935263652557 [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, PLASTIC, SOT-393, QFP-64, Consumer IC:Other;
935263652557
型号: 935263652557
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP64, PLASTIC, SOT-393, QFP-64, Consumer IC:Other

文件: 总75页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7111A  
Enhanced Video Input Processor  
(EVIP)  
1998 May 15  
Product specification  
Supersedes data of 1997 May 26  
File under Integrated Circuits, IC22  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
CONTENTS  
17.2.1  
17.2.2  
17.2.3  
17.2.4  
17.2.5  
17.2.6  
17.2.7  
17.2.8  
Subaddress 00  
Subaddress 02  
Subaddress 03  
Subaddress 04  
Subaddress 05  
Subaddress 06  
Subaddress 07  
Subaddress 08  
Subaddress 09  
Subaddress 0A  
Subaddress 0B  
Subaddress 0C  
Subaddress 0D  
Subaddress 0E  
Subaddress 10  
Subaddress 11  
Subaddress 12  
Subaddress 13  
Subaddress 15  
Subaddress 16  
Subaddress 17  
1
2
3
4
5
6
7
8
FEATURES  
APPLICATIONS  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
17.2.9  
17.2.10  
17.2.11  
17.2.12  
17.2.13  
17.2.14  
17.2.15  
17.2.16  
17.2.17  
17.2.18  
17.2.19  
17.2.20  
17.2.21  
17.2.22  
17.2.23  
17.2.24  
17.2.25  
PINNING  
FUNCTIONAL DESCRIPTION  
8.1  
8.2  
8.2.1  
8.2.2  
8.3  
Analog input processing  
Analog control circuits  
Clamping  
Gain control  
Chrominance processing  
Luminance processing  
RGB matrix  
8.4  
8.5  
8.6  
VBI-data bypass  
8.7  
8.8  
8.9  
VPO-bus (digital outputs)  
Reference signals HREF, VREF and CREF  
Synchronization  
Subaddress 1A (read-only register)  
Subaddress 1B (read-only register)  
Subaddress 1C (read-only register)  
Subaddress 1F (read-only register)  
8.10  
8.11  
8.12  
8.13  
8.13.1  
Clock generation circuit  
Power-on reset and CE input  
RTCO output  
The Line-21 text slicer  
Suggestions for I2C-bus interface of the display  
software reading line-21 data  
18  
FILTER CURVES  
18.1  
18.2  
18.3  
18.4  
Anti-alias filter curve  
TUF-block filter curve  
Luminance filter curves  
Chrominance filter curves  
9
BOUNDARY-SCAN TEST  
9.1  
9.2  
Initialization of boundary-scan circuit  
Device identification codes  
19  
20  
21  
I2C-BUS START SET-UP  
PACKAGE OUTLINES  
SOLDERING  
10  
11  
12  
13  
14  
GAIN CHARTS  
LIMITING VALUES  
CHARACTERISTICS  
TIMING DIAGRAMS  
CLOCK SYSTEM  
21.1  
21.2  
21.3  
21.4  
Introduction  
Reflow soldering  
Wave soldering  
Repairing soldered joints  
22  
23  
24  
DEFINITIONS  
14.1  
14.2  
Clock generation circuit  
Power-on control  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
15  
OUTPUT FORMATS  
APPLICATION INFORMATION  
Layout hints  
16  
16.1  
17  
I2C-BUS DESCRIPTION  
17.1  
17.2  
I2C-bus format  
I2C-bus detail  
1998 May 15  
2
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
1
FEATURES  
Four analog inputs, internal analog source selectors,  
e.g. 4 × CVBS or 2 × Y/C or (1 × Y/C and 2 × CVBS)  
Two analog preprocessing channels  
Fully programmable static gain for the main channels or  
automatic gain control for the selected CVBS or Y/C  
channel  
Odd/even field identification by a non interlace CVBS  
input signal  
Switchable white peak control  
Fix level for RGB output format during horizontal  
Two built-in analog anti-aliasing filters  
Two 8-bit video CMOS analog-to-digital converters  
On-chip clock generator  
blanking  
720 active samples per line on the YUV bus  
One user programmable general purpose switch on an  
output pin  
Line-locked system clock frequencies  
Built-in line-21 text slicer  
Digital PLL for horizontal-sync processing and clock  
generation  
A 27 MHz Vertical Blanking Interval (VBI) data bypass  
programmable by I2C-bus for INTERCAST applications  
Requires only one crystal (24.576 MHz) for all standards  
Horizontal and vertical sync detection  
Power-on control  
Two via I2C-bus switchable outputs for the digitized  
CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0)  
Automatic detection of 50 and 60 Hz field frequency,  
and automatic switching between PAL and NTSC  
standards  
Chip enable function (reset for the clock generator and  
power save mode up from chip version 3)  
Luminance and chrominance signal processing for  
PAL BGHI, PAL N, PAL M, NTSC M, NTSC N,  
NTSC 4.43, NTSC-Japan and SECAM  
Compatible with memory-based features (line-locked  
clock)  
User programmable luminance peaking or aperture  
Boundary scan test circuit complies with the  
correction  
‘IEEE Std. 1149.1 1990’ (ID-Code = 0 F111 02 B)  
I2C-bus controlled (full read-back ability by an external  
Cross-colour reduction for NTSC by chrominance comb  
filtering  
controller)  
PAL delay line for correcting PAL phase errors  
Real time status information output (RTCO)  
Brightness Contrast Saturation (BCS) control on-chip  
The YUV (CCIR-601) bus supports a data rate of:  
– 864 × fH = 13.5 MHz for 625 line sources  
Low power (<0.5 W), low voltage (3.3 V), small package  
(LQFP64)  
5 V tolerant digital I/O ports.  
2
APPLICATIONS  
– 858 × fH = 13.5 MHz for 525 line sources.  
Desktop/Notebook (PCMCIA) video  
Multimedia  
Data output streams for 16, 12 or 8-bit width with the  
following formats:  
Digital television  
Image processing  
Video phone  
– YUV 4 : 1 : 1 (12-bit)  
– YUV 4 : 2 : 2 (16-bit)  
– YUV 4 : 2 : 2 (CCIR-656) (8-bit)  
– RGB (5, 6, and 5) (16-bit) with dither  
– RGB (8, 8, and 8) (24-bit) with special application.  
Intercast.  
1998 May 15  
3
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
The pure 3.3 V CMOS circuit SAA7111A, analog  
3
GENERAL DESCRIPTION  
front-end and digital video decoder, is a highly integrated  
circuit for desktop video applications. The decoder is  
based on the principle of line-locked clock decoding and  
is able to decode the colour of PAL, SECAM and NTSC  
signals into CCIR-601 compatible colour component  
values. The SAA7111A accepts as analog inputs CVBS  
or S-video (Y/C) from TV or VTR sources. The circuit is  
I2C-bus controlled. The SAA7111A then supports several  
text features as Line 21 data slicing and a high-speed VBI  
data bypass for Intercast.  
The Enhanced Video Input Processor (EVIP) is a  
combination of a two-channel analog preprocessing  
circuit including source selection, anti-aliasing filter and  
ADC, an automatic clamp and gain control, a Clock  
Generation Circuit (CGC), a digital multi-standard  
decoder (PAL BGHI, PAL M, PAL N, NTSC M,  
NTSC-Japan NTSC N and SECAM), a  
brightness/contrast/saturation control circuit, a colour  
space matrix (see Fig.1) and a 27 MHz VBI-data bypass.  
4
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
VDDD  
digital supply voltage  
3.0  
3.1  
0
3.3  
3.3  
25  
3.6  
3.5  
70  
V
VDDA  
Tamb  
PA+D  
analog supply voltage  
V
operating ambient temperature  
analog and digital power  
°C  
W
0.5  
5
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7111AHZ  
SAA7111AH  
LQFP64  
QFP64  
plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm  
SOT314-2  
SOT393-1  
plastic quad flat package; 64 leads (lead length 1.6 mm);  
body 14 × 14 × 2.7 mm  
1998 May 15  
4
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
6
BLOCK DIAGRAM  
VBI DATA BYPASS  
UPSAMPLING FILTER  
BYPASS  
14  
AOUT  
34 to 39  
42 to 51  
CHROMINANCE  
CIRCUIT  
AND  
BRIGHTNESS  
CONTRAST  
SATURATION  
CONTROL  
ANALOG  
PROCESSING  
AND  
ANALOG-TO-  
DIGITAL  
12  
VPO  
(0 : 15)  
YUV-to-RGB  
CONVERSION  
AND  
OUTPUT  
FORMATTER  
AI11  
AI12  
10  
C/CVBS  
UV  
Y
CONVERSION  
8
6
52  
31  
AI21  
AI22  
FEI  
HREF  
AD2 AD1  
64  
13  
n.c.  
V
SSS  
2
Y
CON  
I C-BUS  
CONTROL  
53  
GPSW  
ANALOG  
PROCESSING  
CONTROL  
2
I C-BUS  
LUMINANCE  
CIRCUIT  
61  
62  
63  
IICSA  
SDA  
SCL  
INTERFACE  
Y/CVBS  
10  
n.c.  
Y
9,5  
V
V
SSA1-2  
DDA1-2  
SAA7111A  
11,7  
CLOCKS  
TEST  
CONTROL  
BLOCK  
54  
55  
XTAL  
3
TDI  
CLOCK  
GENERATION  
CIRCUIT  
XTALI  
59  
4
TCK  
21  
22  
FOR  
SYNCHRONIZATION  
CIRCUIT  
LLC2  
CREF  
LLC  
TMS  
BOUNDARY  
SCAN TEST  
AND  
58  
TRST  
POWER-ON  
CONTROL  
20  
23  
LFCO  
2
SCAN TEST  
TDO  
RES  
56,40,32,26,19  
57,41,33,25,18  
30  
27  
17  
29  
28  
60  
15  
16  
24  
MGG061  
V
V
VS HS  
RTS0 RTS1 RTCO  
V
V
VREF  
CE  
DDD1-5  
SSD1-5  
DDA0  
SSA0  
Fig.1 Block diagram.  
5
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
7
PINNING  
PIN  
SYMBOL  
I/O/P  
DESCRIPTION  
(L)QFP64  
n.c.  
1
2
O
I
Do not connect.  
TDO  
TDI  
Test data output for boundary scan test; note 1.  
Test data input for boundary scan test; note 1.  
3
TMS  
VSSA2  
AI22  
4
I
Test mode select input for boundary scan test or scan test; note 1.  
Ground for analog supply voltage channel 2.  
Analog input 22.  
5
P
I
6
VDDA2  
AI21  
7
P
I
Positive supply voltage for analog channel 2 (+3.3 V).  
Analog input 21.  
8
VSSA1  
AI12  
9
P
I
Ground for analog supply voltage channel 1.  
Analog input 12.  
10  
11  
12  
13  
14  
15  
16  
17  
VDDA1  
AI11  
P
I
Positive supply voltage for analog channel 1 (+3.3 V).  
Analog input 11.  
VSSS  
AOUT  
VDDA0  
VSSA0  
VREF  
P
O
P
P
O
Substrate ground connection.  
Analog test output; for testing the analog input channels.  
Positive supply voltage for internal Clock Generator Circuit (CGC) (+3.3 V).  
Ground for internal CGC.  
Vertical reference output signal (I2C-bit COMPO = 0) or inverse composite blanking  
signal (I2C-bit COMPO = 1) (enabled via I2C-bus bit OEHV).  
VDDD5  
VSSD5  
LLC  
18  
19  
20  
21  
22  
P
P
Digital supply voltage 5 (+3.3 V).  
Ground for digital supply voltage 5.  
Line-locked system clock output (27 MHz).  
Line-locked clock 12 output (13.5 MHz).  
