C5ENPA1-DS/D [NXP]

RISC PROCESSOR;
C5ENPA1-DS/D
型号: C5ENPA1-DS/D
厂家: NXP    NXP
描述:

RISC PROCESSOR

时钟 外围集成电路
文件: 总114页 (文件大小:5255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
C-5e NETWORK PROCESSOR  
SILICON REVISION A1  
C5ENPA1-DS/D  
Rev 03 PRELIMINARY  
Data Sheet  
C-5e Network Processor  
Silicon Revision A1  
C5ENPA1-DS/D  
Rev 03  
CONTENTS  
About This Guide  
Guide Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Sheet Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Using PDF Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Guide Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Related Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CHAPTER 1  
Functional Description  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Massive Processing Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High Functional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Channel Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Executive Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
System Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Fabric Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Buffer Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table Lookup Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Queue Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
CHAPTER 2  
Signal Descriptions  
Signal Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin Descriptions Grouped by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LVTTL and LVPECL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CP Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DS1/T1 Framer Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10/100 Ethernet (RMII) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Gigabit Ethernet (GMII) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
03  
6
CONTENTS  
Gigabit Ethernet and Fibre Channel TBI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SONET OC-3 Transceiver Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SONET OC-12 Transceiver Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Executive Processor System Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
PCI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Serial Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PROM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General System Interface Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Fabric Processor Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
BMU SDRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TLU SRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
QMU SRAM (Internal Mode) Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
QMU to Q-5 TMC (External Mode) Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power Supply Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Test Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
No Connection Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Signals Grouped by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
JTAG Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
JTAG Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Boundary Scan Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Boundary Scan Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
IDcode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
JTAG Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Boundary Scan Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CHAPTER 3  
Electrical Specifications  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Power and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Thermal Management Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Internal Package Conduction Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Heat Sink Selection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
AC Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Clock Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
C
CONTENTS  
7
CP Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
DS1/DS3 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
10/100 Ethernet Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Gigabit GMII Ethernet, TBI and MII Interface Timing Specifications . . . . . . . . . . . . . . . . . . 85  
OC-3 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
OC-12 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Executive Processor Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
MDIO Serial Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Low Speed Serial Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PROM Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Fabric Processor Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
BMU Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
TLU Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
QMU SRAM (Internal Mode) Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
QMU to Q-5 (External Mode) Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
CHAPTER 4  
Mechanical Specifications  
Package Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Package Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Marking Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Reflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
03  
8
CONTENTS  
C
LIST OF FIGURES  
1
2
3
4
5
6
7
8
C-5e Network Processor Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pin Locations (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin Locations (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
GMII/TBI Transmit and Receive Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
PROM Interface Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PROM Interface Timing Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Observe-Only Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Cell Design That Can Be Used for Both Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Bringup Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Package Cross Section View with Several Heat Sink Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Package with Heat Sink Mounted to the Printed Circuit Board. . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Test Loading Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
System Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
DS1/DS3 Ethernet Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
10/100 Ethernet Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Gigabit Ethernet and TBI Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
OC-3 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
OC-12 Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
PCI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
MDIO Serial Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Low Speed Serial Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PROM Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Fabric Processor Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
BMU Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
TLU Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
QMU SRAM (Internal Mode) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
QMU to Q-5 (External Mode) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
C-5e Network Processor BGA Package Side View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
C-5e Network Processor BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
C-5e Network Processor BGA Package (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
03  
10  
LIST OF FIGURES  
C
LIST OF TABLES  
1
2
3
4
5
6
7
8
Data Sheet Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Navigating Within a PDF Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
C-5e Network Processor Data Sheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
C-Port Silicon Documentation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
TLU SRAM Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock and Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CP Physical Interface Signals and Pins (Grouped by Clusters) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DS1/T1 Framer Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10/100 Ethernet Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Transmit and Receive Pin Combinations for Gigabit Ethernet and Fibre Channel . . . . . . . . . . . 35  
Gigabit Ethernet (GMII/MII) Signals One Cluster Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Gigabit Ethernet and Fibre Channel TBI Signals Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
OC-3 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
OC-12 Signals Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
PCI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Serial Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PROM Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General System Interface Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Fabric Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Utopia1*, 2, 3 ATM Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . 49  
Utopia1*, 2, 3 PHY Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . 49  
PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . . . . . . . . . . 50  
Power X(CSIX-L0) Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . . 50  
CSIX-L1 Mode, C-5e Network to Fabric Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
BMU SDRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
TLU SRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
QMU SRAM (Internal Mode) Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
QMU to Q-5 (External Mode) Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power Supply Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Miscellaneous Test Signals For JTAG, Scan, and Internal Test Routines . . . . . . . . . . . . . . . . 58  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
03  
12  
LIST OF TABLES  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
No Connection Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Signals Listed by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
JTAG Internal Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
JTAG Identification Code and Its Subcomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Instruction Register Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
C-5e Network Processor Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
C-5e Network Processor Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .74  
C-5e Network Processor DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
C-5e Network Processor Capacitance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
C-5e Network Processor Power and Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
System Clock Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
DS1/DS3 Ethernet Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
10/100 Ethernet Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Gigabit GMII/MII Ethernet Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Gigabit TBI Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
OC-3 Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
OC-12 Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
PCI Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
MDIO Serial Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Low Speed Serial Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
PROM Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Fabric Processor Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
BMU Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Signal Groups in BMU Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
TLU Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Signal Groups in TLU Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
QMU SRAM (Internal Mode) Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Signal Groups in QMU SRAM (Internal Mode) Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . 100  
QMU to Q-5 (External Mode) Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Signal Groups in QMU to Q-5 (External Mode) Timimg Diagrams . . . . . . . . . . . . . . . . . . . . . . . 102  
Package Measurements (Reference Figure 28, Figure 29 and Figure 30 for Symbols). . . . 106  
C-5e Network Processor Marking Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
C
ABOUT THIS GUIDE  
Guide Overview  
The C-5e Network Processor Data Sheet describes hardware layout specifications  
including pinouts, memory configuration guidelines, timing diagrams, power and power  
sequencing guidelines, thermal design guidelines, and mechanical specifications. This  
document contains information on a pre-production product. Specifications and  
information herein are subject to change without notice.  
This guide assumes a good understanding of the C-5eTM Network Processor (NP)  
architecture. See the C-5e/C-3e Network Processor Architecture Guide (part number  
C5EC3EARCH-RM/D) for more detail about the hardware.  
This guide also assumes good working knowledge of the C-Ware Software Toolset.  
This guide covers the following topics:  
Functional Description  
Signal Descriptions  
Electrical Specifications  
Mechanical Specifications  
03  
14  
ABOUT THIS GUIDE  
Data Sheet Classifications Table 1 describes the Data Sheet classifications of Advance, Preliminary, and Production.  
Table 1 Data Sheet Classifications  
CLASSIFICATION  
DESCRIPTION  
Advance  
Information  
Used to advise customers of the proposed addition to the product line. This  
document will typically contain some useful information including  
interfacing with the users system and some specifications. The goal of this  
document is to allow customers to begin designs but with expectation of  
changes. Specification details may be changed later without notice.  
Preliminary  
Information  
Describes pre-production or first production devices and is usually indicative  
of production stage performance. Minor changes should be expected as  
characteristic spreads become better controlled. Specification details may be  
changed slightly without notice, but the customer can design their product  
based on this data sheet.  
Production Data Defines the long-term specified production limits based on fully  
characterized data. It includes a disclaimer to allow improvements in  
specifications and modifications that do not affect form, fit or function in  
original applications; if absolute maximum ratings are changed, they should  
improve rather than downgrade.  
Using PDF Documents  
Electronic documents are provided as PDF files. Open and view them using the Adobe®  
Acrobat® Reader application, version 3.0 or later. If necessary, download the Acrobat  
Reader from the Adobe Systems, Inc. web site:  
http://www.adobe.com/prodindex/acrobat/readstep.html  
PDF files offer several ways for moving among the document’s pages, as follows:  
To move quickly from section to section within the document, use the Acrobat  
bookmarks that appear on the left side of the Acrobat Reader window. The bookmarks  
provide an expandable outline view of the documents contents. To display the  
documents Acrobat bookmarks, press the Display both bookmarks and pagebutton  
on the Acrobat Reader tool bar.  
To move to the referenced page of an entry in the documents Contents or Index, click  
on the entry itself, each of which is hyperlinked.  
To follow a cross-reference to a heading, figure, or table, click the blue text.  
C
Using PDF Documents  
15  
To move to the beginning or end of the document, to move page by page within the  
document, or to navigate among the pages you displayed by clicking on hyperlinks,  
use the Acrobat Reader navigation buttons shown in this figure:  
Beginning  
of document  
End of  
Previous or next hyperlink  
Previous  
Next page  
Table 2 summarizes how to navigate within an electronic document.  
Table 2 Navigating Within a PDF Document  
TO NAVIGATE THIS WAY  
CLICK THIS  
Move from section to section within the  
document.  
A bookmark on the left side of the Acrobat Reader  
window  
Move to an entry in the Table of Contents.  
Move to an entry in the Index.  
The entry itself  
The page number  
Move to an entry in the List of Figures or List The Figure or Table number  
of Tables.  
Follow a cross-reference (highlighted in blue The cross-reference text  
text).  
Move page by page.  
The appropriate Acrobat Reader navigation  
buttons  
Move to the beginning or end of the  
document.  
The appropriate Acrobat Reader navigation  
buttons  
Move backward or forward among a series of The appropriate Acrobat Reader navigation  
hyperlinks you have selected. buttons  
03  
16  
ABOUT THIS GUIDE  
Guide Conventions  
The following visual elements are used throughout this guide, where applicable:  
This icon and text designates information of special note.  
Warning: This icon and text indicate a potentially dangerous procedure. Instructions  
contained in the warnings must be followed.  
Warning: This icon and text indicate a procedure where the reader must take  
precautions regarding laser light.  
This icon and text indicate the possibility of electrostatic discharge (ESD) in a procedure  
that requires the reader to take the proper ESD precautions.  
Revision History  
Table 3 provides details about changes made for each revision of this guide.  
Table 3 C-5e Network Processor Data Sheet Revision History  
REVISION DATE  
CST REVISION  
CDS REVISION  
CHANGES  
November 8, 2002  
2.2  
2.0  
Added information about optional  
capacitors, nominal values for  
recommended operating conditions,  
and updated package measurement  
values.  
C
Related Product Documentation  
17  
Related Product  
Documentation  
Table 4 lists the user and reference documentation for Motorola s C-Port silicon  
documentation set.  
Table 4 C-Port Silicon Documentation Set  
DOCUMENT  
SUBJECT  
DOCUMENT NAME  
PURPOSE  
DOCUMENT ID  
Processor  
Information  
C-5 Network Processor Architecture Guide  
Describes the full architecture of the C-5 network C5NPARCH-RM/D  
processor.  
C-5 Network Processor Data Sheet  
Describes hardware design specifications for the  
C-5 network processor.  
C5NPDATA-DS/D  
C-5e/C-3e Network Processor Architecture  
Guide  
Describes the full architecture of the C-5e and C-3e C5EC3EARCH-RM/D  
network processors.  
C-5e Network Processor Data Sheet  
Describes hardware design specifications for the  
C-5e network processor.  
C5ENPA1-DS/D  
C3ENPA1-DS/D  
C5C5EDELTA-RM/D  
C-3e Network Processor Data Sheet  
Describes hardware design specifications for the  
C-3e network processor.  
C-5 Network Processor to C-5e Network  
Processor Comparison Delta Document  
Describes key architectural features of the C-5e,  
and highlights main differences between C-5 and  
C-5e.  
M-5 Channel Adapter Architecture Guide  
M-5 Channel Adapter Data Sheet  
Describes the full architecture of the M-5 channel M5CAARCH-RM/D  
adapter.  
Describes hardware design specifications for the  
M-5 channel adapter.  
M5CA0-DS/D  
Q-5/Q-3 Traffic Management Coprocessor  
Architecture Guide  
Describes the full architecture of the Q-5 and Q-3 Q5Q3ARCH-RM/D  
traffic management coprocessor.  
Q-5 Traffic Management Coprocessor Data  
Sheet  
Describes hardware design specifications for the  
Q-5 traffic management coprocessor.  
Q5TMCA0-DS/D  
03  
18  
ABOUT THIS GUIDE  
C
Chapter 1  
FUNCTIONAL DESCRIPTION  
Features  
Key features of the C-5eTM Network Processor (NP) are its massive processing capabilities  
and its high level of functional integration on one chip.  
Massive Processing Operating frequencies: up to 266MHz  
Power  
5Gbps of bandwidth (for non-blocking throughput)  
More than 4,500MIPS of computing power (for adding services throughout the  
protocol stack)  
Up to 15 million packets per second transmitted at wire speed  
17 programmable RISC Cores (for cell/packet forwarding)  
32 programmable Serial Data Processors (for processing bit streams)  
