935268498518 [NXP]

IC PLL FREQUENCY SYNTHESIZER, 2500 MHz, PBCC24, 4 X 4 MM, 0.65 MM HEIGHT, PLASTIC, HBCC-24, PLL or Frequency Synthesis Circuit;
935268498518
型号: 935268498518
厂家: NXP    NXP
描述:

IC PLL FREQUENCY SYNTHESIZER, 2500 MHz, PBCC24, 4 X 4 MM, 0.65 MM HEIGHT, PLASTIC, HBCC-24, PLL or Frequency Synthesis Circuit

文件: 总28页 (文件大小:278K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA8028  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
Product data  
2002 Feb 22  
Supersedes data of 2002 Jan 09  
File under Integrated Circuits — IC17  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
GENERAL DESCRIPTION  
APPLICATIONS  
The SA8028 BICMOS device integrates programmable dividers,  
charge pumps and phase comparators to implement phase–locked  
loops. The device is designed to operate from 3 NiCd cells, in  
pocket phones, with low current and nominal 3 V supplies.  
500 to 2500 MHz wireless equipment  
Cellular phones, all standards including:  
CDMA  
3G  
GSM  
TDMA  
GAIT  
: IS95-B,C WCDMA  
: WCDMA / UMTS  
: EDGE / GPRS  
: IS136 and EDGE  
: GSM and TDMA  
The synthesizer operates at VCO input frequencies up to 2.5 GHz.  
The synthesizer has fully programmable RF, IF, and reference  
dividers. All divider ratios are supplied via a 3-wire serial  
programming bus. The RF divider is a fractional-N divider with  
programmable integer ratios from 33 to 509 and a fractional  
WLAN  
nd  
resolution of 22 programmable bits (23 bits internal). A 2 order  
Wireless PDAs  
sigma-delta modulator is used to achieve fractional division.  
Satellite tuners and all other high frequency equipment  
Extreme fine frequency resolution applications  
Separate power and ground pins are provided to the charge pumps  
and digital circuits. V  
must be equal to or greater than V  
.
DDCP  
DD  
The ground pins should be externally connected to prevent large  
currents from flowing across the die and thus causing damage.  
The charge pump current (gain) is fully programmable, while I  
is  
SET  
set by an external resistance at the R  
pin (refer to section 1.5,  
SET  
RF and IF Charge Pumps). The phase/frequency detector charge  
pump outputs allow for implementing a passive loop filter.  
24 23 22 21 20  
1
19  
V
DDPre  
GND  
FEATURES  
Extremely low phase noise:  
18  
17  
16  
15  
14  
2
3
4
5
6
CLOCK  
REFin+  
REFin–  
GND  
Pre  
L
(f)  
= –101 dBc/Hz at 5 kHz offset at 800 MHz  
RFin+  
RFin–  
TOP VIEW  
Low power  
R
SET  
Programmable Normal & Integral charge pump outputs:  
Maximum output = 10.4 mA  
GND  
V
DDCP  
CP  
7
13  
Digital fractional spurious compensation  
Hardware and software power-down  
N/C  
8
9
10 11 12  
I  
< 0.1 µA (typ) at V = 3.0 V  
DD  
DDsleep  
Seperate supply for V and V  
DD  
DDCP  
SR02176  
Programmable loop filter bandwidth  
Figure 1. HBCC24 pin configuration.  
ORDERING INFORMATION  
PACKAGE  
NAME  
TYPE NUMBER  
DESCRIPTION  
Plastic, heatsink bottom chip carrier; 24 terminals; body 4 x 4 x 0.65 mm (CSP package)  
VERSION  
SA8028W  
HBCC24  
SOT564-1  
2
2002 Feb 22  
853-2277 27777  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
QUICK REFERENCE DATA  
V
= V = V  
= +3.0 V, T  
= +25°C; unless otherwise specified.  
DDCP  
DD  
DDpre  
amb  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
V
, V  
Digital supply voltage  
V
V
= V  
DDpre  
2.7  
3.6  
3.6  
V
DD  
DDpre  
DD  
Charge pump supply voltage  
Total supply current  
V , V  
DDpre  
2.7  
V
DDCP  
DDCP  
DD  
I
I
f
f
f
f
RF and IF. on  
7.6  
0.1  
mA  
DDtotal  
Total supply current in power-down mode  
VCO Input frequency range  
Input frequency range  
1
µA  
DDsleep  
RFin  
500  
100  
5
2500  
760  
30  
MHz  
MHz  
MHz  
MHz  
IFin  
Crystal reference input frequency  
Maximum phase comparator frequency  
REFin  
RF phase comparator;  
max. limit is indicative  
30  
COMPMAX  
T
amb  
Operating ambient temperature  
–40  
+85  
°C  
3
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
V
V
V
DDCP  
DD  
DDpre  
24  
1
14  
18  
22–BIT SHIFT  
REGISTER  
CLOCK  
DATA  
2–BIT SHIFT  
REGISTER  
PUMP  
CURRENT  
SETTING  
19  
15  
PUMP  
BIAS  
CONTROL  
LATCH  
R
SET  
20  
ADDRESS DECODER  
LOAD SIGNALS  
STROBE  
SIGMA-DELTA  
RF DIVIDER  
LATCH  
4
5
RFin+  
RFin–  
7
8
PHP  
PHI  
PHASE  
DETECTOR  
LATCH  
17  
16  
REFin+  
REFin–  
REF DIVIDER  
2
2 2 2  
22  
10  
LOCK  
DETECT  
SA  
LOCK  
PHA  
LATCH  
PHASE  
DETECTOR  
11  
23  
IFin  
IF DIVIDER  
21  
PON  
TEST  
2
3
6, 9  
GND  
GND  
GND  
CP  
Pre  
SR02379  
Figure 2. HBCC24 Block Diagram  
HBCC24 PIN DESCRIPTION  
SYMBOL  
PIN  
DESCRIPTION  
SYMBOL  
PIN  
DESCRIPTION  
Not connected  
N/C  
13  
14  
15  
V
DDpre  
1
Prescaler supply voltage  
V
DDCP  
Charge pump supply voltage; analog  
GND  
GND  
2
Ground; digital  
R
External resistor from this pin to ground  
sets the charge pump current  
SET  
3
Prescaler ground; analog  
Input to RF divider (+)  
Input to RF divider (–)  
Charge pump ground; analog  
RF normal charge pump output  
RF integral charge pump output  
Charge pump ground; analog  
IF charge pump output  
Input to IF divider  
Pre  
RFin+  
RFin–  
4
REFin–  
REFin+  
CLOCK  
DATA  
16  
17  
18  
19  
20  
21  
22  
Input to reference (–)  
5
Input to reference (+)  
Programming bus clock input  
Programming bus data input  
Programming bus enable input  
Power-down control input  
Lock detect output  
GND  
PHP  
PHI  
6
CP  
7
STROBE  
PON  
8
GND  
PHA  
IFin  
9
CP  
LOCK  
10  
11  
12  
TEST  
23  
Test (should be either grounded or  
connected to V  
)
DD  
N/C  
Not connected  
V
DD  
24  
Supply; digital  
4
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System  
SYMBOL  
PARAMETER  
MIN.  
–0.3  
–0.3  
–0.3  
–0.3  
MAX.  
+3.6  
+3.6  
+3.6  
+0.9  
UNIT  
V
V
V
Digital supply voltage  
