A2G22S160-01SR3 [NXP]

RF Power GaN Transistor;
A2G22S160-01SR3
型号: A2G22S160-01SR3
厂家: NXP    NXP
描述:

RF Power GaN Transistor

文件: 总18页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: A2G22S160--01S  
Rev. 0, 5/2015  
Freescale Semiconductor  
Technical Data  
RF Power GaN Transistor  
This 32 W RF power GaN transistor is designed for cellular base station  
applications covering the frequency range of 1800 to 2200 MHz.  
This part is characterized and performance is guaranteed for applications  
operating in the 1800 to 2200 MHz band. There is no guarantee of performance  
when this part is used in applications designed outside of these frequencies.  
A2G22S160--01SR3  
2100 MHz  
1800–2200 MHz, 32 W AVG., 48 V  
AIRFAST RF POWER GaN  
TRANSISTOR  
Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
IDQ = 150 mA, Pout = 32 W Avg., Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF.  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
IRL  
(dB)  
ps  
D
Frequency  
2110 MHz  
2140 MHz  
2170 MHz  
(dB)  
19.6  
19.9  
20.0  
(%)  
38.0  
38.3  
39.0  
7.2  
7.1  
7.1  
–30.3  
–30.0  
–29.7  
–20  
–23  
–19  
1800 MHz  
Typical Single--Carrier W--CDMA Performance: VDD = 48 Vdc,  
NI--400S--2S  
IDQ = 150 mA, Pout = 32 W Avg., Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF.  
G
Output PAR  
(dB)  
ACPR  
(dBc)  
IRL  
(dB)  
ps  
D
Frequency  
1805 MHz  
1840 MHz  
1880 MHz  
(dB)  
18.2  
18.5  
18.6  
(%)  
36.9  
37.4  
38.2  
7.1  
7.1  
7.0  
–33.4  
–33.0  
–32.5  
–11  
–16  
–16  
RF /V  
in GS  
RF /V  
out DS  
2
1
Features  
High Terminal Impedances for Optimal Broadband Performance  
Designed for Digital Predistortion Error Correction Systems  
Optimized for Doherty Applications  
(Top View)  
Figure 1. Pin Connections  
Freescale Semiconductor, Inc., 2015. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
125  
Unit  
Vdc  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
DSS  
Gate--Source Voltage  
V
–8, 0  
GS  
DD  
Operating Voltage  
V
0 to +55  
65 to +150  
55 to +150  
55 to +225  
Storage Temperature Range  
Case Operating Temperature Range  
T
stg  
T
C
C  
(1)  
Operating Junction Temperature Range  
T
J
C  
Table 2. Thermal Characteristics  
(2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
1.7  
C/W  
JC  
Case Temperature 76C, 32 W CW, 48 Vdc, I  
= 150 mA, 2140 MHz  
DQ  
Table 3. ESD Protection Characteristics  
Test Methodology  
Human Body Model (per JESD22--A114)  
Class  
1B  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
A
IV  
Table 4. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Drain--Source Leakage Current  
I
5
mAdc  
Vdc  
DSS  
(V = –8 Vdc, V = 55 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
V
150  
(BR)DSS  
(V = –8 Vdc, I = 16.2 mAdc)  
GS  
D
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 16.2 Adc)  
V
–3.8  
–3.6  
–3.0  
–3.0  
–2.3  
–2.3  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS  
D
Gate Quiescent Voltage  
(V = 48 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
DD  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.  
(continued)  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
2
Table 4. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 48 Vdc, I = 150 mA, P = 32 W Avg., f = 2110 MHz,  
DD  
DQ  
out  
Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz  