O
O
O
LLC2  
CREF  
Clock reference output: this is a clock qualifier signal distributed by the internal CGC  
for a data rate of LLC2. Using CREF all interfaces on the VPO bus are able to  
generate a bus timing with identical phase. If CCIR 656 format is selected  
(OFTS0 = 1 and OFTS1 = 1) an inverse composite blanking signal (pixel qualifier) is  
provided on this pin.  
RES  
CE  
23  
24  
O
I
Reset output (active LOW); sets the device into a defined state. All data outputs are  
in high impedance state. The I2C-bus is reset (waiting for start condition).  
Chip enable; connection to ground forces a reset, up from version 3 power save  
function additionally available.  
VDDD4  
VSSD4  
HS  
25  
26  
27  
P
P
O
Digital supply voltage input 4 (+3.3 V).  
Ground for digital supply voltage input 4.  
Horizontal sync output signal (programmable); the positions of the positive and  
negative slopes are programmable in 8 LLC increments over a complete line  
(equals 64 µs) via I2C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC  
increments can be performed via I2C-bus bits HDEL1 and HDEL0.  
RTS1  
28  
O
Two functions output; controlled by I2C-bus bit RTSE1.  
RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and  
non-inverted R Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator;  
a high state indicates that the internal horizontal PLL has locked.  
1998 May 15  
6
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
PIN  
SYMBOL  
I/O/P  
DESCRIPTION  
(L)QFP64  
RTS0  
29  
O
Two functions output; controlled by I2C-bus bit RTSE0.  
RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical  
locked indicator; a HIGH state indicates that the internal Vertical Noise Limiter (VNL)  
has locked.  
VS  
30  
31  
O
O
Vertical sync signal (enabled via I2C-bus bit OEHV); this signal indicates the vertical  
sync with respect to the YUV output. The HIGH period of this signal is approximately  
six lines if the VNL function is active. The positive slope contains the phase  
information for a deflection controller.  
Horizontal reference output signal (enabled via I2C-bus bit OEHV); this signal is used  
to indicate data on the digital YUV bus. The positive slope marks the beginning of a  
new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used  
to synchronize data multiplexer/demultiplexer. HREF is also present during the  
vertical blanking interval.  
HREF  
VSSD3  
VDDD3  
32  
33  
P
P
O
Ground for digital supply voltage input 3.  
Digital supply voltage 3 (+3.3 V).  
VPO  
(15 to 10)  
34 to 39  
Digital VPO-bus (Video Port Out) signal; higher bits of the 16-bit VPO-bus or the  
16-bit RGB-bus output signal. The output data rate, the format and multiplexing  
scheme of the VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus  
bit VIPB = 1 the six MSBs of the digitized input signal are connected to these outputs,  
configured by the I2C-bus ‘MODE’ bits (see Figs 33 to 40):  
LUMA VPO15 to VPO8, CHROMA VPO7 to VPO0.  
VSSD2  
VDDD2  
40  
41  
P
P
O
Ground for digital supply voltage input 2.  
Digital supply voltage 2 (+3.3 V).  
VPO  
(9 to 0)  
42 to 51  
Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the 16-bit RGB-bus  
output signal. The output data rate, the format and multiplexing schema of the  
VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1  
the digitized input signal are connected to these outputs, configured by the I2C-bus  
‘MODE’ bits (see Figs 33 to 40): LUMA VPO15 to VPO8,  
CHROMA VPO7 to VPO0.  
FEI  
52  
53  
I
Fast enable input signal (active LOW); this signal is used to control fast switching on  
the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to  
the high impedance state.  
General purpose switch output; the state of this signal is set via I2C-bus control and  
the levels are TTL compatible.  
GPSW  
O
XTAL  
54  
55  
O
I
Second terminal of crystal oscillator; not connected if external clock signal is used.  
XTALI  
Input terminal for 24.576 MHz crystal oscillator or connection of external oscillator  
with CMOS compatible square wave clock signal.  
VSSD1  
VDDD1  
TRST  
TCK  
56  
57  
58  
59  
60  
P
P
I
Ground for digital supply voltage input 1.  
Digital supply voltage input 1 (+3.3 V).  
Test reset input not (active LOW), for boundary scan test; notes 1, 2 and 3.  
Test clock for boundary scan test; note 1.  
I
RTCO  
O
Real time control output: contains information about actual system clock frequency,  
subcarrier frequency and phase and PAL sequence.  
1998 May 15  
7
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
PIN  
SYMBOL  
I/O/P  
DESCRIPTION  
(L)QFP64  
IICSA  
61  
I
I2C-bus slave address select;  
0 = 48H for write, 49H for read  
1 = 4AH for write, 4BH for read.  
SDA  
SCL  
n.c.  
62  
63  
64  
I/O  
I/O  
Serial data input/output (I2C-bus).  
Serial clock input/output (I2C-bus).  
Not connect.  
Notes  
1. In accordance with the ‘IEEE1149.1’ standard the pads TCK, TDI, TMS and TRST are input pads with an internal  
pull-up transistor and TDO a 3-state output pad.  
2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller  
to the Test-Logic-Reset state (normal operation) at once.  
3. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect the TRST pin  
to ground.  
1998 May 15  
8
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
n.c.  
1
2
48  
47  
VPO3  
VPO4  
TDO  
TDI  
3
46 VPO5  
TMS  
4
45  
44  
VPO6  
VPO7  
V
V
5
SSA2  
AI22  
6
43 VPO8  
7
42  
41  
40  
VPO9  
DDA2  
AI21  
V
8
DDD2  
SAA7111A  
V
V
SSA1  
AI12  
9
SSD2  
10  
11  
12  
13  
14  
15  
16  
39 VPO10  
V
38  
37  
36  
35  
34  
33  
VPO11  
VPO12  
VPO13  
VPO14  
VPO15  
DDA1  
AI11  
V
SSS  
AOUT  
V
DDA0  
V
V
SSA0  
DDD3  
MGG060  
Fig.2 Pin configuration (LQFP64/QFP64).  
1998 May 15  
9
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
The AGC (automatic gain control for luminance) is used to  
amplify a CVBS or Y signal to the required signal  
amplitude, matched to the ADCs input voltage range.  
The AGC active time is the sync bottom of the video signal.  
8
FUNCTIONAL DESCRIPTION  
Analog input processing  
8.1  
The SAA7111A offers four analog signal inputs, two  
analog main channels with source switch, clamp circuit,  
analog amplifier, anti-alias filter and video CMOS ADC  
(see Fig.5).  
8.2  
Analog control circuits  
controlled  
ADC input level  
handbook, halfpage  
analog input level  
maximum  
The anti-alias filters are adapted to the line-locked clock  
frequency via a filter control circuit. During the vertical  
blanking time, gain and clamping control are frozen.  
+4.5 dB  
0 dB  
range tbf  
0 dB  
(1 V(p-p) 27/47 )  
7.5 dB  
8.2.1  
CLAMPING  
minimum  
The clamp control circuit controls the correct clamping of  
the analog input signals. The coupling capacitor is also  
used to store and filter the clamping voltage. An internal  
digital clamp comparator generates the information with  
respect to clamp-up or clamp-down. The clamping levels  
for the two ADC channels are fixed for luminance (60) and  
chrominance (128). Clamping time in normal use is set  
with the HCL pulse at the back porch of the video signal.  
MGG063  
Fig.4 Automatic gain range.  
8.3  
Chrominance processing  
The 8-bit chrominance signal is fed to the multiplication  
inputs of a quadrature demodulator, where two subcarrier  
signals from the local oscillator DTO1 are applied  
(0 and 90° phase relationship to the demodulator axis).  
The frequency is dependent on the present colour  
standard. The output signals of the multipliers are  
low-pass filtered (four programmable characteristics) to  
achieve the desired bandwidth for the colour difference  
signals (PAL and NTSC) or the 0 and 90° FM-signals  
(SECAM).  
TV line  
analog line blanking  
handbook, halfpage  
255  
GAIN  
CLAMP  
HCL  
60  
1
The colour difference signals are fed to the  
Brightness/Contrast/Saturation block (BCS), which  
includes the following five functions:  
MGL065  
HSY  
AGC (Automatic Gain Control for chrominance  
PAL and NTSC)  
Fig.3 Analog line with clamp (HCL) and gain  
range (HSY).  
Chrominance amplitude matching (different gain factors  
for R Y and B Y to achieve CCIR-601 levels  
Cr and Cb for all standards)  
8.2.2  
GAIN CONTROL  
Chrominance saturation control  
Signal (white) peak control limits the gain at signal  
overshoots. The flow charts (see Figs 13 and 14) show  
more details of the AGC. The influence of supply voltage  
variation within the specified range is automatically  
eliminated by clamp and automatic gain control.  
Luminance contrast and brightness  
Limiting YUV to the values 1 (min.) and 254 (max.) to  
fulfil CCIR-601 requirements.  
The gain control circuit receives (via the I2C-bus) the static  
gain levels for the two analog amplifiers or controls one of  
these amplifiers automatically via a built-in automatic gain  
control (AGC) as part of the Analog Input Control (AICO).  
1998 May 15  
10  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
The SECAM-processing contains the following blocks:  
The high frequency components of the luminance signal  
can be peaked (control for sharpness improvement via  
I2C-bus) in two band-pass filters with selectable transfer  
characteristic. This signal is then added to the original  
(unpeaked) signal. A switchable amplifier achieves  
common DC amplification, because the DC gains are  
different in both chrominance trap modes. The improved  
luminance signal is fed to the BCS control located in the  
chrominance processing block (see Fig.7).  
Baseband ‘bell’ filters to reconstruct the amplitude and  
phase equalized 0 and 90° FM-signals  
Phase demodulator and differentiator  
(FM-demodulation)  
De-emphasis filter to compensate the pre-emphasised  
input signal, including frequency offset compensation  
(DB or DR white carrier values are subtracted from the  
signal, controlled by the SECAM-switch signal).  
8.5  
RGB matrix  
The burst processing block provides the feedback loop of  
the chroma PLL and contains;  
Y, Cr and Cb data are converted after interpolation into  
RGB data in accordance with CCIR-601  
recommendations. The realized matrix equations consider  
the digital quantization:  
Burst gate accumulator  
Colour identification and killer  
Comparison nominal/actual burst amplitude (PAL/NTSC  
standards only)  
R = Y + 1.371 Cr  
G = Y 0.336 Cb 0.698 Cr  
B = Y + 1.732 Cb.  
Loop filter chrominance gain control (PAL/NTSC  
standards only)  
Loop filter chrominance PLL (only active for PAL/NTSC  
standards)  
After dithering (noise shaping) the RGB data is fed to the  
output interface within the VPO-bus output formatter.  
PAL/SECAM sequence detection, H/2-switch  
generation  
8.6  
VBI-data bypass  
Increment generation for DTO1 with divider to generate  
stable subcarrier for non-standard signals.  
For a 27 MHz VBI-data bypass the offset binary CVBS  
signal is upsampled behind the ADCs. Upsampling of the  
CVBS signal from 13.5 to 27 MHz is possible, because the  
ADCs deliver high performance at 13.5 MHz sample clock.  
Suppressing of the back folded CVBS frequency  
components after upsampling is achieved by an  
interpolation filter (see Fig.42).  
The chrominance comb filter block eliminates crosstalk  
between the chrominance channels in accordance with the  
PAL standard requirements. For NTSC colour standards  
the chrominance comb filter can be used to eliminate  
crosstalk from luminance to chrominance (cross-colour)  
for vertical structures. The comb filter can be switched off  
if desired. The embedded line delay is also used for  
SECAM recombination (cross-over switches).  
The TUF block on the digital top level performs the  
upsampling and interpolation for the bypassed CVBS  
signal (see Fig.6).  