Up to 133 million table lookups per second  
Three internal buses for 68Gbs of aggregate bandwidth  
High Functional 840 pin Ball Grid Array (BGA) package  
Integration  
16 Channel Processors including:  
Embedded OC-3c , OC-12 , OC-12c SONET framers  
Programmable MAC interface  
RISC Cores  
Programmable pin PHY interfaces  
Embedded coprocessors for table lookup (classification), buffer management (payload  
control), and queue management (CoS/QoS implementation)  
Dedicated Fabric Processor and port  
03  
20  
CHAPTER 1: FUNCTIONAL DESCRIPTION  
Embedded RISC Executive Processor  
Integrated 32bit 33/66MHz PCI bus interface  
Block Diagram  
The C-5eTM NP, has an architecture specifically designed for networking applications. The  
following sections describe each component of the C-5e NP.  
The main components of the C-5e NP are:  
Channel Processors  
Executive Processor  
Fabric Processor  
Buffer Management Unit  
Table Lookup Unit  
Queue Management Unit  
The C-5e NP conforms with both SONET and SDH. Therefore, OC-3(STS-3/STM-1), OC-12  
(STS-12/STM-4, and OC48 (STS-48/STM-16).  
Figure 1 shows a block diagram of the C-5e NP, including its potential external interfaces.  
For more information about the architecture of the C-5e NP, see the C-5e/C-3e Network  
Processor Architecture Guide (part number C5EC3EARCH-RM/D).  
C
Block Diagram  
21  
Figure 1 C-5e Network Processor Block Diagram  
Q-5  
(optional)  
External  
Host CPU  
(optional)  
External  
PROM  
(optional)  
SRAM  
SRAM  
SDRAM  
Fabric  
Control  
Logic  
(optional)  
Table  
Lookup  
Unit  
PCI  
Serial  
PROM  
Fabric  
Processor  
Executive Processor  
Queue  
Mgmt  
Unit  
Buffer  
Mgmt  
Unit  
Buses (68Gbps Bandwidth)  
Channel  
Processors  
CP-0 CP-1 CP-2 CP-3  
PHY PHY PHY PHY  
CP-12 CP-13 CP-14 CP-15  
C-5e  
NP  
Cluster  
Cluster  
Processor Boundary  
PHY  
PHY  
PHY  
PHY  
PHY Interface Examples:  
10/100 Ethernet  
Gigabit Ethernet - Aggregated  
OC-3  
OC-12  
1xOC-48c or 48x STS-1 with M-5 Companion Device  
03  
22  
CHAPTER 1: FUNCTIONAL DESCRIPTION  
Channel Processors  
The C-5e NP contains sixteen programmable Channel Processors (CPs) that receive,  
process, and transmit network data. The number of CPs per port is configurable,  
depending on the line interface. Typically one CP is assigned to each port for medium  
bandwidth applications (Fast Ethernet to OC-3). Multiple CPs can be assigned to a port in  
a configuration called channel aggregation in high bandwidth applications (greater than  
OC-3). Multiple logical ports can be assigned to a single CP, with the addition of an  
external multiplexor, for low bandwidth applications, such as DS1 to DS3.  
The C-5e NPs architecture supports a variety of industry-standard serial and parallel  
protocols and individual port data rates including:  
10/100Mb Ethernet (RMII)  
1Gb Ethernet (GMII and TBI)  
OC-3c  
OC-12  
OC-48c (using various configurations with M-5 Channel Adapter)  
OC-48 (using various configurations with M-5 Channel Adapter)  
100Mbit FibreChannel  
DS1/DS3, supported through the use of external framers/multiplexors  
The C-5e NP’s programmability can also support a variety of special interfaces, such as  
various xDSL encapsulations and proprietary protocols.  
Key components of each CP are a RISC Core (CPRC) that orchestrates cell/packet  
processing and a set of microprogrammable, special-purpose processors, called Serial  
Data Processors (SDPs), that provide features such as Ethernet MAC and SONET/SDH  
framing, multichannel HDLC, and ATM cell delineation. This means you usually only need  
to include PHYs to complete the system.  
C
Executive Processor  
23  
Executive Processor  
The Executive Processor (XP) serves as a centralized computing resource for the C-5e NP  
and manages the system interfaces.  
The XP performs conventional supervisory tasks in the C-5e NP, including:  
Reset and initialization of the C-5e NP  
Program loading and control of CPs  
Centralized exception handling  
Management of a host interface through the PCI  
Management of system interfaces (PCI, Serial Bus, PROM)  
System Interfaces The system interfaces to the XP are:  
PCI Provides an industry standard 32bit 33/66MHz PCI channel used for chip-level  
shared resources. The PCI has both initiator and target capabilities. The PCI interface is  
typically connected to a host processor.  
Serial Bus Interface Provides a general purpose bi-directional, two-wire serial bus  
and I/O port that allows the C-5e NP to control external logic with either of two  
standard protocols:  
The MDIO (high-speed) protocol: uses a 16bit data format with 10bits of  
addressing and supports transfers up to 25MHz.  
The low-speed protocol: uses an 8bit data format followed by an acknowledge bit  
and supports transfers up to 400kbps.  
Software is used to select which protocol to use, by setting the appropriate bits in the  
Serial Bus Configuration Register. When a serial bus transfer is active, an external pin is  
driven by the C-5e NP to indicate which protocol is being used (SPLD=0 indicates  
MDIO protocol; SPLD=1 indicates low-speed protocol).  
Both SIDA and SICL are bi-directional lines that are connected, via an external pull-up  
resistor, to a positive supply voltage. When the bus is free, both lines are HIGH because  
of the pull-up resistor. The output stages of the devices connected to the bus must  
have either an open-drain or open-collector in order to perform the wired-AND  
function required for its arbitration mechanism.  
03  
24  
CHAPTER 1: FUNCTIONAL DESCRIPTION  
PROM Interface Allows the XP to boot from nonvolatile, flash memory. The PROM  
interface is a low-speed, serial I/O port that runs at 1/2 to 1/16 the core clock rate. The  
maximum PROM size addressable is 4MBytes, and must use a by 16part. External  
board logic is required to perform serial-to-parallel conversion for PROM address  
outputs and parallel-to-serial conversion for PROM data inputs.  
Fabric Processor  
The Fabric Processor (FP) acts as a high-speed network interface port with advanced  
functionality. It allows the C-5e NP to interface to an application-specific switching  
solution internal to your design. The FP port supports the bidirectional transfer of  
segments from the C-5e NP to a hardware interface that provides connectivity to other  
network processors or other similar line processing hardware. There are numerous  
parameters that can be configured within the FP to allow the interface to be adapted to  
different fabric protocols. The FP can be configured to conform to seven (7) different  
fabric interfaces that include: CSIX-L1, UTOPIA-1, -2, -3, PRIZMA, Power X(CSIX-L0), and  
UTOPIA3 like to M-5.  
The FP can be configured to run at any frequency up to 125MHz, with the receive and  
transmit data buses up to 32 bits wide. This allows a wide range of supported bandwidths  
to and from the switching fabric, all the way up to 4000 Mbps full duplex bandwidth.  
Buffer Management Unit  
The Buffer Management Unit (BMU) interfaces the C-5e NP to external pipeline  
architecture, Single Data Rate Synchronous DRAM. The external memory is partitioned  
and used as buffers for receiving and transmitting data between CPs, the FP, and the XP. It  
is also used as second level storage in the XP memory hierarchy.  
The interface to an array of SDRAM chips is 139bits wide, composed of 128 data bits, two  
internal control bits, and nine SECDED (single error correction-double error detection) ECC  
(error correction code) bits. The interface is compliant with the PC100 standard and  
operates at up to 133MHz with 3.3V LVTTL-compatible inputs and outputs. The refresh  
period, Trcd, Tcas, Trp, Tmrd, and Trc are configurable via boot time configuration (see the  
C-5e/C-3e Network Processor Architecture Guide (part number C5EC3EARCH-RM/D) for more  
details).  
The C-5e NP non-configurable interface transfers four beats of data for each read and  
write using a sequential burst type. In addition, the C-5e NP uses an auto-refresh mode for  
the RAMs.  
C
Table Lookup Unit  
25  
Some of these parameters are programmed into the SDRAMsmode register and can be  
applied only once per power cycle. The ECC functionality can be enabled or disabled via  
configuration register writes.  
If needed, the interface can narrowed to 128bits by disabling ECC and providing board  
pull-ups for the two control bits and nine ECC bits. This is useful if DIMMs are used in the  
board design. If individual SDRAM parts are used, x16 and x32 are supported. The BMU  
supports SDRAM devices that use 12 address lines. Internal address calculation paths limit  
the maximum memory size to 128MBytes. Only one physical bank of SDRAM is supported.  
Table Lookup Unit  
The Table Lookup Unit (TLU) performs table lookups in external SRAM. It can also be used  
for statistics accumulation and retrieval and as general data storage. The TLU  
simultaneously supports multiple application-defined tables and multiple search  
strategies, such as those needed for routing, circuit switching, and QoS lookup tasks.  
The C-5e NP uses external 64bit wide ZBT Pipelined Bursting Static RAM (SRAM) modules  
(at frequencies up to 133MHz) for storage of its tables. These modules allow  
implementation of tables with 225 x 64bit entries using 8Mbit SRAM technology. The  
maximum amount of memory supported by the TLU is 128MBytes in four banks, when  
SRAM technology supports 4M x 18pins parts.  
Table 5 TLU SRAM Configurations  
MIN TABLE SIZE  
(ONE BANK)  
MAXIMUM TABLE SIZE  
(FOUR BANKS)  
SRAM TECHNOLOGY  
1Mbit (32k x 32pins)  
2Mbit (64k x 32pins)  
4Mbit (256k x 18pins)  
8Mbit (512k x 18pins)  
16Mbit (1M x 18pins)  
32Mbit (2M x 18pins)  
64Mbit (4M x 18pins)  
256kBytes  
512kBytes  
2MBytes  
4MBytes  
8MBytes  
16MBytes  
32MBytes  
1MBytes  
2MBytes  
8MBytes  
16MBytes  
32MBytes  
64MBytes  
128MBytes  
03  
26  
CHAPTER 1: FUNCTIONAL DESCRIPTION  
Queue Management Unit  
The Queue Management Unit (QMU) autonomously manages a number of  
application-defined descriptor queues. It handles inter-CP and inter-C-5e NP descriptor  
flows by providing switching and buffering. It also performs descriptor replication for  
multicast applications. A number of up to 128 queues can be assigned to each CPRC for  
QoS-based services.  
The QMU provides a queuing engine internal to the chip and uses external SRAM to store  
the descriptors. Scheduling is done by the CPs. The QMU supports up to 512 queues and  
16, 384 descriptor buffers. A descriptor buffer holds an application-defined descriptor,  
which is a structure that defines the payload buffer handle and other attributes of the  
forwarded cell or packet.  
The QMUs external SRAM interface uses ZBT synchronous SRAMs organized in a single  
bank of up to 128k, 32bit words. This interface runs at up to 175MHz frequency.  
The C-5e provides two modes for managing queues. They consist of:  
Internal Mode (using the internal QMU only)  
External Mode (using the internal QMU and the external Q-5 Traffic Management  
Coprocessor)  
See the C-5e/C-3e Network Processor Architecture Guide (part number C5EC3EARCH-RM/D),  
as well as, the Q-5/Q-3 Traffic Management Coprocessor Architecture Guide (part number  
Q5Q3ARCH-RM/D) for more details.  
C
Chapter 2  
SIGNAL DESCRIPTIONS  
Signal Summary  
There are ten (10) functional groupings of signals in the C-5e Network Processor:  
Clock 11 pins  
Channel Processors (CP0 - CP15) 16x7 = 112 pins  
Executive Processor (XP) 57 pins  
PCI Interface 50 pins  
PROM Interface 4 pins  
Serial Bus Interface 2 pins  
General System Interface 1 pin  
Fabric Processor (FP) 80 pins  
Buffer Management Unit (BMU) 160 pins  
Table Lookup Unit (TLU) 99 pins  
Queue Management Unit (QMU) 59 pins  
Power 245 pins  
Test 14 pins  
No connection (NC) 3 pins  
Two (2) of the sections (CPs and FP) are configurable, depending on the type of device  
being implemented.  
03  
28  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Pinout Diagram  
The C-5e NP contains 840 pins. These pin numbers are referenced throughout the  
remaining chapter. Figure 2 shows the pin locations from the top view. In contrast,  
Figure 3 shows the pin locations from the bottom view.  
Figure 2 Pin Locations (Top View)  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
CP0_0 CP1_0 CP1_5 CP2_4 CP3_4 CP4_4 CP5_2 CP6_1 CP7_1  
CP8_1  
CP8_6  
CP9_0  
CP9_1  
CP9_2  
CP9_3  
CP9_4  
CP9_5  
GND  
FOUT0 FOUT6 FOUT12 FOUT19 FOUT24 FOUT31 FTXCTL5 FIN3  
FOUT1 FOUT7 FOUT13 GND FOUT25 FTXCTL0 FTXCTL6 FIN4  
FIN10  
VDDF  
FIN11  
FIN12  
GND  
FIN15  
FIN16  
FIN17  
FIN18  
FIN19  
FIN20  
FIN21  
FIN22  
FIN23  
FIN24  
FIN25  
FIN29  
FIN30  
FIN31  
GND  
FRXCTL3 PAD0  
PAD1  
PAD2  
PAD7  
PAD3  
VDD33  
PAD4  
CP0_1 VDD33 CP1_6 CP2_5 CP3_5 GND CP5_3 CP6_2 CP7_2 VDD33  
GND  
PAD5  
PAD6  
PAD8  
CP0_2 CP1_1 CP2_0 CP2_6 CP3_6 CP4_5 CP5_4 CP6_3 CP7_3  
CP0_3 CP1_2 VDD33 CP3_0 CP4_0 CP4_6 GND CP6_4 CP7_4  
CP0_4 GND CP2_1 CP3_1 CP4_1 VDD33 CP5_5 CP6_5 CP7_5  
CP0_5 CP1_3 CP2_2 CP3_2 CP4_2 CP5_0 CP5_6 CP6_6 CP7_6  
CP0_6 CP1_4 CP2_3 CP3_3 CP4_3 CP5_1 CP6_0 CP7_0 CP8_0  
CP8_2  
CP8_3  
GND  
FOUT2 VDDF FOUT14 FOUT20 FOUT26  
VDDF  
FTXCLK FIN5  
FRXCTL4 PAD9  
FRXCTL5 PAD14  
PAD10  
PAD11 PAD12  
VDD33 PAD16  
PAD13  
PAD17  
PAD21  
PAD26  
PAD31  
GND FOUT8 FOUT15 FOUT21 FOUT27 FTXCTL1  
FOUT3 FOUT9 FOUT16 VDDF FOUT28 FTXCTL2  
FOUT4 FOUT10 FOUT17 FOUT22 FOUT29 FTXCTL3  
FOUT5 FOUT11 FOUT18 FOUT23 FOUT30 FTXCTL4  
GND  
FIN0  
FIN1  
FIN2  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD33  
FIN6  
FIN7  
FIN8  
FIN9  
PAD15  
FIN26 FRXCTL0  
VDDF  
PAD18  
PAD19  
PAD23  
PAD20  
GND  
CP8_4  
CP8_5  
FIN13  
FIN14  
FIN27 FRXCTL1 FRXCTL6 PAD22  
FIN28 FRXCTL2 FRXCLK PAD27  
PAD24 PAD25  
PAD29 PAD30  
PAD28  
CP9_6 CPA_0 VDD33 CPA_1 CPA_2 CPA_3 GND CPA_4 CPA_5 VDD33  
VDD33 GND  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD33  
MA5  
MA4  
MA3  
MA2  
MA1  
MA0  
JSO1  
16  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD33  
GND  
VDD  
GND VDD33 PTRDYX PIRDYX  
GND  
PCBEX0 PCBEX1 PCBEX2  
VDD33 PCBEX3 PPAR  
CPA_6 GND CPB_0 CPB_1 CPB_2 VDD33 CPB_3 CPB_4 CPB_5  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDDT  
GND  
VDD  
GND  
VDDT  
GND  
GND  
PREQX  
PRSTX  
PCLK  
VDD33 PSTOPX PDEVSELX PPERRX GND  
PSERRX  
SPDO  
TA15  
TA8  
CPB_6 CPC_0 CPC_1 CPC_2 CPC_3 CPC_4 CPC_5 CPC_6 CPD_0 VDD33  
GND  
GND  
VDD  
VDDT PINTA  
PIDSEL PGNTX  
SIDA  
TA20  
TA12  
GND  
SICL  
TA19  
TA11  
TA4  
SPCK  
TA18  
TA10  
TA3  
SPLD  
TA17  
GND  
TA2  
SPDI  
TA16  
TA9  
W
V
W
V
CPD_1 CPD_2 CPD_3 CPD_4 CPD_5 CPD_6 CPE_0 CPE_1 CPE_2  
GND  
VDD  
GND PFRAMEX XPUHOT TA21  
CPE_3 CPE_4 GND CPE_5 CPE_6 CPF_0 VDD33 CPF_1 CPF_2 VDD33  
GND  
GND  
VDD  
VDDT  
GND  
TA14  
TA7  
TA13  
TA6  
VDDT  
TA5  
U
U
CPF_3 VDD33 CPF_4 CPF_5 CPF_6 GND  
MD0  
MD1  
MD2  
GND  
VDD33  
GND  
VDD  
VDDT  
TA1  
T
T
MD3  
MD4  
MD5  
MD6  
MD7  
MD8  
MD9 MD10  
MD11  
MD20  
MD27  
MD34  
MD43  
MD52  
MD59  
MD66  
MD75  
GND  
GND  
VDD  
VDDT TWE3X  
TWE2X TWE1X  
TWE0X TCE3X  
TCE2X  
TPAR2  
TD55  
TD48  
TD40  
TD31  
TD23  
TD16  
TD8  
TCE1X TCE0X  
TPAR1 TPAR0  
TA0  
R
R
MD12 MD13 MD14 MD15 MD16 MD17 MD18 MD19  
MD21 MD22 VDD33 MD23 MD24 MD25 GND MD26  
VDD  
GND  
VDDT  
GND  
VDDT  
GND  
VDDT  
GND  
VDDT  
TD4  
TD63  
TD59  
TD52  
TD45  
TD36  
TD27  
TD20  
TD13  
TD3  
TD62  
TD58  
TD51  
TD44  
TD35  
TD26  
TD19  
TD12  
TD2  
TD61  
GND  
TD60  
TD57  
VDDT  
TD42  
TD33  
TD25  
GND  
TPAR3  
TD56  
TD49  
TD41  
TD32  
TD24  
TD17  
TD9  
TCLKI  
TD53  
TD46  
TD37  
TD28  
TD21  
TD14  
TD5  
P
P
VDD33  
GND  
GND  
GND  
VDD  
VDDT  
TD47  
TD39  
TD30  
GND  
TD15  
TD7  
TD54  
GND  
TD38  
TD29  
TD22  
VDDT  
TD6  
N
N
MD28  
GND  
MD29 MD30 MD31 VDD33 MD32 MD33  
VDD  
TD50  
TD43  
TD34  
VDDT  
TD18  
TD11  
TD1  
M
M
MD35 MD36 MD37 MD38 MD39 MD40 MD41 MD42  
MD44 MD45 MD46 MD47 MD48 MD49 MD50 MD51  
VDD33  
GND  
GND  
GND  
VDD  
L
L
VDD  
K
K
MD53 MD54  
GND  
MD55 MD56 MD57 VDD33 MD58  
VDD33  
GND  
GND  
GND  
VDD  
J
J
MD60 VDD33 MD61 MD62 MD63 GND MD64 MD65  
MD67 MD68 MD69 MD70 MD71 MD72 MD73 MD74  
MD76 MD77 MD78 MD79 MD80 MD81 MD82 MD83  
MD85 MD86 VDD33 MD87 MD88 MD89 VDD33 MD90  
VDD  
GND  
H
H
VDD33  
VDD33 GND  
GND  
CCLK3  
CCLK4  
CCLK5  
JSO2  
TD10  
TD0  
G
G
MD84 MDECC7 MDECC2 MDQM MA11  
MD91 MDECC6 MDECC1 MDQML MA10  
SCLK CCLK0  
SCLKX CCLK1  
VDD33 CCLK2  
CPREF QA13  
CCLK6 QA14  
CCLK7 QA15  
QD23  
QD24  
QD25  
QD26  
QD27  
QD28  
QD16  
QD17  
QD18  
QD19  
QD20  
QD21  
QD22  
4
QD11  
VDDT  
QD12  
QD13  
GND  
QD14  
QD15  
3
QD6  
QD7  
GND  
QD8  
QD9  
VDDT  
QD10  
2
QD0  
F
F
QA9  
QA3  
QA4  
QA5  
QA6  
QA7  
QA8  
9
QDPH  
VDDT  
QD30  
GND  
QD1  
E
E
MD92  
GND  
MD93 MD94 MD95 GND MD96 MD97  
MD98  
GND  
MDECC0 MBA0  
MA9  
MA8  
GND  
QA10  
QARDY QBCLKI  
QNQRDY QACLKO  
QD2  
D
D
MD99 MD100 MD101 MD102 MD103 MD104 MD105 MD106 MD107 MDECC5 MCASX  
MD108 MD109 GND MD110 MD111 MD112 VDD33 MD113 MD114 MDECC4 MRASX  
GND  
JSE  
JSO0  
GND  
QA16  
QD31  
QWEX  
GND  
QD3  
C
C
MBA1 VDD33  
JTCK JCLKBYP VDD33  
JSO3 QDQPAR QA11  
QA0  
QA1  
QA2  
8
VDDT  
QACLKI  
QDPL  
7
QD4  
B
B
MD115 VDD33 MD116 MD117 MD118 GND MD119 MD120 MD121 VDD33  
MWEX MDCLK MA7  
GND  
JSO4  
15  
JTDI  
JTMS  
14  
JHIGHZ  
JTDO  
13  
JSO5  
NC3  
VDDT  
QA12  
10  
QD5  
A
A
MD122 MD123 MD124 MD125 MD126 MD127 MD128 MD129 MDECC8 MDECC3 MCSX  
NC5  
MA6  
JTRSTX NC4  
QBCLKO QD29  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
12  
11  
6
5
1
C
Pinout Diagram  
29  
Figure 3 Pin Locations (Bottom View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PAD4  
PAD3  
PAD2  
PAD1  
PAD0 FRXCTL3 FIN29  
FIN22  
FIN15  
FIN10  
FIN3 FTXCTL5 FOUT31 FOUT24 FOUT19 FOUT12 FOUT6 FOUT0 CP8_6  
CP8_1  
CP7_1 CP6_1 CP5_2 CP4_4 CP3_4 CP2_4 CP1_5 CP1_0 CP0_0  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
PAD8  
VDD33 PAD7  
PAD6  
PAD10  
PAD15  
PAD19  
PAD23  
PAD28  
PAD5  
GND  
FIN30  
FIN23  
FIN24  
FIN25  
FIN16  
FIN17  
FIN18  
FIN19  
FIN20  
FIN21  
VDDF  
FIN11  
FIN12  
GND  
FIN4 FTXCTL6 FTXCTL0 FOUT25  
GND FOUT13 FOUT7 FOUT1 CP9_0  
VDD33  
CP8_2  
CP8_3  
GND  
CP7_2 CP6_2 CP5_3  
GND  
CP3_5 CP2_5 CP1_6 VDD33 CP0_1  
PAD13 PAD12 PAD11  
PAD17 PAD16 VDD33  
PAD9 FRXCTL4 FIN31  
FIN5 FTXCLK  
VDDF  
FOUT26 FOUT20 FOUT14 VDDF FOUT2 CP9_1  
CP7_3 CP6_3 CP5_4 CP4_5 CP3_6 CP2_6 CP2_0 CP1_1 CP0_2  
PAD14 FRXCTL5  
GND  
FIN6  
FIN7  
FIN8  
FIN9  
GND  
FIN0  
FIN1  
FIN2  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD33  
FTXCTL1 FOUT27 FOUT21 FOUT15 FOUT8 GND  
CP9_2  
CP7_4 CP6_4 GND  
CP4_6 CP4_0 CP3_0 VDD33 CP1_2 CP0_3  
PAD21  
GND PAD20  
PAD18  
VDDF FRXCTL0 FIN26  
FTXCTL2 FOUT28 VDDF FOUT16 FOUT9 FOUT3 CP9_3  
FTXCTL3 FOUT29 FOUT22 FOUT17 FOUT10 FOUT4 CP9_4  
FTXCTL4 FOUT30 FOUT23 FOUT18 FOUT11 FOUT5 CP9_5  
CP7_5 CP6_5 CP5_5 VDD33 CP4_1 CP3_1 CP2_1  
GND  
CP0_4  
PAD26 PAD25 PAD24  
PAD31 PAD30 PAD29  
PPAR PCBEX3 VDD33  
PAD22 FRXCTL6 FRXCTL1 FIN27  
PAD27 FRXCLK FRXCTL2 FIN28  
FIN13  
FIN14  
CP8_4  
CP8_5  
VDD33  
GND  
CP7_6 CP6_6 CP5_6 CP5_0 CP4_2 CP3_2 CP2_2 CP1_3 CP0_5  
CP8_0 CP7_0 CP6_0 CP5_1 CP4_3 CP3_3 CP2_3 CP1_4 CP0_6  
CPA_5 CPA_4 GND CPA_3 CPA_2 CPA_1 VDD33 CPA_0 CP9_6  
PCBEX2 PCBEX1 PCBEX0  
GND  
PIRDYX PTRDYX VDD33 GND  
GND  
VDD  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
SCLK  
VDDF  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD33  
MA5  
MA4  
MA3  
MA2  
MA1  
MA0  
JSO1  
GND VDD33  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
PSERRX GND PPERRX PDEVSELX PSTOPX VDD33  
PCLK PRSTX  
PGNTX PIDSEL  
PREQX  
PINTA  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDDT  
GND  
VDD  
GND  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
CPB_5 CPB_4 CPB_3 VDD33 CPB_2 CPB_1 CPB_0  
GND  
CPA_6  
SPDO  
TA15  
TA8  
SPDI  
TA16  
TA9  
SPLD  
TA17  
GND  
TA2  
SPCK  
TA18  
TA10  
TA3  
SICL  
TA19  
