA  
V
DD = 3.3 V  
system clock = 50 MHz  
DD = 3.3 V  
[2][3][5]  
[6][7]  
V
[2][3][4]  
[5][6]  
Sleep mode;  
system clock = 12 MHz  
VDD = 3.3 V  
[2][3][8]  
[2][9]  
Deep-sleep mode;  
VDD = 3.3 V  
-
-
2
-
-
A  
Deep power-down mode;  
220  
nA  
VDD = 3.3 V  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[11][12]  
[13]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
-
0.4  
-
-
-
HIGH-level output  
voltage  
2.0 V VDD 3.6 V;  
IOH = 4 mA  
VDD 0.4  
1.8 V VDD < 2.0 V;  
IOH = 3 mA  
VDD 0.4  
-
-
-
-
V
V
V
VOL  
LOW-level output  
voltage  
2.0 V VDD 3.6 V;  
IOL = 4 mA  
-
-
0.4  
0.4  
1.8 V VDD < 2.0 V;  
IOL = 3 mA  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
21 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 4.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VOL = 0.4 V  
4  
-
-
mA  
3  
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
4
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
[14]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
High-drive output pin (PIO0_7)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[11][12]  
[13]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
0.4  
-
-
HIGH-level output  
voltage  
2.5 V VDD 3.6 V;  
VDD 0.4  
I
OH = 20 mA  
1.8 V VDD < 2.5 V;  
IOH = 12 mA  
VDD 0.4  
-
-
-
-
-
-
V
VOL  
LOW-level output  
voltage  
2.0 V VDD 3.6 V;  
IOL = 4 mA  
-
0.4  
0.4  
-
V
1.8 V VDD < 2.0 V;  
IOL = 3 mA  
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
20  
12  
mA  
mA  
1.8 V VDD < 2.5 V  
-
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
22 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 4.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
4
-
-
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard  
mode pins  
3.5  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode  
Plus pins  
20  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VI = VDD  
16  
-
-
-
[15]  
ILI  
input leakage current  
2
4
A  
A  
VI = 5 V  
-
10  
22  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
23 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 4.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Oscillator pins  
Vi(xtal)  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] Tamb = 25 C.  
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; system oscillator disabled; system PLL disabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SPI0 disabled in system configuration block.  
[7] IRC disabled; system oscillator enabled; system PLL enabled.  
[8] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[9] WAKEUP pin pulled HIGH externally.  
[10] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[11] Including voltage on outputs in 3-state mode.  
[12] VDD supply voltage must be present.  
[13] 3-state outputs go into 3-state mode in Deep power-down mode.  
[14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[15] To VSS  
.
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
24 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
9.1 BOD static characteristics  
Table 5.  
BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 0  
assertion  
-
-
1.65  
1.80  
-
-
V
V
de-assertion  
interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see EM773  
user manual.  
9.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see EM773 user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
25 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
002aaf980  
10  
I
DD  
(mA)  
8
6
4
2
0
(2)  
(2)  
48 MHz  
36 MHz  
(2)  
(1)  
24 MHz  
12 MHz  
1.8  
2.4  
3.0  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all peripherals  
disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks  
disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 5. Active mode: Typical supply current IDD versus supply voltage VDD for different  
system clock frequencies  
002aaf981  
10  
I
DD  
(mA)  
8
6
4
2
0
(2)  
(2)  
48 MHz  
36 MHz  
(2)  
(1)  
24 MHz  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all peripherals  
disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks  
disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 6. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
26 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
002aaf982  
6
4
2
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
(2)  
(1)  
36 MHz  
24 MHz  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 7. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
27 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
002aaf977  
5.5  
I
DD  
(μA)  
4.5  
3.5  
2.5  
1.5  
V
= 3.3 V, 3.6 V  
1.8 V  
DD  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 8. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
002aaf978  
0.8  
I
DD  
(μA)  
V
DD  
= 3.6 V  
3.3 V  
0.6  
1.8 V  
0.4  
0.2  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 9. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
28 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
9.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
Table 6.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.27  
-
-
-
-
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator 0.22  
at 12 MHz  