The resulting signals are fed to the variable Y-delay  
compensation, RGB matrix, dithering circuit and output  
interface, which contains the VPO output formatter and the  
output control logic (see Fig.6).  
For bypass details see Figs 8 to 10.  
8.7  
VPO-bus (digital outputs)  
The 16-bit VPO-bus transfers digital data from the output  
interfaces to a feature box or a field memory, a digital  
colour space converter (SAA7192 DCSC), a video  
enhancement and digital-to-analog processor  
(SAA7165 VEDA2) or a colour graphics board  
(Targa-format) as a graphical user interface.  
8.4  
Luminance processing  
The 8-bit luminance signal, a digital CVBS format or a  
luminance format (S-VHS, HI8), is fed through a  
switchable prefilter. High frequency components are  
emphasized to compensate for loss. The following  
chrominance trap filter (f0 = 4.43 or 3.58 MHz centre  
frequency selectable) eliminates most of the colour carrier  
signal, therefore, it must be bypassed for S-video  
(S-VHS and HI8) signals.  
1998 May 15  
11  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
The output data formats are controlled via the I2C-bus bits  
OFTS0, OFTS1 and RGB888. Timing for the data stream  
formats, YUV (4 : 1 : 1) (12-bit), YUV (4 : 2 : 2) (16-bit),  
RGB (5, 6 and 5) (16-bit) and RGB (8, 8 and 8) (24-bit)  
with an LLC2 data rate, is achieved by marking each  
second positive rising edge of the clock LLC in conjunction  
with CREF (clock reference) (except RGB (8, 8 and 8),  
see special application in Fig.32). The higher output  
signals VPO15 to VPO8 in the YUV format perform the  
digital luminance signal. The lower output signals  
VPO7 to VPO0 in the YUV format are the bits of the  
multiplexed colour difference signals (B Y) and (R Y).  
The arrangement of the RGB (5, 6 and 5) and  
VREF: The VREF output delivers a vertical reference  
signal or an inverse composite blank signal controlled  
via the I2C-bus [subaddress 11, inverse composite  
blank (COMPO)]. Furthermore four different modes of  
vertical reference signals are selectable via the I2C-bus  
[subaddress 13, vertical reference output control  
(VCTR1 and VCTR0)]. The description of VREF timing  
and position is illustrated in Figs 15, 16, 24 and 25.  
CREF: The CREF output delivers a clock/pixel qualifier  
signal for external interfaces to synchronize to the  
VPO-bus data stream.  
Four different modes for the clock qualifier signal are  
selectable via the I2C-bus [subaddress 13, clock  
reference output control (CCTR1 and CCTR0)].  
The description of CREF timing and position is  
illustrated in Figs 16, 18, 20 and 21.  
RGB (8, 8 and 8) data stream bits on the VPO-bus is given  
in Table 6.  
The data stream format YUV 4 : 2 : 2 (the 8 higher output  
signals VPO15 to VPO8) in LLC data rate fulfils the  
CCIR-656 standard with its own timing reference code at  
the start and end of each video data block.  
8.9  
Synchronization  
The prefiltered luminance signal is fed to the  
A pixel in the format tables is the time required to transfer  
a full set of samples. If 16-bit 4 : 2 : 2 format is selected  
two luminance samples are transmitted in comparison to  
one (B Y) and one (R Y) sample within a pixel.  
The time frames are controlled by the HREF signal.  
synchronization stage. Its bandwidth is reduced to 1 MHz  
in a low-pass filter. The sync pulses are sliced and fed to  
the phase detectors where they are compared with the  
sub-divided clock frequency. The resulting output signal is  
applied to the loop filter to accumulate all phase  
deviations. Internal signals (e. g. HCL and HSY) are  
generated in accordance with analog front-end  
requirements. The output signals HS, VS, and PLIN are  
locked to the timing reference, guaranteed between the  
input signal and the HREF signal, as further improvements  
to the circuit may change the total processing delay. It is  
therefore not recommended to use them for applications  
which require absolute timing accuracy on the input  
signals. The loop filter signal drives an oscillator to  
generate the line frequency control signal LFCO  
(see Fig.7).  
Fast enable is achieved by setting input FEI to LOW.  
The signal is used to control fast switching on the digital  
VPO-bus. HIGH on this pin forces the VPO outputs to a  
high-impedance state (see Figs 18 and 19). The I2C-bus  
bit OEYC has to be set HIGH to use this function.  
The digitized PAL, SECAM or NTSC signals AD1 (7 to 0)  
and AD2 (7 to 0) are connected directly to the VPO-bus  
via I2C-bus bit VIPB = 1 and MODE = 4, 5, 6 or 7.  
AD1 (7 to 0) VPO (15 to 8) and  
AD2 (7 to 0) VPO (7 to 0).  
The selection of the analog input channels is controlled via  
I2C-bus subaddress 02 MODE select.  
8.10 Clock generation circuit  
The internal CGC generates all clock signals required for  
the video input processor. The internal signal LFCO is a  
digital-to-analog converted signal provided by the  
horizontal PLL. It is the multiple of the line frequency  
The upsampled 8-bit offset binary CVBS signal (VBI-data  
bypass) is multiplexed under control of the I2C-bus to the  
digital VPO-bus (see Fig.8).  
429  
432  
8.8  
Reference signals HREF, VREF and CREF  
6.75MHz =  
× f  
H
---------  
HREF: The positive slope of the HREF output signal  
indicates the beginning of a new active video line.  
The high period is 720 luminance samples long and is  
also present during the vertical blanking.  
The description of timing and position from HREF is  
illustrated in Figs 15, 16, 21 and 23.  
Internally the LFCO signal is multiplied by a factor of 2 or 4  
in the PLL circuit (including phase detector, loop filtering,  
VCO and frequency divider) to obtain the LLC and LLC2  
output clock signals. The rectangular output clocks have  
a 50% duty factor (see Fig.26).  
1998 May 15  
12  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
8.13.1 SUGGESTIONS FOR I2C-BUS INTERFACE OF THE  
DISPLAY SOFTWARE READING LINE-21 DATA  
8.11 Power-on reset and CE input  
A missing clock, insufficient digital or analog VDDA0 supply  
voltages (below 2.7 V) will initiate the reset sequence; all  
outputs are forced to 3-state. The indicator output RES is  
LOW for approximately 128LLC after the internal reset and  
can be applied to reset other circuits of the digital TV  
system.  
There are two methods by which the software can acquire  
the data:  
1. Synchronous reading once per frame (or once per  
field); It can use either the rising edge (Line-21 Field 1)  
or both edges (Line-21 Field 1 or 2) of the ODD signal  
(pin RTSO) to initiate an I2C-bus read transfer of the  
three registers 1A, 1B and 1C.  
It is possible to force a reset by pulling the chip enable  
(CE) to ground. After the rising edge of CE and sufficient  
power supply voltage, the outputs LLC, LLC2, CREF,  
RTCO, RTS0, RTS1, GPSW and SDA return from 3-state  
to active, while HREF, VREF, HS and VS remain in 3-state  
and have to be activated via I2C-bus programming  
(see Table 5).  
2. Asynchronous reading; It can poll either the F1RDY bit  
(Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21  
Field 1 or 2). After valid data has been read the  
corresponding F*RDY bit is set to LOW until new data  
has arrived. The polling frequency has to be slightly  
higher than the frame or field frequency, respectively.  
8.12 RTCO output  
The real time control and status output signal contains  
serial information about the actual system clock  
(increment of the HPLL), subcarrier frequency [increment  
and phase (via reset) of the FSC-PLL] and PAL sequence  
bit. The signal can be used for various applications in  
external circuits, e.g. in a digital encoder to achieve clean  
encoding (see Fig.20).  
8.13 The Line-21 text slicer  
The text slicer block detects and acquires Line-21 Closed  
Captioning data from a 525-line CVBS signal. Extended  
data services on Line-21 Field 2 are also supported.  
If valid data is detected the two data bytes are stored in two  
I2C-bus registers. A parity check is also performed and the  
result is stored in the MSB of the corresponding byte.  
A third I2C-bus register is provided for data valid and data  
ready flags. The two bits F1VAL and F2VAL indicate that  
the input signal carries valid Closed Captioning data in the  
corresponding fields. The data ready bits F1RDY and  
F2RDY have to be evaluated if asynchronous I2C-bus  
reading is used.  
1998 May 15  
13  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
TEST  
SELECTOR  
14  
AOUT  
AND  
64  
n.c.  
BUFFER  
9
V
V
SSA1  
5
SSA2  
AOSL (1 : 0)  
ADC2  
6
8
ANALOG  
AMPLIFIER  
DAC9  
AI22  
AI21  
ANTI-ALIAS  
FILTER  
BYPASS  
SWITCH  
SOURCE  
SWITCH  
CLAMP  
CIRCUIT  
11  
7
V
V
DDA1  
DDA2  
FUSE (1 : 0)  
10  
12  
ANALOG  
AMPLIFIER  
DAC9  
AI12  
AI11  
ANTI-ALIAS  
FILTER  
CLAMP  
CIRCUIT  
BYPASS  
SWITCH  
SOURCE  
SWITCH  
ADC1  
FUSE (1 : 0)  
VERTICAL  
BLANKING  
CONTROL  
MODE  
CONTROL  
CLAMP  
CONTROL  
GAIN  
CONTROL  
ANTI-ALIAS  
CONTROL  
HCL  
VBLNK  
SVREF  
VBSL  
8
8
GLIMB HSY  
GLIMT  
WIPA  
HOLDG  
MODE 0  
MODE 1  
MODE 2  
GAFIX  
WPOFF  
GUDL0-GUDL2  
GAI20-GAI28  
GAI10-GAI18  
HLNRS  
SLTCA  
ANALOG  
CONTROL  
UPTCV  
13  
CROSS  
MULTIPLEXER  
V
SSS  
MGC655  
AD2BYP AD1BYP  
LUM  
CHR  
Fig.5 Analog input processing.  
ahdnbok,uflapegwidt  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
d
AD2BYP AD1BYP  
LUM  
CHR  
SECAM  
PROCESSING  
1
n.c.  