TA11  
TA4  
SIDA  
TA20  
TA12  
GND  
VDDT  
GND  
VDD  
VDD33  
GND  
CPD_0 CPC_6 CPC_5 CPC_4 CPC_3 CPC_2 CPC_1 CPC_0 CPB_6  
CPE_2 CPE_1 CPE_0 CPD_6 CPD_5 CPD_4 CPD_3 CPD_2 CPD_1  
TA21 XPUHOT PFRAMEX GND  
GND  
VDD  
W
V
W
V
VDDT  
TA5  
TA13  
TA6  
TA14  
TA7  
VDDT  
GND  
VDDT  
GND  
VDDT  
GND  
VDDT  
GND  
VDDT  
GND  
VDDT  
TD4  
GND  
VDD  
VDD33  
GND  
CPF_2 CPF_1 VDD33 CPF_0 CPE_6 CPE_5  
GND  
CPE_4 CPE_3  
TA1  
VDDT  
GND  
VDD  
MD2  
MD1  
MD0  
MD9  
GND CPF_6 CPF_5 CPF_4 VDD33 CPF_3  
U
U
TA0  
TCE0X TCE1X  
TCE2X  
TPAR2  
TD55  
TD48  
TD40  
TD31  
TD23  
TD16  
TD8  
TCE3X TWE0X TWE1X TWE2X  
TWE3X  
TD63  
TD59  
TD52  
TD45  
TD36  
TD27  
TD20  
TD13  
TD3  
GND  
VDD  
VDD33  
GND  
MD11  
MD20  
MD27  
MD34  
MD43  
MD52  
MD59  
MD66  
MD75  
MD10  
MD8  
MD7  
MD6  
MD5  
MD4  
MD3  
T
T
TCLKI TPAR0 TPAR1  
TPAR3  
TD56  
TD49  
TD41  
TD32  
TD24  
TD17  
TD9  
TD60  
TD57  
VDDT  
TD42  
TD33  
TD25  
GND  
TD61  
GND  
TD62  
TD58  
TD51  
TD44  
TD35  
TD26  
TD19  
TD12  
TD2  
GND  
VDD  
MD19 MD18  
MD17 MD16  
MD25 MD24  
MD15  
MD14  
MD13  
MD12  
MD21  
MD28  
MD35  
MD44  
MD53  
R
R
TD53  
TD46  
TD37  
TD28  
TD21  
TD14  
TD5  
TD54  
GND  
TD38  
TD29  
TD22  
VDDT  
TD6  
VDDT  
TD47  
TD39  
TD30  
GND  
GND  
VDD  
VDD33  
GND  
MD26  
GND  
MD23 VDD33 MD22  
P
P
TD50  
TD43  
TD34  
VDDT  
TD18  
TD11  
TD1  
GND  
VDD  
MD33 MD32 VDD33 MD31  
MD30  
MD38  
MD47  
MD55  
MD62  
MD70  
MD79  
MD29  
MD37  
MD46  
GND  
GND  
MD36  
MD45  
MD54  
N
N
GND  
VDD  
VDD33  
GND  
MD42 MD41  
MD51 MD50  
MD40 MD39  
MD49 MD48  
M
M
GND  
VDD  
L
L
GND  
VDD  
VDD33  
GND  
MD58 VDD33 MD57 MD56  
K
K
TD15  
TD7  
GND  
VDD33  
CCLK0  
MD65 MD64  
MD74 MD73  
MD83 MD82  
GND  
MD63  
MD61 VDD33 MD60  
J
J
TD10  
TD0  
GND  
CCLK3  
CCLK4  
CCLK5  
JSO2  
GND VDD33  
VDD33  
MD72 MD71  
MD81 MD80  
MD69  
MD78  
MD68  
MD77  
MD67  
MD76  
MD85  
MD92  
H
H
QD0  
QD1  
QD2  
QD3  
QD4  
QD5  
QD6  
QD11  
VDDT  
QD12  
QD13  
GND  
QD16  
QD17  
QD18  
QD19  
QD20  
QD21  
QD22  
QD23  
QD24  
QD25  
QD26  
QD27  
QD28  
QA13 CPREF  
MA11 MDQM MDECC2 MDECC7 MD84  
MA10 MDQML MDECC1 MDECC6 MD91  
G
G
QD7  
QD30  
GND  
VDDT  
QDPH  
QA3  
QA9  
QA14  
QA15  
QA16  
CCLK6  
CCLK7  
GND  
CCLK1 SCLKX  
CCLK2 VDD33  
MD90 VDD33 MD89 MD88  
MD87 VDD33 MD86  
F
F
GND  
QD8  
QBCLKI QARDY  
QACLKO QNQRDY  
QA4  
GND  
QA10  
MA9  
MA8  
MBA0 MDECC0  
GND  
MD98  
MD97 MD96  
GND  
MD95  
MD94  
MD93  
GND  
E
E
QD31  
QWEX  
GND  
QA5  
JSO0  
JSE  
GND MCASX MDECC5 MD107 MD106 MD105 MD104 MD103 MD102 MD101 MD100 MD99  
D
D
QD9  
VDDT  
QA0  
QA1  
QA2  
QA6  
QA11 QDQPAR JSO3  
VDD33 JCLKBYP JTCK  
VDD33 MBA1 MRASX MDECC4 MD114 MD113 VDD33 MD112 MD111 MD110 GND  
MD109 MD108  
C
C
VDDT QD14  
QACLKI  
QA7  
VDDT  
QA12  
NC3  
NC4  
JSO5  
JHIGHZ  
JTDO  
JTDI  
GND  
MA7 MDCLK MWEX  
VDD33  
MD121 MD120 MD119 GND MD118 MD117 MD116 VDD33 MD115  
B
B
QD10  
QD15  
QD29 QBCLKO QDPL  
QA8  
JTRSTX  
JTMS  
JSO4  
MA6  
NC5  
MCSX MDECC3 MDECC8 MD129 MD128 MD127 MD126 MD125 MD124 MD123 MD122  
A
A
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
03  
30  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Pin Descriptions Grouped  
by Function  
The C-5e NP pins are categorized in groups, reflecting interfaces to the chip:  
Clock Signals  
CP Interface Signals  
Executive Processor System Interface Signals  
Fabric Processor Interface Signals  
BMU SDRAM Interface Signals  
TLU SRAM Interface Signals  
QMU SRAM (Internal Mode) Interface Signals  
QMU to Q-5 TMC (External Mode) Interface Signals  
Power Supply Signals  
Test Signals  
No Connection Pins  
Pins conform to Joint Electronic Devices Engineering Council (JEDEC) standards.  
LVTTL and LVPECL C-5e NP pins are the following types:  
Specifications  
Low Voltage TTL-Compatible (LVTTL). The C-5e NPs LVTTL pins conform to the JEDEC  
JESD8-B specification.  
Low Voltage Positive Emitter Coupled Logic (LVPECL).  
All of the signals in the following tables in this chapter denote whether the individual  
signal is an Input (I), Output (O), both Input and Output (I/O), or power (P). In addition, a  
PU, PD, and nc are used. The PU indicates that an internal resistor will pullup the pad if  
left unconnected. PD indicates an internal pulldown resistor. NC means the pad is to be  
left unconnected.  
C
Pin Descriptions Grouped by Function  
31  
Clock Signals Table 6 describes the C-5e NP clock signals.  
Table 6 Clock and Reference Signals  
SIGNAL NAME  
PIN #  
TOTAL  
TYPE  
I/O  
SIGNAL DESCRIPTION  
SCLK*  
SCLKX*  
G15  
F15  
1
1
LVPECL  
LVPECL  
I
I
Core Clock Rate (Differential)  
CCLK0  
CCLK1  
CCLK2  
CCLK3  
CCLK4  
CCLK5  
CCLK6  
CCLK7  
CPREF‡  
TOTAL  
G14  
F14  
E14  
G13  
F13  
E13  
F12  
E12  
G12  
1
1
1
1
1
1
1
1
1
11  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVPECL  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
1_544MHZ_CLK (T1)†  
2_048MHZ_CLK (E1)†  
34_368MHZ_CLK (E3)†  
44_736MHZ_CLK (T3)†  
50MHZ_CLK (100Mbit Ethernet)†  
106_25MHZ_CLK (Fibre Channel)†  
125MHZ_CLK (Gigabit Ethernet)†  
155_52MHZ_CLK (OC-3)†  
Reference  
*
SCLK and SCLKX must not be AC-coupled.  
The frequencies specified for CCLK0 - CCLK7 allow full flexibility for the C-5e NP. It is also possible to use one  
or more CCLKn inputs for other frequencies. Contact your Motorola representative for more information.  
If any of the CPs are configured for LVPECL operation (OC3) using the pin mode registers, then CPREF must  
be wired to an external reference, as specified in Table 38 on page 75. If none of the CPs are configured for  
LVPECL operation, then the CPREF pin can be left unconnected.  
03  
32  
CHAPTER 2: SIGNAL DESCRIPTIONS  
CP Interface Signals The C-5e NPs 16 CPs support various network physical interfaces, providing a serial  
interface to the PHY layer. Interfaces are configured via bits in the C-5e NP register set.  
Many interfaces are possible by programming the configuration registers. CPs can be  
used individually or in a cluster (four CPs) to implement the various interfaces.  
Table 7 provides a quick reference of all the CP pins organized by clusters. There are seven  
physical I/O pins associated with each CP. All pins are capable of receiving data, with some  
configurable to be input clocks, output clocks, or data drivers. In addition, pairs of pins can  
be configured as differential pairs for LVPECL compatibility.  
In the case of RMII, OC-3, DS1, and DS3, the drivers and receivers at the pin are locally  
configured to match the relevant PHY or Framer chip. OC-12 uses the aggregation of four  
CPs (one cluster), while GMII and Ten Bit Interface (TBI) can use either eight CPs (four for  
receive and four for transmit) or four CPs that share the transmit and receive functions for  
non-wire speed applications.  
During CP aggregation, all 28 pins associated with a cluster are routed to all of the Serial  
Data Processors (SDPs) in that cluster. This allows round-robin usage of portions of the  
SDPs, with each getting access to the necessary I/O pins.  
The signals for the following CP physical interfaces are included in this section:  
DS1/T1 Framer Interface Configuration  
10/100 Ethernet (RMII) Configuration  
Gigabit Ethernet (GMII) Configuration  
Gigabit Ethernet and Fibre Channel TBI Configuration  
SONET OC-3 Transceiver Interface Configuration  
SONET OC-12 Transceiver Interface Configuration  
C
Pin Descriptions Grouped by Function  
33  
Table 7 CP Physical Interface Signals and Pins (Grouped by Clusters)  
CP CLUSTER 1 CP CLUSTER 2 CP CLUSTER 3  
SIGNAL SIGNAL SIGNAL  
CP CLUSTER 4  
SIGNAL  
PIN #  
AJ29  
AH29  
AG29  
AF29  
AE29  
AD29  
AC29  
AJ28  
AG28  
AF28  
AD28  
AC28  
AJ27  
AH27  
AG27  
AE27  
AD27  
AC27  
AJ26  
AH26  
AG26  
AF26  
AE26  
AD26  
AC26  
AJ25  
AH25  
AG25  
PIN #  
AF25  
AE25  
AD25  
AC25  
AJ24  
AG24  
AF24  
AD24  
AC24  
AJ23  
AH23  
AG23  
AE23  
AD23  
AC23  
AJ22  
AH22  
AG22  
AF22  
AE22  
AD22  
AC22  
AJ21  
AH21  
AG21  
AF21  
AE21  
AD21  
PIN #  
AC21  
AJ20  
AG20  
AF20  
AD20  
AC20  
AJ19  
AH19  
AG19  
AF19  
AE19  
AD19  
AC19  
AB29  
AB28  
AB26  
AB25  
AB24  
AB22  
AB21  
AA29  
AA27  
AA26  
AA25  
AA23  
AA22  
AA21  
Y29  
PIN #  
Y28  
Y27  
Y26  
Y25  
Y24  
Y23  
Y22  
Y21  
W29  
W28  
W27  
W26  
W25  
W24  
W23  
W22  
W21  
V29  
V28  
V26  
V25  
V24  
V22  
V21  
U29  
U27  
U26  
U25  
CP0_0  
CP0_1  
CP0_2  
CP0_3  
CP0_4  
CP0_5  
CP0_6  
CP1_0  
CP1_1  
CP1_2  
CP1_3  
CP1_4  
CP1_5  
CP1_6  
CP2_0  
CP2_1  
CP2_2  
CP2_3  
CP2_4  
CP2_5  
CP2_6  
CP3_0  
CP3_1  
CP3_2  
CP3_3  
CP3_4  
CP3_5  
CP3_6  
CP4_0  
CP4_1  
CP4_2  
CP4_3  
CP4_4  
CP4_5  
CP4_6  
CP5_0  
CP5_1  
CP5_2  
CP5_3  
CP5_4  
CP5_5  
CP5_6  
CP6_0  
CP6_1  
CP6_2  
CP6_3  
CP6_4  
CP6_5  
CP6_6  
CP7_0  
CP7_1  
CP7_2  
CP7_3  
CP7_4  
CP7_5  
CP7_6  
CP8_0  
CP8_1  
CP8_2  
CP8_3  
CP8_4  
CP8_5  
CP8_6  
CP9_0  
CP9_1  
CP9_2  
CP9_3  
CP9_4  
CP9_5  
CP9_6  
CPA_0  
CPA_1  
CPA_2  
CPA_3  
CPA_4  
CPA_5  
CPA_6  
CPB_0  
CPB_1  
CPB_2  
CPB_3  
CPB_4  
CPB_5  
CPB_6  
CPC_0  
CPC_1  
CPC_2  
CPC_3  
CPC_4  
CPC_5  
CPC_6  
CPD_0  
CPD_1  
CPD_2  
CPD_3  
CPD_4  
CPD_5  
CPD_6  
CPE_0  
CPE_1  
CPE_2  
CPE_3  
CPE_4  
CPE_5  
CPE_6  
CPF_0  
CPF_1  
CPF_2  
CPF_3  
CPF_4  
CPF_5  
CPF_6  
03  
34  
CHAPTER 2: SIGNAL DESCRIPTIONS  
DS1/T1 Framer Interface Configuration  
Table 8 describes the serial framer interface signals. For each CP (0-15), you can  
implement one serial Framer interface.  
Table 8 DS1/T1 Framer Interface Signals  
SIGNAL NAME*  
CPn_0  
PIN #†  
TOTAL TYPE  
I/O  
OPD TCLK  
IPU RCLK  
LABEL  
SIGNAL DESCRIPTION  
Transmit Clock (1.544MHz)  
Receive Clock (1.544MHz)  
Transmit Data  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
1
1
7
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
CPn_1  
CPn_2  
OPD TData  
CPn_3  
OPU TFrame  
Transmit Frame Synchronization  
Receive Data  
CPn_4  
IPD  
IPU  
RData  
CPn_5  
RFrame  
Receive Frame Synchronization  
nc  
CPn_6  
ncPU nc  
TOTAL PINS  
*
n can be from 0 to 15. See Table 7.  
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.  
10/100 Ethernet (RMII) Configuration  
Table 9 describes the 10/100BASE-T Ethernet Reduced Media Independent Interface  
(RMII) signals. For each CP (0-15), you can implement one 10/100 Ethernet interface.  
Table 9 10/100 Ethernet Signals  
SIGNAL NAME*  
CPn_0  
PIN #  
TOTAL TYPE  
I/O  
OPD  
IPU  
LABEL  
SIGNAL DESCRIPTION  
Table 7  
Table 7  
1
1
LVTTL  
LVTTL  
REF_CLK  
CRS_DV  
Transmit and Receive Clock (50MHz)  
CPn_1  
Carrier Sense (CRS)/ Receive Data Valid (RX_DV). CRS indicates that  
traffic is on the link, and is asserted if the signal is a 1 or an  
alternating 1010... RX_DV indicates that a receive frame is in  
progress and the data present on the RXD pins is valid. It is  
asserted if this signal is a 1 for more than one cycle.  
CPn_2  
CPn_3  
CPn_4  
CPn_5  
CPn_6  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
OPD  
OPU  
IPD  
TXD(0)  
TXD(1)  
RXD(0)  
RXD(1)  
TX_EN  
Transmit Data 0 (first on wire)  
Transmit Data 1 (second on wire)  
Receive Data 0 (first on wire)  
Receive Data 1 (second on wire)  
IPU  
OPU  
Transmit Enable. When asserted, the data on TXD is encoded and  
transmitted on the twisted pair cable.  
7
TOTAL PINS  
*
n can be from 0 to 15. See Table 7.  
C
Pin Descriptions Grouped by Function  
35  
Gigabit Ethernet (GMII) Configuration  
Gigabit Ethernet Media Independent Interface (GMII) is configured in one of two ways:  
Use one CP cluster when density is more important than wire-speed performance  
because you can then implement up to four Gigabit Ethernet ports per C-5e NP.  
Use two CP clusters for wire-speed performance and additional processing power. You  
can implement up to two Gigabit Ethernet ports per C-5e NP.  
Table 10 lists the possible CP cluster combinations you can use and Figure 4 shows receive  
and transmit pin configurations by cluster. Table 11 lists the signals and pinouts for  
Gigabit Ethernet (GMII).  
Table 10 Transmit and Receive Pin Combinations for Gigabit Ethernet and Fibre Channel  
CLUSTER  
SINGLE CLUSTER MODE (TBI OR GMII)  
Port 1 Tx and Rx  
TWO CLUSTER MODE (GMII)*  
Port 1 Tx  
0
1
2
3
Port 2 Tx and Rx  
Port 1 Rx  
Port 3 Tx and Rx  
Port 2 Tx  
Port 4 Tx and Rx  
Port 2 Rx  
*
The Two Cluster Mode column lists typical configurations. Any cluster can be set up to either receive  
or transmit. So you could configure a dual cluster mode where cluster 0 receives and cluster 3  
transmits.  
03  
36  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Figure 4 GMII/TBI Transmit and Receive Pin Configurations  
Single Cluster Mode  
Pin Configuration  
Two Cluster Mode  
Pin Configuration  
Tx  
Tx  
Rx  
Cluster  
0
Cluster  
0
}
}
}
}
Port 1  
Port 2  
Port 3  
Port 4  
Rx  
nc  
Port 1  
Port 2  
Tx  
nc  
Tx  
Rx  
}
}
Cluster  
1
Cluster  
1
Rx  
Tx  
Tx  
Rx  
Cluster  
2
Cluster  
2
Rx  
nc  
Tx  
nc  
Tx  
Rx  
Cluster  
3
Cluster  
3
Rx  
nc = not connected  
Table 11 Gigabit Ethernet (GMII/MII) Signals One Cluster Example  
SIGNAL NAME*  
PIN #TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
CPn_0  
Table 7  
1
LVTTL OPD T_CLK  
GMII Transmit Clock (125MHz). This clock is used to synchronize the  
transmit data.  
CPn_1  
Table 7  
1
LVTTL IPU  
TCLKI  
MII transmit clock. Transmit data aligned to this clock input from  
phy in MII mode. 25 Mhz in 100BaseT, 2.5 in Mhz in 10BaseT  
CPn_2  
CPn_3  
CPn_4  
CPn_5  
CPn_6  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
LVTTL OPD TXD(0)  
LVTTL OPU TXD(1)  
LVTTL OPD TXD(2)  
LVTTL OPU TXD(3)  
LVTTL OPU TX_EN  
Transmit Data (byte-wide data, least significant bit)  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Enable. When asserted, the data on TXD is encoded and  
transmitted on the twisted pair cable.  
C
Pin Descriptions Grouped by Function  
37  
Table 11 Gigabit Ethernet (GMII/MII) Signals One Cluster Example (continued)  
SIGNAL NAME*  
CPn+1_0  
PIN #TOTAL TYPE  
I/O  
ncPD nc  
LVTTL IPU COL  
LABEL  
SIGNAL DESCRIPTION  
Table 7  
Table 7  
1
1
nc  
nc  
CPn+1_1  
Collision. Asserted when both RX_DV and TX_EN are valid during  
half duplex operation.  
CPn+1_2  
CPn+1_3  
CPn+1_4  
CPn+1_5  
CPn+1_6  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
LVTTL OPD TXD(4)  
LVTTL OPU TXD(5)  
LVTTL OPD TXD(6)  
LVTTL OPU TXD(7)  
LVTTL OPU TX_ER  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Data (byte-wide receive data, most significant bit)  
Transmit Error. Asserting TX_ER when TX_EN is a 1 causes  
transmission of the designated bad codein lieu of the normal  
encoded data on the twisted pair data.  
CPn+2_0  
CPn+2_1  
CPn+2_2  
CPn+2_3  
CPn+2_4  
CPn+2_5  
CPn+2_6  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
1
1
nc  
ncPD nc  
nc  
LVTTL IPU  
LVTTL IPD  
LVTTL IPU  
LVTTL IPD  
LVTTL IPU  
LVTTL IPU  
RCLK  
Receive Clock (125MHz)  
RXD(0)  
RXD(1)  
RXD(2)  
RXD(3)  
RX_DV  
Receive Data (byte-wide receive data, least significant bit)  
Receive Data  
Receive Data  
Receive Data  
Receive Data Valid. Indicates that there is a receive frame in progress  
and that the data present on the RXD signals is valid.  
CPn+3_0  
CPn+3_1  
Table 7  
Table 7  
1
1
nc  
ncPD nc  
nc  
LVTTL IPU  
CRS  
Carrier Sense. Indicates traffic is on the link. CRS is asserted when a  
non-idle condition is detected on the receive data stream. CRS is  
deasserted when an end of frame or idle condition is detected.  
CPn+3_2  
CPn+3_3  
CPn+3_4  
CPn+3_5  
CPn+3_6  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
LVTTL IPD  
LVTTL IPU  
LVTTL IPD  
LVTTL IPU  
LVTTL IPU  
RXD(4)  
RXD(5)  
RXD(6)  
RXD(7)  
RX_ER  
Receive Data  
Receive Data  
Receive Data  
Receive Data (most significant bit)  
Receive Error Detected. Indicates that there has been an error  
received in the receive frame.  
28  
TOTAL PINS  
*
n can be 0, 4, 8, or 12.  
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.  
03  
38  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Gigabit Ethernet and Fibre Channel TBI Configuration  
1000BASE-T Gigabit Ethernet and Fibre Channel TBI is implemented in much the same  
way as Gigabit Ethernet (GMII). Table 10 shows the possible CP pin combinations you can  
use and Figure 4 shows receive and transmit pin configurations by cluster. Table 12 shows  
the signals and pinouts for a single cluster for Gigabit Ethernet and Fibre Channel TBI.  
The unused pins for the two cluster configurations should be wired down using a resistor.  
Table 12 Gigabit Ethernet and Fibre Channel TBI Signals Example  
SIGNAL NAME*  
PIN #TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
CPn_0  
Table 7  
1
LVTTL  
OPD  
TCLK  
Transmit Clock (125MHz). This clock is used to synchronize the  
transmit data.  
CPn_1  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
nc  
ncPU nc  
nc  
CPn_2  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
OPD  
OPU  
OPD  
OPU  
OPU  
TXD(9)  
Transmit Data (ten bits wide, last on wire)  
CPn_3  
TXD(8)  
TXD(7)  
TXD(6)  
TXD(1)  
Transmit Data  
CPn_4  
Transmit Data  
CPn_5  
Transmit Data  
CPn_6  
Transmit Data  
CPn+1_0  
CPn+1_1  
CPn+1_2  
CPn+1_3  
CPn+1_4  
CPn+1_5  
CPn+1_6  
CPn+2_0  
CPn+2_1  
CPn+2_2  
CPn+2_3  
CPn+2_4  
CPn+2_5  
CPn+2_6  
ncPD nc  
ncPU nc  
nc  
nc  
nc  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
OPD  
OPU  
OPD  
OPU  
OPU  
TXD(5)  
Transmit Data  
TXD(4)  
TXD(3)  
TXD(2)  
TXD(0)  
Transmit Data  
Transmit Data  
Transmit Data  
Transmit Data (ten bits wide, first on wire)  
nc  
ncPD nc  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
IPU  
IPD  
IPU  
IPD  
IPU  
IPU  
RCLK  
Receive Clock (62.5 MHz)  
Receive Data (ten bits wide, last on wire)  
Receive Data  
RXD(9)  
RXD(8)  
RXD(7)  
RXD(6)  
RXD(1)  
Receive Data  
Receive Data  
Receive Data  
C
Pin Descriptions Grouped by Function  
39  
Table 12 Gigabit Ethernet and Fibre Channel TBI Signals Example (continued)  
SIGNAL NAME*  
CPn+3_0  
CPn+3_1  
CPn+3_2  
CPn+3_3  
CPn+3_4  
CPn+3_5  
CPn+3_6  
PIN #TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
nc  
ncPD nc  
nc  
1
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
IPU  
IPD  
IPU  
IPD  
IPU  
IPU  
RCLKN  
Receive Clock Inverted  
Receive Data  
1
RXD(5)  
RXD(4)  
RXD(3)  
RXD(2)  
RXD(0)  
1
Receive Data  
1
Receive Data  
1
Receive Data  
1
Receive Data (ten bits wide, first on wire)  
28  
TOTAL PINS  
*
n can be 0, 4, 8, or 12  
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.  
SONET OC-3 Transceiver Interface Configuration  
Table 13 describes the SONET Optical Carrier (OC) 3 transceiver interface signals. For each  
CP (0-15), you can implement a single OC-3 interface.  
Table 13 OC-3 Signals  
SIGNAL NAME*  
CPn_0  
PIN #†  
TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
1
1
LVPECL IPD  
LVPECL IPU  
RCLK_H  
RCLK_L  
Receive Clock noninverted side of pair (155.52MHz)  
Receive Clock inverted side of pair (155.52MHz)  
Transmit Data noninverted side of pair  
Transmit Data inverted side of pair  
Receive Data noninverted side of pair  
Receive Data inverted side of pair  
CPn_1  
CPn_2  
LVPECL OPD TXD_H  
CPn_3  
LVPECL IPU  
LVPECL IPD  
LVPECL IPU  
LVPECL IPU  
TXD_L  
RXD_H  
RXD_L  
CPn_4  
CPn_5  
CPn_6  
SIGNAL_DET A light level above a certain threshold is present at the optical  
receiver - single ended LVPECL.  
7
TOTAL PINS  
*
n can be from 0 to 15.  
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.  
03  
40  
CHAPTER 2: SIGNAL DESCRIPTIONS  
SONET OC-12 Transceiver Interface Configuration  
SONET Optical Carrier (OC) 12 is implemented by using one cluster of CPs. At any time, a  
CP within a cluster spends half its time performing receive functions, and the other half  
performing transmit functions. Table 14 shows a CP Cluster configured for one OC-12  
interface.  
Table 14 OC-12 Signals Example  
SIGNAL NAME*  
