AFV10700GS [NXP]

RF Power LDMOS Transistors;
AFV10700GS
型号: AFV10700GS
厂家: NXP    NXP
描述:

RF Power LDMOS Transistors

文件: 总19页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: AFV10700H  
Rev. 1, 01/2018  
NXP Semiconductors  
Technical Data  
RF Power LDMOS Transistors  
AFV10700H  
AFV10700HS  
AFV10700GS  
N--Channel Enhancement--Mode Lateral MOSFETs  
These RF power transistors are designed for pulse applications operating at  
1030 to 1090 MHz and can be used over the 960 to 1215 MHz band at  
reduced power. These devices are suitable for use in defense and commercial  
pulse applications with large duty cycles and long pulses, such as IFF,  
secondary surveillance radars, ADS--B transponders, DME and other complex  
pulse chains.  
1030–1090 MHz, 700 W PEAK, 52 V  
AIRFAST RF POWER LDMOS  
TRANSISTORS  
Typical Performance: In 1030–1090 MHz reference circuit, I  
= 100 mA  
DQ(A+B)  
V
(V)  
P
out  
(W)  
Frequency  
(MHz)  
G
(dB)  
D
(%)  
DD  
ps  
(1)  
Signal Type  
1030  
1090  
1030  
1090  
50  
800 Peak  
700 Peak  
850 Peak  
770 Peak  
17.5  
19.0  
17.5  
19.2  
52.1  
56.1  
51.7  
56.1  
Pulse  
(128 sec,  
10% Duty Cycle)  
52  
NI--780H--4L  
AFV10700H  
Typical Performance: In 1030 MHz narrowband production test fixture,  
= 100 mA  
I
DQ(A+B)  
V
(V)  
P
out  
(W)  
Frequency  
(MHz)  
G
(dB)  
(%)  
DD  
ps  
D
Signal Type  
(2)  
1030  
50  
730 Peak  
19.2  
58.5  
Pulse  
NI--780S--4L  
AFV10700HS  
(128 sec,  
10% Duty Cycle)  
Narrowband Load Mismatch/Ruggedness  
Frequency  
P
(W)  
Test  
Voltage  
in  
Signal Type  
VSWR  
(MHz)  
Result  
(2)  
1030  
Pulse  
(128 sec,  
10% Duty Cycle)  
> 20:1 at  
All Phase  
Angles  
17.2 Peak  
(3 dB  
Overdrive)  
50  
No Device  
Degradation  
NI--780GS--4L  
AFV10700GS  
1. Measured in 1030–1090 MHz reference circuit (page 5).  
2. Measured in 1030 MHz narrowband production test fixture (page 9).  
Features  
Internally input and output matched for broadband operation and ease of use  
Device can be used in a single--ended, push--pull or quadrature configuration  
Qualified up to a maximum of 55 VDD operation  
Gate A  
Gate B  
Drain A  
Drain B  
3
4
1
2
High ruggedness, handles > 20:1 VSWR  
Integrated ESD protection with greater negative gate--source voltage range  
for improved Class C operation and gate voltage pulsing  
Recommended drivers: MRFE6VS25N (25 W) or MRF6V10010N (10 W)  
(Top View)  
Included in NXP product longevity program with assured supply for a  
minimum of 15 years after launch  
Note: The backside of the package is the  
source terminal for the transistor.  
Figure 1. Pin Connections  
2017–2018 NXP B.V.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
–0.5, +105  
–6.0, +10  
55, +0  
DSS  
Gate--Source Voltage  
V
GS  
DD  
Operating Voltage  
V
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
65 to +150  
–55 to +150  
–55 to +225  
T
C
C  
(1,2)  
Operating Junction Temperature Range  
T
J
C  
Total Device Dissipation @ T = 25C  
P
526  
W
C
D
Derate above 25C  
2.63  
W/C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Impedance, Junction to Case  