Channel Bandwidth @ 5 MHz Offset. [See note on correct biasing sequence.]  
Power Gain  
G
18.8  
35.5  
6.8  
19.6  
38.0  
7.2  
21.8  
dB  
%
ps  
D
Drain Efficiency  
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
Input Return Loss  
PAR  
ACPR  
IRL  
dB  
dBc  
dB  
–30.3  
–20  
–28.0  
–9  
Load Mismatch (In Freescale Test Fixture, 50 ohm system) I = 150 mA, f = 2140 MHz  
DQ  
VSWR 10:1 at 55 Vdc, 125 W CW Output Power  
(3 dB Input Overdrive from 125 W CW Rated Power)  
No Device Degradation  
Typical Performance (In Freescale Test Fixture, 50 ohm system) V = 48 Vdc, I = 150 mA, 2110–2170 MHz Bandwidth  
DD  
DQ  
P
P
@ 1 dB Compression Point, CW  
P1dB  
125  
160  
W
W
out  
out  
(2)  
@ 3 dB Compression Point  
P3dB  
AM/PM  
–21.8  
(Maximum value measured at the P3dB compression point across  
the 2110–2170 MHz bandwidth)  
VBW Resonance Point  
VBW  
150  
MHz  
res  
(IMD Third Order Intermodulation Inflection Point)  
Gain Flatness in 60 MHz Bandwidth @ P = 32 W Avg.  
G
0.4  
dB  
out  
F
Gain Variation over Temperature  
G  
0.02  
dB/C  
(–30C to +85C)  
Output Power Variation over Temperature  
P1dB  
0.02  
dB/C  
(–30C to +85C)  
Table 5. Ordering Information  
Device  
Tape and Reel Information  
Package  
A2G22S160--01SR3  
R3 Suffix = 250 Units, 32 mm Tape Width, 13--inch Reel  
NI--400S--2S  
1. Part internally input matched.  
2. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
NOTE: Correct Biasing Sequence for GaN Depletion Mode Transistors  
Turning the device ON  
1. Set V to the pinch--off (V ) voltage, typically –5 V  
GS  
P
2. Turn on V to nominal supply voltage (50 V)  
DS  
3. Increase V until I current is attained  
GS  
DS  
4. Apply RF input power to desired level  
Turning the device OFF  
1. Turn RF power off  
2. Reduce V down to V , typically –5 V  
GS  
P
3. Reduce V down to 0 V (Adequate time must be allowed for V to  
DS  
DS  
reduce to 0 V to prevent severe damage to device.)  
4. Turn off V  
GS  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
3
V
GG  
C9  
V
C7  
C6  
DD  
C16  
C13  
C12  
C5  
C8  
C10  
R1  
C14  
C15  
C11  
C2  
C3 C4  
C1  
AFG22S160--01S  
Rev. 4  
D64348  
Figure 2. A2G22S160--01SR3 Test Circuit Component Layout — 2110–2170 MHz  
Table 6. A2G22S160--01SR3 Test Circuit Component Designations and Values — 2110–2170 MHz  
Part  
Description  
Part Number  
Manufacturer  
ATC  
C1, C9, C10, C11, C12, C15 10 pF Chip Capacitors  
ATC600F100JT250XT  
C2, C3  
C4  
1.8 pF Chip Capacitors  
1.2 pF Chip Capacitor  
ATC600F1R8BT250XT  
ATC600F1R2BT250XT  
ATC100B471JT200XT  
ATC100B102JT50XT  
GRM32ER72A105KA01L  
GRM31CR61H106KA12L  
C5750X7S2A106M230KB  
EEV-FK2A221M  
ATC  
ATC  
C5  
470 pF Chip Capacitor  
1000 pF Chip Capacitor  
1 F Chip Capacitors  
ATC  
C6  
ATC  
C7, C13  
C8  
Murata  
Murata  
TDK  
10 F Chip Capacitor  
C14  
C16  
R1  
10 F Chip Capacitor  
220 F, 100 V Electrolytic Capacitor  
2.37 . 1/4 W Chip Resistor  
Panasonic-ECG  
Vishay  
MTL  
CRCW12062r37FNEA  
D64348  
PCB  
Rogers RO4350B, 0.020, = 3.66  
r
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
4
TYPICAL CHARACTERISTICS — 2110–2170 MHz  
44  
42  
40  
38  
36  
20.2  
20  
G
V
DQ  
= 48 Vdc, P = 32 W (Avg.)  
out  
ps  
DD  
I
= 150 mA, Single--Carrier W--CDMA  
19.8  
19.6  
19.4  
19.2  
19  
3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
D
–9  
–2.6  
–2.8  
–3  