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.004  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.051  
-
-
Independent of main clock frequency.  
Main PLL  
CLKOUT  
-
-
0.21  
0.12  
-
0.47  
Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.02  
0.02  
0.02  
0.02  
0.23  
0.06  
0.06  
0.07  
0.06  
0.88  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCONFIG  
I2C  
-
-
-
-
-
-
0.03  
0.04  
0.04  
0.12  
0.22  
0.02  
0.10  
0.13  
0.15  
0.45  
0.82  
0.06  
ROM  
SPI0  
UART  
WDT  
Main clock selected as clock source for the  
WDT.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
29 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
9.4 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 10. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 11. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
30 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.  
Fig 12. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 13. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
31 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 14. Typical pull-up current Ipu versus input voltage VI  
002aae989  
80  
T = 85 °C  
I
pd  
25 °C  
(μA)  
40 °C  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 15. Typical pull-down current Ipd versus input voltage VI  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
32 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
10. Dynamic characteristics  
10.1 Power-up ramp conditions  
Table 7.  
Power-up characteristics  
T
amb = 40 C to +85 C.  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
s  
[1]  
tr  
rise time  
at t = t1: 0 < VI 400 mV  
-
-
-
[1][2]  
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
400  
mV  
[1] See Figure 16.  
[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.  
t
r
V
DD  
400 mV  
0
t
wait  
t = t  
1
002aag001  
Condition: 0 < VI 400 mV at start of power-up (t = t1)  
Fig 16. Power-up ramp  
10.2 Flash memory  
Table 8.  
Flash characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
33 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
10.3 External clock  
Table 9.  
Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 17. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
34 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
10.4 Internal oscillators  
Table 10. Dynamic characteristic: internal oscillators  
Tamb = 40 C to +85 C; 2.7 V VDD 3.6 V.[1]  
Symbol Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
fosc(RC) internal RC oscillator frequency -  
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aaf403  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
2.7 V  
12.05  
2.4 V  
2.0 V  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 18. Internal RC oscillator frequency versus temperature  
Table 11. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the EM773 user manual.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
35 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
10.5 I/O pins  
Table 12. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin  
3.0  
-
5.0  
ns  
configured as  
output  
tf  
fall time  
pin  
2.5  
-
5.0  
ns  
configured as  
output  
[1] Applies to standard port pins and RESET pin.  
10.6 I2C-bus  
Table 13. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
100  
400  
1
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
V
IH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
36 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 19. I2C-bus pins clock timing  
10.7 SPI interface  
Table 14. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
-
-
-
-
ns  
ns  
ns  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
20  
24  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
37 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Table 14. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
0
tDH  
3 Tcy(PCLK) + 4  
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
ns  
ns  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2] Tamb = 40 C to 85 C.  
[3] Tcy(clk) = 12 Tcy(PCLK)  
.
[4]  
Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 20. SPI master timing in SPI mode  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
38 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 21. SPI slave timing in SPI mode  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
39 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
11. Application information  
11.1 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV (RMS) is needed.  
EM773  
XTALIN  
C
i
C
g
100 pF  
002aag730  
Fig 22. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 22), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 23 and in  
Table 15 and Table 16. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 23 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 15).  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
40 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
EM773  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aag731  
Fig 23. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 15. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz - 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz - 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz - 15 MHz  