Z
0.030  
C/W  
JC  
Pulse: Case Temperature 75C, 730 W Peak, 128 sec Pulse Width,  
10% Duty Cycle, 50 Vdc, I  
= 100 mA, 1030 MHz  
DQ(A+B)  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Charge Device Model (per JESD22--C101)  
2, passes 2000 V  
C3, passes 2000 V  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Gate--Source Leakage Current  
I
105  
1
1
Adc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 10 A)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
Adc  
Adc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
10  
(V = 105 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(4)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 260 Adc)  
V
V
1.3  
1.6  
1.8  
2.1  
2.3  
2.6  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I  
= 100 mAdc, Measured in Functional Test)  
DQ(A+B)  
DD  
(4)  
Drain--Source On--Voltage  
V
0.28  
(V = 10 Vdc, I = 2.6 Adc)  
GS  
D
(4,5)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
C
rss  
1.16  
pF  
DS  
GS  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.nxp.com/RF/calculators.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.  
4. Each side of device measured separately.  
5. Part internally matched both on input and output.  
(continued)  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Functional Tests (In NXP Narrowband Production Test Fixture, 50 ohm system) V = 50 Vdc, I  
= 100 mA, P = 730 W Peak  
DD  
DQ(A+B)  
out  
(73 W Avg.), f = 1030 MHz, 128 sec Pulse Width, 10% Duty Cycle  
Power Gain  
G
18.0  
19.2  
58.5  
21.0  
dB  
%
ps  
D
Drain Efficiency  
Input Return Loss  
54.5  
IRL  
–15  
–9  
dB  
Load Mismatch/Ruggedness (In NXP Narrowband Production Test Fixture, 50 ohm system) I  
= 100 mA  
DQ(A+B)  
Frequency  
(MHz)  
Signal  
Type  
P
in  
(W)  
VSWR  
Test Voltage, V  
Result  
DD  
1030  
Pulse  
> 20:1 at All Phase Angles  
17.2 Peak  
50  
No Device Degradation  
(128 sec,  
(3 dB Overdrive)  
10% Duty Cycle)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
Package  
AFV10700HR5  
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel  
NI--780H--4L  
NI--780S--4L  
NI--780GS--4L  
AFV10700HSR5  
AFV10700GSR5  
R5 Suffix = 50 Units, 32 mm Tape Width, 13--inch Reel  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
3
TYPICAL CHARACTERISTICS  
100  
10  
1.11  
1.08  
Measured with 30 mV (rms) ac @ 1 MHz  
= 0 Vdc  
V
= 50 Vdc  
DD  
V
GS  
I
= 100 mA  
DQ(A+B)  
1.05  
500 mA  
1.02  
0.99  
0.96  
0.93  
0.90  
1000 mA  
C
rss  
1
0
10  
V
20  
30  
40  
50  
–75  
–50  
–25  
0
25  
50  
75  
100  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
T , CASE TEMPERATURE (C)  
DS  
C
Note: Each side of device measured separately.  
I
(mA)  
Slope (mV/C)  
DQ  
100  
–2.73  
Figure 2. Capacitance versus Drain--Source Voltage  
500  
–2.39  
–2.09  
1500  
Figure 3. Normalized VGS versus Quiescent  
Current and Case Temperature  
9
10  
V
= 50 Vdc  
DD  
I
D
= 19.67 Amps  
28.40 Amps  
8
10  
10  
7
24.39 Amps  
6
5
4
10  
10  
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (C)  
J
Note: MTTF value represents the total cumulative operating time  
