AU5790D,118 [NXP]

IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SO-8, Network Interface;
AU5790D,118
型号: AU5790D,118
厂家: NXP    NXP
描述:

IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SO-8, Network Interface

光电二极管
文件: 总20页 (文件大小:120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
AU5790  
Single wire CAN transceiver  
Product data  
2001 May 18  
Supersedes data of 2001 Jan 31  
IC18 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
FEATURES  
DESCRIPTION  
The AU5790 is a line transceiver, primarily intended for in-vehicle  
multiplex applications. The device provides an interface between a  
CAN data link controller and a single wire physical bus line. The  
achievable bus speed is primarily a function of the network time  
constant and bit timing, e.g., up to 33.3 kbps with a network  
including 32 bus nodes. The AU5790 provides advanced  
Supports in-vehicle class B multiplexing via a single bus line with  
ground return  
33 kbps CAN bus speed with loading as per J2411  
83 kbps high-speed transmission mode  
Low RFI due to output waveshaping  
sleep/wake-up functions to minimize power consumption when a  
vehicle is parked, while offering the desired control functions of the  
network at the same time. Fast transfer of larger blocks of data is  
supported using the high-speed data transmission mode.  
Direct battery operation with protection against load dump, jump  
start and transients  
Bus terminal protected against short-circuits and transients in the  
automotive environment  
Built-in loss of ground protection  
Thermal overload protection  
Supports communication between control units even when  
network in low-power state  
70 µA typical power consumption in sleep mode  
8- and 14-pin small outline packages  
±8 kV ESD protection on bus and battery pins  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
Operating supply voltage  
Operating ambient temperature range  
Battery voltage  
CONDITIONS  
MIN.  
5.3  
TYP.  
MAX.  
27  
UNIT  
V
13  
V
BAT  
T
–40  
+125  
+40  
4.55  
2.2  
6.3  
9
°C  
V
amb  
V
V
V
load dump; 1s  
BATld  
CANHN  
T
Bus output voltage  
3.65  
1.8  
3
V
Bus input threshold  
V
t
t
t
I
Bus output delay, rising edge  
Bus output delay, falling edge  
Bus input delay  
µs  
µs  
µs  
µA  
TrN  
3
TfN  
0.3  
1
DN  
Sleep mode supply current  
70  
100  
BATS  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
–40 °C to +125 °C  
ORDER CODE  
AU5790D  
AU5790D14  
DWG #  
SOT96–1  
SOT108–1  
SO8: 8-pin plastic small outline package  
SO14: 14-pin plastic small outline package  
–40 °C to +125 °C  
2
2001 May 18  
853-2237 26343  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
BLOCK DIAGRAM  
BATTERY (+12V)  
BAT  
1
VOLTAGE  
TEMP.  
PROTECTION  
REFERENCE  
CANH  
(BUS)  
TxD  
7
OUTPUT  
BUFFER  
3
NSTB  
(Mode 0)  
MODE  
BUS  
CONTROL  
6
RECEIVER  
EN  
(Mode 1)  
R
T
RxD  
5
4
LOSS OF  
GROUND  
RTH  
(LOAD)  
PROTECTION  
AU5790  
8
GND  
SL01199  
Figure 1.  
Block Diagram  
3
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
SO8 PIN CONFIGURATION  
SO14 PIN CONFIGURATION  
1
2
3
4
8
7
6
1
14  
TxD  
NSTB (Mode 0)  
EN (Mode 1)  
GND  
GND  
GND  
2
3
13  
12  
CANH (BUS)  
RTH (Load)  
TxD  
NSTB (Mode 0)  
EN (Mode 1)  
N.C.  
AU5790  
CANH (BUS)  
AU5790  
RxD  
RTH (Load)  
BAT  
4
5
5
11  
10  
BAT  
SO8  
RxD  
N.C.  
GND  
N.C.  
6
7
9
8
SL01198  
GND  
SO14  
SO8 PIN DESCRIPTION  
SL01251  
SYM-  
BOL  
PIN  
DESCRIPTION  
TxD  
1
Transmit data input: high = transmitter passive;  
low = transmitter active  
SO14 PIN DESCRIPTION  
NSTB  
(Mode 0)  
2
Stand-by control: high = normal and  
high-speed mode; low = sleep and wake-up  
mode  
SYM-  
BOL  
PIN  
DESCRIPTION  
GND  
1
2
Ground  
EN  
(Mode 1)  
3
4
Enable control: high = normal and wake-up  
mode; low = sleep and high-speed mode  
TxD  
Transmit data input: high = transmitter passive;  
low = transmitter active  
RxD  
Receive data output: low = active bus condition  
detected; float/high = passive bus condition  
detected  
NSTB  
(Mode 0)  
3
Stand-by control: high = normal and  
high-speed mode; low = sleep and wake-up  
mode  
BAT  
5
6
Battery supply input (12 V nom.)  
EN  
(Mode 1)  
4
5
Enable control: high = normal and wake-up  
mode; low = sleep and high-speed mode  
RTH  
(LOAD)  
Switched ground pin: pulls the load to ground,  
except in case the module ground is  
disconnected  
RxD  
Receive data output: low = active bus condition  
detected; float/high = passive bus condition  
detected  
CANH  
(BUS)  
7
8
Bus line transmit input/output  
N.C.  
GND  
GND  
N.C.  
BAT  
6
7
No connection  
Ground  
GND  
Ground  
8
Ground  
9
No connection  
Battery supply input (12 V nom.)  
10  
11  
RTH  
(LOAD)  
Switched ground pin: pulls the load to ground,  
except in case the module ground is  
disconnected  
CANH  