–30  
ACPR  
–30.2  
–30.4  
–12  
–15  
–18  
–21  
18.8  
18.6  
18.4  
18.2  
–3.2  
–3.4  
–3.6  
–30.6  
–30.8  
PARC  
IRL  
–31  
–24  
2060 2080 2100 2120 2140 2160 2180 2200 2220  
f, FREQUENCY (MHz)  
Figure 3. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 32 Watts Avg.  
–10  
V
= 48 Vdc, P = 27 W (PEP), I = 150 mA  
out DQ  
DD  
Two--Tone Measurements, (f1 + f2)/2 = Center  
Frequency of 2140 MHz  
–20  
–30  
–40  
–50  
–60  
IM3--U  
IM3--L  
IM5--L  
IM5--U  
IM7--L  
IM7--U  
1
10  
100  
200  
TWO--TONE SPACING (MHz)  
Figure 4. Intermodulation Distortion Products  
versus Two--Tone Spacing  
21  
1
0
60  
50  
40  
30  
20  
10  
0
26  
V
= 48 Vdc, I = 150 mA, f = 2140 MHz  
DQ  
DD  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
–28  
30  
–32  
–34  
–36  
–38  
20.5  
–1  
–2  
–3  
–4  
–5  
20  
19.5  
19  
D
–1 dB = 15.5 W  
G
ps  
–2 dB = 22.4 W  
PARC  
–3 dB = 30.4 W  
18.5  
18  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
ACPR  
2
10  
18  
26  
34  
42  
P
, OUTPUT POWER (WATTS)  
out  
Figure 5. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS — 2110–2170 MHz  
65  
55  
45  
35  
25  
15  
5
24  
22  
20  
18  
16  
14  
12  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
2170 MHz  
2140 MHz  
D
2140 MHz  
2110 MHz  
2140 MHz  
2170 MHz  
2110 MHz  
V
= 48 Vdc, I = 150 mA  
DQ  
DD  
Single--Carrier W--CDMA, 3.84 MHz  
Channel Bandwidth, Input Signal  
PAR = 9.9 dB @ 0.01%  
2170 MHz  
Probability on CCDF  
2110 MHz  
G
ps  
ACPR  
1
10  
100  
200  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 6. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
5
22  
21  
20  
19  
18  
17  
16  
V
P
I
= 48 Vdc  
= 0 dBm  
= 150 mA  
DD  
in  
0
Gain  
DQ  
–5  
–10  
–15  
–20  
–25  
IRL  
1800 1900 2000 2100 2200 2300 2400 2500 2600  
f, FREQUENCY (MHz)  
Figure 7. Broadband Frequency Response  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
6
Table 7. Load Pull Performance — Maximum Power Tuning  
V
= 28 Vdc, I = 136 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
52.3  
52.9  
53.2  
Gain (dB)  
20.2  
(dBm)  
50.3  
(W)  
106  
110  
(MHz)  
2110  
4.15 – j6.27  
4.07 – j5.17  
4.09 – j4.55  
5.00 + j5.62  
8.53 – j8.62  
10.0 – j9.31  
12.0 – j9.99  
–24  
–26  
–18  
2140  
2170  
4.98 + j4.73  
4.50 + j4.20  
20.2  
50.4  
19.9  
50.3  
108  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
61.3  
61.1  
60.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
2110  
2140  
2170  
4.15 – j6.27  
5.06 + j5.47  
10.3 – j7.91  
10.6 – j8.37  
12.0 – j9.08  
18.0  
51.7  
147  
–28  
–29  
–21  
4.07 – j5.17  
4.09 – j4.55  
5.10 + j4.68  
4.76 + j3.87  
18.2  
18.2  
51.7  
51.8  
148  
150  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 8. Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 28 Vdc, I = 136 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
60.3  
61.5  
59.6  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
2110  
4.15 – j6.27  
4.07 – j5.17  
4.09 – j4.55  
6.23 + j5.33  
6.50 – j4.70  
4.69 – j4.08  
9.05 – j4.91  
21.9  
49.3  
86  
–25  
–31  
–15  
2140  
2170  
7.85 + j2.84  
4.69 + j3.48  
23.1  
21.6  
48.5  
49.2  
71  
83  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
72.2  
72.8  
71.1  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
2110  
2140  
2170  
4.15 – j6.27  
6.45 + j3.06  