under indicated test conditions.  
MTTF calculator available at http://www.nxp.com/RF/calculators.  
Figure 4. MTTF versus Junction Temperature – Pulse  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
4
1030–1090 MHz REFERENCE CIRCUIT – 2.0  3.0(5.1 cm 7.6 cm)  
Table 6. 1030–1090 MHz Performance (In NXP Reference Circuit, 50 ohm system) I  
= 100 mA  
DQ(A+B)  
V
(V)  
P
(W)  
G
Frequency  
(MHz)  
D
DD  
out  
ps  
Signal Type  
(dB)  
17.5  
19.0  
17.5  
19.2  
(%)  
52.1  
56.1  
51.7  
56.1  
1030  
1090  
1030  
1090  
Pulse  
50  
800 Peak  
700 Peak  
850 Peak  
770 Peak  
(128 sec, 10% Duty Cycle)  
52  
NOTE: Size of the matching area: 1.32.6(3.3 cm 6.6 cm)  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
5
1030–1090 MHz REFERENCE CIRCUIT – 2.0  3.0(5.1 cm 7.6 cm)  
C12*  
C17  
C18  
C5  
C8*  
C13  
C6* C7*  
C15  
C14*  
C16*  
C2*  
R1  
Q1  
C1*  
C11*  
C3*  
C9* C10*  
C4*  
D85937  
*C1, C2, C3, C4, C6, C7, C8, C9, C10, C11, C12, C14 and C16 are mounted vertically.  
Figure 5. AFV10700H Reference Circuit Component Layout – 1030–1090 MHz  
Table 7. AFV10700H Reference Circuit Component Designations and Values – 1030–1090 MHz  
Part  
Description  
Part Number  
Manufacturer  
ATC  
C1  
1.5 pF Chip Capacitor  
ATC800B1R5BT500XT  
C2, C8, C14  
C3, C4  
C5, C15  
C6, C12  
C7  
39 pF Chip Capacitor  
ATC800B390JT500XT  
ATC800B4R3CT500XT  
C3225X7R2A225K230AB  
ATC800B102JT50XT  
ATC800B101JT500XT  
ATC800B4R7CT500XT  
ATC800B3R3CT500XT  
GRM31CR72A105KA01L  
ATC800B511JT200XT  
MCGPR63V477M13X26--RH  
AFV10700H  
ATC  
4.3 pF Chip Capacitor  
ATC  
2.2 F Chip Capacitor  
TDK  
1000 pF Chip Capacitor  
100 pF Chip Capacitor  
4.7 pF Chip Capacitor  
ATC  
ATC  
C9  
ATC  
C10, C11  
C13  
3.3 pF Chip Capacitor  
ATC  
1.0 F Chip Capacitor  
Murata  
ATC  
C16  
510 pF Chip Capacitor  
470 F, 63 V Electrolytic Capacitor  
RF High Power LDMOS Transistor  
10 , 1/8 W Chip Resistor  
C17, C18  
Q1  
Multicomp  
NXP  
R1  
RK73H2ATTD10R0F  
D85937  
KAO Speer  
MTL  
PCB  
Rogers RO3010 0.025, = 11.2  
r
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
6
TYPICAL CHARACTERISTICS – 1030–1090 MHz  
REFERENCE CIRCUIT  
21  
70  
60  
1090 MHz  
1090 MHz  
1030 MHz  
20  
19  
18  
17  
G
ps  
D
50  
40  
30  
20  
1030 MHz  
16  
15  
V
= 50 Vdc, I  
= 100 mA  
DD  
DQ(A+B)  
Pulse Width = 128 sec, Duty Cycle = 10%  
10  
0
100 200 300 400 500 600 700 800 900 1000  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 6. Power Gain and Drain Efficiency versus  
Output Power – 50 V  
70  
21  
1090 MHz  
1030 MHz  
1090 MHz  
60  
50  
40  
30  
20  
10  
20  
19  
G
ps  
D
1030 MHz  
18  
17  
16  
15  
V
= 52 Vdc, I  
= 100 mA  
DD  
DQ(A+B)  
Pulse Width = 128 sec, Duty Cycle = 10%  
0
200  
400  
600  
800  
1000  
1200  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 7. Power Gain and Drain Efficiency versus  
Output Power – 52 V  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
7
1030–1090 MHz REFERENCE CIRCUIT  
Z = 5   
o
f = 1090 MHz  
Z
load  
f = 1030 MHz  
f = 1030 MHz  
Z
source  
f = 1090 MHz  
f
Z
Z
load  