(BUS)  
12  
Bus line transmit input/output  
N.C.  
13  
14  
No connection  
Ground  
GND  
4
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
of signal edges on the bus line. If such edges are detected, this will  
be signalled to the CAN controller via the RxD output. Normal  
transmission mode will be entered again upon a high level being  
applied to the NSTB and EN control inputs. These signals are  
typically being provided by a controller device.  
FUNCTIONAL DESCRIPTION  
The AU5790 is an integrated line transceiver IC that interfaces a  
CAN protocol controller to the vehicle’s multiplexed bus line. It is  
primarily intended for automotive “Class B” multiplexing applications  
in passenger cars using a single wire bus line with ground return.  
The achievable bit rate is primarily a function of the network time  
constant and the bit timing parameters. For example, the maximum  
bus speed is 33 kpbs with bus loading as specified in J2411 for a full  
32 node bus, while 41.6 kbps at is possible with modified bus  
loading. The AU5790 also supports low-power sleep mode to help  
meet ignition-off current draw requirements.  
Sleeping bus nodes will generally ignore normal communication on  
the bus. They should be activated using the dedicated wake-up  
mode. When NSTB is low and EN is high the AU5790 enters  
wake-up mode i.e. it sends data with an increased signal level. This  
will result in an activation of other bus nodes being attached to the  
network.  
The protocol controller feeds the transmit data stream to the  
transceiver’s TxD input. The AU5790 transceiver converts the TxD  
data input to a bus signal with controlled slew rate and waveshaping  
to minimize emissions. The bus output signal is transmitted via the  
CANH in/output, connected to the physical bus line. If TxD is low,  
then a typical voltage of 4 V is output at the CANH pin. If TxD is high  
then the CANH output is pulled passive low via the local bus load  
The AU5790 also provides a high-speed transmission mode  
supporting bit rates up to 100 kbps. If the NSTB input is pulled high  
and the EN input is low, then the internal waveshaping function is  
disabled, i.e. the bus driver is turned on and off as fast as possible  
to support high-speed transmission of data. Consequently, the EMC  
performance is degraded in this mode compared to the normal  
transmission mode. In high-speed transmission mode the AU5790  
supports the same bus signal level as specified for the CANH output  
in normal mode.  
resistance R . To provide protection against a disconnection of the  
T
module ground, the resistor R is connected to the RTH pin of the  
T
AU5790. By providing this switched ground pin, no current can flow  
from the floating module ground to the bus. The bus receiver detects  
the data stream on the bus line. The data signal is output at the RxD  
pin being connected to a CAN controller. The AU5790 provides  
appropriate filtering to ensure low susceptibility against  
electromagnetic interference. Further enhancement is possible with  
applying an external capacitor between CANH and ground potential.  
The device features low bus output leakage current at power supply  
failure situations.  
The AU5790 features special robustness at its BAT and CANH pins.  
Hence the device is well suited for applications in the automotive  
environment. The BAT input is protected against 40 V load dump  
and jump start condition. The CANH output is protected against  
wiring fault conditions, e.g., short circuit to ground or battery voltage,  
as well as typical automotive transients. In addition, an  
over-temperature shutdown function with hysteresis is incorporated  
protecting the device under system fault conditions. In case of the  
chip temperature reaching the trip point, the AU5790 will latch-off  
the transmit function. The transmit function is available again after a  
small decrease of the chip temperature. The AU5790 contains a  
If the NSTB and EN control inputs are pulled low or floating, the  
AU5790 enters a low-power or “sleep” mode. This mode is  
dedicated to minimizing ignition-off current drain, to enhance system  
efficiency. In sleep mode, the bus transmit function is disabled, e.g.  
the CANH output is inactive even when TxD is pulled low. An  
internal network active detector monitors the bus for any occurrence  
power-on reset circuit. For V < 2.5 V, the CANH output drive will  
bat  
be turned off, the output will be passive, and RxD will be high. For  
2.5 V < V < 5.3 V, the CANH output drive may operate normally or  
bat  
be turned off.  
Table 1. Control Input Summary  
NSTB  
EN  
TxD  
Don’t Care  
Tx-data  
Description  
CANH  
RxD  
float (high)  
0
0
1
1
0
Sleep mode  
0 V  
1
1
1
1
Wake-up transmission mode  
High-speed transmission mode  
Normal transmission mode  