sequential  
UV signals  
58  
59  
3
TRST  
TCK  
TDI  
QUADRATURE  
LEVEL  
LOW-PASS  
52  
TEST  
CONTROL  
BLOCK  
ADJUSTMENT,  
BRIGHTNESS,  
CONTRAST,  
AND  
SATURATION  
CONTROL  
DEMODULATOR  
FEI  
CHBW0  
CHBW1  
4
TMS  
2
TDO  
42 to 51  
RGB MATRIX  
interpolation  
dithering  
RGB  
Y
OUTPUT  
FORMATTER  
AND  
VPO  
(9 : 0)  
PHASE  
DEMODULATOR  
SUBCARRIER  
GENERATION  
57,41,33,  
25,18  
SUBCARRIER  
INCREMENT  
GENERATION  
AND  
AMPLITUDE  
DETECTOR  
INTERFACE  
34 to 39  
31  
V
VPO  
(15 : 10)  
DDD1-5  
RES  
GAIN  
CONTROL  
AND Y-DELAY  
COMPENSATION  
DIT  
CBR  
COMB  
POWER-ON  
CONTROL  
HUEC  
BURST GATE  
ACCUMULATOR  
DIVIDER  
UV  
23  
FILTERS  
SECAM  
HREF  
LOOP FILTER  
RECOMBINATION  
CE CLOCKS  
CODE  
FCTC  
GPSW  
CSTD 1  
CSTD 0  
OFTS0  
OFTS1  
RGB888  
OEYC  
OEHV  
FECO  
BRIG  
CONT  
SATN  
DCCF  
RTSE1  
RTSE0  
VIPB  
VLOF  
COLO  
COMPO  
INCS  
56,40,32,26,19  
V
f
/2 switch signal  
SSD1-5  
H
VBI DATA BYPASS  
TUF  
VRLN  
VSTA (8 : 0)  
VSTO (8 : 0)  
60  
RTCO  
MGG062  
Y
LUM  
Fig.6 Chrominance circuit.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Y
LUM  
LUMINANCE CIRCUIT  
WEIGHTING  
VARIABLE  
CHROMINANCE  
TRAP  
AND  
BAND-PASS  
PREFILTER  
ADDING  
FILTER  
STAGE  
PREF  
BYPS  
VBLB  
BPSS0  
BPSS1  
PREF  
APER0  
APER1  
VBLB  
MATCHING  
AMPLIFIER  
PREFILTER  
SYNC  
CLOCK CIRCUIT  
CLOCKS  
VBLB  
22  
20  
21  
CREF  
LLC  
LLC2  
LINE-LOCKED  
CLOCK  
GENERATOR  
LINE 21  
TEXT  
PHASE  
DETECTOR  
FINE  
SYNC SLICER  
SLICER  
PHASE  
DETECTOR  
COARSE  
15  
16  
24  
V
V
CLOCK  
GENERATION  
CIRCUIT  
DDA0  
SSA0  
BYTE1  
BYTE2  
STATUS  
SYNCHRONIZATION CIRCUIT  
DAC6  
AUFD  
HSB  
HSS  
FSEL  
VTRC  
CE  
VNOI0  
HPLL  
VTRC  
VTRC  
EXFIL  
2
I C BUS CONTROL  
VNOI1  
VTRC  
HLCK  
STTC  
FIDT  
INCS  
55  
54  
2
CRYSTAL  
CLOCK  
GENERATOR  
DISCRETE  
TIME  
OSCILLATOR 2  
XTALI  
XTAL  
53  
I C-BUS  
LOOP FILTER  
2
VERTICAL  
PROCESSOR  
GPSW  
COUNTER  
27  
INTERFACE  
61 63 62  
30 29 17  
28  
MGC654  
VS RTS0 VREF  
HS  
RTS1  
IICSA SCL SDA  
ahdnbok,uflapegwidt  
Fig.7 Luminance and sync processing.  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
TBP7 to 0  
0
0
1
AD1BYP  
(CVBS)  
MUX  
MUX  
BYP  
UP  
VPO15 to 8  
CVBS  
UP  
1
REGISTER  
(LUMA see Fig. 37)  
Y or YUV  
SWHI  
BCHI1  
BCHI0 SWHI  
VBP0  
VBP4  
0
0
1
1
0
1
0
1
1
VIPB  
I C-bus  
2
0
VBP0  
VBP4  
BCHI1 to 0  
2
I C-bus  
0
0
1
AD2BYP  
MUX  
MUX  
BYP  
UP  
VPO7 to 0  
CVBS  
UP  
1
REGISTER  
(CHROMA see Fig. 37)  
UV or YUV  
SWLO  
BCLO1 BCLO0 SWLO  
VBP0  
VBP4  
0
0
1
1
0
1
0
1
1
0
VBP0  
VBP4  
BCLO1 to 0  
2
I C-bus  
REG  
4 × REG  
VBP4  
VBP0  
V_GATE  
(programmable)  
EN  
HREFINT  
CLOCK 0  
CLOCK 0  
MGG064  
HREFINT = internal horizontal reference.  
TBP = upsampled CVBS input data (27 MHz).  
AD1BYP/AD2BYP = digitized CVBS input data and Y/C input data (13.5 MHz).  
VBP0 = programmable vertical reference signal.  
VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).  
Fig.8 Multiplexing of the CVBS signal to the VPO-bus.  
17  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
REG  
VREF CCIR 656  
V
C
T
R
1
V
C
T
R
0
EN  
VREFOUT  
CLOCK 0  
HREFINT  
REG  
0
0
1
1
0
1
0
1
VBP0  
VBP4  
VREFINT  
HREF  
VREF CCIR 656  
VBP0  
REG  
EN  
VBP4  
VREFINT  
HREFINT  
CLK0  
0
1
REG  
VREF  
MUX  
CLOCK 0  
VCTR1 to 0  
CLOCK 0  
COMPO  
MGG065  
VREF_CCIR 656 = vertical reference signal referring to the field interval definitions of CCIR656.  
HREFINT = internal horizontal reference signal.  
VREFINT = internal vertical reference signal.  
VBP0 = programmable vertical reference signal.  
VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).  
Fig.9 VREF output signal generation.  
C
C
T
R
1
C
C
T
R
0
CREFINT  
CREFOUT  
REG  
CREF  
selected  
VREF  
0
0
1
1
0
1
0
1
CREFINT  
0 if VREF = 0  
1 if VREF = 0  
1 (always HIGH)  
CCTR1 to 0  
CLOCK 0  
MGG066  
CREFINT = internal clock qualifier signal.  
Fig.10 CREF output signal generation.  
18  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
9
BOUNDARY-SCAN TEST  
9.2  
Device identification codes  
The SAA7111A has built in logic and 5 dedicated pins to  
support boundary-scan testing which allows board testing  
without special hardware (nails). The SAA7111A follows  
the ‘IEEE Std. 1149.1 - Standard Test Access Port and  
Boundary-Scan Architecture’ set by the Joint Test Action  
Group (JTAG) chaired by Philips.  
A Device Identification Register (DIR) is specified in ‘IEEE  
Std. 1149.1-1990 - IEEE Standard Test Access Port and  
Boundary-Scan Architecture’ (IEEE Std. 1149.1b-1994).  
It is a 32-bit register which contains fields for the  
specification of the IC manufacturer, the IC part number  
and the IC version number. Its biggest advantage is the  
possibility to check for the correct ICs mounted after  
production and determination of the version number of  
ICs during field service.  
The 5 special pins are Test Mode Select (TMS), Test  
Clock (TCK), Test Reset (TRST), Test Data Input (TDI)  
and Test Data Output (TDO).  
When the IDCODE instruction is loaded into the BST  
instruction register, the identification register will be  
connected between TDI and TDO of the IC.  
The BST functions BYPASS, EXTEST, INTEST,  
SAMPLE, CLAMP and IDCODE are all supported  
(see Table 1). Details about the JTAG BST-TEST can be  
found in the specification “EEE Std. 1149.1”. A file  
containing the detailed Boundary-Scan Description  
Language (BSDL) description of the SAA7111A is  
available on request.  
The identification register will load a component specific  
code during the CAPTURE_DATA_REGISTER state of  
the TAP controller and this code can subsequently be  
shifted out. At board level this code can be used to verify  
component manufacturer, type and version number.  
The device identification register contains 32-bits,  
numbered 31 to 0, where bit 31 is the Most Significant Bit  
(MSB) (nearest to TDI) and bit 0 is the Least Significant  
Bit (LSB) (nearest to TDO); see Fig.11.  
9.1  
Initialization of boundary-scan circuit  
The Test Access Port (TAP) controller of an IC should be  
in the reset state (TEST_LOGIC_RESET) when the IC is  
in functional mode. This reset state also forces the  
instruction register into a functional instruction such as  
IDCODE or BYPASS.  
To solve the power-up reset, the standard specifies that  
the TAP controller will be forced asynchronously to the  
TEST_LOGIC_RESET state by setting the TRST pin  
LOW.  
Table 1 BST instructions supported by the SAA7111A  
INSTRUCTION  
DESCRIPTION  
BYPASS  
This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO  
when no test operation of the component is required.  
EXTEST  
SAMPLE  
This mandatory instruction allows testing of off-chip circuitry and board level interconnections.  
This mandatory instruction can be used to take a sample of the inputs during normal operation of  
the component. It can also be used to preload data values into the latched outputs of the  
boundary-scan register.  
CLAMP  
This optional instruction is useful for testing when not all ICs have BST. This instruction addresses  
the bypass register while the boundary-scan register is in external test mode.  
IDCODE  
This optional instruction will provide information on the components manufacturer, part number and  
version number.  
INTEST  
USER1  
This optional instruction allows testing of the internal logic (no support for customers available).  
This private instruction allows testing by the manufacturer (no support for customers available).  
1998 May 15  
19  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
MSB  
LSB  
31  
28 27  
12 11  
1
0
TDI  
0010  
1111000100010001  
16-bit part number  
00000010101  
1
TDO  
4-bit  
version  
code  
11-bit manufacturer  
indentification  
MGL111  
Fig.11 32 bits of identification code.  
1998 May 15  
20  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
10 GAIN CHARTS  
MGC648  
handbook, halfpage  
7.5  
(
512  
factor dB = 20 x log10 gain =  
(
768 i  
dB  
5.5  
3.5  
i > 256  
bit [8] = 1  
1.5  
bit [8] = 0  
i < 256  
0.5  
2.5  
4.5  
(
257 + i  
512  
factor dB = 20 x log10 gain =  
(
0
256  
512  
gain value (i)  
Fig.12 Amplifier curve.  
ANALOG INPUT  
ADC  
1
0
NO BLANKING ACTIVE  
VBLK  
<- CLAMP  
GAIN ->  
1
0
1
0
HCL  
HSY  
0
1
1
0
1
0
CLL  
SBOT  
WIPE  
slow + GAIN  
NO CLAMP  
+ CLAMP  
CLAMP  
fast GAIN  
+ GAIN  
GAIN  
MGC647  
WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)];  
HSY = horizontal sync pulse; HCL = horizontal clamp pulse.  
Fig.13 Clamp and gain flow.  
1998 May 15  
21  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
ANALOG INPUT  
9
gain  
AMPLIFIER  
DAC  
ANTI-ALIAS FILTER  
ADC  
8
LUMA/CHROMA DECODER  
1
0
VBLK  
1
NO ACTION  
0
HOLDG  
1
0
X
1
0
HSY  
1
0
>254  
1
1
1
0
0
0
<4  
<1  
>254  
X = 1  
X = 0  
1
0
>248  
+/0  
+1/F  
+1/LLC2 1/LLC2  
+1/L  
1/LLC2  
STOP  
GAIN ACCUMULATOR (18 BITS)  
ACTUAL GAIN VALUE 9-BIT (AGV) [6/+6 dB]  
1
0
X
1
0
HSY  
1
0
Y
AGV  
UPDATE  
FGV  
GAIN VALUE 9-BIT  
MGC652  
X = system variable; Y = IAGV FGVI > GUDL; VBLK = vertical blanking pulse;  
HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value.  
Fig.14 Gain flow chart.  
22  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
11 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins connected together and all supply  
pins connected together.  
SYMBOL  
VDDD  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+4.6  
UNIT  
V
VDDA  
Vi(A)  
analog supply voltage  
0.5  
0.5  
+4.6  
V
V
input voltage at analog inputs  
VDDA + 0.5  
(4.6 max.)  
Vo(A)  
Vi(D)  
output voltage at analog output  
input voltage at digital inputs and outputs  
output voltage at digital outputs  
voltage difference between VSSAall and VSSall  
storage temperature  
0.5  
0.5  
0.5  
VDDA + 0.5  
+5.5  
V
outputs in 3-state  
outputs active  
V
Vo(D)  
VSS  
Tstg  
VDDD + 0.5  
100  
V
mV  
°C  
°C  
°C  
V
65  
0
+150  
Tamb  
Tamb(bias)  
Vesd  
operating ambient temperature  
operating ambient temperature under bias  
electrostatic discharge all pins  
70  
10  
2000  
+80  
note 1  
+2000  
Note  
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kresistor.  