source  
MHz  
1030  
1090  
2.3 – j1.7  
2.0 – j1.9  
0.91 – j0.76  
0.88 – j0.47  
Z
Z
=
=
Test circuit impedance as measured from  
gate to ground.  
source  
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
50   
50   
Z
Z
load  
source  
Figure 8. Series Equivalent Source and Load Impedance – 1030–1090 MHz  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
8
1030 MHz NARROWBAND PRODUCTION TEST FIXTURE – 4.0  5.0(10.2 cm 12.7 cm)  
C1  
C3  
C25 C27  
AFV10700H  
Rev. 0  
B1  
C17  
L1  
C5  
C7  
D89532  
C12  
R1  
Coax1  
Coax3  
C14*  
C19*  
C20*  
C21*  
C11  
C9  
C10  
C16  
C22*  
C23*  
C24*  
C15*  
L2  
Coax2  
Coax4  
R2  
C13  
C8  
C6  
C2  
C18  
C4  
B2  
C26  
C28  
*C14, C15, C19, C20, C21, C22, C23 and C24 are mounted vertically.  
Figure 9. AFV10700H Narrowband Test Circuit Component Layout – 1030 MHz  
Table 8. AFV10700H Narrowband Test Circuit Component Designations and Values – 1030 MHz  
Part  
Description  
Part Number  
Manufacturer  
B1, B2  
C1, C2  
C3, C4  
C5, C6  
Short RF Bead  
2743019447  
Fair--Rite  
22 F, 35 V Tantalum Capacitor  
2.2 F Chip Capacitor  
T491X226K035AT  
Kemet  
Kemet  
AVX  
C1825C225J5RAC  
0.1 F Chip Capacitor  
CDR33BX104AKWS  
ATC100B430JT500XT  
ATC100B3R3CT500XT  
ATC100B0R7BT500XT  
ATC100B360JT500XT  
ATC100B5R1CT500XT  
ATC100B5R6CT500XT  
C1825C103K1GACTU  
C7, C8, C19, C20, C21, C22, C23, C24  
43 pF Chip Capacitor  
ATC  
C9, C10  
3.3 pF Chip Capacitor  
ATC  
C11  
0.7 pF Chip Capacitor  
ATC  
C12, C13  
36 pF Chip Capacitor  
ATC  
C14, C15  
5.1 pF Chip Capacitor  
ATC  
C16  
5.6 pF Chip Capacitor  
ATC  
C17, C18  
0.01 F Chip Capacitor  
470 F, 63 V Electrolytic Capacitor  
35  Semi Rigid Coax 1.98Shield Length  
12 nH Inductor, 3 Turns  
5.6  1/4 W Chip Resistor  
Kemet  
Multicomp  
Hongsen Cable  
Coilcraft  
Vishay  
MTL  
C25, C26, C27, C28  
MCGPR63V477M13X26--RH  
HSF--141--35--C  
GA3094--ALC  
Coax1, Coax2, Coax3, Coax4  
L1, L2  
R1, R2  
PCB  
CRCW12065R60FKEA  
D89532  
Arlon, AD255A, 0.03, = 2.55  
r
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
9
TYPICAL CHARACTERISTICS – 1030 MHz, TC = 25_C  
PRODUCTION TEST FIXTURE  
22  
90  
21.0  
V
= 50 Vdc, f = 1030 MHz  
V
= 50 Vdc, I  
= 100 mA, f = 1030 MHz  
DD  
DD  
DQ(A+B)  
80  
70  
60  
50  
40  
30  
20  
10  
Pulse Width = 128 sec, Duty Cycle = 10%  
20.5  
20.0  
Pulse Width = 128 sec, Duty Cycle = 10%  
21  
20  
19  
18  
17  
I
= 1000 mA  
DQ(A+B)  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
G
ps  
500 mA  
D
100 mA  
50  
100  
P
200  
300  
500 700  
1000  
50  
100  
500  
, OUTPUT POWER (WATTS) PEAK  
1000  
P
, OUTPUT POWER (WATTS) PEAK  
out  
out  
Figure 10. Power Gain and Drain Efficiency  
versus Output Power  
Figure 11. Power Gain versus Output Power and  
Quiescent Drain Current  
1200  
1000  
800  
24  
22  
I
= 100 mA, f = 1030 MHz  
V
= 50 Vdc, I  
= 100 mA, f = 1030 MHz  
DQ(A+B)  
DD  
DQ(A+B)  
Pulse Width = 128 sec, Duty Cycle = 10%  
Pulse Width = 128 sec, Duty Cycle = 10%  
T
= –55_C  
C
25_C  
85_C  
20  
18  
16  
14  
12  
600  
50 V  
400  
200  
0
45 V  
40 V  
35 V  