0 V, 12 V  
0 V, 4 V  
0 V, 4 V  
bus state  
bus state  
bus state  
0
Tx-data  
1
Tx-data  
NOTE:  
1. RxD outputs the bus state. If the bus level is below the receiver threshold (i.e., all transmitters passive), then RxD will be floating (i.e., high,  
considering external pull-up resistance). Otherwise, if the bus level is above the receiver threshold (i.e., at least one transmitter is active),  
then RxD will be low.  
5
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
ABSOLUTE MAXIMUM RATINGS  
According to the IEC 134 Absolute Maximum System: operation is not guaranteed under these conditions; all voltages are referenced to  
pin 8 (GND); positive currents flow into the IC, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
Supply voltage  
Steady state  
–0.3  
+27  
V
V
V
BAT  
Short-term supply voltage  
Load dump; ISO7637/1 test pulse 5  
(SAE J1113, test pulse 5), T < 1s  
+40  
V
BATld  
Transient supply voltage  
ISO 7637/1 test pulse 2 (SAE J1113,  
test pulse 2), with series diode and  
bypass cap of 100 nF between BAT and  
GND pins, Note 2.  
+100  
V
V
BATtr2  
Transient supply voltage  
ISO 7637/1 pulses 3a and 3b  
(SAE J1113 test pulse 3a and 3b),  
Note 2.  
–150  
+100  
V
V
V
BATtr3  
CANH voltage  
V
> 2 V  
< 2 V  
–10  
–16  
+18  
+18  
V
V
V
V
V
BAT  
BAT  
CANH_1  
CANH voltage  
V
V
CANH_0  
CANHtr1  
CANHtr2  
CANHtr3  
Transient bus voltage  
Transient bus voltage  
Transient bus voltage  
ISO 7637/1 test pulse 1, Notes 1 and 2  
ISO 7637/1 test pulse 2, Notes 1 and 2  
–100  
V
V
V
+100  
+100  
ISO 7637/1 test pulses 3a, 3b,  
Notes 1 and 2  
–150  
–10  
V
Pin RTH voltage  
Pin RTH voltage  
V
BAT  
> 2 V, voltage applied to pin RTH  
+18  
+18  
V
V
RTH1  
RTH0  
via a 2 kseries resistor  
V
V
BAT  
< 2 V, voltage applied to pin RTH  
–16  
via a 2 kseries resistor  
DC voltage on pins TxD, EN, RxD, NSTB  
ESD capability of pin BAT  
–0.3  
–8  
+7  
+8  
V
V
I
Direct contact discharge,  
R=1.5 k, C=100 pF  
kV  
ESD  
BAHB  
ESD  
ESD capability of pin CANH  
ESD capability of pin RTH  
Direct contact discharge,  
R=1.5 k, C=100 pF  
–8  
–8  
–2  
2
+8  
+8  
+2  
kV  
kV  
kV  
kΩ  
CHHB  
ESD  
ESD  
Direct contact discharge,  
R=1.5 k+ 3 k, C=100 pF  
RTHB  
LGHB  
ESD capability of pins TxD, NSTB, EN, RxD, and  
RTH  
Direct contact discharge,  
R=1.5 k, C=100 pF  
R
Bus load resistance R being connected to pin  
Tmin  
T
RTH  
Operating ambient temperature  
–40  
–40  
–40  
+125  
+150  
+150  
T
T
T
°C  
°C  
amb  
stg  
vj  
Storage temperature  
Junction temperature  
°C  
NOTES:  
1. Test pulses are coupled to CANH through a series capacitance of 1 nF.  
2. Rise time for test pulse 1: t < 1 µs; pulse 2: t < 100 ns; pulses 3a/3b: t < 5 ns.  
r
r
r
6
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
DC CHARACTERISTICS  
–40 °C < T  
< +125 °C; 5.5 V < V  
< 16 V; –0.3 V < V  
< 5.5 V; –0.3 V < V  
< 5.5 V; –0.3 V < V < 5.5 V; –0.3 V < V < 5.5 V;  
RxD  
amb  
BAT  
TxD  
NSTB  
EN  
–1 V < V  
< +16 V; bus load resistor at pin RTH: 2 k< R < 9.2 k; total bus load resistance 270 < R < 9.2 k;  
CANH  
T
L
C < 13.7 nF; 1µs < R  
C < 4µs; RxD pull-up resistor 2.2 k< R < 3.0 k; RxD: loaded with C < 30pF to GND;  
L d LR  
L
L
all voltages are referenced to pin 8 (GND); positive currents flow into the IC;  
typical values reflect the approximate average value at V  
= 13 V and T  
= 25 °C, unless otherwise specified.  
BAT  
amb  
SYMBOL  
Pin BAT  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
Operating supply voltage  
Low battery state  
Note 1  
5.3  
2.5  
13  
27  
V
V
BAT  
V
BATL  
Part functional or in undervoltage  
lockout state  
5.3  
V
Supply undervoltage lockout state TxD = 1 or 0; check CANH and  
RxD are floating  
2.5  
2
V
BATLO  
BATPN  
BATPW  
BATPH  
BATN  
I
I
I
I
Passive state supply current in  
normal mode  
NSTB = 5 V, EN = 5 V, TxD = 5 V  
mA  
mA  
mA  
mA  
Passive state supply current in  
wake-up mode  
NSTB = 0 V, EN = 5 V, TxD = 5 V,  
Note 2  
3
Passive state supply current in  
high speed mode  
NSTB = 5 V, EN = 0 V, TxD = 5 V,  
Note 2  
4
NSTB = 5 V, EN = 5 V, TxD = 0 V,  
35  
Active state supply current in  
normal mode  
R = 270 Ω, T  
= 125 °C  
L
amb  
T
= 25 °C, –40 °C  
40  
70  
mA  
mA  
amb  
NSTB = 0 V, EN = 5 V, TxD = 0 V,  
I
I
I
Active state supply current in  
wake-up mode  
BATW  
BATH  
BATS  
R = 270 , Note 2,  
L
T
amb  
= 125 °C  
T
amb  
= 25 °C, –40 °C, Note 2  
90  
70  
mA  
mA  
NSTB = 5 V, EN = 0 V, TxD = 0 V,  
Active state supply current in  
high speed mode  
R = 100 , Note 2,  
L
T
amb  
= 125 °C  
T
amb  
= 25 °C, –40 °C, Note 2  
85  
mA  
Sleep mode supply current  
NSTB = 0 V, EN = 0 V, TxD = 5 V,  
RxD = 5 V, –1 V < V < +1 V,  
70  
100  
µA  
CANH  
5.5 V < V  
< 14 V  
BAT  
–40 °C < T < 125 °C  
j
Pin CANH  
V
V
V
Bus output voltage in normal  