PIN #†  
TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
CPn_0  
Table 7  
1
LVTTL  
OPD  
TCLK  
Deskewed Transmit Clock (77.76MHz). This clock is used to  
synchronize the transmit data.  
CPn_1  
Table 7  
1
LVTTL  
IPU  
TCLKI  
Transceiver Transmit Clock. This clock sets the frequency of the  
transmit data and is typically sourced by the PHY chip.  
CPn_2  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
OPD  
OPU  
OPD  
OPU  
OPU  
TXD(0)  
TXD(1)  
TXD(2)  
TXD(3)  
00F  
Transmit Data (byte-wide data, least significant bit)  
CPn_3  
Transmit Data  
CPn_4  
Transmit Data  
CPn_5  
Transmit Data  
CPn_6  
Out of Frame  
CPn+1_0  
CPn+1_1  
CPn+1_2  
CPn+1_3  
CPn+1_4  
CPn+1_5  
CPn+1_6  
CPn+2_0  
CPn+2_1  
CPn+2_2  
CPn+2_3  
CPn+2_4  
CPn+2_5  
CPn+2_6  
ncPD nc  
ncPU nc  
nc  
nc  
nc  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
OPD  
OPU  
OPD  
OPU  
TXD(4)  
Transmit Data  
TXD(5)  
TXD(6)  
TXD(7)  
Transmit Data  
Transmit Data  
Transmit Data (byte-wide data, most significant bit)  
ncPU nc  
ncPD nc  
nc  
nc  
nc  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
IPU  
IPD  
IPU  
IPD  
IPU  
IPU  
RCLK  
Receive Clock (77.76MHz)  
RXD(0)  
RXD(1)  
RXD(2)  
RXD(3)  
FP  
Receive Data (byte-wide receive data, least significant bit)  
Receive Data  
Receive Data  
Receive Data  
Frame Synchronization Pulse. This is valid during the third A2 of  
the receive SONET frame.  
C
Pin Descriptions Grouped by Function  
41  
Table 14 OC-12 Signals Example (continued)  
SIGNAL NAME*  
CPn+3_0  
CPn+3_1  
CPn+3_2  
CPn+3_3  
CPn+3_4  
CPn+3_5  
CPn+3_6  
PIN #†  
TOTAL TYPE  
I/O  
LABEL  
SIGNAL DESCRIPTION  
nc  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
Table 7  
1
nc  
ncPD nc  
ncPU nc  
1
nc  
nc  
1
LVTTL  
LVTTL  
LVTTL  
LVTTL  
nc  
IPD  
IPU  
IPD  
IPU  
RXD(4)  
Receive Data  
Receive Data  
Receive Data  
1
RXD(5)  
RXD(6)  
RXD(7)  
1
1
Receive Data (most significant bit)  
nc  
1
ncPU nc  
28  
TOTAL PINS  
*
n can be 0, 4, 8, or 12  
Reference Table 7 for pin numbers for a different cluster.  
03  
42  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Executive Processor The XPs system interface manages the supervisory controls for the network interfaces, as  
System Interface Signals  
well as the set of pins that provide interfaces to other components in the system that are  
not memories or network interfaces. It is also the primary interface used for initializing the  
C-5e NP after reset. The XP signals include PCI signals, Serial interface signals, and PROM  
interface signals.  
PCI Signals  
The PCI can be configured to support a 32bit PCI capable of operating at either 33MHz or  
66MHz. The PCI is fully compliant with PCI Specification revision 2.1. Table 15 describes  
the PCI signals.  
Table 15 PCI Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
PAD0 - PAD31  
AJ5, AJ4, AJ3, AJ2, AJ1, AH5, AH4, 32  
AH3, AH1, AG5, AG4, AG3, AG2,  
AG1, AF5, AF4, AF2, AF1, AE5,  
AE4, AE3, AE1, AD5, AD4, AD3,  
AD2, AD1, AC5, AC4, AC3, AC2,  
AC1  
PCI  
I/O Multiplexed Address/Data Bus. These signals are  
multiplexed address and data bits. The C-5e NP  
receives addresses as target and drives addresses as  
master. It drives the data and receives read data as  
master.  
PCBEX0 - PCBEX3  
PPAR  
AB6, AB5, AB4, AB2  
4
PCI  
PCI  
I/O Command byte enables. These signals are  
multiplexed command and byte enabled signals.  
The C-5e NP receives byte enables as target and drives  
byte enables as master.  
AB1  
1
I/O Parity. This signal carries even parity for AD and CBE#  
pins. It has the same receive and drive characteristics  
as the address and data bus, except that it is one PCI  
cycle later.  
PFRAMEX  
PTRDYX  
PIRDYX  
PSTOPX  
PDEVSELX  
PPERRX  
PSERRX  
PCLK  
W9  
1
1
1
1
1
1
1
1
1
1
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
PCI  
IPD  
I/O Cycle frame  
AB9  
AB8  
AA5  
AA4  
AA3  
AA1  
AA7  
AA8  
AA9  
I/O Target ready for data transfer  
I/O Initiator ready for data transfer  
I/O Target transaction stop request  
I/O Target device selected  
I/O Bus parity error  
I/O System error  
I
Bus clock  
PRSTX  
PCI  
PCI  
I
Bus reset  
PREQX  
O
Initiator bus request (arbitration)  
C
Pin Descriptions Grouped by Function  
43  
Table 15 PCI Signals (continued)  
SIGNAL NAME  
PGNTX  
PIN #  
Y7  
TOTAL TYPE  
I/O  
I
SIGNAL DESCRIPTION  
1
IPD  
Initiator bus grant (arbitration)  
Initialization device select  
Interrupt  
PIDSEL  
Y8  
1
PCI  
PCI  
I
PINTA  
Y9  
1
O
50  
TOTAL PINS  
Serial Interface Signals  
The Serial interface is a bidirectional two-wire serial bus. It can use one of the following  
formats:  
An 8bit data format followed by an acknowledge bit, which supports transfers at up to  
400kbps (low speed).  
A 16bit IEEE 802.3 MDIO data format with 10bits of addressing, which supports  
transfers up to 25MHz (high speed).  
The signals and pins are identical for both the high and low speed protocols.  
Which of the two data rates used is selected by the state of the PROM interfaces SPLD  
signal that is asserted while the PROM interface is idle. When SPLD is asserted HI the low  
speed serial bus protocol is selected and when SPLD is asserted LOW the MDIO protocol is  
selected.  
The bus only supports a single master hierarchy that can operate as either a receiver or a  
transmitter.  
Both SIDA and SICL are bidirectional lines that are connected, through a pull-up resistor, to  
a positive supply voltage. When the bus is free, both lines are HIGH. The output stages of  
the devices connected to the bus must have either an open-drain or open-collector in  
order to perform the wired-AND function required for its arbitration mechanism.  
Table 16 Serial Interface Signals  
SIGNAL NAME  
SICL  
PIN #  
Y5  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
1
1
2
LVTTL IPD/O Serial Clock line  
LVTTL IPD/O Serial Data line  
SIDA  
Y6  
TOTAL PINS  
03  
44  
CHAPTER 2: SIGNAL DESCRIPTIONS  
PROM Interface Signals  
The PROM interface is a low speed I/O port that allows the C-5e NP to communicate  
through external logic to PROM. The PROM clock is 1/2 to 1/16 the core clock rate. The  
maximum PROM size addressable is 4MBytes, and must use a by 16part. The PROM  
signals are listed in Table 17.  
Table 17 PROM Interface Signals  
SIGNAL  
NAME  
SPDO  
SPDI  
PIN #  
Y1  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
Serial Data Out  
Serial Data In  
1
1
1
LVTTL  
O
Y2  
LVTTL IPD  
LVTTL O  
SPLD  
Y3  
When load is asserted on a positive clock  
edge, the external logic performs a parallel  
load. On each positive clock edge when  
load is de-asserted, the shift registers shift.  
When the PROM interface is idle:  
If SPLD is asserted HI it indicates low  
speed serial protocol,  
If asserted LOW it indicates MDIO serial  
protocol.  
SPCK  
Y4  
1
LVTTL  
O
Clock  
4
TOTAL PINS  
Figure 5 shows the connections between the PROM Interface and external board logic.  
The application is required to provide an external shift register with parallel-in and  
parallel-out capabilities, and a parallel load register. Both devices should be  
positive-edge-triggered and perform a parallel load whenever SPLD is asserted. When  
SPLD is deasserted the shift register shifts.  
C
Pin Descriptions Grouped by Function  
45  
Figure 5 PROM Interface Diagram  
C-5e Network Proc0essor External Logic  
21  
PROM_ADDR<21:1>  
CE  
SPDO  
SPDI  
21  
6
1
0
21  
21  
6 0  
Internal Shift  
Register  
External Shift  
Register  
0
15  
21  
PROM_ADDR<21:1>  
21  
CE  
31  
16 15  
0
PROM _H_Word  
PROM _LO_Word  
1
16  
PROM _Return_Data  
PROM Clock Gen.  
PROM Sequencer  
PROM  
SPCLK  
SPLD  
PROM_Data  
The PROM interface operates in the following manner (Note that two accesses are  
piplined together to execute one 32-bit fetch). The steps are shown in Figure 6.  
1 The PROM_ADDR is loaded into the network processor internal shift register.  
2 The PROM_ADDR is shifted into the external shift register for 22 SPCLK cycles.  
3 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external  
presentation register.  
4 SPLD is deasserted for 22 SPCLK cycles. The PROM presents the first 16bit PROM_DATA.  
At the same time, the next PROM_ADDR is shifted into the external shift register.  
5 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external  
presentation register and the first PROM_DATA into the external shift register.  
6 SPLD is deasserted for 22 SPCLK cycles, shifting the first PROM_DATA into the network  
processor internal shift register.  
7 SPLD is asserted for one SPCLK cycle, loading the first PROM_DATA into the network  
processor PROM_RETURN_DATA register and the second PROM_DATA into the  
external shift register.  
03  
46  
CHAPTER 2: SIGNAL DESCRIPTIONS  
8 SPLD is deasserted for 22 SPCLK cycles, shifting the second PROM_DATA into the  
network processor internal shift register.  
9 SPLD is asserted for one SPCLK cycle, loading the second PROM_DATA into the  
network processor PROM_RETURN_DATA register.  
Figure 6 PROM Interface Timing Outline  
XP PROM Interface outline  
SPLD  
`
A1  
A2  
A3  
D1  
A4  
D2  
A5  
SPDTO  
D3  
SPDTI  
XP PROM Interface detail  
23  
14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
6
7
1
2
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
1
2
3
4
5
6
7
8
9
10 11 12 13  
SPCLK  
SPLD  
A1  
A2  
A3  
A4  
A
A
A
A
A
A
A
A
A
A
A
A
9
A
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
CE  
x
SPDTO  
20 19 18 17 16 15 14 13 12 11 10  
0
The PROM_ADDR is loaded into the  
C-5's internal shift register.  
1
3
5
The PROM_ADDR is shifted into  
the external shift register.  
The PROM_ADDR is loaded into the  
external presentation register.  
(SPCLK Rising Edge used for shifting)  
2
4
The PROM_DATA is  
presenting.  
The PROM_DATA is loaded into the  
external shift register.  
D1  
D2  
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
x
x
x
x
x
x
x
SPDTI  
15 14 13 12 11 10  
The PROM_DATA is shifted into the C-5's  
Internal shift register.  
6
8
The PROM_DATA is loaded into the C-5's  
internal PROM_RETURN_DATA register.  
7
9
C
Pin Descriptions Grouped by Function  
47  
General System Interface Signal  
Table 18 provides the signal for the Executive Processor reset power status and I/O clock.  
The C-5e NP can be powered up with the XP either running or with the XP in reset mode  
similar to the CPs. When the XP remains in reset mode, an external host can be used to  
control the initialization of the C-5e NP.  
Table 18 General System Interface Signal  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
XPUHOT  
W8  
1
LVTTL IPD  
Sample at Power On Reset determines if the XP RISC Core is held in reset. Low  
equals reset and High equals active. During normal operation, this is an  
external interrupt.  
1
TOTAL PINS  
03  
48  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Fabric Processor Interface The FP has logical signal interfaces: a receive data interface and a transmit data interface,  
Signals  
each with its own control, data, and clock signals. The interface has the following  
characteristic:  
The interface clocks FRXCLK and FTXCLK can have a different frequency from the core  
C-5e NP clock frequency. The FP supports a fabric interface frequency from 10MHz to  
125MHz.  
FRXCLK and FTXCLK can be independent of each other; typically they have the same  
frequency, but are allowed to be skewed relative to each other.  
Each data bus can be configured for widths of 8 (data bits 7:0 are used), 16 (bits 15:0), or  
32 (bits 31:0). In 8bit mode, data bits 31:8 are unused. In 16bit mode, data bits 31:16 are  
unused.  
Table 19 Fabric Interface Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
FIN0 - FIN31  
AE12, AD12, AC12, AJ11, AH11, AG11,AF11,  
AE11, AD11, AC11, AJ10, AG10, AF10, AD10,  
AC10, AJ9, AH9, AG9, AF9, AE9, AD9, AC9, AJ8,  
AH8, AG8, AF8, AE8, AD8, AC8, AJ7, AH7, AG7  
32  
LVTTL  
IPD  
Fabric Data Bus In  
FOUT0 - FOUT31  
AJ18, AH18, AG18, AE18, AD18, AC18, AJ17,  
AH17, AF17, AE17, AD17, AC17, AJ16, AH16,  
AG16, AF16, AE16, AD16, AC16, AJ15, AG15,  
AF15, AD15, AC15, AJ14, AH14, AG14, AF14,  
AE14, AD14, AC14, AJ13  
32  
LVTTL  
O
Fabric Data Bus Out  
FRXCLK  
AC6  
1
LVTTL  
LVTTL  
LVTTL  
LVTTL  
IPD  
IPD  
Receive Clock  
Transmit Clock  
FTXCLK  
AG12  
1
FRXCTL0 - FRXCTL6  
FTXCTL0 - FTXCTL6  
TOTAL PINS  
AE7, AD7, AC7, AJ6, AG6, AF6, AD6  
AH13, AF13, AE13, AD13, AC13, AJ12, AH12  
7
IPD, O Receive Control Signals  
IPD, O Transmit Control Signals  
7
80  
The following tables list the Fabric Interface pin mappings:  
Utopia1, Utopia2, Utopia3 ATM Mode mappings are listed in Table 20  
Utopia1, Utopia2, Utopia3 PHY Mode mappings are listed in Table 21  
PRIZMA Mode mappings are listed in Table 22 (PRIZMA protocol is a subset of Utopia3  
PHY)  
C
Pin Descriptions Grouped by Function  
49  
Power X(CSIX-L0) Mode mappings are listed in Table 23  
CSIX-L1 Mode mappings are listed in Table 24  
Table 20 Utopia1*, 2*, 3 ATM Mode, C-5e Network Processor to Fabric Interface Pin Mapping  
RECEIVE SIGNALS  
TRANSMIT SIGNALS  
C-5E NETWORK  
PROCESSOR  
C-5E NETWORK  
PROCESSOR  
I/O  
UTOPIA  
NOTE  
I/O  
UTOPIA  
NOTE  
FRXCTL0  
Output  
RxEnb*  
Pullup or No  
Connection  
FTXCTL0  
Output  
TxEnb*  
Pullup or No  
Connection  
FRXCTL1  
FRXCTL2  
FRXCTL3  
FRXCTL4  
FRXCTL5  
FRXCTL6  
Input  
Input  
Input  
Input  
Input  
Input  
RxClav  
RxSOC  
n/a  
FTXCTL1  
FTXCTL2  
FTXCTL3  
FTXCTL4  
FTXCTL5  
FTXCTL6  
Input  
TxClav  
TxSOC  
n/a  
Output  
Input  
n/a  
Input  
n/a  
n/a  
Input  
n/a  
RxPrty  
Output  
TxPrty  
*
Cell size must be 4Byte aligned. Both RxEnb and TxEnb are Active Low.  
Table 21 Utopia1*, 2*, 3 PHY Mode, C-5e Network Processor to Fabric Interface Pin Mapping  
RECEIVE SIGNALS  
TRANSMIT SIGNALS  
C-5E NETWORK  
PROCESSOR  
C-5E NETWORK  
PROCESSOR  
I/O  
UTOPIA  
TxEnb*  
TxClav  
TxSOC  
n/a  
NOTE  
I/O  
UTOPIA  
RxEnb*  
RxClav  
RxSOC  
n/a  
NOTE  
FRXCTL0  
FRXCTL1  
FRXCTL2  
FRXCTL3  
FRXCTL4  
FRXCTL5  
FRXCTL6  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Pullup  
FTXCTL0  
Input  
Output  
Output  
Input  
Input  
Input  
Output  
Pullup  
No Connection FTXCTL1  
FTXCTL2  
No Connection  
FTXCTL3  
n/a  
FTXCTL4  
n/a  
n/a  
FTXCTL5  
n/a  
TxPrty  
FTXCTL6  
RxPrty  
*
Cell size must be 4Byte aligned. Both TxEnb and RxEnb are Active Low.  
When configuring two C-5e network processors back-to-back using the Fabric Port, set  
up the transmit side of each C-5e network processor in Utopia ATM mode and the receive  
side of each C-5e network processor in Utopia PHY mode.  
03  
50  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 22 PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin Mapping  
RECEIVE SIGNALS  
TRANSMIT SIGNALS  
C-5E NETWORK  
PROCESSOR  
C-5E NETWORK  
PROCESSOR  
I/O  
UTOPIA  
NOTE  
I/O  
UTOPIA  
NOTE  
FRXCTL0  
Input  
TxEnb*  
Not connected to FTXCTL0  
fabric.  
Input  
RxEnb*  
Not connected to  
fabric.  
FRXCTL1  
FRXCTL2  
FRXCTL3  
FRXCTL4  
FRXCTL5  
FRXCTL6  
Output  
Input  
Input  
Input  
Input  
Input  
TxClav  
TxSOP  
n/a  
No connection  
FTXCTL1  
FTXCTL2  
FTXCTL3  
FTXCTL4  
FTXCTL5  
FTXCTL6  
Output  
Output  
Input  
RxClav  
RxSOP  
n/a  
No Connection  
n/a  
Input  
n/a  
n/a  
Input  
n/a  
TxPrty  
Optional  
Output  
RxPrty  
Optional  
*
Both TxEnb and RxEnb are Active Low.  
Table 23 Power X(CSIX-L0) Mode, C-5e Network Processor to Fabric Interface Pin Mapping  
RECEIVE SIGNALS  
TRANSMIT SIGNALS  
C-5E NETWORK  
PROCESSOR  
C-5E NETWORK  
PROCESSOR  
I/O  
POWER X  
RxCtrl[0]  
RxCtrl[1]  
RxCtrl[2]  
RxPrty[3]  
RxPrty[2]  
RxPrty[1]  
RxPrty[0]  
NOTE  
I/O  
POWER X  
TxCtrl[0]  
TxCtrl[1]  
TxCtrl[2]  
TxPrty[3]  
TxPrty[2]  
TxPrty[1]  
TxPrty[0]  
NOTE  
FRXCTL0  
FRXCTL1  
FRXCTL2  
FRXCTL3  
FRXCTL4  
FRXCTL5  
FRXCTL6  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
FTXCTL0  
FTXCTL1  
FTXCTL2  
FTXCTL3  
FTXCTL4  
FTXCTL5  
FTXCTL6  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
For the CSIX-L1 Mode, VDDF= 2.5V.  
C
Pin Descriptions Grouped by Function  
51  
Table 24 CSIX-L1 Mode, C-5e Network to Fabric Interface Pin Mapping  
FPRX SIGNALS  
FPTX SIGNALS  
C-5E NP  
FRxCTL0  
FRxCTL1  
FRxCTL2  
FRxCTL3  
FRxCTL4  
FRxCTL5  
FRxCTL6  
I/O  
CSIX-L1  
n/a  
NOTE  
C-5E NP  
FTxCTL0  
FTxCTL1  
FTxCTL2  
FTxCTL3  
FTxCTL4  
FTxCTL5  
FTxCTL6  
I/O  
CSIX-L1  
n/a  
NOTE  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Output  
n/a  
n/a  
TxSOF  
n/a  
RxSOF  
n/a  
n/a  
n/a  
n/a  
n/a  
TxPrty  
RxPrty  
03  
52  
CHAPTER 2: SIGNAL DESCRIPTIONS  
BMU SDRAM Interface The BMU and SDRAM interface signals are described in Table 25.  
Signals  
The BMU is designed to support SDRAM devices with 12 address lines. All 139 data lines  
and all 12 address lines must be connected to the SDRAM in order for the BMU to be able  
to read and write external SDRAM properly.  
Table 25 BMU SDRAM Interface Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
MD0 - MD129  
U23, U22, U21, T29, T28, T27, T26,  
T25, T24, T23, T22, T21, R29, R28,  
R27, R26, R25, R24, R23, R22, R21,  
P29, P28, P26, P25, P24, P22, P21,  
N29, N27, N26, N25, N23, N22, N21,  
M29, M28, M27, M26, M25, M24,  
M23, M22, M21, L29, L28, L27, L26,  
L25, L24, L23, L22, L21, K29, K28,  
K26, K25, K24, K22, K21, J29, J27,  
J26, J25, J23, J22, J21, H29, H28,  
H27, H26, H25, H24, H23, H22, H21,  
G29, G28, G27, G26, G25, G24, G23,  
G22, G21, F29, F28, F26, F25, F24,  
F22, F21, E29, E27, E26, E25, E23,  
E22, E21, D29, D28, D27, D26, D25,  
D24, D23, D22, D21, C29, C28, C26,  
C25, C24, C22, C21, B29, B27, B26,  
B25, B23, B22, B21, A29, A28, A27,  
A26, A25, A24, A23, A22  
130  
LVTTL  
IPD/O Data Lines In  
MDECC0 - MDECC8 E19, F19, G19, A20, C20, D20, F20,  
G20, A21  
9
LVTTL  
LVTTL  
IPD/O Stored as data, ECC bits  
MA0 - MA11  
B16, C16, D16, E16, F16, G16, A17, 12  
B17, D17, E17, F17, G17  
OPD Address Outputs: A0-A11 are sampled during the  
ACTIVE command and READ/WRITE to select one  
location out of the memory array in the respective  
bank. The address inputs also provide the  
op-code during a LOAD MODE REGISTER  
command  
MBA0 - MBA1  
MCASX  
E18, C18  
D19  
2
1
LVTTL  
LVTTL  
OPD Bank Address Outputs: BA0 and BA1 define which  
bank the ACTIVE, READ, WRITE or PRECHARGE  
command is being applied  
OPD Command Outputs: MRASX, MCASX, MWEX and  
MCSX define the command being entered.  
NOTE: MCSX is considered part of the command  
code.  
C
Pin Descriptions Grouped by Function  
53  
Table 25 BMU SDRAM Interface Signals (continued)  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
MRASX  
C19  
1
1
1
LVTTL  
LVTTL  
LVTTL  
OPD Command Outputs: MRASX, MCASX, MWEX and  
MCSX define the command being entered. MCSX  
is considered part of the command code.  
MWEX  
MCSX  
B19  
A19  
OPD Command Outputs: MRASX, MCASX, MWEX and  
MCSX define the command being entered. MCSX  
is considered part of the command code.  
OPD Chip Select: MCSX enables (registered LOW) and  
disables (registered HIGH) the command decoder.  
All commands are masked when MCSX is  
registered HIGH. MCSX provides the external bank  
selection on systems with multiple banks. MCSX is  
considered part of the command code.  
MDQM  
MDQML  
G18  
F18  
1
1
LVTTL  
LVTTL  
OPD Input/Output Mask: MDQM is an input mask  
signal for write accesses and an output enable  
OPD  
signal for read accesses. Input data is masked  
when MDQM is sampled HIGH during a WRITE  
cycle. The output buffers are placed in a high Z  
state (two-clock latency) when MDQM is sampled  
HIGH during the READ cycle.  
NOTE: MDQML is an identical copy of MDQM  
used to drive the loading on SDRAM  
configurations with 2 DQM pins.  
MDCLK  
B18  
1
LVTTL  
IPD  
Clock: MDCLK is driven by the system clock. All  
SDRAM input signals are sampled on the positive  
edge of the MDCLK. MDCLK also increments the  