5.89 – j2.96  
6.46 – j2.95  
8.12 – j3.23  
20.8  
49.9  
97  
–34  
–29  
–22  
4.07 – j5.17  
4.09 – j4.55  
5.06 + j2.23  
4.10 + j2.54  
21.0  
20.2  
49.9  
50.4  
99  
110  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
7
P1dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz  
4
2
4
46  
50  
47  
48  
46.5  
2
0
47.5  
52  
0
48  
48.5  
54  
56  
–2  
–4  
–6  
–8  
–10  
–12  
–2  
49  
–4  
E
E
49.5  
60  
58  
–6  
50  
–8  
52  
P
50  
P
–10  
–12  
46  
48  
4
6
10  
12  
14  
16  
2
8
4
6
10  
12  
14  
16  
2
8
REAL ()  
REAL ()  
Figure 8. P1dB Load Pull Output Power Contours (dBm)  
Figure 9. P1dB Load Pull Efficiency Contours (%)  
4
2
4
2
22.5  
23  
23.5  
E
0
–2  
0
–2  
–4  
–6  
–8  
–10  
–12  
21.5  
22  
–4  
E
21  
20.5  
20  
–6  
-- 3 4  
-- 3 2  
-- 3 0  
–28  
–20  
–22  
–8  
P
–24  
P
–26  
–10  
–12  
19.5  
-- 3 6  
4
6
10  
REAL ()  
12  
14  
16  
2
8
4
6
10  
12  
14  
16  
2
8
REAL ()  
Figure 10. P1dB Load Pull Gain Contours (dB)  
Figure 11. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
8
P3dB -- TYPICAL LOAD PULL CONTOURS — 2140 MHz  
4
2
4
58  
62  
60  
48.5  
47.5  
48  
58  
49.5  
2
0
56  
49  
50  
0
70  
50.5  
–2  
–4  
–6  
–8  
–10  
–12  
–2  
51  
E
66  
58  
E
72  
64  
–4  
68  
51.5  
–6  
60  
56  
–8  
P
P
–10  
–12  
4
6
10  
REAL ()  
12  
14  
16  
2
8
4
6
10  
REAL ()  
12  
14  
16  
2
8
Figure 12. P3dB Load Pull Output Power Contours (dBm)  
Figure 13. P3dB Load Pull Efficiency Contours (%)  
4
2
4
2
0
20  
20.5  
21  
21.5  
0
–2  
19.5  
–2  
E
E
19  
–4  
–4  
18.5  
18  
–6  
–6  
–38  
–36  
–30  
–28  
P
–34  
–32  
–8  
–8  
P
–22  
–26  
–10  
–12  
–10  
–12  
–24  
17.5  
4
6
10  
8
REAL ()  
12  
14  
16  
2
4
6
10  
REAL ()  
12  
14  
16  
2
8
Figure 14. P3dB Load Pull Gain Contours (dB)  
Figure 15. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
9
V
GG  
V
DD  
C5  
C6  
C7  
C8  
C9  
C16  
C12  
C10  
C4  
C11  
R1  
C13  
C15  
C2  
C3  
C14  
C1  
A2G22S160--01S  
Rev. 4  
D64348  
Figure 16. A2G22S160--01SR3 Test Circuit Component Layout — 1805–1880 MHz  
Table 9. A2G22S160--01SR3 Test Circuit Component Designations and Values — 1805–1880 MHz  
Part  
Description  
10 pF Chip Capacitors  
Part Number  
Manufacturer  
ATC  
C1, C8, C9, C10, C11, C15  
ATC600F100JT250XT  
C2  
1.1 pF Chip Capacitor  
1.8 pF Chip Capacitor  
470 pF Chip Capacitor  
1000 pF Chip Capacitor  
1 F Chip Capacitors  
ATC600F1R2BT250XT  
ATC600F1R8BT250XT  
ATC100B471JT200XT  
ATC100B102JT50XT  
GRM32ER72A105KA01L  
GRM31CR61H106KA12L  
C5750X7S2A106M230KB  
ATC600F0R7BT250XT  
EEV-FK2A221M  
ATC  
C3  
ATC  
C4  
ATC  
C5  
ATC  
C6, C12  
C7  
Murata  
Murata  
TDK  
10 F Chip Capacitor  
C13  
C14  
C16  
R1  
10 F Chip Capacitor  
0.7 pF Chip Capacitor  
220 F, 100 V Electrolytic Capacitor  
2.37 , 1/4 W Chip Resistor  
ATC  
Panasonic-ECG  
Vishay  
MTL  
CRCW12062R37FNEA  
D64348  
PCB  
Rogers RO4350B, 0.020, = 3.66  
r
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
TYPICAL CHARACTERISTICS — 1805–1880 MHz  
41  
40  
39  
38  
37  
19  
18.8  
18.6  
18.4  
18.2  
18  
V
= 48 Vdc, P = 32 W (Avg.), I = 150 mA  
out DQ  
DD  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
G
ps  
D
–6  
–2.6  
–2.7  
–2.8  
–2.9  
–3  
–31.5  
–32  
17.8  
17.6  
17.4  
17.2  
17  
–9  
PARC  
ACPR  
IRL  
–12  
–15  
–18  
–32.5  
–33  
–33.5  
–34  