mode  
NSTB = 5 V, EN = 5 V,  
3.65  
9.80  
4.1  
4.55  
min  
V
V
V
CANHN  
CANHW  
CANHWL  
R > 270; 5.5 V < V  
< 27 V  
L
BAT  
Bus output voltage in wake-up  
mode  
NSTB = 0 V, EN = 5 V,  
R > 270; 11.3 V < V  
< 16 V  
(V  
, 13)  
BAT  
L
BAT  
Bus output voltage in wake-up  
mode, low battery  
NSTB = 0 V, EN = 5 V,  
R > 270; 5.5 V < V  
V
BAT  
V
BAT  
< 11.3 V  
BAT  
L
1.45  
V
Bus output voltage in high-speed  
transmission mode  
NSTB = 5 V, EN = 0 V,  
R > 100; 8 V < V  
3.65  
–10  
–20  
–20  
4.55  
10  
V
CANHH  
CANHRR  
CANHRD  
CANHDD  
< 16 V  
BAT  
L
I
I
I
Recessive state output current,  
bus recessive  
Recessive state or sleep mode,  
= –1 V; 0 V < V < 27 V  
µA  
µA  
µA  
V
CANH  
BAT  
Recessive state output current,  
bus dominant  
Recessive state or sleep mode,  
= 10 V; 0 V < V < 16 V  
100  
100  
V
CANH  
BAT  
Dominant state output current,  
bus dominant  
TxD = 0 V, normal mode,  
high-speed mode and sleep mode;  
= 10 V;  
V
CANH  
0 V < V  
< 16 V  
BAT  
–I  
–I  
Bus short circuit current,  
normal mode  
V
= –1 V,  
30  
60  
150  
190  
mA  
mA  
CANH_N  
CANH  
TxD = 0 V; NSTB = 5 V; EN = 5 V  
V = –1 V,  
CANH  
Bus short circuit current,  
wake-up mode  
CANHW  
TxD = 0 V; NSTB = 0 V; EN = 5 V  
7
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Pin CANH (continued)  
–I  
CANHH  
Bus short circuit current in  
high-speed mode  
V
= –1 V,  
50  
190  
mA  
CANH  
TxD = 0 V; NSTB = 5 V; EN = 0 V;  
8 V < V  
< 16 V  
BAT  
I
Bus leakage current at loss of  
ground  
(I_CAN_LG = I_CANH + I_RTH)  
0 V < V  
< 16 V;  
–50  
50  
µA  
CANLG  
BAT  
see Figure 3 in the test circuits  
section  
T
T
Thermal shutdown  
Note 2  
Note 2  
155  
5
190  
15  
°C  
°C  
V
sd  
Thermal shutdown hysteresis  
Bus input threshold  
hys  
V
V
V
V
5.8 V < V  
all modes except sleep mode  
< 27 V,  
BAT  
1.8  
2.2  
T
Bus input threshold, low battery  
5.5 V < V < 5.8 V,  
1.5  
2.2  
8.1  
V
V
TL  
TS  
TSL  
BAT  
all modes except sleep mode  
Bus input threshold in sleep mode NSTB = 0 V, EN = 0 V,  
> 11.3 V  
6.15  
V
BAT  
Bus input threshold in sleep mode,  
low battery  
NSTB = 0 V, EN = 0 V,  
5.5 V < V  
V
– 4.3  
V
– 3.25  
V
BAT  
BAT  
< 11.3 V  
BAT  
Pin RTH  
V
RTH1  
V
RTH2  
Voltage on switched ground pin  
Voltage on switched ground pin  
I
I
= 1 mA  
= 6 mA  
0.1  
1
V
V
RTH  
RTH  
Pins NSTB, EN  
V
V
High level input voltage  
Low level input voltage  
Input current  
5.5 V < V  
5.5 V < V  
< 27 V  
< 27 V  
3
V
V
ih  
il  
BAT  
BAT  
1
I
i
V = 1 V and V = 5 V  
i
15  
50  
µA  
i
Pin TxD  
V
itxd  
TxD input threshold  
5.5 V < V  
< 27 V  
BAT  
1
3
V
–I  
TxD low level input current in  
normal mode  
NSTB = 5 V, EN = 5 V, V  
= 0 V  
= 5 V  
50  
180  
µA  
iltxd  
TxD  
TxD  
–I  
ihtxd  
TxD high level input current in  
sleep mode  
NSTB = 0 V, EN = 0 V, V  
–5  
10  
µA  
Pin RxD  
V
olrxd  
RxD low level output voltage  
I
= 2.2 mA;  
0.45  
V
RxD  
V
V
V
= 10 V, all modes  
CANH  
I
I
RxD low level output current  
RxD high level leakage  
= 5 V; V  
= 10 V  
3
35  
mA  
olrxd  
RxD  
RxD  
CANH  
CANH  
= 5 V; V  
= 0 V,  
–10  
+10  
µA  
ohrxd  
all modes  
NOTES:  
1. Operation at battery voltages down to 5.3 volts is guaranteed by design. Operation higher than 18 volts (18 V < V  
< 27 V) for up to two  
BAT  
minutes is permitted if the thermal design of the board prevents reaching the thermal protection temperature limit, T , otherwise the device  
sd  
will self protect. Typically these requirements will be encountered during jump start operation at T  
85 °C and V  
< 27 V. Refer to the  
amb  
BAT  
“Thermal Characteristics” section of this data sheet, or application note AN2005 for guidance.  
2. This parameter is characterized but not subject to production test.  
8
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
Dynamic (AC) CHARACTERISTICS for 33 kbps operation  
–40 °C < T  
< +125 °C; 5.5 V < V  
< 16 V; –0.3 V < V  
< 5.5 V; –0.3 V < V  
< 5.5 V; –0.3 V < V < 5.5 V; –0.3 V < V < 5.5 V;  
RxD  
amb  
BAT  
TxD  
NSTB  
EN  
–1 V < V  
< +16 V; bus load resistor at pin RTH: 2 k< R < 9.2 k; total bus load resistance 270 < R < 9.2 k;  
CANH  
T
L
C < 13.7 nF; 1µs < R  
C < 4µs; RxD pull-up resistor 2.2 k< R < 3.0 k; RxD: loaded with C < 30pF to GND;  
L d LR  
L
L
all voltages are referenced to pin 8 (GND); positive currents flow into the IC;  
typical values reflect the approximate average value at V = 13 V and T  
= 25 °C, unless otherwise specified.  
amb  
BAT  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Pin CANH  
V
CANH harmonic content in  
normal mode  
NSTB = 5 V, EN = 5 V;  
70  
dBµV  
dBAMN  
R = 270 , C = 15 nF;  
L
L
f
= 20 kHz, 50% duty cycle;  
TxD  
8 V < V < 16 V;  
BAT  
0.53 MHz < f < 1.7 MHz, Note 2  
V
CANH harmonic content in  
wake-up mode  
NSTB = 5 V, EN = 0 V;  