15 MHz - 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 16. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz - 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz - 25 MHz  
10 pF  
20 pF  
11.2 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors CX1, CX2, and CX3 in case  
of third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
41 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of CX1 and CX2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
11.3 Standard I/O pad configuration  
Figure 24 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
DD  
V
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 24. Standard I/O pad configuration  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
42 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
11.4 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 25. Reset pad configuration  
11.5 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown in Table 17.  
Table 17. ElectroMagnetic Compatibility (EMC) (TEM-cell method)  
VDD = 3.3 V; Tamb = 25 C.  
Parameter  
Frequency band  
System clock =  
12 MHz  
Unit  
24 MHz  
48 MHz  
Input clock: IRC (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
7  
5  
7  
dBV  
30 MHz - 150 MHz  
2  
4
1
8
N
10  
16  
M
dBV  
dBV  
-
150 MHz - 1 GHz  
-
IEC level[1]  
O
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
7  
7  
7  
dBV  
30 MHz - 150 MHz  
2  
4
1
7
N
8
dBV  
dBV  
-
150 MHz - 1 GHz  
-
14  
M
IEC level[1]  
O
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
43 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
12. Package outline  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
C
C
A
B
C
1
e
1/2 e  
b
w
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
1
b
c
D
D
h
E
E
e
e
e
2
L
v
w
y
y
1
h
1
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 26. Package outline (HVQFN33 5x5)  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
44 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
33 terminals; body 7 x 7 x 0.85 mm  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
v
C A  
C
B
e
b
y
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
33  
1
24  
X
terminal 1  
index area  
32  
25  
0
D
h
2.5  
scale  
5 mm  
v
Dimensions  
Unit  
(1)  
(1)  
(1)  
A
A
b
c
D
D
E
E
e
e
1
e
2
L
w
y
y
1
1
h
h
max 1.00 0.05 0.35  
mm nom 0.85 0.02 0.28 0.2 7.0 4.70 7.0 4.70 0.65 4.55 4.55 0.60 0.1 0.05 0.08 0.1  
min 0.80 0.00 0.23 6.9 4.55 6.9 4.55 0.45  
7.1 4.85 7.1 4.85  
0.75  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
- - -  
09-03-17  
09-03-23  
Fig 27. Package outline (HVQFN33 7x7)  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
45 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
13. Soldering  
Footprint information for reflow soldering of HVQFN33 package  
OID = 8.20 OA  
PID = 7.25 PA+OA  
OwDtot = 5.10 OA  
evia = 4.25  
0.20 SR  
chamfer (4×)  
W = 0.30 CU  
e = 0.65  
SPD = 1.00 SP  
0.45 DM  
GapD = 0.70 SP  
B-side  
evia = 2.40  
SDhtot = 2.70 SP  
Solder resist  
covered via  
4.55 SR  
DHS = 4.85 CU  
LbD = 5.80 CU  
LaD = 7.95 CU  
0.30 PH  
0.60 SR cover  
0.60 CU  
(A-side fully covered)  
number of vias: 20  
solder land  
solder land plus solder paste  
solder paste deposit  
occupied area  
solder resist  
Remark:  
Stencil thickness: 0.125 mm  
Dimensions in mm  
001aao134  
Fig 28. Reflow soldering of the HVQFN33 package  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
46 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
14. Abbreviations  
Table 18. Abbreviations  
Acronym  
AHB  
APB  
BOD  
GPIO  
PLL  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
General Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Transverse ElectroMagnetic  
Universal Asynchronous Receiver/Transmitter  
SSI  
SSP  
TEM  
UART  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
47 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
15. Revision history  
Table 19. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
- EM773 v.1  
EM773 v.2  
20120103  
Product data sheet  
Modifications:  
Updated Section 7.7.1 “Features”.  
Updated Section 7.14 “Windowed WatchDog Timer”.  
Updated Section 7.15.2 “System PLL”.  
Added Section 7.15.5.1 “Power profiles”.  
Updated Section 7.15.5.4 “Deep power-down mode”.  
Updated Section 7.16.2 “Reset”.  
Updated Section 7.16.7 “External interrupt inputs”.  
Updated Section 9.2 “Power consumption”.  
Added Section 9.3 “Peripheral power consumption”.  
Updated Section 10 “Dynamic characteristics”.  
Added Section 11.5 “ElectroMagnetic Compatibility (EMC)”.  
Table 2 “EM773 pin description table”:  
Updated descriptions for WAKEUP and RESET.  
Updated Table note [1], Table note 2, and Table note 5.  
Table 3 “Limiting values”:  
Added “non-operating” to Tstg conditions.  
Updated Table note [4].  
Table 4 “Static characteristics”:  
Added/updated power consumption information.  
Updated I2C-bus Vhys typical to 0.05VDD  
.
Updated Table note [6] and Table note [8].  
Added Table note [10].  
EM773 v.1  
20100901  
Product data sheet  
-
-