–3.1  
–21  
1760 1780 1800 1820 1840 1860 1880 1900 1920  
f, FREQUENCY (MHz)  
Figure 17. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 32 Watts Avg.  
60  
50  
40  
30  
20  
10  
0
22  
20  
18  
16  
14  
12  
10  
–15  
D
1880 MHz  
1840 MHz  
1805 MHz  
1880 MHz  
1805 MHz  
1840 MHz  
–20  
–25  
–30  
–35  
–40  
–45  
ACPR  
V
= 48 Vdc, I = 150 mA  
DQ  
DD  
Single--Carrier W--CDMA, 3.84 MHz  
Channel Bandwidth, Input Signal  
PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
1840 MHz  
G
ps  
1805 MHz  
1880 MHz  
10  
1
100  
200  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 18. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
10  
5
21  
20  
19  
18  
17  
16  
15  
V
P
= 48 Vdc  
= 0 dBm  
= 150 mA  
DD  
in  
I
DQ  
Gain  
0
–5  
–10  
–15  
–20  
IRL  
1400 1500 1600 1700 1800 1900 2000 2100 2200  
f, FREQUENCY (MHz)  
Figure 19. Broadband Frequency Response  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
11  
Table 10. Load Pull Performance — Maximum Power Tuning  
V
= 28 Vdc, I = 140 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Output Power  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
60.9  
59.2  
56.5  
Gain (dB)  
19.9  
(dBm)  
51.6  
(W)  
145  
137  
(MHz)  
1805  
1.26 – j5.77  
1.64 – j5.93  
1.97 – j6.03  
1.57 + j5.91  
8.58 – j5.21  
9.10 – j5.90  
8.40 – j6.54  
–41  
–38  
–34  
1840  
1880  
1.84 + j6.11  
2.06 + j6.39  
19.9  
51.4  
19.7  
51.1  
129  
Max Output Power  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
68.4  
67.1  
64.2  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
1.26 – j5.77  
1.46 + j5.88  
9.56 – j3.93  
9.50 – j4.67  
9.42 – j5.46  
18.3  
52.2  
167  
–34  
–32  
–29  
1.64 – j5.93  
1.97 – j6.03  
1.64 + j6.03  
1.98 + j6.41  
17.7  
17.8  
52.1  
51.9  
163  
156  
(1) Load impedance for optimum P1dB power.  
(2) Load impedance for optimum P3dB power.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Table 11. Load Pull Performance — Maximum Drain Efficiency Tuning  
V
= 28 Vdc, I = 140 mA, Pulsed CW, 10 sec(on), 10% Duty Cycle  
DD  
DQ  
Max Drain Efficiency  
P1dB  
(1)  
Z
AM/PM  
()  
f
Z
Z
in  
()  
load  
()  
D
source  
()  
(%)  
70.2  
69.9  
68.8  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1.26 – j5.77  
1.64 – j5.93  
1.97 – j6.03  
1.51 + j6.34  
6.08 – j0.80  
5.51 – j1.09  
5.18 – j1.44  
21.8  
50.3  
107  
–38  
–36  
–34  
1840  
1880  
1.71 + j6.74  
2.05 + j7.16  
22.1  
22.1  
50.0  
49.6  
100  
92  
Max Drain Efficiency  
P3dB  
(2)  
Z
()  
AM/PM  
()  
f
Z
Z
()  
load  
D
source  
()  
in  
(%)  
77.2  
77.5  
77.0  
Gain (dB)  
(dBm)  
(W)  
(MHz)  
1805  
1840  
1880  
1.26 – j5.77  
1.58 + j6.43  
6.86 – j0.08  
6.28 – j0.28  
5.75 – j0.50  
20.0  
51.2  
130  
–36  
–35  
–37  
1.64 – j5.93  
1.97 – j6.03  
1.91 + j6.84  
2.42 + j7.30  
20.3  
20.3  
50.8  
50.3  
120  
108  
(1) Load impedance for optimum P1dB efficiency.  
(2) Load impedance for optimum P3dB efficiency.  
Z
Z
Z
= Measured impedance presented to the input of the device at the package reference plane.  
= Impedance as measured from gate contact to ground.  
= Measured impedance presented to the output of the device at the package reference plane.  
source  
in  
load  
Input Load Pull  
Tuner and Test  
Circuit  
Output Load Pull  
Tuner and Test  
Circuit  
Device  
Under  
Test  
Z
Z
in  
Z
load  