internal burst counter and controls the output  
registers.  
160  
TOTAL PINS  
03  
54  
CHAPTER 2: SIGNAL DESCRIPTIONS  
TLU SRAM Interface The TLU SRAM interface supports up to 128MBytes of SRAM at frequencies to 133MHz  
Signals  
using LVTTL signaling levels (in single bank-mode only) and SRAM technologies up to  
64Mbits. The TLU SRAM interface signals are described in Table 26.  
Table 26 TLU SRAM Interface Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
TD0 - TD63  
G6, G7, G8, G9, G10, H1, H2, H3, H4, H5, H6, H7, H8, 64  
H9, J1, J3, J4, J5, J7, J8, J9, K1, K2, K4, K5, K6, K8, K9,  
L1, L2, L3, L4, L5, L6, L7, L8, L9, M1, M2, M3, M4,  
M5, M6, M7, M8, M9, N1, N3, N4, N5, N7, N8, N9,  
P1, P2, P4, P5, P6, P8, P9, R6, R7, R8, R9  
LVTTL IPD/O TLU Memory Data  
TA0 - TA21  
T1, U1, U3, U4, U5, U7, U8, U9, V1, V2, V4, V5, V6, 22  
V8, V9, W1, W2, W3, W4, W5, W6, W7  
LVTTL OPD TLU Memory Address  
TPAR0 - TPAR3  
R2, R3, R4, R5  
4
LVTTL IPD/O Word Data Parity (i.e. TPAR0 across  
TD15:0)  
TCE0X - TCE3X  
TWE0X - TWE3X  
TCLKI  
T2, T3, T4, T5  
T6, T7, T8, T9  
R1  
4
LVTTL OPD TLU Memory Chip Enable  
LVTTL OPD TLU Memory Write Enable  
4
1
LVTTL IPD  
TLU Clock Input  
99  
TOTAL PINS  
C
Pin Descriptions Grouped by Function  
55  
QMU SRAM (Internal The QMU signals are described in Table 27.  
Mode) Interface Signals  
Table 27 QMU SRAM (Internal Mode) Interface Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
QA0 - QA16  
C8, B8, A8, F9, E9, D9, C9, B9, A9, F10, D10, C10,  
A10, G11, F11, E11, D11  
17  
LVTTL  
O
Address [16:0]  
QD0 - QD31  
G1, F1, E1, D1, C1, B1, G2, F2, D2, C2, A2, G3, E3,  
D3, B3, A3, G4, F4, E4, D4, C4, B4, A4, G5, F5, E5,  
D5, C5, B5, A5, F6, D6  
32  
LVTTL IPD/O Data  
QDQPAR  
QARDY  
QNQRDY  
QWEX  
C11  
E8  
1
LVTTL IPD  
LVTTL IPD  
LVTTL IPD  
nc  
1
nc  
D8  
C6  
A6  
E7  
1
nc  
1
LVTTL  
LVTTL  
O
O
Write Enable  
QBCLKO  
QBCLKI  
QACLKO  
QACLKI  
QDPL  
1
nc  
1
LVTTL IPD  
LVTTL  
LVTTL IPD  
nc  
D7  
B7  
A7  
F8  
1
O
nc  
1
Input Clock  
1
LVTTL IPD/O Data Parity Low  
LVTTL IPD/O Data Parity High  
QDPH  
1
59  
TOTAL PINS  
03  
56  
CHAPTER 2: SIGNAL DESCRIPTIONS  
QMU to Q-5 TMC (External The QMU to Q-5 Traffic Management Coprocessor (TMC) signals are described in Table 28.  
Mode) Interface Signals  
Table 28 QMU to Q-5 (External Mode) Interface Signals  
SIGNAL NAME  
PIN #  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
QA0 - QA15  
C8, B8, A8, F9, E9, D9, C9, B9, A9, F10, D10,  
C10, A10, G11, F11, E11  
16  
LVTTL  
O
Enqueue Data [8:23]  
QA16  
D11  
1
LVTTL  
O
Enqueue Parity  
QD0 - QD23  
G1, F1, E1, D1, C1, B1, G2, F2, D2, C2, A2, G3, 24  
E3, D3, B3, A3, G4, F4, E4, D4, C4, B4, A4, G5  
LVTTL IPD  
Dequeue Data [0:23]  
QD24 - QD31  
QDQPAR  
QARDY  
F5, E5, D5, C5, B5, A5, F6, D6  
8
1
1
1
1
1
1
1
1
1
1
59  
LVTTL IPD  
LVTTL IPD  
Enqueue Data [0:7]  
Dequeue Parity  
Dequeue Ack Ready  
Enqueue Ready  
Dequeue Ready  
Output ClockB  
Input ClockB  
C11  
E8  
LVTTL  
LVTTL  
LVTTL  
LVTTL  
IPD  
IPD  
QNQRDY  
QWEX  
D8  
C6  
A6  
E7  
O
QBCLKO  
QBCLKI  
O
LVTTL IPD  
LVTTL  
LVTTL IPD  
QACLKO  
QACLKI  
D7  
B7  
A7  
F8  
O
Output ClockA  
Input ClockA  
QDPL  
LVTTL  
LVTTL  
O
O
Dequeue Ack [0]  
Dequeue Ack [1]  
QDPH  
TOTAL PINS  
C
Pin Descriptions Grouped by Function  
57  
Power Supply Signals Power supply, and ground signals are described in Table 29.  
Table 29 Power Supply Signals  
SIGNAL NAME  
PIN #  
TOTAL  
TYPE  
SIGNAL DESCRIPTION  
VDD  
J13, J15, J17, J19, K12, K14, K16, K18, L11, L13, L15, 57  
L17, L19, M12, M14, M16, M18, N13, N15, N17, N19,  
P12, P14, P16, P18, R11, R13, R15, R17, R19, T12, T14,  
T16, T18, U11, U13, U15, U17, U19, V12, V14, V16,  
V18, W11, W13, W15, W17, W19, Y12, Y14, Y16, Y18,  
AA11, AA13, AA15, AA17, AA19,  
P
Core Supply Voltage (1.2V Input)  
VDD33  
GND  
B20, B28, C13, C17, C23, E15, F23, F27, H12, H14,  
H16, H18, H20, J28, K20, K23, M20, N24, P20, P27,  
T20, U28, V20, V23, Y20, AA6, AA24, AB3, AB10,  
AB18, AB20, AB27, AE24, AF3, AF27, AH2, AH20,  
AH28  
38  
P
P
I/O Supply Voltage (3.3V Input)  
B6, B15, B24, C3, C27, D12, D18, E2, E6, E10, E20, E24, 122  
E28, H11, H13, H15, H17, H19, J6, J10, J12, J14, J16,  
J18, J20, J24, K3, K11, K13, K15, K17, K19, K27, L10,  
L12, L14, L16, L18, L20, M11, M13, M15, M17, M19,  
N2, N10, N12, N14, N16, N18, N20, N28, P7, P11, P13,  
P15, P17, P19, P23, R10, R12, R14, R16, R18, R20, T11,  
T13, T15, T17, T19, U6, U10, U12, U14, U16, U18, U20,  
U24, V3, V11, V13, V15, V17, V19, V27, W10, W12,  
W14, W16, W18, W20, Y11, Y13, Y15, Y17, Y19, AA2,  
AA10, AA12, AA14, AA16, AA18, AA20, AA28, AB7,  
AB11, AB13, AB15, AB17, AB19, AB23, AE2, AE10,  
AE20, AE28, AF7, AF12, AF18, AF23, AH6, AH15,  
AH24  
Ground  
VDDF  
VDDT  
AB12, AB14, AB16, AE6, AE15, AG13, AG17, AH10  
8
P
P
Fabric I/O supply (3.3 or 2.5V)  
TLU and QMU I/O supply (3.3V)  
B2, B10, C7, F3, F7, H10, J2, J11, K7, K10, M10, N6,  
N11, P3, P10, T10, U2, V7, V10, Y10  
20  
245  
TOTAL PINS  
03  
58  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Test Signals Test signals are described in Table 30.  
Table 30 Miscellaneous Test Signals For JTAG, Scan, and Internal Test Routines  
SIGNAL NAME  
JTCK  
PIN #  
C15  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
1
1
LVTTL IPD  
LVTTL IPD  
Test Clock  
JTMS  
A14  
Test Mode Select. High selects modes  
as defined in the IEEE 1149.1 JTAG  
specification.  
JTRSTX†  
JTDI†  
A12  
B14  
A13  
B13  
C14  
1
1
1
1
1
LVTTL IPD  
LVTTL IPD  
Test Reset (low active)  
Test Data In  
JTDO  
LVTTL  
O
Test Data Out  
JHIGHZ  
JCLKBYP  
LVTTL IPD  
LVTTL IPD  
Turns off all output drivers when High  
1X or 2X Clock Mode Select. Low  
selects 1X, High selects 2X.  
JSE  
D15  
1
LVTTL IPD  
Scan Enable. High enables scan test.  
Scan Out Pins  
JS00-JS05  
TOTAL PINS  
D14, A16, D13, C12, A15, B12  
6
LVTTL  
O
14  
During JTAG, SCLK and SCLKX must remain as differential inputs.  
No Connection Pins No connection pins are listed in Table 31.  
Table 31 No Connection Pins  
SIGNAL NAME  
PIN #  
B11, A11, A18  
TOTAL TYPE  
I/O  
SIGNAL DESCRIPTION  
NC3 - NC5  
3
nc  
IPD/O Reserved for future functionality  
3
TOTAL PINS  
C
Signals Grouped by Pin Number  
59  
Signals Grouped by Pin  
Number  
The C-5e NP signals are listed by pin number in Table 32.  
Table 32 Signals Listed by Pin Number  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
A 1-29  
FUNCTION  
PIN  
FUNCTION  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Not present A9  
QA8  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
MA6  
A25  
A26  
A27  
A28  
A29  
MD126  
MD125  
MD124  
MD123  
MD122  
QD10  
QD15  
QD22  
QD29  
QBCLKO  
QDPL  
QA2  
A10  
QA12  
NC4  
NC5  
A11  
A12  
A13  
A14  
A15  
A16  
MCSX  
JTRSTX  
JTDO  
JTMS  
JSO4  
JSO1  
MDECC3  
MDECC8  
MD129  
MD128  
MD127  
B 1-29  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
QD5  
B9  
QA7  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
MA7  
B25  
B26  
B27  
B28  
B29  
MD118  
MD117  
MD116  
VDD33  
MD115  
VDDT  
QD14  
QD21  
QD28  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
VDDT  
NC3  
MDCLK  
MWEX  
VDD33  
MD121  
MD120  
MD119  
GND  
JSO5  
JHIGHZ  
JTDI  
QACLKI  
QA1  
GND  
MA0  
C 1-29  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
QD4  
C9  
QA6  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
VDD33  
MBA1  
C25  
C26  
C27  
C28  
C29  
MD111  
MD110  
GND  
QD9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
QA11  
QDQPAR  
JSO3  
GND  
QD20  
QD27  
QWEX  
VDDT  
QA0  
MRASX  
MDECC4  
MD114  
MD113  
VDD33  
MD112  
MD109  
MD108  
VDD33  
JCLKBYP  
JTCK  
MA1  
03  
60  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
D 1-29  
FUNCTION  
PIN  
FUNCTION  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
QD3  
D9  
QA5  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
MA8  
D25  
D26  
D27  
D28  
D29  
MD103  
MD102  
MD101  
MD100  
MD99  
QD8  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
QA10  
QA16  
GND  
JSO2  
JSO0  
JSE  
GND  
QD13  
QD19  
QD26  
QD31  
QACLKO  
QNQRDY  
MCASX  
MDECC5  
MD107  
MD106  
MD105  
MD104  
MA2  
E 1-29  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
QD2  
E9  
QA4  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
MA9  
E25  
E26  
E27  
E28  
E29  
MD95  
MD94  
MD93  
GND  
GND  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
GND  
MBA0  
MDECC0  
GND  
QD12  
QD18  
QD25  
GND  
QA15  
CCLK7  
CCLK5  
CCLK2  
VDD33  
MA3  
MD98  
MD97  
MD96  
GND  
MD92  
QBCLKI  
QARDY  
F 1-29  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
QD1  
F9  
QA3  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
MA10  
F25  
F26  
F27  
F28  
F29  
MD88  
MD87  
VDD33  
MD86  
MD85  
QD7  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
QA9  
MDQML  
MDECC1  
MDECC6  
MD91  
VDDT  
QD17  
QD24  
QD30  
VDDT  
QDPH  
QA14  
CCLK6  
CCLK4  
CCLK1  
SCLKX  
MA4  
MD90  
VDD33  
MD89  
C
Signals Grouped by Pin Number  
61  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
G 1-29  
FUNCTION  
PIN  
FUNCTION  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
QD0  
QD6  
QD11  
QD16  
QD23  
TD0  
G9  
TD3  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
MA11  
G25  
G26  
G27  
G28  
G29  
MD80  
MD79  
MD78  
MD77  
MD76  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
TD4  
MDQM  
MDECC2  
MDECC7  
MD84  
QA13  
CPREF  
CCLK3  
CCLK0  
SCLK  
MA5  
MD83  
TD1  
MD82  
TD2  
MD81  
H 1-29  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
TD5  
H9  
TD13  
VDDT  
GND  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
GND  
H25  
H26  
H27  
H28  
H29  
MD71  
MD70  
MD69  
MD68  
MD67  
TD6  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
VDD33  
GND  
TD7  
TD8  
VDD33  
GND  
VDD33  
MD75  
MD74  
MD73  
MD72  
TD9  
TD10  
TD11  
TD12  
VDD33  
GND  
VDD33  
J 1-29  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
TD14  
VDDT  
TD15  
TD16  
TD17  
GND  
J9  
TD20  
GND  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
VDD  
J25  
J26  
J27  
J28  
J29  
MD63  
MD62  
MD61  
VDD33  
MD60  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
VDD  
GND  
MD66  
MD65  
MD64  
GND  
TD18  
TD19  
03  
62  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
K 1-29  
FUNCTION  
PIN  
FUNCTION  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
TD21  
TD22  
GND  
K9  
TD27  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
GND  
K25  
K26  
K27  
K28  
K29  
MD56  
MD55  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
VDD  
GND  
TD23  
TD24  
TD25  
VDDT  
TD26  
VDD33  
MD59  
MD58  
VDD33  
MD57  
MD54  
MD53  
L 1-29  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
TD28  
TD29  
TD30  
TD31  
TD32  
TD33  
TD34  
TD35  
L9  
TD36  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
VDD  
L25  
L26  
L27  
L28  
L29  
MD48  
MD47  
MD46  
MD45  
MD44  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
GND  
VDD  
GND  
MD52  
MD51  
MD50  
MD49  
M 1-29  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
TD37  
TD38  
TD39  
TD40  
TD41  
TD42  
TD43  
TD44  
M9  
TD45  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
GND  
M25  
M26  
M27  
M28  
M29  
MD39  
MD38  
MD37  
MD36  
MD35  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
VDD  
GND  
VDD33  
MD43  
MD42  
MD41  
MD40  
C
Signals Grouped by Pin Number  
63  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
N 1-29  
FUNCTION  
PIN  
FUNCTION  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
TD46  
GND  
N9  
TD52  
GND  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
VDD  
N25  
N26  
N27  
N28  
N29  
MD31  
MD30  
MD29  
GND  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
TD47  
TD48  
TD49  
VDDT  
TD50  
TD51  
VDD  
GND  
MD34  
MD33  
MD32  
VDD33  
MD28  
P 1-29  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
TD53  
TD54  
VDDT  
TD55  
TD56  
TD57  
GND  
P9  
TD59  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
GND  
P25  
P26  
P27  
P28  
P29  
MD24  
MD23  
VDD33  
MD22  
MD21  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
VDD  
GND  
VDD33  
MD27  
MD26  
GND  
TD58  
MD25  
R 1-29  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
TCLKI  
TPAR0  
TPAR1  
TPAR2  
TPAR3  
TD60  
R9  
TD63  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
VDD  
R25  
R26  
R27  
R28  
R29  
MD16  
MD15  
MD14  
MD13  
MD12  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
GND  
VDD  
GND  
MD20  
MD19  
MD18  
MD17  
TD61  
TD62  
03  
64  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
T 1-29  
FUNCTION  
PIN  
FUNCTION  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
TA0  
T9  
TWE3X  
VDDT  
GND  
VDD  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
GND  
T25  
T26  
T27  
T28  
T29  
MD7  
MD6  
MD5  
MD4  
MD3  
TCE0X  
TCE1X  
TCE2X  
TCE3X  
TWE0X  
TWE1X  
TWE2X  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
VDD  
GND  
VDD33  
MD11  
MD10  
MD9  
GND  
VDD  
GND  
VDD  
MD8  
U 1-29  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
TA1  
U9  
TA7  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
VDD  
GND  
VDD  
GND  
MD2  
MD1  
MD0  
GND  
U25  
U26  
U27  
U28  
U29  
CPF_6  
CPF_5  
CPF_4  
VDD33  
CPF_3  
VDDT  
TA2  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
TA3  
TA4  
GND  
TA5  
TA6  
V 1-29  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
TA8  
V9  
TA14  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
GND  
V25  
V26  
V27  
V28  
V29  
CPE_6  
CPE_5  
GND  
TA9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
VDD  
GND  
TA10  
TA11  
TA12  
VDDT  
TA13  
GND  
VDD33  
CPF_2  
CPF_1  
VDD33  
CPF_0  
CPE_4  
CPE_3  
C
Signals Grouped by Pin Number  
65  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
W 1-29  
FUNCTION  
PIN  
FUNCTION  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
TA15  
TA16  
TA17  
TA18  
TA19  
TA20  
TA21  
XPUHOT  
W9  
PFRAMEX  
GND  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
VDD  
W25  
W26  
W27  
W28  
W29  
CPD_5  
CPD_4  
CPD_3  
CPD_2  
CPD_1  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
GND  
VDD  
VDD  
GND  
GND  
VDD  
CPE_2  
CPE_1  
CPE_0  
CPD_6  
GND  
VDD  
GND  
Y 1-29  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
SPDO  
SPDI  
Y9  
PINTA  
VDDT  
GND  
VDD  
GND  
VDD  
GND  
VDD  
Y17  
Y18  
GND  
Y25  
Y26  
Y27  
Y28  
Y29  
CPC_3  
CPC_2  
CPC_1  
CPC_0  
CPB_6  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
VDD  
SPLD  
SPCK  
SICL  
Y19  
GND  
Y20  
VDD33  
CPD_0  
CPC_6  
CPC_5  
CPC_4  
Y21  
SIDA  
Y22  
PGNTX  
PIDSEL  
Y23  
Y24  
AA 1-29  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
PSERRX  
GND  
AA9  
PREQX  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
AA17  
VDD  
AA25  
AA26  
AA27  
AA28  
AA29  
CPB_2  
CPB_1  
CPB_0  
GND  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
GND  
PPERRX  
PDEVSELX  
PSTOPX  
VDD33  
PCLK  
VDD  
GND  
CPB_5  
CPB_4  
CPB_3  
VDD33  
CPA_6  
PRSTX  
03  
66  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
AB 1-29  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
PPAR  
AB9  
PTRDYX  
VDD33  
GND  
AB17  
GND  
AB25  
AB26  
AB27  
AB28  
AB29  
CPA_2  
CPA_1  
VDD33  
CPA_0  
CP9_6  
PCBEX3  
VDD33  
PCBEX2  
PCBEX1  
PCBEX0  
GND  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
VDD33  
GND  
VDDF  
GND  
VDD33  
CPA_5  
CPA_4  
GND  
VDDF  
GND  
PIRDYX  
VDDF  
CPA_3  
AC 1-29  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
AC8  
PAD31  
PAD30  
PAD29  
PAD28  
PAD27  
FRXCLK  
FRXCTL2  
FIN28  
AC9  
FIN21  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
FOUT11  
FOUT5  
CP9_5  
CP8_5  
CP8_0  
CP7_0  
CP6_0  
CP5_1  
AC25  
AC26  
AC27  
AC28  
AC29  
CP4_3  
CP3_3  
CP2_3  
CP1_4  
CP0_6  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
FIN14  
FIN9  
FIN2  
FTXCTL4  
FOUT30  
FOUT23  
FOUT18  
AD 1-29  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
PAD26  
PAD25  
PAD24  
PAD23  
PAD22  
FRXCTL6  
FRXCTL1  
FIN27  
AD9  
FIN20  
AD17 FOUT10  
AD18 FOUT4  
AD19 CP9_4  
AD20 CP8_4  
AD21 CP7_6  
AD22 CP6_6  
AD23 CP5_6  
AD24 CP5_0  
AD25 CP4_2  
AD26 CP3_2  
AD27 CP2_2  
AD28 CP1_3  
AD29 CP0_5  
AD10 FIN13  
AD11 FIN8  
AD12 FIN1  
AD13 FTXCTL3  
AD14 FOUT29  
AD15 FOUT22  
AD16 FOUT17  
C
Signals Grouped by Pin Number  
67  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
AE 1-29  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
AE8  
PAD21  
GND  
AE9  
FIN19  
GND  
AE17  
FOUT9  
FOUT3  
CP9_3  
GND  
AE25  
AE26  
AE27  
AE28  
AE29  
CP4_1  
CP3_1  
CP2_1  
GND  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
PAD20  
PAD19  
PAD18  
VDDF  
FIN7  
FIN0  
FTXCTL2  
FOUT28  
VDDF  
CP7_5  
CP6_5  
CP5_5  
VDD33  
CP0_4  
FRXCTL0  
FIN26  
FOUT16  
AF 1-29  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
PAD17  
PAD16  
VDD33  
PAD15  
PAD14  
FRXCTL5  
GND  
AF9  
FIN18  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
FOUT8  
GND  
AF25  
AF26  
AF27  
AF28  
AF29  
CP4_0  
CP3_0  
VDD33  
CP1_2  
CP0_3  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
FIN12  
FIN6  
CP9_2  
CP8_3  
CP7_4  
CP6_4  
GND  
GND  
FTXCTL1  
FOUT27  
FOUT21  
FOUT15  
FIN25  
CP4_6  
AG 1-29  
AG1  
AG2  
AG3  
AG4  
AG5  
AG6  
AG7  
AG8  
PAD13  
PAD12  
PAD11  
PAD10  
PAD9  
AG9  
FIN17  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
VDDF  
AG25  
AG26  
AG27  
AG28  
AG29  
CP3_6  
CP2_6  
CP2_0  
CP1_1  
CP0_2  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
FIN11  
FOUT2  
CP9_1  
CP8_2  
CP7_3  
CP6_3  
CP5_4  
CP4_5  
FIN5  
FTXCLK  
VDDF  
FRXCTL4  
FIN31  
FOUT26  
FOUT20  
FOUT14  
FIN24  
03  
68  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 32 Signals Listed by Pin Number (continued)  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
PIN  
FUNCTION  
AH 1-29  
AH1  
AH2  
AH3  
AH4  
AH5  
AH6  
AH7  
AH8  
PAD8  
VDD33  
PAD7  
PAD6  
PAD5  
GND  
AH9  
FIN16  
AH17 FOUT7  
AH25 CP3_5  
AH26 CP2_5  
AH27 CP1_6  
AH28 VDD33  
AH29 CP0_1  
AH10 VDDF  
AH11 FIN4  
AH18 FOUT1  
AH19 CP9_0  
AH20 VDD33  
AH21 CP7_2  
AH22 CP6_2  
AH23 CP5_3  
AH24 GND  
AH12 FTXCTL6  
AH13 FTXCTL0  
AH14 FOUT25  
AH15 GND  
FIN30  
FIN23  
AH16 FOUT13  
AJ 1-29  
AJ17  
AJ1  
AJ2  
AJ3  
AJ4  
AJ5  
AJ6  
AJ7  
AJ8  
PAD4  
AJ9  
FIN15  
FOUT6  
FOUT0  
CP8_6  
CP8_1  
CP7_1  
CP6_1  
CP5_2  
CP4_4  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
CP3_4  
CP2_4  
CP1_5  
CP1_0  
CP0_0  
PAD3  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
FIN10  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
PAD2  
FIN3  
PAD1  
FTXCTL5  
FOUT31  
FOUT24  
FOUT19  
FOUT12  
PAD0  
FRXCTL3  
FIN29  
FIN22  
C
JTAG Support  
69  
JTAG Support  
The C-5e NP contains JTAG test logic compliant with the IEEE 1149.1 specification. All  
required public instructions are implemented, as well as some optional instructions. This  
section contains information regarding the pinout, instructions, identification codes, and  
boundary scan cell types.  
Pinout The C-5e NP uses the standard JTAG pins including the optional test reset pin. Table 30  
describes the pins and their functions.  
JTAG Data Registers The C-5e NP contains the standard internal registers as specified in IEEE 1149.1. These  
registers are described in Table 33.  
Table 33 JTAG Internal Register Descriptions  
REGISTER NAME  
Bypass  
REGISTER LENGTH  
DESCRIPTION  
1
Standard JTAG bypass register  
Boundary Scan Register  
Standard JTAG IDCODE Register  
Boundary  
1549  
32  
Device Identification  
Boundary Scan Restriction SCLK/SCLKX inputs must not toggle when exercising the boundary scan function for JTAG.  
Boundary Scan Cell Types The C-5e NP boundary scan register contains only two cell types. All input cells are observe  
only cells of type BC_4. All enable and output cells are standard cells of type BC_1. In IEEE  