12 CHARACTERISTICS  
VDDD = 3.0 to 3.6 V; VDDA = 3.1 to 3.5 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDDD  
IDDD  
PD  
digital supply voltage  
digital supply current  
digital power  
3.0  
3.3  
3.6  
70  
V
63  
mA  
W
0.21  
3.3  
52  
VDDA  
IDDA  
analog supply voltage  
analog supply current  
3.1  
3.5  
V
AOSL = [1:0] = 00b;  
AOUT not connected  
mA  
PA  
analog power  
0.17  
0.38  
0.02  
W
W
W
PA+D  
Ppd  
analog and digital power  
analog and digital power in CE connected to ground  
power-down mode  
(since version 3)  
Analog part  
Iclamp  
clamping current  
VI = 0.9 V DC  
±3.5  
µA  
Vi(p-p)  
input voltage  
(peak-to-peak value)  
for normal video levels  
[1 V (p-p)]; 3 dB  
0.3  
0.7  
1.2  
V
termination 27/47 and  
AC coupling required;  
coupling capacitor = 22 nF  
|Zi|  
Ci  
input impedance  
input capacitance  
clamping current off  
200  
kΩ  
10  
pF  
1998 May 15  
23  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
SYMBOL  
αcs  
PARAMETER  
CONDITIONS  
fi = 5 MHz  
MIN.  
TYP.  
MAX.  
50  
UNIT  
dB  
channel crosstalk  
Analog-to-digital converters  
B
bandwidth  
at 3 dB  
7
2
MHz  
deg  
φdiff  
differential phase  
(amplifier plus anti-alias  
filter = bypass)  
Gdiff  
differential gain  
2
%
(amplifier plus anti-alias  
filter = bypass)  
fclkADC  
DLE  
ADC clock frequency  
12.8  
14.3  
MHz  
LSB  
DC differential linearity  
error  
0.7  
ILE  
DC integral linearity error  
1
LSB  
Digital inputs  
VIL(SCL,SDA)  
LOW level input voltage  
pins SDA and SCL  
0.5  
0.7VDDD  
0.3  
2.0  
+0.3VDDD  
VDDD + 0.5  
+0.8  
V
V
V
V
V
V
VIH  
HIGH level input voltage  
pins SDA and SCL  
VIL(xtal)  
VIH(xtal)  
VILn  
LOW level CMOS input  
voltage pin XTALI  
HIGH level CMOS input  
voltage pin XTALI  
VDDD + 0.3  
+0.8  
LOW level input voltage all  
other inputs  
0.3  
2.0  
VIHn  
HIGH level input voltage  
all other inputs  
5.5  
ILI  
input leakage current  
input capacitance  
1
8
5
µA  
pF  
pF  
Ci  
outputs at 3-state  
Ci(n)  
input capacitance all other  
inputs  
Digital outputs  
VOL(SCL,SDA) LOW level output voltage SDA/SCL at 3 mA (6 mA)  
pins SDA and SCL sink current  
0.4 (0.6)  
V
VOL  
LOW level output voltage VDDD = max; IOL = 2 mA  
0
0.4  
V
V
V
VOH  
HIGH level output voltage VDDD = min, IOH = 2 mA  
2.4  
0.5  
VDDD + 0.5  
+0.6  
VOL(clk)  
LOW level output voltage  
for clocks  
VOH(clk)  
HIGH level output voltage  
for clocks  
2.4  
VDDD + 0.5  
10  
V
ILO  
FEI input timing  
tSU;DAT input data set-up time  
tHD;DAT input data hold time  
output leakage current  
at 3-state mode  
µA  
13  
3
ns  
ns  
1998 May 15  
24  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Data and control output timing; note 1  
CL  
output load capacitance  
output hold time  
15  
4
40  
pF  
tOHD;DAT  
tPD  
CL = 15 pF  
CL = 25 pF  
ns  
ns  
ns  
propagation delay  
20  
20  
tPDZ  
propagation delay to  
3-state  
Clock output timing (LLC and LLC2); note 2  
CL(LLC)  
Tcy  
output load capacitance  
cycle time  
15  
35  
70  
40  
40  
39  
78  
60  
pF  
ns  
ns  
%
LLC  
LLC2  
δLLC  
duty factors for tLLCH/tLLC  
and tLLC2H/tLLC2  
CL = 25 pF  
tr  
tf  
rise time LLC, LLC2  
fall time LLC, LLC2  
5
ns  
ns  
ns  
5
td  
delay time LLC output to  
LLC2 output  
at 1.5 V;  
LLC/LLC2 = 25 pF  
4  
+8  
Data qualifier output timing (CREF)  
tOHD;CREF  
tPD;CREF  
output hold time  
CL = 15 pF  
CL = 25 pF  
4
ns  
ns  
propagation delay from  
positive edge of LLC  
20  
Clock input timing (XTALI)  
δXTALI  
duty factor for tXTALIH/tXTALI nominal frequency  
40  
60  
%
Horizontal PLL  
fHn  
nominal line frequency  
50 Hz field  
60 Hz field  
15625  
15734  
Hz  
Hz  
%
fH/fHn  
permissible static deviation  
5.7  
Subcarrier PLL  
fSCn  
nominal subcarrier  
frequency  
PAL BGHI  
4433619  
3579545  
3575612  
3582056  
Hz  
Hz  
Hz  
Hz  
Hz  
NTSC M; NTSC-Japan  
PAL M  
PAL N  
fSC  
lock-in range  
±400  
Crystal oscillator  
fn  
nominal frequency  
3rd harmonic; note 3  
24.576  
MHz  
106  
f/fn  
permissible nominal  
frequency deviation  
±50  
1998 May 15  
25  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Crystal oscillator  
fn  
nominal frequency  
3rd harmonic; note 3  
24.576  
MHz  
106  
f/fn  
permissible nominal  
frequency deviation  
±50  
Tf/fn  
permissible nominal  
frequency deviation with  
temperature  
±20  
106  
CRYSTAL SPECIFICATION (X1)  
Tamb(X1)  
operating ambient  
0
70  
°C  
temperature  
CL  
Rs  
C1  
C0  
load capacitance  
8
pF  
series resonance resistor  
motional capacitance  
parallel capacitance  
40  
80  
1.5 ±20%  
3.5 ±20%  
fF  
pF  
Notes  
1. The levels must be measured with load circuits; 1.2 kat 3 V (TTL load); CL = 50 pF.  
2. The effects of rise and fall times are included in the calculation of tOHD;DAT, tPD and tPDZ. Timings and levels refer to  
drawings and conditions illustrated in Figs 15 and 16.  
3. Order number: Philips 4322 143 05291.  
Table 2 Processing delay  
DIGITAL DELAY  
ADCIN VPO (LLC CLOCKS)  
[YDEL(2 to 0) = 000]; note 1  
TYPICAL ANALOG DELAY  
AI22 ADCIN (AOUT) (ns)  
FUNCTION  
Without amplifier or anti-alias filter  
With amplifier, without anti-alias filter  
With amplifier and anti-alias filter  
15  
25  
75  
179  
Note  
1. Digital processing delay (LLC CLOCKS) for VBI data is defined in Fig.23 ‘Horizontal timing diagram’.  
1998 May 15  
26  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
13 TIMING DIAGRAMS  
t
LLC  
CLOCK OUTPUT LLC  
t
LLCL  
2.6 V  
1.5 V  
0.6 V  
t
f
t
r
t
LLCH  
t
PD  
t
OHD;DAT  
2.4 V  
0.6 V  
OUTPUTS VPO, HREF,  
VREF, VS, HS  
MGC658  
An explanation of the output formats is given in Table 6.  
Fig.15 Clock/data timing (8-bit CCIR-656 format of the VPO-bus).  
t
t
LLC  
LLC  
t
LLCL  
2.6 V  
1.5 V  
0.6 V  
CLOCK OUTPUT LLC  
t
t
f
r
t
LLCH  
t
t
PD  
PD  
2.4 V  
0.6 V  
OUTPUT CREF  
t
t
OHD;CREF  
t
OHD;CREF  
t
dLLC2  
dLLC2  
2.6 V  
1.5 V  
0.6 V  
CLOCK OUTPUT LLC2  
t
PD  
t
OHD;DAT  
2.4 V  
0.6 V  
OUTPUTS VPO, HREF,  
VREF, VS, HS  
MGC659  
An explanation of the output formats is given in Table 6. The FEI timing of the VPO-bus is illustrated in Figs 18 and 19.  
Fig.16 Clock/data timing (12 and 16-bit CCIR-601 format of the VPO-bus).  
27  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
t
t
LLC  
CLOCK OUTPUT LLC  
LLC  
t
LLCL  
2.4 V  
1.5 V  
0.6 V  
t
t
r
f
t
LLCH  
t
t
PD;CREF  
OHD;CREF  
2.4 V  
1.5 V  
0.6 V  
OUTPUT CREF  
t
t
t
OHD;CREF  
OHD;CREF  
PD;CREF  
2.4 V  
1.5 V  
0.6 V  
RGB (8, 8, 8) data  
VPO15 to VPO8  
R(7 : 3)  
G(7 : 5)  
t
t
OHD;DAT  
OHD;DAT  
2.4 V  
1.5 V  
0.6 V  
R(2 : 0)  
G(1 : 0)  
B(2 : 0)  
RGB (8, 8, 8) data  
VPO7 to VPO0  
G(4 : 2)  
B(7 : 3)  
MBH227  
t
PD  
An explanation of the output formats is given in Table 6.  
Fig.17 Clock/data timing for RGB (8, 8 and 8) output format.  
LLC  
CREF  
HREF  
FEI  
t
t
SU;DAT  
t
HD;DAT  
t
PDZ  
t
OHD;DAT  
PD  
VPO  
MGC656  
to 3-state  
from 3-state  
I2C-bus bit FECO = 1.  
Fig.18 FEI timing diagram (FEI sampling at CREF = HIGH) for OFTS = 0, 1 or 2).  
28  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
LLC  
CREF  
HREF  
FEI  
t
t
SU;DAT  
HD;DAT  
t
PDZ  
t
t
OHD;DAT  
PD  
VPO  
MGC657  
to 3-state  
from 3-state  
Timing is compatible with SAA7110; I2C-bus bit FECO = 0.  
Fig.19 FEI timing diagram (FEI sampling at CREF = LOW) for OFTS = 0, 1 or 2).  
transmitted once per line  
SEQUENCE  
LOW  
(1)  
DTO RESET  
INCR  
16  
HIGH  
INCR  
14 13  
RESERVED  
50 Hz fields: 235  
60 Hz fields: 232  
HPLL  
FSCPLL  
45  
128  
1
3
2
BIT NO.:  
15  
0
8
7
9 6  
5
1
0
22 21 20 19 18 17 16 15  
19  
12 11 10  
4
3
2
0 1  
63 67 68  
TIME SLOT:  
16  
MGC649  
(1) Set to zero for one transmission, if a phase reset of the fsc DTO is applied via I2C-bus bit CDTO. RTCO sequence is generated in LLC/4.  
The HPLL increment represents the actual LFCO frequency (fLFCO × 4 = fLLC); 16 LSB from 20, upper four bits are fixed to 0100b.  
INCRHPLL × fXTAL  
fLFCO  
=
------------------------------------------------  
2word length DTO2  
Where: fXTAL = 24.576 MHz, word length DTO2 = 20 bits.  
The fsc increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b.  
INCRFSCPLL × fXTAL INCRHPLL  
f sc = ------------------------------------------------------ × ---------------------------  
2word length DTO1  
219  
Where: word length DTO1 = 24 bits.  
Fig.20 Real time control output.  
29  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
LLC  
CREF  
LLC2  
START OF ACTIVE LINE  
HREF  
0
1
2
3
4
Yn  
U0  
V0  
U2  
V2  
U4  
UVn  
END OF ACTIVE LINE  
HREF  
Yn  
715  
716  
717  
718  
719  
V714  
U716  
V716  
U718  
V718  
UVn  
MGC646  
Fig.21 HREF timing diagram.  