80  
dBµV  
dBAMW  
R = 270 , C = 15 nF;  
L
L
f
= 20 kHz, 50% duty cycle;  
TxD  
8 V < V < 16 V;  
BAT  
0.53 MHz < f < 1.7 MHz, Note 2  
Pins NSTB, EN  
t
t
t
Normal mode to high-speed mode  
delay  
30  
30  
30  
µs  
µs  
µs  
NH  
HN  
WN  
High-speed mode to normal mode  
delay  
Wake-up mode to normal mode  
delay  
8 V < V  
< 16 V  
BAT  
t
t
Normal mode to sleep mode delay  
Sleep mode to normal mode delay  
500  
50  
µs  
µs  
NS  
SN  
Pin TxD  
t
t
t
t
t
t
Transmit delay in normal mode,  
bus rising edge  
NSTB = 5 V, EN = 5 V;  
3
3
3
3
3
3
6.3  
µs  
µs  
µs  
µs  
µs  
µs  
TrN  
R = 270 , C = 15 nF;  
L
L
5.5 V < V  
< 27 V;  
BAT  
measured from the falling edge on  
TxD to V = 3.0 V  
CANH  
Transmit delay in normal mode,  
bus falling edge  
NSTB = 5 V, EN = 5 V;  
9
TfN  
R = 270 , C = 15 nF;  
L
L
5.5 V < V  
< 27 V;  
BAT  
measured from the rising edge on  
TxD to V = 1.0 V  
CANH  
Transmit delay in wake-up mode,  
bus rising edge to normal levels  
NSTB = 0 V, EN = 5 V;  
6.3  
18  
TrW  
R = 270 , C = 15 nF;  
L
L
5.5 V < V  
< 27 V;  
BAT  
measured from the falling edge on  
TxD to V = 3.0 V  
CANH  
Transmit delay in wake-up mode,  
bus rising edge to wake-up level  
NSTB = 0 V, EN = 5 V;  
TrW-S  
TfW-3.6  
TfW-4.0  
R = 270 , C = 15 nF;  
L
L
11.3 V < V  
< 27 V;  
BAT  
measured from the falling edge on  
TxD to V = 8.9 V  
CANH  
Transmit delay in wake-up mode,  
bus falling edge with 3.6 µs time  
constant  
NSTB = 0 V, EN = 5 V;  
12.7  
13.7  
R = 270 , C = 13.3 nF;  
L
L
5.5 V < V  
< 27 V;  
BAT  
measured from the rising edge on  
TxD to V = 1 V, Note 2  
CANH  
Transmit delay in wake-up mode,  
bus falling edge with 4.0 µs time  
constant  
NSTB = 0 V, EN = 5 V;  
R = 270 , C = 15 nF;  
L
L
5.5 V < V  
< 27 V;  
BAT  
measured from the rising edge on  
TxD to V = 1 V  
CANH  
9
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Pin TxD (continued)  
t
Transmit delay in high-speed  
mode, bus rising edge  
NSTB = 5 V, EN = 0 V;  
0.1  
1.5  
µs  
TrHS  
R = 100 , C = 15 nF;  
L
L
8 V < V  
< 16 V;  
BAT  
measured from the falling edge on  
TxD to V = 3.0 V  
CANH  
t
Transmit delay in high-speed  
mode, bus falling edge  
NSTB = 5 V, EN = 0 V;  
0.2  
3
µs  
TfHS  
R = 100 , C = 15 nF;  
L
L
8 V < V  
< 16 V;  
BAT  
measured from the rising edge on  
TxD to V = 1.0 V  
CANH  
Pin RxD  
t
t
t
t
Receive delay in normal mode,  
bus rising and falling edge  
NSTB = 5 V, EN = 5 V;  
5.5 V < V < 27 V;  
0.3  
0.3  
0.3  
10  
1
1
µs  
µs  
µs  
µs  
DN  
BAT  
CANH to RxD time measured from  
= 2.0 V to V = 2.5 V  
V
CANH  
RxD  
Receive delay in wake-up mode,  
bus rising and falling edge  
NSTB = 0 V, EN = 5 V;  
5.5 V < V < 27 V;  
DW  
DHS  
DS  
BAT  
CANH to RxD time measured from  
= 2.0 V to V = 2.5 V  
V
CANH  
RxD  
Receive delay in high-speed  
mode, bus rising and falling edge  
NSTB = 5 V, EN = 0 V;  
8 V < V < 16 V;  
1
BAT  
CANH to RxD time measured from  
= 2.0 V to V = 2.5 V  
V
CANH  
RxD  
Receive delay in sleep mode,  
bus rising edge  
NSTB = 0 V, EN = 0 V;  
CANH to RxD time, measured from  
= min {(V – 3.78 V),  
70  
V
CANH  
BAT  
7.13 V} to V  
= 2.5 V  
RxD  
NOTES:  
1. Operation at battery voltages down to 5.3 volts is guaranteed by design. Operation higher than 18 volts (18 V < V  
< 27 V) for up to two  
BAT  
minutes is permitted if the thermal design of the board prevents reaching the thermal protection temperature limit, T , otherwise the device  
sd  
will self protect. Typically these requirements will be encountered during jump start operation at T  
85 °C and V  
< 27 V. Refer to the  
amb  
BAT  
“Thermal Characteristics” section of this data sheet, or application note AN2005 for guidance.  
2. This parameter is characterized but not subject to production test.  
10  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
TxD  
50%  
t
Tf  
t
Tr  
CANH  
3 V  
2 V  
1 V  
t
D
t
D
RxD  
50%  
SL01255  
NOTE:  
1. When AU5790 is in normal, high-speed, or wake-up mode, the transmit delay in rising edge t may be expressed as t , t  
, or t  
,
TrW  
Tr  
TrN TrHS  
respectively; the transmit delay in falling edge t may be expressed as t , t  
, or t , respectively; and the receive delay t as t  
,
Tf  
TfN TfHS  
TfW  
D
DN  
t
, or t , respectively.  
DHS  
DW  
Figure 2.  
Timing Diagrams: Pin TxD, CANH, and RxD  
11  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
TEST CIRCUITS  
5.1V  
TxD  
GND  
CANH  
RTH  
BAT  
S1  
NSTB  
AU5790  
1 µF  
1.5 k  
EN  
9.1 kΩ  
S2  
RxD  
S3  
I_CAN_LG  
2.4 kΩ  
V
BAT  
SL01234  
Figure 3.  
Loss of ground test circuit  
NOTES:  
Opening S3 simulates loss of module ground.  
Check I_CAN_LG with the following switch positions to simulate loss of ground in all modes:  
1. S1 = open = S2  
2. S1 = open, S2 = closed  
3. S1 = closed, S2 = open  