500  
V
= 30 V  
DD  
10  
50  
32  
28  
30  
34  
36  
38  
40  
42  
44  
100  
P
200  
1000  
P , INPUT POWER (dBm) PEAK  
, OUTPUT POWER (WATTS) PEAK  
in  
out  
Figure 12. Power Gain versus Output Power  
and Drain Voltage  
f
P1dB  
(W)  
P3dB  
(W)  
(MHz)  
740  
883  
1030  
Figure 13. Output Power versus Input Power  
80  
26  
V
= 50 Vdc, I  
= 100 mA, f = 1030 MHz  
DD  
DQ(A+B)  
Pulse Width = 128 sec, Duty Cycle = 10%  
70  
24  
22  
20  
18  
16  
14  
12  
D
T
= 25_C  
–55_C  
C
60  
50  
40  
30  
20  
10  
85_C  
T
= –55_C  
C
G
ps  
25_C  
85_C  
0
200  
400  
600  
800  
1000  
1200  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 14. Power Gain and Drain Efficiency versus  
Output Power  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
10  
1030 MHz NARROWBAND PRODUCTION TEST FIXTURE  
f
Z
Z
load  
source  
MHz  
1030  
4.0 – j6.9  
3.9 – j1.4  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured  
from drain to drain, balanced configuration.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
--  
+
50   
50   
+
--  
Z
Z
load  
source  
Figure 15. Series Equivalent Source and Load Impedance – 1030 MHz  
AFV10700H AFV10700HS AFV10700GS  
11  
RF Device Data  
NXP Semiconductors  
PACKAGE DIMENSIONS  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
12  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
13  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
14  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
15  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
16  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
17  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
.s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.nxp.com/RF  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
May 2017  
Jan. 2018  
Initial release of data sheet  
Added part number AFV10700GS, p. 1  
Production test fixture, Typical Characteristic graphs: clarified temperature condition, p. 10  
Added NI--780GS--4L package isometric, p. 1, and Mechanical Outline, pp. 16–17  
AFV10700H AFV10700HS AFV10700GS  
RF Device Data  
NXP Semiconductors  
18  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the information  
in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All operating  
parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. NXP does not convey any license under its patent rights  
nor the rights of others. NXP sells products pursuant to standard terms and conditions of  
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners.  
E 2017–2018 NXP B.V.  
Document Number: AFV10700H  
Rev. 1, 01/2018  

相关型号:

AFV10700H

RF Power LDMOS Transistors
NXP

AFV10700HR5

RF Power Field-Effect Transistor
NXP

AFV10700HS

RF Power LDMOS Transistors
NXP

AFV121KGS

RF Power LDMOS Transistors
NXP

AFV121KH

RF Power LDMOS Transistors
NXP

AFV121KHS

RF Power LDMOS Transistors
NXP

AFV141KGS

RF Power LDMOS Transistors
NXP

AFV141KH

RF Power LDMOS Transistors
NXP

AFV141KHS

RF Power LDMOS Transistors
NXP

AFV450V104K

SNUBBER CAPACITOR
OKAYA

AFV450V225K

SNUBBER CAPACITOR
OKAYA

AFV450V474K

SNUBBER CAPACITOR
OKAYA