LLC  
t
t
HD  
SU  
FEI  
t
OHD  
VPO  
MBH766  
t
t
PD  
PDZ  
Fig.22 FEI timing in CCIR 656 mode [OFTS (1 : 0) = 3].  
30  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
CVBS  
burst  
26 × 1/LLC  
burst  
VBI  
179 × 1/LLC  
(2)  
processing delay CVBS->VPO  
sync clipped  
Y - output  
0
HREF (50 Hz)  
12 × 2/LLC  
144 × 2/LLC  
720 × 2/LLC  
27 × 2/LLC  
43 × 2/LLC  
(1)  
RTS1 (PLIN)  
4/LLC  
HS  
HS (50 Hz)  
programming range  
(step size: 8/LLC)  
107  
108  
0
HREF (60 Hz)  
23 × 2/LLC  
16 × 2/LLC  
138 × 2/LLC  
720 × 2/LLC  
HS (60 Hz)  
HS (60 Hz)  
programming range  
(step size: 8/LLC)  
107  
106  
0
MGD701  
(1) PLIN is switched to output RTS1 via I2C-bus bit RTSE1 = 0.  
(2) See Table 2.  
(3) HDEL (1 : 0) = 0 0, YDEL (2 : 0) = 0 0 0.  
Fig.23 Horizontal timing diagram.  
31  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
625  
1
2
3
4
5
6
7
8
22  
23  
622  
623  
624  
input CVBS  
HREF  
(2)  
(2)  
VREF  
VREF  
VRLN = 1  
VRLN = 0  
535 x 2/LLC  
VS  
(1)  
RTS0 (ODD)  
(a) 1st field  
310  
312  
315  
316  
318  
319  
320  
335  
336  
337  
313  
314  
317  
311  
input CVBS  
HREF  
(2)  
VREF  
VREF  
VRLN = 1  
(2)  
VRLN = 0  
77 x 2/LLC  
VS  
(1)  
RTS0 (ODD)  
MGG069  
(b) 2nd field  
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0.  
(2) Additional VREF positions can be achieved via I2C-bits VCTR1 and VCTR0 (see Fig.9).  
The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1.  
The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.  
Fig.24 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].  
1998 May 15  
32  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
525  
(3)  
1
(4)  
2
(5)  
3
(6)  
4
(7)  
5
(8)  
6
(9)  
7
(10)  
17  
(20)  
18  
(21)  
19  
(22)  
(2)  
524  
(2)  
522  
(525)  
523  
(1)  
8
(11)  
input CVBS  
HREF  
(3)  
VRLN = 1  
VREF  
VREF  
(3)  
VRLN = 0  
520 x 2/LLC  
VS  
(1)  
RTS0 (ODD)  
(a) 1st field  
260  
(263)  
263  
264  
265  
266  
267  
268  
269  
270  
271  
262  
280  
281  
259  
(262)  
282  
261  
(264)  
(265) (266) (267) (268) (269) (270) (271) (272) (273) (274)  
(283) (284) (285)  
(2)  
input CVBS  
HREF  
(3)  
VRLN = 1  
VREF  
VREF  
(3)  
VRLN = 0  
81 x 2/LLC  
VS  
(1)  
RTS0 (ODD)  
MGG070  
(b) 2nd field  
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0.  
(2) Line numbers in parenthesis refer to CCIR line counting.  
(3) Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9).  
The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1.  
The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.  
Fig.25 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].  
1998 May 15  
33  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Table 3 Digital output control  
14 CLOCK SYSTEM  
14.1 Clock generation circuit  
VPO  
15 to 8  
VPO  
7 to 0  
OEYC  
FEI  
TCLO(1)  
The internal CGC generates the system clocks LLC, LLC2  
and the clock reference signal CREF. The internally  
generated LFCO (triangular waveform) is multiplied by 4  
via the analog PLL (including phase detector, loop filter,  
VCO and frequency divider). The rectangular output  
signals have a 50% duty factor.  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
Z
active  
Z
Z
Z
active  
Z
Z
Z
Z
Z
Table 4 Clock frequencies  
CLOCK  
FREQUENCY (MHz)  
Z
XTAL  
LLC  
24.576  
27  
Note  
LLC2  
LLC4  
LLC8  
13.5  
6.75  
3.375  
1. Only active in 656-format (OFTS = 3).  
ZERO  
CROSS  
DETECTION  
BAND PASS  
FC = LLC/4  
PHASE  
DETECTION  
LOOP  
FILTER  
LFCO  
OSCILLATOR  
LLC  
DIVIDER  
1/2  
DIVIDER  
1/2  
LLC2  
CREF  
DELAY  
MGC632  
Fig.26 Block diagram of clock generation circuit.  
1998 May 15  
34  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
14.2 Power-on control  
Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below  
2.7 V. The RES signal can be applied to reset other circuits of the digital picture processing system.  
POC V  
POC V  
DDA  
DDD  
ANALOG  
DIGITAL  
CLOCK  
PLL  
LLC  
POC  
LOGIC  
POC  
DELAY  
RES  
CE  
CLK0  
CE  
XTAL  
LLCINT  
RESINT  
LLC  
RES  
20 to 200 µs  
PLL-delay  
896 LCC  
digital delay  
MGC633  
some ms  
128 LCC  
<
1 ms  
CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock;  
RESINT = internal reset; LLC = line-locked clock output; RES = reset output (active LOW).  
Fig.27 Power-on control circuit.  
1998 May 15  
35  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Table 5 Power-on control sequence  
INTERNAL POWER-ON CONTROL  
PIN OUTPUT STATUS  
FUNCTION  
SEQUENCE  
Directly after power-on  
asynchronous reset  
VPO15 to VPO0, RTCO, RTS0, RTS1, direct switching to high impedance for  
GPSW, HREF, VREF, HS, VS, LLC,  
LLC2 and CREF are in high-impedance  
state  
20 to 200 ms  
Synchronous reset sequence  
LLC, LLC2, CREF, RTCO, RTS0,  
internal reset sequence  
RTS1, GPSW and SDA become active;  
VPO15 to VPO0, HREF, VREF, HS and  
VS are held in high-impedance state  
Status after power-on control  
sequence  
VPO15 to VPO0, HREF, VREF, HS and after power-on (reset sequence) a  
VS are held in high-impedance state  
complete I2C-bus transmission is  
required  
15 OUTPUT FORMATS  
Table 6 Output formats of the VPO bus (note 1)  
BUS  
SIGNAL  
422  
(16-BIT)(2)  
411 (12-BIT)  
CCIR-656 (8-BIT)(3)  
RGB (16-BIT)(4)  
RGB (24-BIT)(4)  
VPO15  
VPO14  
VPO13  
VPO12  
VPO11  
VPO10  
VPO9  
VPO8  
VPO7  
VPO6  
VPO5  
VPO4  
VPO3  
VPO2  
VPO1  
VPO0  
Y07 Y17 Y27 Y37  
Y06 Y16 Y26 Y36  
Y05 Y15 Y25 Y35  
Y04 Y14 Y24 Y34  
Y03 Y13 Y23 Y33  
Y02 Y12 Y22 Y32  
Y01 Y11 Y21 Y31  
Y00 Y10 Y20 Y30  
U07 U05 U03 U01  
U06 U04 U02 U00  
V07 V05 V03 V01  
V06 V04 V02 V00  
Y07  
Y06  
Y05  
Y04  
Y03  
Y02  
Y01  
Y00  
U07  
U06  
U05  
U04  
U03  
U02  
U01  
U00  
0
Y17  
Y16  
Y15  
Y14  
Y13  
Y12  
Y11  
Y10  
V07  
V06  
V05  
V04  
V03  
V02  
V01  
V00  
1
U07 Y07 V07 Y17  
U06 Y06 V06 Y16  
U05 Y05 V05 Y15  
U04 Y04 V04 Y14  
U03 Y03 V03 Y13  
U02 Y02 V02 Y12  
U01 Y01 V01 Y11  
U00 Y00 V00 Y10  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
R7  
R6  
R7  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
G7  
G6  
G5  
G4  
G3  
G2  
B7  
G7  
G6  
G5  
R2  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
R1  
R0  
G1  
G0  
B2  
X
X
X
X
0
X
X
X
X
1
X
X
X
X
2
X
X
X
X
3
B6  
B5  
B4  
B1  
B3  
B0  
Pixel  
0
1
note 5  
note 6  
order Y  
Pixel  
order UV  
0
0
0
Data rates  
LLC2  
LLC2  
LLC  
LLC2  
I2C-bus  
control  
signals  
OFTS0 = 0  
OFTS1 = 1  
RGB888 = X  
OFTS0 = 1  
OFTS1 = 0  
RGB888 = X  
OFTS0 = 1  
OFTS1 = 1  
OFTS0 = 0  
OFTS1 = 0  
RGB888 = 0  
OFTS0 = 0  
OFTS1 = 0  
RGB888 = 1  
RGB888 = X  
1998 May 15  
36  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Notes to Table 5  
1. VPO bus allows connection to 5 V video data bus systems.  
2. Values in accordance with CCIR 601.  
3. Before and after the video data, video timing codes are inserted in accordance with CCIR 656.  
a) VPO15 to VPO8 = VPO7 to VPO0 = CCIR 656 data if I2C-bus bit TCLO = 0  
b) VPO15 to VPO8 = CCIR 656 data, VPO7 to VPO0 = 3-state if I2C-bus bit TCLO = 1.  
4. During HREF = LOW RGB levels are set to 16 (10 hex). RGB 16-bit is achieved by dropping the LSBs of the 8-bit  
signals (after dithering if desired).  
5. CREF = 0 (see Fig.17).  
6. CREF = 1 (see Fig.17).  
+255  
+255  
+240  
+255  
+240  
blue 100%  
blue 75%  
red 100%  
red 75%  
white  
+235  
+212  
+212  
colourless  
colourless  
LUMINANCE 100%  
+128  
+128  
+128  
U-COMPONENT  
V-COMPONENT  
yellow 75%  
cyan 75%  
+44  
+16  
0
+44  
+16  
0
yellow 100%  
cyan 100%  
black  
+16  
0
MGC634  
a. Y output range.  
b. U output range (Cb).  
c. V output range (Cr).  
CCIR Rec. 602 digital levels.  
Equations for modification to the YUV levels via BCS control I2C-bus bytes BRIG, CONT and SATN.  
Luminance:  
CONT  
YOUT = Int ----------------- × (Y 128) + BRIG  
71  
Chrominance:  
SATN  
UVOUT = Int ---------------- × (Cr, Cb 128) + 128  
64  
It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard.  
Fig.28 VPO output signal range with default BCS settings.  
1998 May 15  
37  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
+255  
+209  
+255  
+199  
white  
white  
LUMINANCE  
LUMINANCE  
black  
black shoulder  
+71  
+60  
black shoulder = black  
+60  
SYNC  
SYNC  
1
1
sync bottom  
sync bottom  
MGD700  
a. For sources containing 7.5 IRE black level offset (e.g. NTSCM).  
VBI data levels are not dependent on BCS settings.  
b. For sources not containing black level offset.  
Fig.29 VBI data bypass output range.  
quartz (3rd harmonic)  
24.576 MHz  
XTAL  
XTAL  
54  
55  
54  
55  
C =  
10 pF  
SAA7111A  
SAA7111A  
XTALI  
XTALI  
MGG072  
L = 10 µH ± 20%  
C =  
10 pF  
C =  
1 nF  
a. With quartz crystal.  
b. With external clock.  
Order number: Philips 4322 143 05291.  
Fig.30 Oscillator application.  
38  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
16 APPLICATION INFORMATION  
V
DD  
C15  
V
DDA  
C9  
C14  
100 nF  
C13  
C8  
100 nF  
100 nF  
C12  
BST  
C7  
100 nF  
V
100 nF  
C11  
SS  
n.c.  
n.c.  