4. S1 = closed = S2  
12  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
APPLICATION INFORMATION  
The information in this section is not part of the IC specification, but is presented for information purposes only. Additional information on single  
wire CAN networks, application circuits, and thermal management are included in application note AN2005.  
CAN CONTROLLER  
(e.g. SJA1000)  
PORT  
TX0  
RX0  
PORT  
R
D
+5V  
2.4 to  
2.7kΩ  
1N5060  
or equiv.  
TxD  
RxD  
NSTB  
EN  
+12V  
BAT  
AU5790  
TRANSCEIVER  
100 nF  
1 to 4.7 µF  
GND  
CANH  
RTH  
9.1k,  
1%  
R
T
L
47 µH  
C
L
10%  
220 pF  
CAN BUS LINE  
Note 1 TX0 should be configured to push-pull operation, active low; e.g., Output Control Register = 1E hex.  
SL01200  
Note 2 Recommended range for the load resistor is 3k < R < 11k.  
T
Figure 4.  
Application circuit example for the AU5790  
AU5790 transceivers may require additional PCB surface at ground pin(s) as heat conductor(s) in order to meet thermal requirements. See  
thermal characteristics section for details.  
Table 2. Maximum CAN Bit Rate  
MODE  
MAXIMUM BIT RATE AT 0.35% CLOCK ACCURACY  
Normal transmission  
33.3 kbps  
83.3 kbps  
85%  
High-speed transmission  
Sample point as % of bit time  
Bus Time constant, normal mode  
1.0 to 4.0 µs  
13  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
T =T + P * θ  
ja  
THERMAL CHARACTERISTICS  
j
a
d
The AU5790 provides protection from thermal overload. When the  
IC junction temperature reaches the threshold (155 °C), the  
AU5790 will disable the transmitter drivers, reducing power  
dissipation to protect the device. The transmit function will become  
available again after the junction temperature drops. The thermal  
shutdown hysteresis is about 5 °C.  
where: T is junction temperature (°C);  
j
T is ambient temperature (°C);  
a
P is dissipated power (W);  
d
θ
is thermal resistance (°C/W).  
ja  
Thermal Resistance  
Thermal resistance is the ability of a packaged IC to dissipate heat  
to its environment. In semiconductor applications, it is highly  
dependant on the IC package, PCBs, and airflow. Thermal  
resistance also varies slightly with input power, the difference  
between ambient and junction temperatures, and soldering material.  
In order to avoid this transmit function shutdown, care must be taken  
to not overheat the IC during application. The relationships between  
junction temperature, ambient temperature, dissipated power, and  
thermal resistance can be expressed as:  
Figures 5 and 6 show the thermal resistance as the function of the  
IC package and the PCB configuration, assuming no airflow.  
200  
150  
100  
50  
very low  
conductance  
board  
low  
conductance  
board  
high  
conductance  
board  
0
0
50  
100  
150  
200  
250  
SL01249  
Cu area on fused pins (mm2)  
Figure 5.  
SO-8 Thermal Resistance vs. PCB Configuration, Note 1, 2, 3  
150  
100  
50  
very low  
conductance  
board  
low  
conductance  
board  
high  
conductance  
board  
0
0
100  
200  
300  
400  
500  
SL01250  
Cu area on fused pins (mm2)  
Figure 6.  
SO-14 Thermal Resistance vs. PCB Configuration, Note 1, 2, 3  
14  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
Table 3 shows the maximum power dissipation of an AU5790 without tripping the thermal overload protection, for specified combinations of  
package, board configuration, and ambient temperature.  
Table 3. Maximum power dissipation  
Θ
P
tot  
JA  
Power Dissipation Max.  
T = 85 °C T = 125 °C  
Thermal Resistance  
a
a
Additional Foil Area for  
Heat Dissipation  
Board Type  
SO-8 on High  
K/W  
103  
82  
mW  
631  
793  
mW  
243  
305  
Normal traces  
Conductance Board  
225 Sq. mm of copper  
foil attached to pin 8.  
SO-8 on Low  
Conductance Board  
Normal traces  
163  
119  
399  
546  
153  
210  
225 Sq. mm of copper  
attached to pin 8.  
SO-8 on Very Low  
Conductance Board  
Normal traces  
194  
135  
335  
481  
129  
185  
225 Sq. mm of copper  
attached to pin 8.  
SO-14 on High  
Conductance Board  
Normal traces  
63  
50  
1032  
1300  
397  
500  
105 Sq. mm of copper  
attached to each of pins  
1, 7, 8, & 14.  
SO-14 on Low  
Conductance Board  
Normal traces  
103  
70  
631  
929  
243  
357  
105 Sq. mm of copper  
attached to each of pins  
1, 7, 8, & 14.  
SO-14 on Very Low  
Conductance Board  
Normal traces  
126  
82  
516  
793  
198  
305  
105 Sq. mm of copper  
attached to each of pins  
1, 7, 8, & 14.  
NOTES:  
1. The High Conductance board is based on modeling done to EIA/JEDEC Standard JESD51-7. The board emulated contains two one ounce  
thick copper ground planes, and top surface copper conductor traces of two ounce (0.071 mm thickness of copper).  
2. The Low Conductance board is based on modeling done to EIA/JEDEC Standard EIA/JESD51-3. The board does not contain any ground  