1149.1-1990 specification, the BC_4 cell is shown in Figure 7 and the BC_1 cell is shown in  
Figure 8.  
03  
70  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Figure 7 Observe-Only Cell  
To next cell  
From System Pin  
To System Logic  
G1  
0
1
1D  
C1  
D
k
s
o
Figure 8 Cell Design That Can Be Used for Both Input and Output Pins  
Node  
To next cell  
G1  
Shift DR  
To/From  
System Pin  
0
1
From/To  
System  
G1  
0
1
1D  
C1  
1D  
C1  
From last cell  
Clock DR  
Update DR  
C
JTAG Support  
71  
IDcode Register The C-5e NP implements a standard 32bit JTAG identification register. Table 34 lists the  
value of the code for full identification and its subcomponents.  
Table 34 JTAG Identification Code and Its Subcomponents  
FIELD NAME  
Version  
WIDTH  
BIT POSITIONS  
BINARY VALUE  
4
31-28  
27-12  
11-1  
0
0000  
Part Number  
Manufacturer Identity  
LSB  
16  
11  
1
0000_0000_0010_0001  
001_1001_0110  
1
The concatenated 32bit value is hexidecimal 0002132d.  
JTAG Instruction Register The C-5e NP contains a 4bit instruction register. Table 35 lists the instructions that are  
supported.  
Table 35 Instruction Register Instructions  
INSTRUCTION MNEMONIC SELECTED REGISTER  
INSTRUCTION OPCODE  
Extest  
Boundary Scan  
0000  
Idcode  
Identification Register 0001  
Sample/Preload  
Highz  
Boundary Scan  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
Bypass Register  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
Clamp  
Bypass  
Reserved*  
Reserved*  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
Bypass  
03  
72  
CHAPTER 2: SIGNAL DESCRIPTIONS  
Table 35 Instruction Register Instructions (continued)  
INSTRUCTION MNEMONIC SELECTED REGISTER  
INSTRUCTION OPCODE  
Bypass  
Bypass  
Bypass Register  
Bypass Register  
1110  
1111  
*
There are two reserved instructions intended for Motorola Corporations internal  
use. These should not be programmed by users.  
Boundary Scan In order to simplify board test, Motorola Corporation has provided a boundary scan  
Description Language  
description language (BSDL) file (c5e.bsdl) in the Motorola web site that describes the  
complete set of instructions, boundary scan order, and identification code value in an  
industry standard format.  
http://www.motorola.com/networkprocessors  
C
Chapter 3  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum  
Ratings  
Table 36 lists the absolute maximum ratings for the C-5e network processor. Stresses  
beyond those listed may cause permanent damage to the device. These are stress ratings  
only and do not imply that operation under any conditions other than those listed under  
Recommended Operating Conditions(Table 37) is possible.  
Exposure to conditions beyond Table 36 can:  
Reduce device reliability  
Result in premature device failure, even with no immediate sign of failure  
Prolonged exposure to conditions at or near the absolute maximum ratings could also  
result in reduced useful life and reliability of the C-5e NP.  
Table 36 C-5e Network Processor Absolute Maximum Ratings  
PARAMETER  
MIN  
MAX  
UNIT  
V
VDD33/VDDT/VDDF Supply Voltage (3.3V input)* -0.5  
+5  
VDD Supply Voltage (1.2V input)*  
Voltage on any pin  
-0.5  
+2.2  
V
-0.5  
VDD33 + 0.5  
V
Static Discharge Voltage  
2000/500  
-40  
V
Storage Temperature  
+125  
+125  
°C  
°C  
Absolute Maximum Junction Temperature  
Voltages are relative to Ground  
-40  
*
03  
74  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Recommended Operating  
Conditions  
The recommended operating conditions describe an environment the C-5e NP network  
processor is expected to encounter during normal operation. Table 37 delineates the  
recommended operating parameters for the C-5e NP.  
Table 37 C-5e Network Processor Recommended Operating Conditions  
PARAMETER  
MIN  
NOMINAL MAX  
UNIT  
VDD33 Supply Voltage  
VDDTSupply Voltage  
VDDFSupply Voltage  
3.135  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
V
2.375  
3.135  
2.5  
3.3  
2.625*  
3.465†  
VDD Supply Voltage  
1.14  
1.2  
1.26  
1.3  
V
IDD33 - VDD33 Supply Current  
IDD - VDD Supply Current  
Tj Junction Temperature  
A
A
°C  
8.5  
-40  
125  
*
For FP operation with I/Os @ 2.5V nominal.  
For FP operation with I/Os @ 3.3V nominal.  
C
DC Characteristics  
75  
DC Characteristics  
The DC electrical characteristics define the input operating conditions for proper  
operation and the output responses to applied DC signals and switch characteristics over  
specified voltage and temperature ranges. The DC electrical characteristics are specified  
within the recommended operating conditions including operating temperature and power  
supply range as stated in this data sheet. Table 38 outlines the C-5e NP DC characteristics.  
Table 38 C-5e Network Processor DC Characteristics  
PARAMETER*  
MIN  
2.0  
MAX  
UNIT  
V
NOTES  
LVTTL Input High Voltage  
LVTTL Input Low Voltage  
LVTTL Output High Voltage  
LVTTL Output Low Voltage  
LVTTL Input Current  
VDD33+.3  
0.8  
-0.3  
2.4  
V
V
@IOH = -2mA  
0.4  
V
@IOL = +2mA  
VIN = 0V or VDD33  
-100  
+100  
µA  
V
LVPECL Input High Voltage  
LVPECL Input Low Voltage  
LVPECL Output High Voltage  
VDD33 -1.165 VDD33+.3V  
-0.3 VDD33 -1.475  
VDD33 -1.025 VDD33 -0.60  
V
V
Load = 50ohm to  
V
DD33 - 2V  
LVPECL Output Low Voltage  
VDD33 -2.20  
VDD33 -1.620  
V
Load = 50ohm to  
VDD33 - 2V  
LVPECL Input Current  
CPREF  
-100  
+100  
µA  
VDD33 -1.38  
VDD33 -1.26  
V
Single-ended LVPECL  
reference  
*
All voltages are relative to Ground unless otherwise indicated.  
Each control input pin has a capacitance associated with it. The capacitance at the control  
input is due to the package and the input circuitry connected to the pin. Capacitance is  
based on these conditions: TA = 25°C; VDD33 = 3.3V; f = 1MHz. Table 39 provides  
capacitance data.  
Table 39 C-5e Network Processor Capacitance Data  
PARAMETER TYPICAL  
All Pins  
UNIT  
5
pF  
03  
76  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Power Sequencing  
It is intended that the VDD33/VDDT/VDDF and VDD rails are sequenced to their final value  
together for most applications. VDD33, VDDT and VDDF must be above VDD at all times.  
VDD must be brought to its final value within 100ms of sequencing on VDD33, VDDT and  
VDDF.  
It is also required that SCLK, SCLKX, TCLKI, PCLK, MDCLK, FTXCLK, and FRXCLK be running  
or begin running during power sequencing to propagate reset inside the C-5e NP. Figure 9  
indicates the relationship between the clocks and PRSTX. There is no requirement that the  
asserting and deasserting edges of PRSTX be synchronous to the clocks. Reset must be  
asserted within 100µs of power initiation. Typically, reset is held low during power  
initiation.  
Figure 9 Bringup Clock Timing Diagram  
VDD, VDD33,  
VDDT, VDDF  
100µs  
PRSTX  
)
(
1ms  
100µs  
TCLKI, PCLK,  
SCLK, SCLKX,  
MDCLK, FTXCLK,  
FRXCLK  
) (  
C
Power and Thermal Characteristics  
77  
Power and Thermal  
Characteristics  
Table 40 provides the derived power and thermal characteristics for the production  
version of the C-5e NP.  
Table 40 C-5e Network Processor Power and Thermal Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNITS TEST CONDITIONS  
Power Dissipation, PD  
5.5  
9.2  
13.0  
W
266MHz core clock  
See Note below  
Maximum Junction  
Temperature, TJ  
125  
oC  
See Note below  
See Note below  
See Note below  
Thermal Resistance, junction  
to case, θJC  
<0.1  
4.8  
oC/W  
oC/W  
Thermal Resistance, junction  
to printed circuit board, θJB  
Table 40 note: Power dissipation values assume the following conditions:  
BMU memory operating at 133MHz.  
TLU memory operating at 133MHz.  
QMU operating at 175MHz.  
VDD = 1.2V, VDD33 = 3.3V, TJ at approximately 50°C for typical values. VDD and VDD33  
are 5% higher for maximum values.  
“Minimum” PD based on idle condition (clocks running and no programs executing).  
TypicalPD based on test application that implements Fast Ethernet forwarding  
actively running on all CPs.  
MaximumPD based on maximum consumption for any high-bandwidth  
communications application executing on all CPs, FP, and XP.  
Thermal Management This section provides thermal management information for the ceramic ball grid array  
Information  
(CBGA) package for air-cooled applications. Proper thermal control design is primarily  
dependent on the system-level designthe heat sink, airflow, and thermal interface  
material. To reduce the die-junction temperature, heat sinks may be attached to the  
package by several methodsspring clip to holes in the printed-circuit board or package,  
and mounting clip and screw assembly (refer to Figure 10); however, due to the potential  
03  
78  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
large mass of the heat sink, attachment through the printed circuit board is suggested. If a  
spring clip is used, the spring force should not exceed 5.5 pounds.  
Figure 10 Package Cross Section View with Several Heat Sink Options  
Heat Sink  
Heat Sink Clip  
Thermal Interface Material  
CBGA Package  
Printed Circuit Board  
Internal Package Conduction Resistance  
For the exposed-die packaging technology the intrinsic conduction thermal resistance  
paths are as follows:  
The die junction-to-case (or top-of-die for exposed silicon) thermal resistance  
The die junction-to-ball thermal resistance  
Figure 11 depicts the primary heat transfer path for a package with an attached heat sink  
mounted to a printed-circuit board.  
C
Power and Thermal Characteristics  
79  
Figure 11 Package with Heat Sink Mounted to the Printed Circuit Board  
Radiation  
External Resistance  
Convection  
Heat Sink  
Thermal Interface Material  
Die/Package  
Die Junction  
Package/Leads  
Internal Resistance  
Printed Circuit Board (PCB)  
Radiation  
Convection  
External Resistance  
Heat generated on the active side of the chip is conducted through the silicon, then  
through the heat sink attach material (or thermal interface material), and finally to the  
heat sink where it is removed by convection.  
Because the silicon thermal resistance is quite small, for a first-order analysis, the  
temperature drop in the silicon may be neglected. Thus, the thermal interface material  
and the heat sink conduction/convective thermal resistances are the dominant terms.  
Heat Sink Selection Example  
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:  
T j = T a + T r + (θjc + θint + θsa ) x P d  
where:  
T j is the die-junction temperature  
T a is the inlet cabinet ambient temperature  
T r is the air temperature rise within the computer cabinet  
03  
80  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
θjc is the junction-to-case thermal resistance  
θint is the adhesive or interface material thermal resistance  
θsa is the heat sink base-to-ambient thermal resistance  
P d is the power dissipated by the device  
During operation, the die-junction temperatures (T j ) should be maintained less than the  
value specified in Table 40. The temperature of the air cooling the component greatly  
depends upon the ambient inlet air temperature and the air temperature rise within the  
electronic cabinet. An electronic cabinet inlet-air temperature (T a ) may range from 30° to  
40°C. The air temperature rise within a cabinet (T r ) may be in the range of 5° to 10°C. The  
thermal resistance of the thermal interface material (θint ) is typically about 1.5°C/W. For  
example, assuming a T a of 30°C, a T r of 5°C, a CBGA package θjc = 0.1, and a maximum  
power consumption (P d ) of 13.0 W, the following expression for T j is obtained:  
Die-junction temperature: T j = 30°C + 5°C + (0.1°C/W + 1.5°C/W + θsa ) x 13.0 W  
For this example, a θsa value of 5.3°C/W or less is required to maintain the die junction  
temperature below the maximum value of Table 40.  
Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are  
a common figure-of-merit used for comparing the thermal performance of various  
microelectronic packaging technologies, one should exercise caution when only using  
this metric in determining thermal management because no single parameter can  
adequately describe three-dimensional heat flow. The final die-junction operating  
temperature is not only a function of the component-level thermal resistance, but the  
system-level design and its operating conditions. In addition to the component's power  
consumption, a number of factors affect the final operating die-junction  
temperatureairflow, board population (local heat flux of adjacent components), heat  
sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology,  
system air temperature rise, altitude, etc.  
Due to the complexity and the many variations of system-level boundary conditions for  
today's microelectronic equipment, the combined effects of the heat transfer  
mechanisms (radiation, convection,and conduction) may vary widely. For these reasons,  
we recommend using conjugate heat transfer models for the board, as well as  
system-level designs.  
C
AC Timing Specifications  
81  
AC Timing Specifications  
AC timing specifications consist of input requirements and output responses. The input  
requirements include setup and hold times, pulse widths, and high and low times. The  
output responses include delays from clock to signal. The AC timing specifications are  
defined separately for each interface to the C-5e NP.  
See Figure 12. Output timing specifications for LVTTL pins are given with a 20pF load on  
the output. Other loads can be simulated with the IBIS model available from Motorola.  
The LVPECL driver is specified into a 50load terminated to a (VDD33 - 2V) reference.  
Figure 12 Test Loading Conditions  
LVTTL  
DUT  
20pF  
VDD33  
+2V  
LVPECL  
DUT  
50  
03  
82  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Clock Timing The system clock timing is shown in Figure 13 and described in Table 41.  
Specifications  
Figure 13 System Clock Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
SCLK  
SCLKX  
T
sc  
T
sh  
T
sl  
CCLKn  
T
ccN  
T
cch  
T
ccl  
Table 41 System Clock Timing Description  
SYMBOL PARAMETER MIN TYP  
System Cycle Time 3.76  
Sys Clk High Pulse 45  
MAX UNIT COMMENT  
Tsc  
ns  
266MHz core clock  
Duty cycle*  
Duty cycle*  
T1†  
Tsh  
55  
55  
Tsl  
Sys Clk Low Pulse 45  
CCLK0 Cycle Time  
Tcc0  
Tcc1  
Tcc2  
Tcc3  
Tcc4  
Tcc5  
Tcc6  
Tcc7  
Tcch  
Tccl  
647.67  
488.28  
29.097  
22.353  
20.00  
9.412  
8.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK1 Cycle Time  
E1†  
CCLK2 Cycle Time  
E3†  
CCLK3 Cycle Time  
T3†  
CCLK4 Cycle Time  
RMII†  
CCLK5 Cycle Time  
Fibre Channel†  
GMII†  
CCLK6 Cycle Time  
CCLK7 Cycle Time  
6.43  
OC-3†  
CCLKm High Time 40%  
CCLKm Low Time 40%  
60%  
60%  
% cycle pulse is high  
% cycle pulse is low  
*
Pulse duty cycle measured at crossing voltage of SCLK/SCLKX  
C
AC Timing Specifications  
83  
The frequencies specified for CCLK0 - CCLK7 allow full flexibility for the C-5e NP. It is also possible to use one  
or more CCLKn inputs for other frequencies; contact your Motorola representative for more information.  
CP Timing Specifications This section describes the timing for the following CP interfaces:  
DS1/DS3  
10/100 Ethernet  
Gigabit Ethernet  
OC-3  
OC-12  
DS1/DS3 Timing Specifications  
The DS1/DS3 interface timing is shown in Figure 14 and described in Table 42.  
Figure 14 DS1/DS3 Ethernet Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
CPn_0 (TCLK)  
CPn_2/3 (Tx)  
T
cdt  
T
cdo  
Cycle 5  
Cycle 2  
Cycle 3  
Cycle 4  
CPn_1 (RCLK)  
CPn_4/5 (Rx)  
T
cdr  
T
T
cds  
cdh  
03  
84  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Table 42 DS1/DS3 Ethernet Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Tcdt  
Tcdo  
Tcdr  
Tcds  
Tcdh  
DS1/DS3 Transmit Cycle Time  
647/22.4  
ns  
DS1/DS3 Output Time  
DS1/DS3 Receive Cycle Time  
DS1/DS3 Setup Time  
DS1/DS3 Hold Time  
3.0/3.0  
400/15.0 ns  
647/22.4  
ns  
ns  
ns  
2.0  
0
10/100 Ethernet Timing Specifications  
The 10/100 Ethernet interface timing is shown in Figure 15 and described in Table 43.  
Figure 15 10/100 Ethernet Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
CPn_0 (TCLK)  
CPn_2/3/6 (Tx)  
CPn_1/4/5 (Rx)  
T
cet  
T
ceo  
T
T
ceh  
ces  
Table 43 10/100 Ethernet Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
Tcet  
Tceo  
Tces  
Tceh  
Transmit Cycle Time*  
20  
Output Time  
Setup Time  
Hold Time  
3.0  
2.0  
0
15.0  
ns  
ns  
ns  
*
STD/Fast Ethernet  
C
AC Timing Specifications  
85  
Gigabit GMII Ethernet, TBI and MII Interface Timing Specifications  
The Gigabit GMII Ethernet interface timing is shown in Figure 16 and described in  
Table 44. The TBI interface timing is shown in Figure 16 and described in Table 45.  
Figure 16 Gigabit Ethernet and TBI Interface Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
GMII / TBI Tx  
Cycle 1  
CPn_0 (TCLK)  
T
cgt  
CPn_2-6 (Tx)  
CPn+1_2-6 (Tx)  
T
cgo  
Cycle 1  
Cycle 2  
Cycle 3  
MII Tx  
MII CPn_1 (TCLKI)  
T
cmt  
MII CPn_2-6 (Tx)  
T
cmo  
TBI Rx  
Cycle 1  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
CPn+2_1 (RCLK)  
CPn+3_1 (RCLKN)  
T
ctr  
T
ctd  
CPn+2_2-6 (Rx)  
CPn+3_2-6 (Rx)  
T
cts  
T
cth  
Cycle 1  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
GMII/MII Rx  
CPn+2_1 (RCLK)  
T
cgr  
CPn+2_2-6 (Rx)  
CPn+3_1-6 (Rx)  
T
T
cgh  
cgs  
03  
86  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Table 44 Gigabit GMII/MII Ethernet Interface Timing Description  
SYMBOL  
GIGABIT PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
COMMENT  
Tcgt  
Transmit Cycle Time, GMII  
8.0  
Tcgo  
Tcgr  
Output Time, GMII  
Receive Cycle Time  
Setup Time  
3.0  
6.0  
ns  
8.0  
ns  
Tcgs  
Tcgh  
Tcmt  
Tcmo  
2.0  
0.0  
ns  
Hold Time  
ns  
Transmit Cycle Time, MII  
Output Time, MII  
40/400  
ns  
100BaseT/10BaseT  
2
8
ns  
Table 45 Gigabit TBI Interface Timing Description  
SYMBOL  
TBI  
PARAMETER  
MIN  
TYP  
MAX  
TOL  
UNIT  
ns  
Tctt  
Tcto  
Tctr  
Tctd  
Tcts  
Tcth  
Transmit Cycle Time  
Output Time  
8.0  
3.0  
6.0*  
ns  
Receive Cycle Time  
Rclk/Rclkn Deviation  
Setup Time  
16.0  
ns  
1.0  
ns  
2.0  
0.0  
ns  
Hold Time  
ns  
*
For Fibre Channel applications this value is 7.0ns for a transmit cycle time of 9.4ns.  
C
AC Timing Specifications  
87  
OC-3 Timing Specifications  
The OC-3 interface timing is shown in Figure 17 and described in Table 46.  
Figure 17 OC-3 Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
CPn_2  
CPn_3  
T
c3t  
T
c3i  
Cycle 1  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
CPn_0  
CPn_1  
T
c3r  
T
c3d  
CPn_4  
CPn_5  
T
c3s  
T
c3h  
T
c3s  
T
c3h  
Table 46 OC-3 Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
Tc3t  
OC-3 Transmit Cycle Time  
OC-3 Pulse Width  
6.43  
Tc3i  
2.0  
ns  
Tc3r  
OC-3 Receive Cycle Time* 6.0  
ns  
Tc3d  
Tc3s  
OC-3 Clock Duty Cycle  
OC-3 Setup Time  
OC-3 Hold Time  
40  
60  
%
2.0  
0.0  
ns  
Tc3h  
155.52MHz  
ns  
*
03  
88  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
OC-12 Timing Specifications  
The OC-12 interface timing is shown in Figure 18 and described in Table 47.  
Figure 18 OC-12 Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
CPn_1 (TCLKI)  
T
c12i  
T
c12d  
CPn_0 (TCLK)  
T
c12t  
CPn+1_2-5 (Tx)  
T
c12o  
Cycle 1  
Cycle 2  
Cycle 3  
CPn_1 (RCLK)  
T
c12r  
CPn+2_2-6 (Rx)  
CPn+3_2-5 (Rx)  
T
T
c12h  
c12s  
Table 47 OC-12 Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
60  
UNIT  
Tc12i  
Tc12d  
Tc12t  
Tc12o  
Tc12r  
Tc12s  
Tc12h  
OC-12 Transmit Cycle Time*  
OC-3 Clock Duty Cycle  
OC-12 Transmit Cycle Time†  
OC-12 Output Time‡  
OC-12 Receive Cycle Time  
OC-12 Setup Time  
12.86  
12.86  
12.86  
ns  
%
40  
ns  
ns  
ns  
ns  
ns  
3.0  
10.0  
12.0  
2.0  
OC-12 Hold Time  
0.0  
*
Input from PHY  
Output from C-5e NP  
Aligned to TCLK  
C
AC Timing Specifications  
89  