4
n.c.  
100 nF  
100 nF  
V
SSA  
V
100 nF  
SS  
15 11  
7
59 58  
18  
3
2
57 41  
33 25  
15  
C4  
R10  
34  
35  
AI22  
6
14  
13  
12  
11  
27 Ω  
R4  
22 nF  
36  
37  
38  
39  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
V
47 Ω  
SSA  
C3  
R9  
10  
9
8
7
6
5
4
3
2
1
0
8
AI21  
27 Ω  
R3  
22 nF  
V
47 Ω  
VPO(15 : 0)  
SSA  
C2  
R8  
AI12  
10  
27 Ω  
R2  
22 nF  
V
47 Ω  
SSA  
C1  
R7  
AI11  
12  
24  
SAA7111A  
27 Ω  
R1  
22 nF  
V
47 Ω  
SSA  
R5  
31  
17  
27  
30  
60  
28  
29  
53  
HREF  
V
DDD  
SCL  
VREF  
1 kΩ  
63  
62  
HS  
VS  
SDA  
FEI  
RTCO  
RTS1  
RTS0  
GPSW  
AOUT  
52  
R6 1 kΩ  
V
SS  
XTAL  
14  
20  
LLC  
54  
55  
Q1(24.576 MHz)  
21  
22  
23  
LLC2  
CREF  
XTALI  
RES  
10  
L1  
µH  
C17  
C18  
C16  
1 nF  
1
16  
9
13  
40  
26  
61  
19  
5
56  
32  
64  
10 pF  
10 pF  
V
n.c.  
SS  
MGG071  
V
n.c.  
V
V
SS  
SS  
SSA  
Fig.31 Application diagram.  
39  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
VPO (15 : 11)  
R (7 : 3)  
15  
14  
13  
12  
11  
10  
9
34  
35  
36  
37  
38  
39  
42  
43  
3
G (7 : 5)  
G (4 : 2)  
VPO (10 : 8)  
VPO (7 : 5)  
VPO  
(15 : 8)  
3
3
8
V
SS  
V
V
OEN  
D7  
DD  
O7  
DD  
R (2 : 0)  
7
6
5
4
3
2
1
0
44  
45  
46  
47  
48  
49  
50  
51  
R (7 : 0)  
3
8
D6  
O6  
O5  
O4  
O3  
O2  
O1  
00  
D5  
G (1 : 0)  
B (2 : 0)  
e.g.  
D4  
G (7 : 0)  
B (7 : 0)  
VPO  
(7 : 0)  
2
3
8
8
74HCT574  
D3  
D2  
D1  
D0  
V
CLK  
SS  
V
SS  
VPO (4 : 0)  
SAA7111A  
B (7 : 3)  
5
HREF  
31  
17  
27  
30  
60  
28  
29  
53  
14  
20  
21  
32  
VREF  
HS  
VS  
RTCO  
RTS1  
RTS0  
GPSW  
AOUT  
LLC  
e.g. 74HCT240  
LLC2  
LLC2N  
CREF  
RES  
23  
MGG073  
I2C-bus control bits:  
OFTS(1 : 0) = 00 (subaddress 10H, bits D7 and D6).  
RGB888 = 1 (subaddress 12H, bit D3).  
Fig.32 Application diagram for RGB 24-bit output format.  
Place the coupling (clamp) capacitors close to the analog  
input pins. Place the termination resistors close to the  
coupling capacitors. Care should be exercised concerning  
the hidden layout capacitors around the crystal  
application. To avoid reflection effects use serial resistors  
in the clock, sync and data lines.  
16.1 Layout hints  
Use separate ground planes for analog and digital ground.  
Connect these planes at one point directly under the  
device, by using a zero resistor. Use separate supply  
lines for analog and digital supply. Place the supply  
decoupling capacitors close to the supply pins.  
1998 May 15  
40  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17 I2C-BUS DESCRIPTION  
17.1 I2C-bus format  
Table 7 Write procedure  
S
SLAVE ADDRESS W  
ACK-s  
SUBADDRESS  
ACK-s  
DATA (N BYTES)  
ACK-s  
P
P
Table 8 Read procedure (combined format)  
S
SLAVE ADDRESS W  
SLAVE ADDRESS R  
ACK-s  
ACK-s  
SUBADDRESS  
DATA (N BYTES)  
ACK-s  
ACK-m  
Sr  
Table 9 Description of I2C-bus format  
CODE  
DESCRIPTION  
S
START condition  
Sr  
repeated START condition  
Slave address W 0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH)  
Slave address R  
ACK-s  
0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH)  
acknowledge generated by the slave  
acknowledge generated by the master  
subaddress byte; see Table 10  
ACK-m  
Subaddress  
Data  
data byte; see Table 10; note 1  
P
STOP condition  
X = LSB slave  
address  
read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read  
(the circuit is slave transmitter)  
Slave address  
Subaddresses  
read = 49H or 4BH; note 2  
write = 48H or 4AH  
IICSA = 0 or 1  
00H chip version  
read and write; note 3  
01H reserved  
02h to 05H front-end part  
06H to 13H decoder part  
14H reserved  
read and write  
read and write  
15H to 17H decoder part  
18H to 19H reserved  
1AH to 1CH Line-21 text slicer part  
1DH to 1EH reserved  
1FH status byte  
read and write  
read only  
read only  
Notes  
1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed.  
2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with  
the I2C-bus specification).  
3. The I2C-bus subaddress 00 has to be initialized with 0 before being read.  
1998 May 15  
41  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Table 10 I2C-bus receiver/transmitter overview  
READ  
WRITE  
IICSA  
SLAVE ADDRESS  
49H  
4BH  
48H  
4AH  
0
1
REGISTER  
FUNCTION  
SUB-  
ADDR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Chip version  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
ID07  
(1)  
ID06  
(1)  
ID05  
(1)  
ID04  
(1)  
ID03  
(1)  
ID02  
(1)  
ID01  
(1)  
ID00  
(1)  
Reserved  
Analog input contr 1  
Analog input contr 2  
Analog input contr 3  
Analog input contr 4  
Horizontal sync start  
Horizontal sync stop  
Sync control  
FUSE1 FUSE0 GUDL2 GUDL1  
GUDL0  
HOLDG  
GAI13  
GAI23  
HSB3  
MODE2  
GAFIX  
GAI12  
GAI22  
HSB2  
MODE1  
GAI28  
GAI11  
GAI21  
HSB1  
MODE0  
GAI18  
GAI10  
GAI20  
HSB0  
(1)  
HLNRS VBSL WPOFF  
GAI17  
GAI27  
HSB7  
HSS7  
AUFD  
BYPS  
GAI16  
GAI26  
HSB6  
HSS6  
FSEL  
GAI15  
GAI25  
HSB5  
HSS5  
EXFIL  
GAI14  
GAI24  
HSB4  
HSS4  
(1)  
HSS3  
HSS2  
HSS1  
HSS0  
VTRC  
VBLB  
HPLL  
VNOI1  
APER1  
BRIG1  
VNOI0  
APER0  
BRIG0  
Luminance control  
PREF BPSS1 BPSS0  
UPTCV  
BRIG2  
Luminance  
brightness  
BRIG7 BRIG6 BRIG5 BRIG4  
BRIG3  
Luminance contrast  
Chroma saturation  
Chroma Hue control  
Chroma control  
Reserved  
0B  
0C  
0D  
0E  
CONT7 CONT6 CONT5 CONT4  
SATN7 SATN6 SATN5 SATN4  
HUEC7 HUEC6 HUEC5 HUEC4  
CDTO CSTD2 CSTD1 CSTD0  
CONT3  
SATN3  
HUEC3  
CONT2  
SATN2  
HUEC2  
CONT1  
SATN1  
HUEC1  
CONT0  
SATN0  
HUEC0  
DCCF  
(1)  
FCTC  
(1)  
CHBW1  
CHBW0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
0F  
Format/delay control  
Output control 1  
Output control 2  
Output control 3  
Reserved  
10  
OFTS1 OFTS0 HDEL1 HDEL0  
GPSW CM99 FECO COMPO  
RTSE1 RTSE0 TCLO CBR  
VCTR1 VCTR0 CCTR1 CCTR0  
VRLN  
OEYC  
YDEL2  
OEHV  
DIT  
YDEL1  
VIPB  
YDEL0  
COLO  
AOSL0  
11  
12  
RGB888  
AOSL1  
13  
BCHI1  
(1)  
BCHI0  
(1)  
BCLO1  
BCLO0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
14  
V_GATE1_START  
V_GATE1_STOP  
V_GATE1_MSB  
Reserved  
15  
VSTA7 VSTA6 VSTA5 VSTA4  
VSTO7 VSTO6 VSTO5 VSTO4  
VSTA3  
VSTA2  
VSTA1  
VSTO1  
VSTA0  
VSTO0  
16  
VSTO3  
VSTO2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
17  
VSTO8  
VSTA8  
(1)  
(1)  
(1)  
(1)  
18-19  
1A  
Text slicer status  
F2VAL  
F2RDY  
F1VAL  
F1RDY  
1B  
P1  
BYTE16 BYTE15 BYTE14 BYTE13  
BYTE26 BYTE25 BYTE24 BYTE23  
BYTE12 BYTE11 BYTE10  
BYTE22 BYTE21 BYTE20  
Decoded bytes of  
the text slicer  
1C  
1D-1E  
1F  
P2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
Status byte  
STTC  
HLCK  
FIDT  
GLIMT  
GLIMB  
WIPA  
SLTCA  
CODE  
Note  
1. All unused control bits must be programmed with logic 0.  
1998 May 15  
42  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2 I2C-bus detail  
The I2C-bus receiver slave address is 48H/49H. Subaddresses 0F, 14, 18, 19, 1D and 1E are reserved; subaddress 01  
is reserved for chip version.  
17.2.1 SUBADDRESS 00  
Table 11 Chip version SA00; note 1  
LOGIC LEVELS  
FUNCTION  
ID07  
ID06  
ID05  
ID04  
ID03  
ID02  
ID01  
ID00  
V1  
V2  
0
0
0
0
0
1
1
0
X
X
X
X
X
X
X
X
Chip version  
Note  
1. X = reserved.  
17.2.2 SUBADDRESS 02  
Table 12 Analog control 1 SA02; note 1  
CONTROL BITS D2 TO D0  
FUNCTION(2)  
MODE 2  
MODE 1  
MODE 0  
Mode 0 : CVBS (automatic gain)  
Mode 1 : CVBS (automatic gain)  
Mode 2 : CVBS (automatic gain)  
Mode 3 : CVBS (automatic gain)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Mode 4 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level)  
Mode 5 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level)  
Mode 6 : Y (automatic gain) + C (gain channel 2 adapted to Y gain)  
Mode 7 : Y (automatic gain) + C (gain channel 2 adapted to Y gain)  
Notes  
1. Mode select (see Figs 33 to 40).  
2. For modes 0 to 3 use BYPS(SA09,D7) = 0 (chrominance trap active), for modes 4 to 7 use BYPS = 1 (chrominance  
trap bypassed).  
Table 13 Analog control 1 SA 02, D5 to D3 (see Fig.14)  
CONTROL BITS D5 TO D3  
DECIMAL VALUE  
UPDATE HYSTERESIS FOR 9-BIT GAIN  
GUDL 2  
GUDL 1  
GUDL 0  
0....  
....7  
off  
0
1
0
1
0
1
±7 LSB  
1998 May 15  
43  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Table 14 Analog control  
CONTROL BITS D7 AND D6  
ANALOG FUNCTION SELECT FUSE  
FUSE 1  
FUSE 0  
Amplifier plus anti-alias filter bypassed  
0
0
1
1
0
1
0
1
Amplifier active  
Amplifier plus anti-alias filter active  
AI22  
AI21  
handbook, halfpage  
handbookA, hI2a2lfpage  
AI21  
AD2  
AD1  
AD2  
AD1  
CHROMA  
CHROMA  
AI12  
AI11  
LUMA  
AI12  
AI11  
LUMA  
MGC638  
MGC637  
Fig.33 Mode 0; CVBS (automatic gain).  