Charge pump supply voltage  
Analog supply voltage  
Difference in supply voltages  
V
V
V
V
DD  
DDCP  
DDpre  
V  
DD  
V
DDCP  
– V  
(V  
DDCP  
V  
, V  
DD  
)
DDpre  
DDpre  
V
All input pins  
–0.3  
–0.3  
V
+ 0.3  
V
V
n
DD  
V  
Difference in voltage between GND , GND and GND (these pins  
+0.3  
GND  
pre  
CP  
should be connected together)  
Storage temperature  
T
–55  
–40  
+125  
+85  
°C  
°C  
°C  
stg  
T
amb  
Operating ambient temperature  
Maximum junction temperature  
T
j
150  
Handling  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal  
precautions appropriate to handling MOS devices.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
R
HBCC24: Thermal resistance from junction to ambient in still air  
30  
°C/W  
th j–a  
5
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
CHARACTERISTICS  
V
= V = V  
= +3.0 V, T  
= +25°C; unless otherwise specified.  
DDCP  
DD  
DDpre  
amb  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V
V
,
Digital supply voltage, prescaler supply voltage  
V
V
= V  
DDpre  
2.7  
3.6  
V
DD  
DD  
DDpre  
V
DDCP  
Charge pump supply voltage  
V  
V
2.7  
3.6  
V
DDCP  
DD, DDpre  
I
Synthesizer operational total supply current  
f
= 20 MHz  
7.6  
mA  
DDTotal  
REF  
(with RF on, IF on)  
(with RF on, IF off)  
logic levels 0 or VDD  
6.4  
0.1  
1
mA  
I
Total supply current in power-down mode  
µA  
DDsleep  
RF divider input  
f
RF VCO input frequency range  
AC-coupled input signal level  
500  
–15  
2500  
0
MHz  
dBm  
RFin  
V
R (external) = R = 50 ;  
in s  
RFin  
single-ended drive;  
max. limit is indicative  
@ 500 to 2500 MHz  
112  
632  
mV  
pp  
Z
Input impedance Re (Z)  
f
f
= 2.4 GHz  
= 2.4 GHz  
300  
1
RFin  
RFin  
C
N
Typical pin input capacitance  
RF divider ratio ranges  
pF  
RFin  
RFin  
Limited test coverage  
RF phase comparator  
33  
509  
30  
RF  
F
Maximum phase comparator frequency  
MHz  
COMPmax  
IF divider input  
f
Input frequency range  
100  
–15  
760  
0
MHz  
dBm  
IFin  
V
AC-coupled input signal level  
f : 100 MHz to 500 MHz  
IFin  
IFin  
R
(external) = R = 50 ;  
S
in  
112  
–10  
200  
632  
0
mV  
pp  
max. limit is indicative  
f
: 500 MHz to 760 MHz  
dBm  
IFin  
R
(external) = R = 50 ;  
S
in  
632  
mV  
pp  
max. limit is indicative  
Z
Input impedance Re (Z)  
Typical pin input capacitance  
IF division ratio  
f
f
= 500 MHz  
= 500 MHz  
3.9  
0.5  
kΩ  
Fin  
RFin  
C
N
pF  
Fin  
IF  
RFin  
128  
16383  
Reference divider input  
f
Input frequency range from TCXO  
AC-coupled input signal level  
5
30  
MHz  
REFin  
V
single-ended drive;  
360  
1300  
mV  
REFin  
PP  
max. limit is indicative  
Z
Input impedance Re (Z)  
Typical pin input capacitance  
Reference division ratio  
f
f
= 20 MHz  
= 20 MHz  
4
10  
1
kΩ  
REFin  
REF  
REF  
C
R
pF  
REFin  
REF  
SA = ”000”, IF loop  
1023  
Charge pump current setting resistor input  
R
External resistor from pin to ground  
Regulated voltage at pin  
6
7.5  
15  
kΩ  
SET  
SET  
V
R
= 7.5 kΩ  
1.22  
V
SET  
Charge pump outputs; R  
= 7.5 kΩ  
SET  
1
I
I
I
I
Charge pump current ratio to I  
Current gain = I /I  
–15  
–10  
–10  
–10  
0.6  
+15  
+10  
+10  
+10  
%
%
%
nA  
V
CP  
SET  
PH SET  
= 1/2 V  
DDCP  
Sink-to-source current matching  
Output current variation versus V  
Charge pump off leakage current  
V
PH  
V
PH  
V
PH  
MATCH  
ZOUT  
LPH  
2
in compliance range  
= 1/2 V  
PH  
DDCP  
V
Charge pump voltage compliance  
V
DDCP  
–0.7  
PH  
6
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
SYMBOL  
PARAMETER  
CONDITIONS  
= 7.5 k, CP = 00, non speed-up mode)  
MIN.  
TYP.  
MAX.  
UNIT  
Phase noise (condition R  
SET  
Synthesizer’s contribution to close-in phase  
noise of 900 MHz RF signal at 5 kHz offset.  
f
f
= 13 MHz, TCXO,  
–99  
dBc/Hz  
L(f)  
REF  
= 13 MHz  
COMP  
indicative, not tested  
Synthesizer’s contribution to close-in phase  
noise of 1800 MHz RF signal at 5 kHz offset.  
As above  
–93  
dBc/Hz  
dBc/Hz  
Synthesizer’s contribution to close-in phase  
noise of 800 MHz RF signal at 5 kHz offset.  
f
= 19.44/19.68 MHz, TCXO,  
–101  
REF  
f
= 19.44/19.68 MHz  
COMP  
indicative, not tested  
Synthesizer’s contribution to close-in phase  
noise of 2100 MHz RF signal at 5 kHz offset.  
As above  
–93  
dBc/Hz  
Interface logic input signal levels  
V
V
HIGH level input voltage  
LOW level input voltage  
Input leakage current  
0.7*V  
–0.3  
–0.5  
V
+0.3  
V
IH  
IL  
DD  
DD  
0.3*V  
+0.5  
V
DD  
I
V
V
= 3 V, V = 3 V,  
= 0 V  
µA  
LEAK  
DD  
IH  
IL  
Lock detect output signal (in push/pull mode) and Data output signal (in readout test mode)  
V
V
LOW level output voltage  
HIGH level output voltage  
I
I
= 2 mA  
0.4  
V
V
OL  
sink  
source  
= –2 mA  
V
–0.4  
OH  
DD  
NOTES:  
VSET  
I
SET  
1.  
=
bias current for charge pumps.  
RSET  
2. The relative output current variation is defined as:  
IZOUT  
( I  
| I  
I 1  
I 1  
)
+
2
2
=
2
×
;
IZOUT  
|
With I @ V = 0.6 V, I @V = V  
– 0.7 V (see Figure 3).  
1
1
2
2
DDCP  
CURRENT  
I
I
ZOUT  
2
I
1
VOLTAGE  
V
1
V
2
V
PH  
I
2
I
1
SR00602  
Figure 3. Relative output current variation.  
7
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
During each RF divider cycle, one divider output pulse is generated.  
The positive edge of this pulse drives the phase comparator, the  
negative edge drives the sigma-delta modulator which is of 2  
order and has an effective resolution of 22 bits. Internally, the  
modulator works with 23 fractional bits K<22:0>, but the LSB (bit K0)  
is set to ‘1’ internally to avoid limit cycles (cycles of less than  
maximum length). This leaves 22 bits (K<22:1>) available for  
external programming.  
1.0 FUNCTIONAL DESCRIPTION  
Frequency synthesizers, such as Philips Semiconductors’ SA8028,  
are a crucial part of Phase Locked Loops (PLL) for both voice and  