Executive Processor The XP timing specifications include:  
Timing Specifications  
PCI Timing Specifications  
MDIO Serial Interface Timing Specifications  
Low Speed Serial Interface Timing Specifications  
PROM Interface Timing Specifications  
PCI Timing Specifications  
The PCI timing is shown in Figure 19 and described in Table 48.  
Figure 19 PCI Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
PCLK  
T
pc  
PAD/P_ctl  
(output)  
T
pao  
T
paz  
T
pav  
PAD/P_ctl  
(input)  
T
T
T
pas  
pah  
PGNTX  
(input)  
T
pgs  
pgh  
PIDSEL  
(input)  
T
pis  
T
pih  
03  
90  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Table 48 PCI Timing Description  
SYMBOL PARAMETER  
MIN  
15.0  
3.0  
0.0  
2.0  
2.0  
2.0  
5.1  
0.0  
3.0  
0.0  
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tpc  
PCI Cycle Time*  
PAD/P_ctlSetup  
PAD/P_ctl Hold  
PAD/P_ctl Output  
PAD/P_ctl Clk to Tri‡  
PAD/P_ctl Clk to Driven‡  
PGNTX Setup  
Tpas  
Tpah  
Tpao  
Tpaz  
Tpav  
Tpgs  
Tpgh  
Tpis  
6.0  
6.0  
6.0  
PGNTX Hold  
PIDSEL Setup  
Tpih  
PIDSEL Hold  
PRSTX**  
PINTA**  
*
66MHz PCI  
P_ctl includes all PCI control parameters including: PPAR, PFRAMEX, PTRDYX, PIRDYX,  
PSTOPX, PDEVSELX, PPERRX, PSERRX  
Not fully tested, values based on design/characterization.  
** Asynchronous  
C
AC Timing Specifications  
91  
MDIO Serial Interface Timing Specifications  
The MDIO serial interface timing is shown in Figure 20 and described in Table 49.  
Figure 20 MDIO Serial Interface Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
SICL  
T
sic  
SIDA  
(output)  
T
sods  
T
sodh  
SIDA  
(input)  
T
sids  
Table 49 MDIO Serial Interface Timing Description  
SYMBOL PARAMETER  
MIN  
40  
TYP  
MAX  
UNIT  
ns  
Tsic  
SICL Cycle Time  
SIDA Input Setup  
SIDA Input Hold  
Tsids  
Tsidh  
Tsods  
Tsodh  
10  
ns  
0.0  
ns  
SIDA Output Setup 10  
SIDA Output Hold 10  
ns  
ns  
03  
92  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Low Speed Serial Interface Timing Specifications  
The low speed serial interface timing is shown in Figure 21 and described in Table 50.  
Figure 21 Low Speed Serial Interface Timing Diagram  
Cycle 2  
Cycle 3  
SICL  
T
slc  
T
T
T
T
T
slb  
slss  
slhs  
slhd  
slsd  
T
slst  
SIDA  
Table 50 Low Speed Serial Interface Timing Description  
SYMBOL PARAMETER  
MIN  
2500  
600  
600  
250  
0.0  
MAX  
UNIT  
ns  
Tslc  
SICL Cycle Time  
Tslss  
Tslhs  
Tslsd  
Tslhd  
Tslst  
Tslb  
Set-up Time for Repeated START Condition  
Hold Time START Condition  
Data Set-up Time  
ns  
ns  
ns  
Data Hold Time  
ns  
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START Condition  
Capacitive load for each line of the bus  
600  
1250  
ns  
ns  
Cmax  
400  
pF  
C
AC Timing Specifications  
93  
PROM Interface Timing Specifications  
The PROM interface timing is shown in Figure 22 and described in Table 51.  
Figure 22 PROM Interface Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
SPCK  
SPDI  
T
spc  
T
T
spih  
spis  
SPLD  
SPDO  
T
splo  
T
spdo  
Table 51 PROM Interface Timing Description  
SYMBOL PARAMETER MIN TYP  
SPCK Cycle Time 40.0  
MAX  
UNIT  
ns  
Tspc  
Tspis  
Tspih  
Tsplo  
Tspdo  
SPDI Setup  
SPDI Hold  
10.0  
0.0  
ns  
ns  
SPLD Output  
SPDO Output  
Tsc  
Tsc  
Tsc + 3.0  
Tsc + 3.0  
ns  
ns  
03  
94  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Fabric Processor Timing The FP timing specifications are shown in Figure 23 and described in Table 52.  
Specifications  
Figure 23 Fabric Processor Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
FRXCLK  
T
frc  
FRXCTL  
(output)  
T
frco  
T
T
frcv  
frcz  
FRXCTL  
(input)  
T
T
T
T
frcs  
frch  
FINn  
frds  
frdh  
FTXCLK  
T
ftc  
FTXCTL  
(output)  
T
ftco  
T
T
ftcv  
ftcz  
FTXCTL  
(input)  
T
T
ftcs  
ftch  
FOUTn  
T
ftdo  
C
AC Timing Specifications  
95  
Table 52 Fabric Processor Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
COMMENT  
Tfrc  
FRX Cycle Time  
FRXCTL Setup  
8.0  
Tfrcs  
4.0  
1.5  
ns  
Utopia2 Mode  
All other modes  
Tfrch  
Tfrco  
Tfrcz  
Tfrcv  
Tfrds  
FRXCTL Hold  
0.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
FRXCTL Output  
FRXCTL Clk to Tri*  
FRXCTL Clk to Driven*  
FIN Setup  
4.0  
4.0  
4.0  
4.0  
1.5  
Utopia2 Mode  
All other modes  
Tfrdh  
Tftc  
FIN Hold  
0.0  
8.0  
ns  
ns  
ns  
FTX Cycle Time  
FTXCTL Setup  
Tftcs  
4.0  
1.5  
Utopia2 Mode  
All other modes  
Tftch  
Tftco  
Tftcz  
Tftcv  
Tftdo  
FTXCTL Hold  
0.0  
1.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
FTXCTL Output  
FTXCTL Clk to Tri*  
FTXCTL Tri to Driven*  
FOUT Output  
4.0  
4.0  
4.0  
4.0  
*
Not fully tested, values based on design/characterization.  
03  
96  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
BMU Timing The BMU timing specifications are shown in Figure 24 and described in Table 53.  
Specifications  
The BMU synchronous DRAM interface is PC100-compliant and designed to work with  
industry standard SDRAM components with 12 or fewer address lines. The information  
below is intended to provide the output, setup, and hold data required to design this  
interface without duplicating the transaction waveform diagrams in SDRAM data sheets.  
Figure 24 BMU Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
MDCLK  
M_ctl  
T
mco  
mao  
mc  
T
MAn  
MDn  
T
(output)  
T
mdo  
T
T
mdv  
mdz  
MDn  
(input)  
T
T
mdh  
mds  
Table 53 BMU Timing Description  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
Tmc  
BMU Cycle Time  
7.5  
0.8  
0.8  
0.5  
1.1  
0.8  
0.8  
0.8  
Tmco  
Tmao  
Tmds  
Tmdh  
Tmdo  
Tmdz  
Tmdv  
BMU Ctrl Output  
BMU Addr Output  
BMU Data Setup  
3.4  
3.4  
ns  
ns  
ns  
BMU Data Hold  
ns  
BMU Data Output  
BMU Data Clk to Tri*  
BMU Data Clk to Driven*  
4.0  
4.0  
4.0  
ns  
ns  
ns  
*
Not fully tested, values based on design/characterization.  
C
AC Timing Specifications  
97  
Table 54 Signal Groups in BMU Timing Diagrams  
SIGNAL GROUP  
Control (M_ctl)  
Address (MAn)  
Data (MDn)  
INCLUDED SIGNALS  
MBA0, MBA1, MCASX, MRASX, MWEX, MCSX, MDQM, MDQML  
MA0 - MA11  
MD0 - MD129, MDECC0 - MDECC8  
03  
98  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
TLU Timing Specifications The TLU timing specifications are shown in Figure 25 and described in Table 55.  
Figure 25 TLU Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
TCLKI  
T_ctl  
T
tc  
T
tco  
TAn  
T
tao  
TDn  
(output)  
T
T
tdo  
tdv  
T
tdz  
TDn  
(input)  
T
T
tdh  
tds  
Table 55 TLU Timing Description  
SYMBOL PARAMETER  
MIN  
7.5  
0.8  
0.8  
1.0  
1.2  
0.8  
0.8  
0.8  
TYP  
MAX  
UNIT  
Ttc  
TLU Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Ttco  
Ttao  
Ttds  
Ttdh  
Ttdo  
Ttdz  
Ttdv  
TLU Ctrl Output  
TLU Addr Output  
TLU Data Setup  
3.4  
3.4  
TLU Data Hold  
TLU Data Output  
TLU Data Clk to Tri*  
TLU Data Clk to Driven*  
3.7  
3.7  
3.7  
*
Not fully tested, values based on design/characterization.  
Table 56 Signal Groups in TLU Timing Diagrams  
SIGNAL GROUP  
Control (T_ctl)  
Address (TAn)  
INCLUDED SIGNALS  
TCE0X - TCE3X, TWE0X - TWE3X  
TA0 - TA21  
C
AC Timing Specifications  
99  
Table 56 Signal Groups in TLU Timing Diagrams  
SIGNAL GROUP  
INCLUDED SIGNALS  
Data (TDn)  
TD0 - TD63, TPAR0-3  
QMU SRAM (Internal The QMU SRAM (Internal Mode) timing specifications are shown in Figure 26 and  
Mode) Timing  
Specifications  
described in Table 57.  
Figure 26 QMU SRAM (Internal Mode) Timing Diagram  
Cycle 2  
Cycle 3  
Cycle 4  
Cycle 5  
Cycle 1  
QACLKI  
Q_ctl  
T
qc  
T
qco  
QAn  
T
qao  
QDn  
(output)  
T
T
qdv  
qdo  
T
qdz  
QDn  
(input)  
T
qdh  
T
qds  
03  
100  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Table 57 QMU SRAM (Internal Mode) Timing Description  
SYMBOL PARAMETER  
MIN  
5.7  
TYP  
MAX  
UNIT  
ns  
COMMENT  
Tqc  
QMU Cycle Time  
QMU Ctrl Output  
Tqco  
0.8  
3.4  
3.4  
ns  
Loading is 50Ω  
transmission line.  
Tqao  
QMU Addr Output  
0.8  
ns  
Loading is 50Ω  
transmission line.  
Tqds  
Tqdh  
Tqdo  
QMU Data Setup  
QMU Data Hold  
QMU Data Output  
0.8  
0.8  
0.9  
ns  
ns  
ns  
3.4  
Loading is 50Ω  
transmission line.  
Tqdz  
Tqdv  
QMU Data Clk to Tri* 0.9  
3.4  
3.4  
ns  
ns  
QMU Data Clk to  
Driven*  
0.9  
*
Not fully tested, values based on design/characterization.  
Table 58 Signal Groups in QMU SRAM (Internal Mode) Timing Diagrams  
SIGNAL GROUP  
Control (Q_ctl)  
Address (QAn)  
Data (QDn)  
INCLUDED SIGNALS  
QWEX  
QA0-QA16  
QD0-QD31, QDPL, QDPH  
C
AC Timing Specifications  
101  
QMU to Q-5 (External The QMU to Q-5 (External Mode) timing specifications are shown in Figure 27 and  
Mode) Timing  
Specifications  
describded in Table 59.  
Figure 27 QMU to Q-5 (External Mode) Timing Diagram  
Cycle 2  
Cycle 1  
T
qec  
QACLKI  
QBCLKI  
T
T
qep  
qep  
T
qec  
DQDATA  
T
T
qeh  
qeh  
T
T
T
qes  
qes  
qec  
QACLKO  
QBCLKO  
T
T
qep  
qep  
T
qec  
NQDATA  
T
T
qeomax  
qeomax  
T
T
qeomin  
qeomin  
03  
102  
CHAPTER 3: ELECTRICAL SPECIFICATIONS  
Table 59 QMU to Q-5 (External Mode) Timing Description  
SYMBOL PARAMETER  
MIN TYP  
MAX  
UNIT COMMENT  
Tqec  
Tqep  
QMU External Cycle Time  
10.0  
ns  
QACLKO/QBCLKO  
derived from  
QACLKI/QBCLKI  
QMU CLKA-CLKB delta  
between rising edges  
4.8  
ns  
Tqes  
Tqeh  
Tqeo  
QMU Input Data Setup  
QMU Input Data Hold  
QMU Data Output  
0.6  
0.8  
-.85  
ns  
ns  
ns  
1.3  
Determines valid time  
for data from each clock  
rising edge  
Table 60 Signal Groups in QMU to Q-5 (External Mode) Timimg Diagrams  
SIGNAL GROUP  
INCLUDED SIGNALS  
QACLKI, QBCLKI  
Input Clocks (QnCLKI)  
Output Clocks (QnCLKO)  
Input Data (DQDATA)  
Output Data (NQDATA)  
QACLKO, QBCLKO  
QD0-23, QARDY, QDPL, QDPH, QNQRDY, QDQPAR  
QA0-16, QWEX, QD24-31  
C
Chapter 4  
MECHANICAL SPECIFICATIONS  
Package Views  
The C-5e network processor is an 840 pin (29 pins x 29 pins) Ball Grid Array (BGA) package  
as shown in the following illustrations. Table 61 defines the package measurements.  
Figure 28 C-5e Network Processor BGA Package Side View  
A2  
A4  
A3  
A
A1  
Seating Plane  
HiTCE: Green ceramic is thermally matched to FR4 circuit board.  
03  
104  
CHAPTER 4: MECHANICAL SPECIFICATIONS  
Figure 29 C-5e Network Processor BGA Package (Bottom View)  
D
D1  
e
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
e
W
V
U
T
E1  
E
R
P
N
M
L
K
J
H
b
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
C
Package Views  
105  
Figure 30 C-5e Network Processor BGA Package (Top View)  
Probe Pad  
Die  
1.65  
Optional  
Capacitor  
Pads  
1.70  
Optional  
Capacitor  
Pads  
0.7  
18ARS10517D001  
03  
106  
CHAPTER 4: MECHANICAL SPECIFICATIONS  
Package Measurements  
Table 61 defines the C-5e NP package measurements, providing nominal, minimum, and  
maximum sizes where appropriate.  
Table 61 Package Measurements (Reference Figure 28, Figure 29 and Figure 30 for Symbols)  
SYMBOL  
DEFINITION  
Overall  
NOM. (MM)  
3.26  
MIN. (MM)  
2.97  
MAX. (MM)  
3.55  
A
A1  
A2  
A3  
A4  
D
Ball height  
0.70  
0.6  
0.8  
C4 and Die  
0.86  
0.82  
0.9  
Body thickness  
Capacitor pads  
Body size  
1.7  
1.55  
1.85  
0.6  
31.00  
28.00  
31.00  
28.00  
1.00  
30.80  
30.80  
31.20  
D1  
E
Ball footprint (X)  
Body size  
31.20  
E1  
e
Ball footprint (Y)  
Ball pitch  
b
Ball diameter  
0.70  
At Motorolas discretion up to fourteen (14) capacitors may or may not be attached on  
the top of the package.  
Marking Codes  
Table 62 explains the marking on the C-5e NP.  
Table 62 C-5e Network Processor Marking Codes  
MARKING (EXPLANATION OF CODES)  
Top  
Logo/Part#/Date Code  
N/A  
Bottom  
Pin 1 Marking  
Chamfered Corner  
C
Reflow  
107  
Reflow  
Typical Reflow Profile for the C-5e Switch Module comprises:  
1 Follow the guidelines recommended by your solder paste supplier.  
Flux requirements must be met for best solderability.  
2 The temperature profile should be carefully characterized to ensure uniform  
temperature across the board and package.  
Solder ball voiding may be affected by ramp rates and dwell times below and above  
liquids.  
3 A nitrogen atmosphere is not required, but will make the process more robust. It can  
make a difference for marginally solderable PC board pads.  
4 Full convection forced air furnaces work best, but IR, Convection/IR, or vapor phase can  
be used.  
03  
108  
CHAPTER 4: MECHANICAL SPECIFICATIONS  
C
INDEX  
Channel Processors 22  
Channel Processors Physical Interface Signals and Pins  
Grouped by Clusters 33  
Clock and Reference Signals 31  
Clock Signals 31  
Clock Timing Specifications 82  
Configuration  
Symbols  
10/100 Ethernet (RMII) Configuration 34  
10/100 Ethernet Signals 34  
10/100 Ethernet Timing Description 84  
10/100 Ethernet Timing Diagram 84  
10/100 Ethernet Timing Specifications 84  
10/100 Ethernet (RMII) 34  
DS1/T1 Framer Interface 34  
FibreChannel TBI 38  
A
Gigabit Ethernet 38  
Absolute Maximum Ratings 73  
AC Timing Specifications 81  
Gigabit Ethernet (GMII) 35  
SONET OC-12 Transceiver Interface 40  
SONET OC-3 Transceiver Interface 39  
Configurations  
GMII/TBI Transmit and Receive Pin 36  
CP Timing Specifications 83  
B
Block Diagram, C-5e Network Processor 20  
BMU SDRAM Interface Signals 52  
BMU Signal Groups 97  
CSIX-L1 Mode, C-5e Network Processor to Fabric Interface Pin  
Mapping 51  
BMU Timing Description 96  
BMU Timing Diagram 96  
BMU Timing Specifications 96  
Boundary Scan Cell Types 69  
Boundary Scan Description Language 72  
Bringup Clock Timing Diagram 76  
Buffer Management Unit 24  
D
Data Registers  
JTAG 69  
DC Characteristics 75  
Description  
Functional 19  
Description Language  
Boundary Scan 72  
Descriptions  
Signal 27  
Diagram  
C
C-5e Network Processor Absolute Maximum Ratings 73  
C-5e Network Processor BGA Package, Bottom View 104  
C-5e Network Processor BGA Package, Side View 103  
C-5e Network Processor Capacitance Data 75  
C-5e Network Processor DC Characteristics 75  
C-5e Network Processor Power and Thermal Characteristics 77  
C-5e NP Channel Processors 22  
10/100 Ethernet Timing 84  
BMU Timing 96  
Bringup Clock Timing 76  
DS1/DS3 Ethernet Timing 83  
Channel Processor Interface Signals 32  
03  
110  
INDEX  
Fabric Processor Timing 94  
Gigabit Ethernet (TBI) Timing 85  
Low Speed Serial Interface Timing 92  
MDIO Serial Interface Timing 91  
OC-3 Timing 87  
Fabric Processor Interface Signals 48  
Fabric Processor Timing Description 95  
Fabric Processor Timing Diagram 94  
Fabric Processor Timing Specifications 94  
Functional Description 19  
PCI Timing 89  
Pinout 28  
PROM Interface 45  
PROM Interface Timing 93  
QMU Timing 99  
G
General System Interface Signal 47  
Gigabit Ethernet (GMII) Configuration 35  
Gigabit Ethernet (GMII) Signals  
Signal Groups in BMU Timing 97  
Signal Groups in QMU Timing 100  
Signal Groups in TLU Timing 98  
System Clock Timing 82  
TLU Timing 98  
One Cluster Example 36  
Gigabit Ethernet (TBI) Timing Description 86, 86  
Gigabit Ethernet (TBI) Timing Diagram 85  
Gigabit Ethernet and FibreChannel TBI Configuration 38  
Gigabit Ethernet and FibreChannel TBI Signals  
Example 38  
Diagram, Block  
C-5e Network Processor 20  
Gigabit GMII Ethernet, TBI and MII Interface Timing Specification 85  
GMII/TBI Transmit and Receive Pin Configurations 36  
DS1/DS3 Ethernet Timing Description 84  
DS1/DS3 Ethernet Timing Diagram 83  
DS1/DS3 Timing Specifications 83  
DS1/T1 Framer Interface Configuration 34  
DS1/T1 Framer Interface Signals 34  
I
IDcode Register 71  
Instruction Register Instructions 71  
E
Electrical Specifications 73  
Absolute Maximum Ratings 73  
Executive Processor 23  
PCI 23  
J
JTAG Data Registers 69  
JTAG Identification Code and Its Sub-components 71  
JTAG Instruction Register 71  
JTAG Internal Register Descriptions 69  
JTAG Support  
PROM Interface 24  
Serial Bus Interface 23  
System Interface Signals 42  
System Interfaces 23  
Executive Processor Timing Specifications 89  
Pinouts 69  
L
F
Low Speed Serial Interface Timing Description 92  
Low Speed Serial Interface Timing Diagram 92  
Low Speed Serial Interface Timing Specifications 92  
LVPECL Specifications 30  
Fabric Interface Pin Mapping  
CSIX-L1 Mode 51  
Power X(CSIX-L0) Mode 50  
PRIZMA Mode 50  
LVTTL Specifications 30  
Utopia2/Utopia3 ATM Mode 49  
Utopia2/Utopia3 PHY Mode 49  
Fabric Processor 24  
M
C
INDEX  
111  
PROM Interface Timing Description 93  
PROM Interface Timing Diagram 93  
PROM Interface Timing Outline 46  
PROM Interface Timing Specifications 93  
MDIO Serial Interface Timing Description 91  
MDIO Serial Interface Timing Diagram 91  
MDIO Serial Interface Timing Specifications 91  
Measurements  
C-5e Network Processor 106  
Mechanical Specifications 103  
Miscellaneous Test Signals for JTAG, Scan, and Internal Test  
Routines 58  
Q
QMU Signal Groups 100  
QMU SRAM (Internal Mode) Timing Diagram 99  
QMU SRAM Interface Signals 55, 56  
QMU Timing Description 100  
QMU Timing Specifications 99  
QMU to Q-5 (External Mode) Timing Diagram 101  
Queue Management Unit 26  
N
No Connection Pins 58  
O
OC-12 Signals 40  
R
OC-12 Timing Description 88  
OC-12 Timing Specifications 88  
OC-3 Signals 39  
Recommended Operating Conditions 74  
Register  
IDcode 71  
JTAG Instruction 71  
OC-3 Timing Description 87  
OC-3 Timing Diagram 87  
OC-3 Timing Specifications 87  
Operating Conditions, Recommended 74  
S
Serial Interface Signals 43  
Serial Port Signals 43  
Signal  
General System Interface 47  
Signal Descriptions 27  
Signal Summary 27  
Signals  
P
Package Measurements 106  
PCI Signals 42  
PCI Timing Description 90  
PCI Timing Diagram 89  
PCI Timing Specifications 89  
Pin Descriptions  
Grouped by Function 30  
Pin Locations 28  
Pin Number Signals Groups 59  
Pinout Diagram 28  
Power Sequencing 76, 77  
Power Supply Signals 57  
Power X(CSIX-L0) Mode, Fabric Interface Pin Mapping 50  
PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin  
Mapping 50  
10/100 Ethernet 34  
BMU SDRAM Interface 52  
Channel Processor Interface 32  
Clock 31  
Clock and Reference 31  
DS1/T1 Framer Interface 34  
Fabric Processor Interface 48  
Grouped by Pin Number 59  
OC-12 40  
OC-3 39  
PCI 42  
Processor, Executive 23  
Power Supply 57  
PROM Interface 44  
QMU SRAM Interface 55, 56  
Processor, Fabric 24  
PROM Interface Diagram 45  
PROM Interface Signals 44  
03  
112  
INDEX  
Serial Interface 43  
Serial Port 43  
Test 58  
T
Table Lookup Unit 25  
TLU SRAM Interface 54  
Test Signals 58  
SONET OC-12 Transceiver Interface Configuration 40  
SONET OC-3 Transceiver Interface Configuration 39  
Specifications  
Test Signals, Miscellaneous, For JTAG, Scan, and Internal Test  
Routines 58  
Timing Outline  
10/100 Ethernet Timing 84  
AC Timing 81  
PROM Interface 46  
TLU Signal Groups 98  
TLU SRAM Interface Signals 54  
TLU Timing Description 98  
TLU Timing Diagram 98  
TLU Timing Specifications 98  
Transceiver Interface Configuration  
SONET OC-12 40  
BMU Timing 96  
Clock Timing 82  
CP Timing 83  
DS1/DS3 Timing 83  
Electrical 73  
Executive Processor Timing 89  
Fabric Processor Timing 94  
Gigabit GMII Ethernet, TBI and MII Interface Timing  
Specification 85  
SONET OC-3 39  
Low Speed Serial Interface Timing 92  
MDIO Serial Interface Timing 91  
Mechanical 103  
Transmit and Receive Pin Combinations for Gigabit Ethernet and  
FibreChannel 35  
OC-12 Timing 88  
OC-3 Timing 87  
PCI Timing 89  
U
Utopia2/Utopia3 ATM Mode, C-5e Network Processor to Fabric  
Interface Pin Mapping 49  
PROM Interface Timing 93  
QMU Timing 99  
TLU Timing 98  
Utopia2/Utopia3 PHY Mode, C-5e Network Processor to Fabric  
Interface Pin Mapping 49  
XP Timing 89  
System Clock Timing Description 82  
System Clock Timing Diagram 82  
System Interfaces  
X
Executive Processor 23  
XP Timing Specifications 89  
C
How to Reach Us:  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Semiconductor was negligent regarding the design or manufacture of the part.  