source  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
P1dB -- TYPICAL LOAD PULL CONTOURS — 1840 MHz  
4
2
4
48  
47.5  
54  
56  
48.5  
49  
2
0
49.5  
0
62  
68  
E
50  
E
66  
–2  
–4  
–6  
–8  
–10  
–12  
–2  
50.5  
58  
64  
60  
54  
–4  
51  
P
P
–6  
–8  
–10  
–12  
48.5  
50  
4
6
10  
REAL ()  
12  
14  
16  
2
8
4
6
10  
REAL ()  
12  
14  
16  
2
8
Figure 20. P1dB Load Pull Output Power Contours (dBm)  
Figure 21. P1dB Load Pull Efficiency Contours (%)  
4
2
4
2
23  
22.5  
22  
21.5  
0
–2  
0
–2  
E
E
21  
20.5  
20  
–4  
–4  
–6  
P
P
–6  
19.5  
19  
–38  
–36  
–40  
–8  
–8  
–32  
–34  
–24  
–10  
–12  
–10  
–12  
–28  
–30  
–26  
4
6
10  
8
REAL ()  
12  
14  
16  
2
4
6
10  
REAL ()  
12  
14  
16  
2
8
Figure 22. P1dB Load Pull Gain Contours (dB)  
Figure 23. P1dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
13  
P3dB -- TYPICAL LOAD PULL CONTOURS — 1840 MHz  
4
2
4
48  
2
76  
74  
P
0
0
E
E
72  
70  
68  
66  
–2  
–4  
–6  
–8  
–10  
–12  
–2  
64  
–4  
–6  
P
62  
52  
–8  
49  
51.5  
51  
50  
49.5  
–10  
–12  
48.5  
50.5  
4
6
10  
REAL ()  
12  
14  
16  
2
8
4
6
10  
REAL ()  
12  
14  
16  
2
8
Figure 24. P3dB Load Pull Output Power Contours (dBm)  
Figure 25. P3dB Load Pull Efficiency Contours (%)  
4
4
2
21.5  
21  
2
20.5  
20  
19.5  
0
–2  
0
–2  
E
E
19  
18.5  
18  
–4  
–4  
–6  
P
P
17.5  
–38  
–36  
–6  
–34  
–30  
–32  
–28  
–26  
–40  
–8  
–8  
–10  
–12  
–10  
–12  
–42  
4
6
10  
8
REAL ()  
12  
14  
16  
2
4
6
10  
8
REAL ()  
12  
14  
16  
2
Figure 26. P3dB Load Pull Gain Contours (dB)  
Figure 27. P3dB Load Pull AM/PM Contours ()  
NOTE:  
P
E
= Maximum Output Power  
= Maximum Drain Efficiency  
Gain  
Drain Efficiency  
Linearity  
Output Power  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
14  
PACKAGE DIMENSIONS  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
15  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
16  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following resources to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
RF High Power Model  
s2p File  
Development Tools  
Printed Circuit Boards  
To Download Resources Specific to a Given Part Number:  
1. Go to http://www.freescale.com/rf  
2. Search by part number  
3. Click part number link  
4. Choose the desired resource from the drop down menu  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
May 2015  
Initial Release of Data Sheet  
A2G22S160--01SR3  
RF Device Data  
Freescale Semiconductor, Inc.  
17  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All  
other product or service names are the property of their respective owners.  
E 2015 Freescale Semiconductor, Inc.  
Document Number: A2G22S160--01S  
Rev. 0, 5/2015  

相关型号:

A2G22S251-01S

RF Power GaN Transistor
NXP

A2G22S251-01SR3

RF Power GaN Transistor
NXP

A2G26H281-04S

RF Power GaN Transistor
NXP

A2G26H281-04SR3

RF Power GaN Transistor
NXP

A2G35S160-01S

RF Power GaN Transistor
NXP

A2G35S160-01SR3

RF Power GaN Transistor
NXP

A2G35S200-01S

RF Power GaN Transistor
NXP

A2G35S200-01SR3

RF Power GaN Transistor
NXP

A2I08H040GNR1

RF LDMOS Wideband Integrated Power Amplifiers
NXP

A2I08H040N

RF LDMOS Wideband Integrated Power Amplifiers
NXP

A2I08H040NR1

RF LDMOS Wideband Integrated Power Amplifiers
NXP

A2I09VD015GNR1

RF LDMOS Wideband Integrated Power Amplifiers
NXP