data devices used in communications. Five components make up  
the basic PLL (see Figure 4). A very stable, low frequency, signal  
source (typically a temperature controlled crystal oscillator TCXO_)  
is used as a reference to the system. A second signal source  
(typically a VCO) is used to generate the desired output frequency.  
A phase/frequency detector (PFD) is used to compare the  
phase/frequency error between the two signals. A loop filter (LPF)  
rejects undesired noise while also integrating the PFD output current  
to drive the VCO with the necessary tuning voltage, and a divider in  
the feedback path is used to down-convert the VCO output  
nd  
nd  
Under these conditions (2 order modulator, 23 fractional bits,  
23  
K0 = ‘1’), all possible sigma-delta sequences are 2*2 divider  
cycles long, which is the maximum length. The noise shaping  
characteristic is +20 dB/dec for offset frequencies up to approx.  
f
/5, which needs to be cancelled by a closed-loop transfer  
COMP  
frequency to the reference frequency for comparison. The SA8028  
is a dual synthesizer that integrates programmable dividers,  
programmable charge pumps and phase comparators to be  
implemented as part of RF and IF PLLs. The RF synthesizer  
operates at VCO input frequencies up to 2.5 GHz, while the IF  
synthesizer operates at VCO input frequencies up to 760 MHz.  
function of sufficient high order. The output of the sigma-delta  
modulator is 2 bits, which are added to the integer RF division ratio  
N, such that the momentary division ratios range from  
(N–1) to (N+2) in steps of 1.  
1.2 IF divider  
The IFin input drives a pre-amplifier to provide the clock to the first  
divider stage. The pre-amplifier has a high input impedance,  
dominated by pin and pad capacitance. The divider consists of a  
fully programmable bipolar prescaler followed by a CMOS counter.  
The allowable divide ratios are from 128 to 16383 (C-word bits  
<21:8>). Table 14 shows all the possible values that can be  
programmed into the C-Word for the IF divider.  
LPF  
TCXO  
VCO  
PFD  
Φ
INTEGRATOR  
1
+ N(τ)  
1.3 Reference divider (see Figure 5)  
N
DIVIDER  
The IF phase detector’s reference input is an integer ratio of the  
reference frequency. The reference divider chain consists of a  
bipolar input buffer followed by a CMOS divider and a 3-bit binary  
counter (SA register). The allowable divide ratios, R, are from 4 to  
1023 (B-word bits <21:12>) when the 3-bit binary counter (C-word  
bits <2:0>) is set to all zeros, SA = 000. The 3-bit SA register  
determines which of the 5 divider outputs (refer to Table 12) is  
selected as the IF phase detector input (see Figure 5). For the RF  
synthesizer, the output of the reference input buffer is routed directly  
(not reference divider) to the input of the RF phase detector.  
SR02370  
Figure 4. PLL block diagram.  
1.1 RF Fractional-N divider  
The RFin inputs drive a pre-amplifier to provide the clock to the first  
divider stage. For single ended operation, the signal should be fed  
(AC-coupled) to one of the inputs while the other one is AC grounded.  
The pre-amplifier has a high input impedance, dominated by pin and  
pad capacitance. The bipolar divider is fully programmable. For  
allowable division ratios, see the “characteristics” table.  
TO RF PHASE  
DETECTOR  
REFERENCE  
INPUT BUFFER  
REFERENCE  
INPUT  
DIVIDE BY R  
/2  
/2  
/2  
/2  
SA=”100”  
SA=”011”  
SA=”010”  
SA=”001”  
SA=”000”  
TO IF PHASE  
DETECTOR  
SR02294  
Figure 5. Reference divider.  
8
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
1.4 Phase detector (see Figure 6)  
The reference signal and the RF (IF) divider output are connected to a phase frequency detector that controls the charge pumps. The dead  
zone (caused by the finite time taken to switch the charge pump current sources on or off) is cancelled by forcing the pumps ON for a minimum  
time (backlash time, τ) at every cycle providing improved linearity.  
V
DDCP  
P
P–TYPE  
CHARGE PUMP  
D
Q
“1”  
* see note  
f
CLK  
REF  
R
R
R
I
τ
PH  
“1”  
D
IF/RF  
DIVIDER  
CLK  
N–TYPE  
CHARGE PUMP  
X
N
Q
GND  
CP  
f
REF  
R
X
P
N
τ
τ
I
PH  
SR02413  
NOTES:  
For the RF synthesizer, the output of the reference input buffer is routed directly (not divided) to the input of the RF phase detector. Whereas  
for the IF synthesizer, the reference input to the IF phase detector is the output from the reference divider.  
τ (backlash time) is the delay that fixes the minimum allowable charge pump activity time.  
Figure 6. Phase detector structure with timing.  
9
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
1.5 RF and IF Charge Pumps  
The RF phase detector drives the charge pumps on the PHP and  
PHI pins, while the IF phase detector drives the charge pump on the  
PHA pin. Both the RF and IF charge pump current values are  
determined by the current generated at the R  
1.7 Lock Detect  
The output LOCK maintains a logic ‘1’ when the IF phase detector  
(AND/ORed) with the RF phase detector indicates a lock condition.  
The lock condition for the RF and IF synthesizers is defined as a  
phase difference of less than "1 period of the frequency at the input  
1
pin . The current  
SET  
REF  
REF . One counter can fulfill the lock condition when the  
gain can be further programmed by the CP0, CP1 bits in the C-word,  
as seen in Table 1.  
in+,  
in–  
other counter is powered down. Out of lock (logic ‘0’) is indicated  
when both counters are powered down.  
Table 1. RF and IF charge pump currents  
1.8 Power-down mode  
2
3
CP1  
CP0  
I
I
I
I
PHI  
With power applied to the chip, power-down mode can be entered  
either by hardware (external signal on pin PON) or by software (by  
programming the PD = Power Down bits (<B10, B9>) in the B-word).  