planes, and the top surface copper conductor traces of two ounce (0.071 mm thickness of copper).  
3. The Very Low Conductance board is based on the EIA/JESD51-3, however the thickness of the surface conductors has been reduced to  
0.035 mm (also referred to as 1.0 Ounce copper).  
4. The above mentioned JEDEC specifications are available from: http://www.jedec.org/  
15  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
Power Dissipation  
I
= V  
/R  
CANHN LOAD  
LOAD  
Power dissipation of an IC is the major factor determining junction  
temperature. AU5790 power dissipation in active and passive states  
are different. The average power dissipation is:  
I
= I  
+ I  
LOAD INT  
BATN  
where:  
I
is an active state current dissipated within the IC in  
INT  
normal mode.  
P
tot  
= P *Dy + P  
* (1-Dy)  
INT  
PNINT  
I
will decrease slightly when the node number  
INT  
where:  
P
P
P
is total dissipation power;  
tot  
decreases. To simplify this analysis, we will assume I  
fixed.  
is  
INT  
is dissipation power in an active state;  
INT  
is dissipation power in a passive state;  
I
= I  
(32 nodes) – I  
(32 nodes)  
LOAD  
PNINT  
INT  
BATN  
Dy is duty cycle, which is the percentage of time that TxD  
is in an active state during any given time duration.  
I
(32 nodes) may be found in the DC Characteristics  
BATN  
table.  
At passive state there is no current going into the load. So  
all of the supply current is dissipated inside the IC.  
A power dissipation example follows. The assumed values  
are chosen from specification and typical applications.  
P
PNINT  
= V  
* I  
BAT BATPN  
Assumptions:  
where:  
V
BAT  
is the battery voltage;  
V
BAT  
= 13.4 V  
R = 9.1 kΩ  
32 nodes  
T
I
is the passive state supply current in normal mode.  
BATPN  
In an active state, part of the supply current goes to the  
load, and only part of the supply current dissipates inside  
the IC, causing an incremental increase in junction  
temperature.  
I
= 2 mA  
BATPN  
I
(32 nodes) = 35 mA  
BATN  
V
= 4.55 V  
CANHN  
Duty cycle = 50%  
P
INT  
= P  
– P  
LOADN  
Computations:  
BATAN  
where:  
where:  
P
is active state battery supply power in normal  
R
= 9.1 k/ 32 = 284.4 Ω  
BATAN  
LOAD  
mode;  
P
I
P
= 13.4 V × 2 mA = 26.8 mW  
= 4.55 V / 284.4 = 16mA  
= 4.55 V × 16 mA = 72.8 mW  
= 35 mA - 16 mA = 19 mA  
= 13.4 V × 35 mA = 469 mW  
PNINT  
LOAD  
P
BATAN  
= V  
* I  
BAT BATAN  
LOADN  
P
is load power consumption in normal mode.  
I
LOADN  
INT  
P
BATAN  
P
= V  
* I  
CANHN LOADN  
LOADN  
P
= 469 mW - 72.8 mW = 396.2 mW  
INT  
P
tot  
= 396.2 mW × 50% + 26.8 mW × (1-50%) = 211.5 mW  
I
is active state supply current in normal mode;  
BATAN  
Additional examples with various node counts are shown in Table 4.  
V
is bus output voltage in normal mode;  
CANHN  
I
is current going through load in normal mode.  
LOADN  
Table 4. Representative Power Dissipation Analyses  
R
I
P
PNINT  
V
I
I
P
INT  
P
tot  
LOAD  
BATPN  
CANHN  
LOAD  
BATN  
Nodes  
2
()  
V
BAT  
(V)  
(mA)  
(mW)  
26.8  
26.8  
26.8  
26.8  
53  
(V)  
(mA)  
(mA)  
I
(mA)  
(mW)  
263.5  
298.9  
343.1  
396.2  
525.5  
613.3  
723  
Dcycle  
0.5  
(mW)  
145.1  
162.8  
184.9  
211.5  
289.2  
333.1  
388  
INT  
4550  
910  
13.4  
13.4  
13.4  
13.4  
26.5  
26.5  
26.5  
26.5  
2
2
2
2
2
2
2
2
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
4.55  
1
20  
19  
10  
20  
32  
2
5
24  
19  
19  
19  
19  
19  
19  
19  
0.5  
455  
10  
16  
1
29  
0.5  
284.4  
4550  
910  
35  
0.5  
20  
0.5  
10  
20  
32  
53  
5
24  
0.5  
455  
53  
10  
16  
29  
0.5  
284.4  
53  
35  
854.7  
0.5  
453.8  
By knowing the maximum power dissipation, and the operation ambient temperature, the required thermal resistance without tripping the  
thermal protection can be calculated, as shown in Figure 7. Then from Figure 5 or 6, a suitable PCB can be selected.  
16  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Ptot = 453.8 mW  
(Vbat = 26.5 V, 32 nodes)  
Ptot = 333.1 mW  
(Vbat = 26.5 V, 10 nodes)  
Ptot = 211.5 mW  
(Vbat = 13.4 V, 32 nodes)  
0
50  
60  
70  
80  
90  
100  
110  
120  
130  
SL01256  
AMBIENT TEMPERATURE (°C)  
Figure 7.  
Required Thermal Resistance vs. Ambient Temperature and Power Dissipation  
17  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
18  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
SO14: plastic small outline package; 14 leads; body width 3.9 mm  
SOT108-1  
19  
2001 May 18  
Philips Semiconductors  
Product data  
Single wire CAN transceiver  
AU5790  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on  
the Internet at URL http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 2001  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 05-01  
Document order number:  
9397 750 08401  
Philips  
Semiconductors  