相关型号:

C5ENPB0-DS

C-5e Network Processor Silicon Revision B0
FREESCALE

C5ENP_PB_D

C-5e Network Processor Product Brief
ETC

C5F

Audio/RCA Connector, 5 Pole(s), Solder Terminal, Receptacle, ROHS COMPLIANT
SWITCH

C5FB

Audio/RCA Connector, 5 Pole(s), Solid Lead Terminal,
SWITCH

C5FBX

Audio/RCA Connector, 5 Pole(s), Solder Terminal, ROHS COMPLIANT
SWITCH

C5FBXAU

Audio/RCA Connector, 5 Pole(s), Solder Terminal, ROHS COMPLIANT
SWITCH

C5FSAU

Audio/RCA Connector, 5 Pole(s), Solder Terminal, ROHS COMPLIANT
SWITCH

C5GDS

Optoelectronic
ETC

C5K1-TPD-XX

C5 Series Credenza Racks Implement a Totally New Approach
ETC

C5M

Audio/RCA Connector, 5 Pole(s), Solder Terminal, Receptacle
SWITCH

C5MAU

Audio/RCA Connector, 5 Pole(s), Solder Terminal,
SWITCH

C5MBAU

Audio/RCA Connector, 5 Pole(s), Solder Terminal,
SWITCH