The PON signal is exclusively ORed with the PD bits. If PON = 0,  
then the part is powered up when PD = 1 (<B10, B9>). PON can be  
used to invert the polarity of the software bits PD. Table 9 of section  
2.4.2 illustrates how power-down mode can be implemented.  
PHA  
PHP  
PHP–SU  
0
0
1
1
0
1
0
1
1.5xl  
0.5xl  
1.5xl  
0.5xl  
3xI  
1xl  
3xl  
1xl  
15xl  
36xl  
12xl  
0
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
5xl  
SET  
SET  
15xl  
5xl  
SET  
0
SET  
NOTES  
1. I  
During power-down mode the 3-wire bus remains active and  
programming-words may be pre-loaded before switching to  
power-up mode. If the chip is programmed while in power-down  
= V  
/R  
bias current for charge pumps.  
SET  
SET SET:  
2. CP1 = 1 is used to disable the PHI pump.  
3. I is the total current at pin PHP during speed up condition.  
PHP–SU  
mode, the RF divider ratio N is internally presented to the RF  
RF  
1.6 Charge Pumps Speed-up Mode  
divider on the next falling edge of STROBE after STROBE has gone  
high at the end of the A-word. Power-down mode does not reset the  
sigma-delta modulator., i.e., power-down mode preserves the state  
of the sigma-delta modulator (as long as power is applied to the  
chip).  
The RF charge pumps will enter speed-up mode when STROBE  
goes high after A-word has been sent. They will exit speed-up mode  
on the next falling edge of STROBE. There is no speed-up mode for  
the IF charge pump.  
The charge pump, by default, will automatically go into speed-up  
To take advantage of the register pre-loading capability while the  
device is in power-down mode, the B-word needs to be sent a  
second time (i.e., again, after the A-word), with the PD (<B10, B9>)  
bits now programmed for power-up.  
mode (which can deliver up to 15*I  
for PHP_SU, and 36*I  
for  
SET  
SET  
PHI), based on the strobe pulse width following the A-word to  
reduce switching speed for large tuning voltage steps (i.e., large  
frequency steps). Figure 7 shows the recommended passive loop  
filter configuration. Note: This charge pump architecture eliminates  
the need for added active switches and reduces external component  
count. Furthermore, the programmable charge pump gains provide  
some programmability to the loop filter bandwidth.  
If power-up mode is to be controlled by hardware, the PON signal  
must be toggled only after the A-word has been sent and STROBE  
has gone high and then low.  
When the synthesizer is reactivated after power-down mode, the IF  
and reference dividers are synchronized to avoid random phase  
errors on power-up. There is no power-up synchronization between  
the RF divider and the reference clock. After power-up, there is a  
delay of four edges (i.e. 1.5 cycles) of the output clock of the  
reference divider before the RF phase detector is activated. That  
means the reference divider must be powered up for the RF phase  
detector to become active.  
The duration of speed-up mode is determined by the strobe pulse  
that follows the A-word. Recommended optimal strobe width is equal  
to the total loop filter capacitance charge time from VCO control  
voltage level 1 to VCO control voltage level 2. The strobe width must  
not exceed this charge time. An external data processing unit  
controls the width of the strobe pulse (e.g., × number of clock  
cycles).  
When initially applying or reapplying power to the chip, and internal  
power-up reset pulse is generated which sets the programming-words  
to their default values and also resets the sigma-delta modulator to  
its “all-0” state. It is also recommended that the D-word be manually  
reset to all zeros, following initial power-up, to avoid unknown states.  
In addition, charge pumps will stay in speed-up mode continuously  
while Tspu = 1 (in D-word <D15>). The speed-up mode can also be  
disabled by programming T  
= 1 (in D-word <D16>).  
dis-spu  
R2  
VCO  
PHP[PHP–SU]  
R1  
C2  
C3  
PHI  
C1  
SR02356  
Figure 7. Typical passive 3-pole loop filter.  
10  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
When loading several words in series, the minimum STROBE high  
time between words must be observed (refer to Figure 8).  
2.0 SERIAL PROGRAMMING BUS  
A simple 3-line bidirectional serial bus is used to program the circuit.  
The 3 lines are DATA, CLOCK and STROBE. When the STROBE = 0,  
the clock driver is enabled and on the positive edges of the CLOCK  
signal, DATA is clocked into temporary shift registers. When the  
STROBE = 1, the clock is disabled and the data in the shift register  
is latched into different working registers, depending on the address  
bits. In order to fully program the circuit, 3 words must be sent in the  
following order: C, B, and A. An additional word, the D-word, is for  
test purposes only: all bits in this test word should be initialized to 0  
for normal operation. The N value of the B-word is stored temporarily  
until the A-word is loaded to avoid temporarily false N settings, while  
the corresponding fractional ratio Kn is not yet active. When a new  
fractional ratio is loaded through the A-word, the fractional sigma  
delta modulator is not reset, i.e., it will start the new fractional  
sequence from the last state of the previously executed sequence. A  
typical programming sequence is illustrated in Figure 10.  
Unlike the earlier SA80xx family members, SA8028 has the built-in  
feature to output the contents of an addressable internal register.  
For the current SA8028, only the momentary division ratio N (RF  
divider) can be retrieved through the serial bus. The handshake  
protocol requires a “request to read” to be sent prior to each “read”,  
i.e., by sending a D-word with the TreadN-bit (<D11>) set to “high”.  
Immediately after the transition of “STROBE” from low-to-high,  