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
48 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
16.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
49 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
16.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
EM773  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 3 January 2012  
50 of 51  
EM773  
NXP Semiconductors  
Energy metering IC  
18. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.16.1  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
7.16.6  
7.16.7  
7.17  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Brownout detection . . . . . . . . . . . . . . . . . . . . 18  
Code security (Code Read Protection - CRP) 18  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 19  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
External interrupt inputs. . . . . . . . . . . . . . . . . 19  
Emulation and debugging . . . . . . . . . . . . . . . 19  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 20  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
Functional description . . . . . . . . . . . . . . . . . . . 9  
ARM Cortex-M0 processor. . . . . . . . . . . . . . . . 9  
On-chip flash program memory . . . . . . . . . . . . 9  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Nested Vectored Interrupt Controller (NVIC) . 10  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 11  
IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . 11  
Fast general purpose parallel I/O . . . . . . . . . . 11  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Metrology engine . . . . . . . . . . . . . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General purpose external event  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 21  
BOD static characteristics . . . . . . . . . . . . . . . 25  
Power consumption . . . . . . . . . . . . . . . . . . . 25  
Peripheral power consumption . . . . . . . . . . . 29  
Electrical pin characteristics. . . . . . . . . . . . . . 30  
9.1  
9.2  
9.3  
9.4  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 33  
Power-up ramp conditions . . . . . . . . . . . . . . . 33  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 33  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 34  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 35  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
11  
11.1  
11.2  
Application information . . . . . . . . . . . . . . . . . 40  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
XTAL Printed Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Standard I/O pad configuration . . . . . . . . . . . 42  
Reset pad configuration. . . . . . . . . . . . . . . . . 43  
ElectroMagnetic Compatibility (EMC) . . . . . . 43  
11.3  
11.4  
11.5  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 14  
Windowed WatchDog Timer . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Clocking and power control . . . . . . . . . . . . . . 15  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 15  
12  
13  
14  
15  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 44  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 48  
7.12.1  
7.13  
7.14  
7.14.1  
7.15  
7.15.1  
16  
Legal information . . . . . . . . . . . . . . . . . . . . . . 49  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . 49  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
16.1  
16.2  
16.3  
16.4  
7.15.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 15  
7.15.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 16  
7.15.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 16  
7.15.2  
7.15.3  
7.15.4  
7.15.5  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 16  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 16  
17  
18  
Contact information . . . . . . . . . . . . . . . . . . . . 50  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.15.5.1 Power profiles. . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.15.5.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.15.5.3 Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 17  
7.15.5.4 Deep power-down mode . . . . . . . . . . . . . . . . 17  
7.16  
System control . . . . . . . . . . . . . . . . . . . . . . . . 18  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 January 2012  
Document identifier: EM773  

相关型号:

EM773FHN301

Energy metering IC; up to 32 kB flash and 8 kB SRAM
NXP

EM773FHN33

Energy metering IC; up to 32 kB flash and 8 kB SRAM
NXP

EM773FHN33/301

IC SPECIALTY MICROPROCESSOR CIRCUIT, PQCC33, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, VQFN-33, Microprocessor IC:Other
NXP

EM773_12

Energy metering IC; up to 32 kB flash and 8 kB SRAM
NXP

EM77565

ADPCM WITH PCM CODEC
EMC

EM77930

USB + BB Controller
EMC

EM77950

BB Controller
EMC

EM77F900

USB HUB+BB Controller
EMC

EM780FP16AS-45LF

64K x16 bit Super Low Power and Low Voltage Full CMOS Static RAM
EMLSI

EM780FP16AS-45LL

64K x16 bit Super Low Power and Low Voltage Full CMOS Static RAM
EMLSI

EM780FP16AS-70LF

64K x16 bit Super Low Power and Low Voltage Full CMOS Static RAM
EMLSI

EM780FP16AS-70LL

64K x16 bit Super Low Power and Low Voltage Full CMOS Static RAM
EMLSI