相关型号:

AU5790D-T

CAN Transceiver, 1-Trnsvr, BICMOS, PDSO8,
PHILIPS

AU5790D/N,112

IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SO-8, Network Interface
NXP

AU5790D/N,118

IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SO-8, Network Interface
NXP

AU5790D14

Single wire CAN transceiver
NXP

AU5790D14,512

IC DATACOM, INTERFACE CIRCUIT, PDSO14, PLASTIC, SO-14, Network Interface
NXP

AU5790D14,518

IC DATACOM, INTERFACE CIRCUIT, PDSO14, PLASTIC, SO-14, Network Interface
NXP

AU5790D14-T

CAN Transceiver, 1-Trnsvr, PDSO14,
PHILIPS

AU5790D14/N,112

IC DATACOM, INTERFACE CIRCUIT, PDSO14, PLASTIC, SO-14, Network Interface
NXP

AU5790D14/N,118

IC DATACOM, INTERFACE CIRCUIT, PDSO14, PLASTIC, SO-14, Network Interface
NXP

AU5790D8

IC DATACOM, INTERFACE CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8, Network Interface
NXP

AU5790D8

CAN Transceiver, 1-Trnsvr, PDSO8,
PHILIPS

AU5790D8-T

IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SOT-96, SO-8, Network Interface
NXP