four (4) clock pulses are needed to prepare the data for output and  
another nine (9) clock pulses are needed to accomplish the serial  
reading with LSB first. A high-to-low transition of “STROBE” then  
resets the serial bus to the input mode. The timing diagram is  
presented in Figure 9. In general, a high-to-low transition of the  
“STROBE” signal will instantaneously reset the serial bus to the  
input mode, even when the chip is in the output mode.  
Table 2. Serial bus timing requirements (see Figures 8 and 9)  
V
DD  
= V  
=+3.0 V; T  
= +25 °C unless otherwise specified. (Guaranteed by design.)  
DDCP  
amb  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Serial programming clock; CLK  
t
t
Input rise time  
Input fall time  
Clock period  
10  
10  
40  
40  
ns  
ns  
ns  
r
f
T
100  
cy  
Enable programming; STROBE  
t
t
t
t
t
Delay to rising clock edge  
40  
ns  
ns  
ns  
ns  
START, START;R  
Minimum inactive pulse width  
Enable set-up time to next clock edge  
Reset data line to input mode  
1/f  
20  
20  
W
COMP  
SU;E  
RESET  
Register serial input data; DATA (I)  
t
t
Input data to clock set-up time  
Input data to clock hold time  
20  
20  
ns  
ns  
SU;DAT  
HD;DAT  
Register serial output data; DATA (O)  
t
Input clock to data set-up time  
20  
ns  
SU;DAT;R  
t
f
t
r
t
t
T
HD;DAT  
SU;E  
CY  
t
SU;DAT  
CLK  
LSB  
MSB  
ADDRESS  
DATA  
>=0  
STROBE  
t
W
t
START  
SR02296  
Figure 8. Serial bus “Write” timing diagram.  
11  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
T
cy  
t
r
t
f
t
t
RESET  
SU:DAT;R  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
LSB  
MSB  
DATA  
I
I
O
O
O
O
O
O
O
O
O
I
DEVICE I/O:  
STROBE  
t
START;R  
SR02372  
Figure 9. Serial bus “Read” timing diagram.  
12  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
POWER–ON  
PROGRAM D WORD  
SET DEFAULT  
PROGRAM C WORD  
SELECT SA  
SET CHARGE PUMP GAIN  
SET IF DIVIDER  
SELECT LOCK DETECT  
PROGRAM B WORD  
SET RF DIVIDER N  
SET POWER-UP OPTION  
SET REF DIVIDER  
SET RESET-BITS  
PROGRAM A WORD  
SET FRACTIONAL VALUE K  
READY TO OPERATE  
CHANGE  
FRACTIONAL  
VALUE K  
Y
PROGRAM A WORD  
N
Y
CHANGE  
RF DIVIDER N  
N
CHANGE  
IF  
FREQUENCY  
Y
Y
Y
PROGRAM C WORD  
PROGRAM B WORD  
PROGRAM B WORD  
N
POWER  
DOWN  
N
POWER  
UP  
N
POWER  
OFF  
SR02380  
Figure 10. Typical programming sequence  
13  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
2.1 Data format  
Each of the 4 word registers contains 24 programmable bits. Data is serially clocked in on the rising edge of each clock pulse with the  
LSB first in, and MSB last in.  
Table 3. Format of programmed data  
LAST IN  
MSB  
SERIAL PROGRAMMING FORMAT  
FIRST IN  
LSB  
p23  
p22  
p21  
p20  
.. / ..  
.. / ..  
p1  
p0  
2.2 Register addressing  
Table 4. Register addressing  
Bit  
<23>  
<22>  
<21>  
A-word address  
B-word address  
C-word address  
D-word address  
0
0
1
1
0
1
0
1
x
x
x
0
Notice that the register addresses are the MSB in each word; thus, the last to be clocked into the registers.  
2.3 A-word register  
Table 5. A-word, length 24 bits  
Last IN  
<21> <20> <19> <18> <17> <16> <15> <14> <13> <12> <11> <10> <9>  
<8>  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
Address Fractional ratio Kn  
0
0
K22 K21 K20 K19 K18 K17 K16 K15 K14 K13 K12 K11 K10 K9  
K8  
K7  
K6  
K5  
K4  
K3  
K2  
K1  
Default :  
A word address  
Fractional ratio select  
0
0
0
0
1
1
0
1
0
1
1
0
1
1
1
0
1
0
0
1
1
1
Fixed to 00.  
Kn sets the fractional part of the total division ratio. To avoid limit cycles the K0 bit is internally set to “1”  
2.3.1 The fractional multiplier <A21:A0>  
The A-word register is dedicated for programming the RF loop, fractional multiplier (the sigma-delta modulator) which has an effective resolution  
of 22 bits. The modulator works with 23 bits, Kn<22:0>. However, this K0 bit is set to ‘1’ internally to avoid limit cycles (cycles of less than  
maximum length). This leaves 22 bits (Kn<22:1>) available for external programming. Refer to Table 6.  
Calculating the desired VCO output frequency can be easily accomplished by using the following equation, Equation (1).  
ǒ
2   Kn <22:1> ) 1Ǔ  
f
VCO + fref N )  
(1)  
223  
where f is the reference frequency at the REF input pin and N is the integer multiplier. K , once again, is the fractional multiplier.  
ref  
n
Example:  
Determine the Kn value required for generating a VCO frequency of 2100 MHz with a reference frequency of 19.68 MHz.  
ǒfVCO Ǔ  
23  
ƪ
ƫ
–N   2  
f
ref  
Kn<22:1> +  
Kn<22:1> +  
2
ƪǒ2100 MHz  
Ǔ
23  
ƫ
19.68 MHz 106   2  
+ 2966702  
2
14  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
Table 6. Kn values for the fractional divider  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
0
A11  
0
A10  
0
A9  
0
0
0
0
0
1
1
A8  
0
0
0
0
0
1
1
A7  
0
0
0
0
1
1
1
A6  
0
0
0
0
0
1
1
A5  
0
0
0
0
1
1
1
A4  
0
0
0
0
0
1
1
A3  
0
0
0
0
1
1
1
A2  
0
0
0
1
1
1
1
A1  
0
1
1
0
1
1
1
A0  
1
0
1
0
0
0
1
Kn  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
3
4
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
0
0
1
2966702  
1
1
1
1
1
1
1
1
1
1
1
1
4194302  
4194303  
1
1
1
1
1
1
1
1
1
1
1
1
2.4 B-word register  
Table 7. B-word, length 24 bits  
Last IN  
<21> <20> <19> <18> <17> <16> <15> <14> <13> <12>  
<11>  
<10>  
<9>  
<8> <7> <6> <5> <4> <3> <2> <1> <0>  
Reset Power Down  
bit  
Address  
Reference divider ratio Rn  
RF Divider integer ratio N  
0
1
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
PDref  
IF  
RF  
N8 N7 N6 N5 N4 N3 N2 N1 N0  
Default:  
0
0
0
1
0
1
0
0
0
1
0
1
1
0
0
1
1
0
1
1
0
0
B-word address  
R-Divider  
Fixed to 01  
R0..R9, Reference divider values, see section “characteristics” for allowed divider ratios.  
1 Pdref : powers down (=resets) the reference divider  
See Truth Table 9  
Reset bit  
Power-down  
N-Divider  
Nn sets the integer part of the RF divider ratio, see section “characteristics” for allowed ratios.  
2.4.1 The RF divider <B8:B0>  
Programming the RF divider to obtain the desired VCO output frequency is done by programming the B-word followed by the A-word. The  
integer divider bits N<8:0> are in the B-word, whereas the fractional divider bits Kn<22:1> are in the A-word. Allowable integer division ratios are  
shown in Table 8. The N value, from Equation (2), is simply the whole number of times the reference frequency goes into the desired VCO  
output frequency. Recall that the reference frequency for the RF loop is not reduced prior to the phase detector. In other words, the frequency at  
the input of the REFin is the comparison frequency.  
f
ǒ Ǔ  
VCO  
MODULO  
f
ref  
fVCO  
N +  
N +  
*
(2)  
fref  
fref  
900 MHz  
ǒ
19.68 MHzǓ  
MODULO  
900 MHz  
19.68 MHz  
*
19.68 MHz  
14.4  
+ 45  
19.68  
N + 45.7317073170...–  
15  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
Table 8. Allowable integer values (N) for the RF divider  
<B8>  
<B7>  
<B6>  
<B5>  
<B4>  
<B3>  
0
<B2>  
0
<B1>  
0
<B0>  
1
N
33  
0
0
0
1
0
1
1
1
1
1
1
1
0
1
509  
2.4.2 Power–down <B10:B9>  
If the chip is programmed while in power-up mode, the loading of the A-word and of the N values in the B-word are synchronized to the RF  
divider output pulse. The data takes effect internally on the second falling edge of the RF divider output pulse after STROBE has gone high at  
the end of the A-word. STROBE does not need to be held high until that second falling edge of the RF divider output pulse has occurred.  
If the chip is programmed while in power-down mode, this synchronization scheme is disabled. The fully static CMOS design uses virtually no  
current when the bus is inactive. It can always capture new programmed data, even during power-down.  
To take advantage of the program register pre-loading capability while the device is in power-down mode, the B-word needs to be sent a second  
time (i.e. again, after the A-word), with the PD bits now programmed for power-up. If power-up mode is to be controlled by hardware, the PON  
signal must be toggled only after the A-word has been sent and STROBE has gone high and then low.  
When the synthesizer is reactivated after power-down mode, the IF and reference dividers are synchronized to avoid random phase errors on  
power-up. There is no power-up synchronization between the RF divider and the reference clock. However, after power-up, there is a delay of  
four edges (i.e. 1.5 cycles) of the output clock of the reference divider before the RF phase detector is activated. That means the reference  
divider must be powered up for the RF phase detector to become active.  
When initially applying or re-applying power to the chip, an internal power-up reset pulse is generated which sets the programming-words to  
their default values and also resets the sigma-delta modulator to its “all-0” state. It is also recommended that the D-word be manually reset to all  
zeros, following initial power-up, to avoid unknown states.  
Table 9. Power-down Truth Table  
PON  
IF  
RF  
IF  
RF  
<B10>  
<B9>  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
16  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
2.4.3 Programming the IF Reference Divider <B21:B12>  
The IF phase detector’s reference input is an integer multiple of the frequency at the input of the REFin pin. The reference divider has 10  
programmable bits, <B21:B12> for allowable divide ratios, R, from 4 to 1023 when the 3 bit binary SA counter (refer to section 2.5.1) is set to all  
zeros. Table 10 lists the allowable R values.  
Table 10. R Values for the IF Reference Divider  
<B21>  
<B20>  
<B19>  
<B18>  
<B17>  
<B16>  
<B15>  
<B14>  
<B13>  
<B12>  
R
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
5
0
0
0
0
0
0
0
1
1
0
6
1
1
1
1
1
1
1
1
1
0
1022  
1023  
1
1
1
1
1
1
1
1
1
1
2.5 C-word Register  
Table 11. C-word, length 24 bits  
<21>  
<20>  
<19> <18> <17> <16> <15> <14> <13> <12> <11> <10>  
<9>  
<8>  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
Last IN  
Address  
IF Divider An  
CP  
Lock detect  
Reset  
bit  
SA  
1
0
A13 A12 A11 A10 A9  
A8  
1
A7  
1
A6  
1
A5  
0
A4  
0
A3  
1
A2  
0
A1  
1
A0 CP1 CP0  
L1  
0
L0  
0
Tsigrst SA2 SA1 SA0  
Default:  
0
0
0
0
0
0
1
1
0
0
0
0
C-word address  
A-Divider  
Fixed to 10  
A0..A13, IF divider values , see section “characteristics for allowed for divider ratios.  
CP1, CP0: Charge pump current ratio, see table of charge pump currents.  
Charge pump current  
Ratio  
Lock detect  
Reset bit  
See Table 13.  
1 Tsigrst : resets the sigma-delta modulator after each loading of an A-word.  
( It is held in the reset state between the first and second falling edge of the RF divider output pulse  
after STROBE has gone high at the end of the A-word. )  
IF comparison select  
SA Comparison divider select for IF phase detector  
2.5.1 Programming the SA Counter <C2:C0>  
The 3 bit SA register determines which of the 5 divider outputs (refer to table 11) is selected as the IF phase detector’s input (see Figure 5).  
Table 12. IF phase comparator frequency  
<C2> <C1> <C0> Divide Ratio IF Phase Comparator Frequency  
1
0
0
0
0
0
0
1
1
0
0
1
0
1
0
R
f
/ R  
ref  
R * 2  
R * 4  
R * 8  
R * 16  
f
f
f
/ (R * 2)  
/ (R * 4)  
/ (R * 8)  
/ (R * 16)  
ref  
ref  
ref  
1
f
ref  
NOTES:  
1. f is the input frequency at the REFin pin.  
ref  
2.5.2 Programming the Reset Bits <B11>, <C3>  
The reset bits offer extra flexibility. The default value for bits <B11>, <C3> are all zeros. Bit <B11> disables the IF reference divider and allows  
for extra savings of approximately 200 µA when set to ‘1’. However, this bit must initially be set to ‘0’ during any power-up sequence. The RF  
phase detector is activated after a delay of four edges of the reference divider output clock. Bit <C3> resets the sigma-delta modulator after  
each loading of an A-word. It is held in the reset state between the first and second falling edge of the RF divider output pulse after STROBE  
has gone high at the end of the A-word.  
17  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
2.5.3 Programming the Lock Detect <C4:C5>  
Lock detection is available only for the RF and IF phase detector. A ‘0’ in bit <C4:C5> is used for TTL, while a ‘1’ in bit <C4:C5> is used for RTL.  
Table 13. Lock detect select  
L1  
0
L0  
0
Select  
1
RF/IF (push/pull)  
0
1
RF/IF (open drain)  
RF (push/pull)  
IF (push/pull)  
1
0
1
1
NOTE:  
1. Combined RF_IF lock detect signal present at the lock pin (push/pull).  
2.5.4 Programming the Charge Pump Gain <C7:C6>  
The RF phase detector drives the charge pumps on the PHP and PHI pins, while the IF phase detector drives the charge pump on the PHA pin.  
The current generated at the R  
pin determines both the RF and IF charge pump current values in conjunction with the current gain  
SET  
programmed by the CP0, CP1 bits in the C–word, as seen in Table 1. For more information on charge pump speed-up mode, refer to section  
1.6.  
2.5.5 Programming the IF Divider for the IF Loop <C21:C8>  
The divider is a fully programmable counter. The allowable divide ratios, A, are from 128 to 16383, bits <C21:C8>. Table 14 shows all the  
possible values that can be programmed into the C-word for the IF divider.  
Table 14. Allowable Values (A) for the IF Divider  
C21  
0
C20  
0
C19  
0
C18  
0
C17  
0
C16  
0
C15  
1
C14  
0
C13  
0
C12  
0
C11  
0
C10  
0
C9  
0
C8  
0
A
128  
0
0
0
0
0
0
1
0
0
0
0
0
0
1
129  
0
0
0
0
0
0
1
0
0
0
0
0
1
0
130  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
16382  
16383  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2.6 D-word Register  
The D-word is for test purposes only. All bits in this test word should be initialized to 0 for normal operation. When initially applying or  
re-applying power to the chip, an internal power-up reset pulse if generated which sets the programming-words to their default values and which  
resets the sigma-delta modulator to its “all-0” state. It is also recommended that the D-word be manually reset to all zeros, following initial  
power-up, to avoid unknown states.  
Table 15. D-word, length 24 bits  
<21> <20> <19> <18> <17>  
<16>  
<15>  
<14> <13> <12>  
<11>  
<10>  
<9>  
<8>  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
Last IN  
Address  
1
Synthesizer Test bits  
1
0
Tdis-spu Tspu  
TreadN  
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D word address  
Tdis-spu  
Fixed to 110.  
Speed-up mode disabled.  
Speed-up mode always on. NOTE: All other test bits must be set to 0 for normal operation.  
NOTE: All other test bits must be set to 0 for normal operation.  
Tspu: Speed up  
TreadN  
Used to “request to read” bit settings from bits <B21:12>. For more information on reading out the N value,  
refer to Section 2.0, Serial Programming Bus.  
18  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
3.0 Typical Performance Characteristics  
2500  
2000  
1500  
1000  
500  
3000  
Iset = 204 µA  
2000  
Iset = 163 µA  
1000  
–40C  
+25C  
+85C  
Iset = 81 µA  
Icp  
(µA)  
Icp  
0
0
(µA)  
–500  
–1000  
–1500  
–2000  
–2500  
Iset = 81 µA  
–1000  
–2000  
–3000  
Iset = 163 µA  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02389  
SR02414  
Figure 11. PHI_SU charge pump output vs. Iset  
(CP = 01_12x, V = 3.0 V, Temp = 25 °C)  
Figure 12. PHI_SU charge pump output vs. temperature  
(CP = 01_12x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
8000  
6000  
4000  
8000  
6000  
Iset = 204 µA  
Iset = 163 µA  
Iset = 81 µA  
4000  
2000  
–40C  
2000  
0
+25C  
+85C  
Icp  
(µA)  
0
Icp  
(µA)  
Iset = 81 µA  
–2000  
–2000  
–4000  
–6000  
–8000  
Iset = 163 µA  
Iset = 204 µA  
–4000  
–6000  
–8000  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02390  
SR02391  
Figure 13. PHI_SU charge pump output vs. Iset  
(CP = 00_36x, V = 3.0 V, Temp = 25 °C)  
Figure 14. PHI_SU charge pump output vs. temperature  
(CP = 00_36x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
19  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
800  
600  
400  
200  
0
Iset = 204 µA  
600  
400  
Iset = 163 µA  
200  
Iset = 81 µA  
Icp  
–40C  
(µA)  
0
–200  
–400  
–600  
–800  
Icp  
(µA)  
+25C  
+85C  
Iset = 81 µA  
–200  
Iset = 163 µA  
–400  
–600  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02393  
SR02392  
Figure 15. PHP charge pump output vs. Iset  
(CP = 10_3x, V = 3.0 V, Temp = 25 °C)  
Figure 16. PHP charge pump output vs. temperature  
(CP = 10_3x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
250  
200  
150  
100  
50  
Iset = 204 µA  
200  
150  
100  
50  
Iset = 163 µA  
Iset = 81 µA  
–40C  
Icp  
(µA)  
0
+25C  
+85C  
Icp  
(µA)  
0
–50  
–100  
–150  
–200  
–250  
Iset = 81 µA  
–50  
–100  
–150  
–200  
Iset = 163 µA  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02394  
SR02395  
Figure 17. PHP charge pump output vs. Iset  
(CP = 11_1x, V = 3.0 V, Temp = 25 °C)  
Figure 18. PHP charge pump output vs. temperature  
(CP = 11_1x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
20  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
1000  
800  
600  
400  
200  
1200  
1000  
Iset = 204 µA  
800  
600  
400  
200  
Iset = 163 µA  
Iset = 81 µA  
–40C  
+25C  
+85C  
Icp  
(µA)  
Icp  
(µA)  
0
0
–200  
–400  
–600  
–800  
–1000  
–200  
Iset = 81 µA  
–400  
–600  
Iset = 163 µA  
–800  
–1000  
–1200  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02397  
SR02396  
Figure 19. PHP_SU charge pump output vs. Iset  
(CP = 01_5x, V = 3.0 V, Temp = 25 °C)  
Figure 20. PHP_SU charge pump output vs. temperature  
(CP = 01_5x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
3000  
4000  
3000  
2000  
1000  
Iset = 204 µA  
2000  
1000  
Iset = 163 µA  
Iset = 81 µA  
–40C  
+25C  
+85C  
Icp  
(µA)  
Icp  
(µA)  
0
0
Iset = 81 µA  
–1000  
–2000  
–3000  
–4000  
–1000  
–2000  
–3000  
Iset = 163 µA  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02398  
SR02399  
Figure 21. PHP_SU charge pump output vs. Iset  
(CP = 00_15x, V = 3.0 V, Temp = 25 °C)  
Figure 22. PHP_SU charge pump output vs. temperature  
(CP = 00_15x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
21  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
150  
100  
80  
60  
40  
Iset = 204 µA  
100  
Iset = 163 µA  
50  
–40C  
20  
+25C  
+85C  
Iset = 81 µA  
Icp  
(µA)  
Icp  
(µA)  
0
0
Iset = 81 µA  
–20  
–40  
–50  
–100  
–150  
Iset = 163 µA  
–60  
–80  
Iset = 204 µA  
–100  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02401  
SR02400  
Figure 23. PHA charge pump output vs. Iset  
Figure 24. PHA charge pump output vs. temperature  
(CP = 11_0.5x, V = 3.0 V, Temp = 25 °C)  
(CP = 11_0.5x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
400  
300  
200  
100  
300  
200  
Iset = 204 µA  
Iset = 163 µA  
Iset = 81 µA  
100  
–40C  
Icp  
(µA)  
+25C  
+85C  
0
Icp  
(µA)  
0
Iset = 81 µA  
–100  
–200  
–300  
–400  
–100  
Iset = 163 µA  
–200  
–300  
Iset = 204 µA  
COMPLIANCE VOLTAGE (V)  
COMPLIANCE VOLTAGE (V)  
SR02403  
SR02402  
Figure 25. PHA charge pump output vs. Iset  
(CP = 10_1.5x, V = 3.0 V, Temp = 25 °C)  
Figure 26. PHA charge pump output vs. temperature  
(CP = 10_1.5x, V = 3.0 V, Iset = 163 µA)  
DD  
DD  
22  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
0
–3  
0
–40C  
25C  
85C  
2.7V  
3.0V  
3.6V  
–3  
–6  
–6  
–9  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
–48  
–36  
–39  
–42  
–45  
–48  
SR02405  
INPUT FREQUENCY (MHz)  
SR02404  
INPUT FREQUENCY (MHz)  
Figure 27. RF (main) divider input sensitivity vs. frequency  
and supply voltage (Temp = 25 °C, Iset = 164 µA, N = 509)  
Figure 28. RF (main) divider input sensitivity vs. frequency  
and temperature (V = 3.0 V, Iset = 164 µA, N = 509)  
CC  
0
2.7V  
0
–3  
–40C  
25C  
–3  
–6  
–9  
3.0V  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
–48  
3.6V  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
–48  
85C  
SR02407  
SR02406  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 29. RF (main) fractional divider input sensitivity vs.  
frequency and supply voltage (Temp = 25 °C, Iset = 164 µA,  
N = 509.5)  
Figure 30. RF (main) fractional divider input sensitivity  
vs. frequency and temperature (V = 3.0 V, Iset = 164 µA,  
CC  
N = 509.5)  
0
0
–40C  
2.7V  
3.0V  
3.6V  
–3  
–6  
–3  
–6  
25C  
85C  
–9  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
–39  
–42  
–45  
INPUT FREQUENCY (MHz)  
SR02408  
INPUT FREQUENCY (MHz)  
SR02409  
Figure 31. IF (aux) divider input sensitivity vs. frequency and  
supply voltage (Temp = 25 °C, Iset = 164 µA,  
divider ratio = 16383)  
Figure 32. IF (aux) divider input sensitivity vs. frequency and  
temperature (V = 3.0 V, Iset = 164 µA, divider ratio = 16383)  
CC  
23  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
0
0
–40C  
25C  
2.7V  
3.0V  
3.6V  
–2  
–2  
–4  
–4  
–6  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–10  
–12  
85C  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
INPUT FREQUENCY (MHz)  
SR02411  
INPUT FREQUENCY (MHz)  
SR02410  
Figure 33. Reference divider input sensitivity vs. frequency  
and supply voltage (Temp = 25 °C, Iset = 164 µA,  
divider ratio = 1023)  
Figure 34. Reference divider input sensitivity vs. frequency  
and temperature (V = 3.0 V, Iset = 164 µA, divider ratio = 1023)  
CC  
9.00  
8.50  
8.00  
7.50  
–40C  
7.00  
25C  
85C  
6.50  
6.00  
2.6  
2.8  
3
3.2  
3.4  
3.6  
3.8  
SUPPLY VOLTAGE (V)  
SR02412  
Figure 35. Total supply current vs. temperature  
(Iset = 163 µA Fcomp = 20 MHz)  
24  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
4.0 Application Schematic  
25  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
HBCC24: plastic, heatsink bottom chip carrier; 24 terminals; body 4 x 4 x 0.65 mm  
SOT564-1  
26  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
NOTES  
27  
2002 Feb 22  
Philips Semiconductors  
Product data  
2.5 GHz sigma delta fractional-N /  
760 MHz IF integer frequency synthesizers  
SA8028  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Koninklijke Philips Electronics N.V. 2002  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 02-02  
9397 750 09499  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

935268565112

IC 2 LINE TO 1 LINE MULTIPLEXER, TRUE OUTPUT, PDSO20, 7.50 MM, PLASTIC, MS-013, SOT-163-1, SO-20, Multiplexer/Demultiplexer
NXP

935268565118

IC 2 LINE TO 1 LINE MULTIPLEXER, TRUE OUTPUT, PDSO20, 7.50 MM, PLASTIC, MS-013, SOT-163-1, SO-20, Multiplexer/Demultiplexer
NXP

935268595115

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN
NXP

935268595125

IC LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN, Gate
NXP

935268595165

IC LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN, Gate
NXP

935268596115

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN
NXP

935268596118

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN
NXP

935268596125

IC LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN, Gate
NXP

935268596165

LVC/LCX/Z SERIES, 1-INPUT INVERT GATE, PDSO5, PLASTIC, SOT-353, SC-88A, 5 PIN
NXP

935268625518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64, Bus Controller
NXP

935268625551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64, Bus Controller
NXP

935268635118

DUAL LINE TRANSCEIVER, PDSO8, 3 MM, PLASTIC, SOT-505-1, TSSOP-8
NXP