Fig.34 Mode 1; CVBS (automatic gain).  
handbookA, hI2al2fpage  
AI22  
AI21  
handbook, halfpage  
AD2  
AD1  
AD2  
AD1  
AI21  
CHROMA  
CHROMA  
AI12  
AI11  
LUMA  
AI12  
AI11  
LUMA  
MGC639  
MGC640  
Fig.35 Mode 2; CVBS (automatic gain).  
Fig.36 Mode 3; CVBS (automatic gain).  
handbookA, hI2al2fpage  
handbookA, hI2al2fpage  
AD2  
AD1  
AD2  
AD1  
AI21  
CHROMA  
AI21  
CHROMA  
AI12  
AI11  
LUMA  
AI12  
AI11  
LUMA  
MGC641  
MGC642  
Fig.37 Mode 4 Y (automatic gain) + C  
(gain channel 2 fixed to GAI2 level).  
Fig.38 Mode 5 Y (automatic gain) + C  
(gain channel 2 fixed to GAI2 level).  
1998 May 15  
44  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
handbookA, hI2al2fpage  
AI21  
handbookA, hI2al2fpage  
AD2  
AD1  
AD2  
AD1  
CHROMA  
AI21  
CHROMA  
AI12  
AI11  
LUMA  
AI12  
AI11  
LUMA  
MGC643  
MGC644  
Fig.39 Mode 6 Y (automatic gain) + C  
(gain channel 2 adapted to Y gain).  
Fig.40 Mode 7 Y (automatic gain) + C  
(gain channel 2 adapted to Y gain).  
17.2.3 SUBADDRESS 03  
Table 15 Analog control 2 (AICO2) SA03  
FUNCTION  
BIT NAME  
GAI18  
LOGIC LEVEL  
see Table 16  
see Table 17  
CONTROL BIT  
Static gain control channel 1 (GAI18) (see SA04)  
Sign bit of gain control  
D0  
D1  
Static gain control channel 2 (GAI28) (see SA05)  
Sign bit of gain control  
GAI28  
Gain control fix (GAFIX)  
Automatic gain controlled by MODE 1 and MODE 0  
Gain control is user programmable via GAI1 + GAI2  
GAFIX  
GAFIX  
0
1
D2  
D2  
Automatic gain control integration (HOLDG)  
AGC active  
HOLDG  
HOLDG  
0
1
D3  
D3  
AGC integration hold (freeze)  
White peak off (WPOFF)  
White peak control active  
White peak off  
WPOFF  
WPOFF  
0
1
D4  
D4  
Vertical blanking select (VBSL)  
Long vertical blanking  
Short vertical blanking  
VBSL  
VBSL  
0
1
D5  
D5  
HL not reference select (HLNRS)  
Normal clamping by HL not  
Reference select by HL not  
HLNRS  
HLNRS  
0
1
D6  
D6  
1998 May 15  
45  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.4 SUBADDRESS 04  
Table 16 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0  
SIGN  
BIT  
CONTROL BITS D7 TO D0  
DECIMAL  
VALUE  
GAIN  
(dB)  
GAI18  
GAI17  
GAI16  
GAI15  
GAI14  
GAI13  
GAI12  
GAI11  
GAI10  
0....  
5.98  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
....255  
256....  
....511  
0
5.98  
17.2.5 SUBADDRESS 05  
Table 17 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05, D7 to D0  
SIGN BIT  
(SA 03, D1)  
CONTROL BITS D7 to D0  
GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20  
DECIMAL  
VALUE  
GAIN  
(dB)  
GAI28  
0....  
5.98  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
....255  
256....  
....511  
0
5.98  
17.2.6 SUBADDRESS 06  
Table 18 Horizontal sync begin SA 06, D7 to D0  
CONTROL BITS D7 to D0  
HSB4 HSB3  
DELAY TIME  
(STEP SIZE = 8/LLC)  
HSB7  
HSB6  
HSB5  
HSB2  
HSB1  
HSB0  
128...108  
107...  
forbidden (outside available central counter range)  
1
0
0
0
1
1
0
1
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
1
...108 (50Hz)  
...107 (60Hz)  
109...127 (50Hz)  
108...127 (60Hz)  
forbidden (outside available central counter range)  
1998 May 15  
46  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.7 SUBADDRESS 07  
Table 19 Horizontal sync stop SA 07, D7 to D0  
CONTROL BITS D7 to D0  
HSS5 HSS4 HSS3  
forbidden (outside available central counter range)  
DELAY TIME  
(STEP SIZE = 8/LLC)  
HSS7  
HSS6  
HSS2  
HSS1  
HSS0  
128...108  
107...  
1
0
0
0
1
1
0
1
1
1
0
0
0
1
1
1
1
0
0
0
1
1
0
1
...108 (50Hz)  
...107 (60Hz)  
109...127 (50Hz)  
108...127 (60Hz)  
forbidden (outside available central counter range)  
17.2.8 SUBADDRESS 08  
Table 20 Sync control SA 08, D7 to D5, D3 to D0  
FUNCTION  
BIT NAME  
LOGIC LEVEL CONTROL BIT  
Vertical noise reduction (VNOI)  
Normal mode  
VNOI1  
VNOI0  
VNOI1  
VNOI0  
VNOI1  
VNOI0  
VNOI1  
VNOI0  
0
0
0
1
1
0
1
1
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
Searching mode  
Free running mode  
Vertical noise reduction bypassed  
Horizontal PLL (HPLL)  
PLL closed  
HPLL  
HPLL  
0
1
D2  
D2  
PLL open, horizontal frequency fixed  
TV/VTR mode select (VTRC)  
TV mode  
VTRC  
VTRC  
0
1
D3  
D3  
(recommended for poor quality TV signals only)  
VTR mode (recommended as default setting)  
Extended loop filter (EXFIL)  
Word width of the loop filter (LF2) amplification = 16-bit  
Word width of the loop filter (LF2) amplification = 14-bit  
EXFIL  
EXFIL  
0
1
D5  
D5  
Field selection (FSEL)  
50 Hz, 625 lines  
FSEL  
FSEL  
0
1
D6  
D6  
60 Hz, 525 lines  
Automatic field detection (AUFD)  
Field state directly controlled via FSEL  
Automatic field detection  
AUFD  
AUFD  
0
1
D7  
D7  
1998 May 15  
47  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.9 SUBADDRESS 09  
Table 21 Luminance control SA 09, D7 to D0  
FUNCTION  
BIT NAME  
LOGIC LEVEL  
CONTROL BIT  
Aperture factor (APER)  
Aperture factor = 0  
APER1  
APER0  
APER1  
APER0  
APER1  
APER0  
APER1  
APER0  
0
0
0
1
1
0
1
1
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
Aperture factor = 0.25  
Aperture factor = 0.5  
Aperture factor = 1.0  
Update time interval for AGC value (UPTCV)  
Horizontal update (once per line)  
UPTCV  
UPTCV  
0
1
D2  
D2  
Vertical update (once per field)  
Vertical blanking luminance bypass (VBLB)  
Active luminance processing  
VBLB  
VBLB  
0
1
D3  
D3  
Luminance bypass during vertical blanking  
Aperture band pass (centre frequency) (BPSS)  
Centre frequency = 4.1 MHz  
BPSS1  
BPSS0  
BPSS1  
BPSS0  
BPSS1  
BPSS0  
BPSS1  
BPSS0  
0
0
0
1
1
0
1
1
D5  
D4  
D5  
D4  
D5  
D4  
D5  
D4  
Centre frequency = 3.8 MHz; note 1  
Centre frequency = 2.6 MHz; note 1  
Centre frequency = 2.9 MHz; note 1  
Prefilter active (PREF)  
Bypassed  
PREF  
PREF  
0
1
D6  
D6  
Active  
Chrominance trap bypass (BYPS)  
Chrominance trap active; default for CVBS mode  
BYPS  
BYPS  
0
1
D7  
D7  
Chrominance trap bypassed; default for S-Video mode  
Note  
1. Not to be used with bypassed chrominance trap.  
1998 May 15  
48  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.10 SUBADDRESS 0A  
Table 22 Luminance brightness control BRIG7 to BRIG0 SA 0A  
CONTROL BITS D7 to D0  
OFFSET  
BRIG7  
BRIG6  
BRIG5  
BRIG4  
BRIG3  
BRIG2  
BRIG1  
BRIG0  
255 (bright)  
128 (CCIR level)  
0 (dark)  
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
17.2.11 SUBADDRESS 0B  
Table 23 Luminance contrast control CONT7 to CONT0 SA 0B  
CONTROL BITS D7 to D0  
GAIN  
CONT7  
CONT6  
CONT5  
CONT4  
CONT3  
CONT2  
CONT1  
CONT0  
1.999 (maximum)  
1.109 (CCIR level)  
1.0  
0
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0 (luminance off)  
1 (inverse luminance)  
2 (inverse luminance)  
17.2.12 SUBADDRESS 0C  
Table 24 Chrominance saturation control SATN7 to SATN0 SA 0C  
CONTROL BITS D7 to D0  
GAIN  
SATN7  
SATN6  
SATN5  
SATN4  
SATN3  
SATN2  
SATN1  
SATN0  
1.999 (maximum)  
1.0 (CCIR level)  
0 (colour off)  
0
0
0
1
1
1
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1 (inverse  
chrominance)  
2 (inverse  
1
0
0
0
0
0
0
0
chrominance)  
17.2.13 SUBADDRESS 0D  
Table 25 Chrominance hue control HUEC7 to HUEC0 SA 0D  
CONTROL BITS D7 to D0  
HUE PHASE (DEG)  
HUEC7  
HUEC6  
HUEC5  
HUEC4  
HUEC3  
HUEC2  
HUEC1  
HUEC0  
+178.6....  
....0....  
0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
....180  
1998 May 15  
49  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.14 SUBADDRESS 0E  
Table 26 Chrominance control SA 0E  
LOGIC  
LEVEL  
CONTROL  
BIT  
FUNCTION  
BIT NAME  
Chroma bandwidth (CHBW0 and CHBW1)  
Small bandwidth (620 kHz)  
CHBW1  
CHBW0  
CHBW1  
CHBW0  
CHBW1  
CHBW0  
CHBW1  
CHBW0  
0
0
0
1
1
0
1
1
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
Nominal bandwidth (800 kHz)  
Medium bandwidth (920 kHz)  
Wide bandwidth (1000 kHz)  
Fast colour time constant (FCTC)  
Nominal time constant  
Fast time constant  
FCTC  
FCTC  
0
1
D2  
D2  
Disable chrominance comb filter (DCCF)  
Chrominance comb filter on (during VREF = 1) (see Figs 24 and 25)  
Chrominance comb filter off  
DCCF  
DCCF  
0
1
D3  
D3  
Colour standard (CSTD0 to CSTD2); logic levels 100, 110 and 111 are reserved, do not use  
Colour standard control automatic switching between PAL BGHI and  
NTSC M (NTSC-Japan with special level adjustment; luminance  
brightness subaddress 0A = 95H, luminance contrast  
subaddress 0BH = 48H)  
CSTD2  
CSTD1  
CSTD0  
0
0
0
D6  
D5  
D4  
Colour standard control automatic switching between NTSC 4.43 (50 Hz)  
and PAL 4.43 (60 Hz)  
CSTD2  
CSTD1  
CSTD0  
CSTD2  
CSTD1  
CSTD0  
CSTD2  
CSTD1  
CSTD0  
CSTD2  
CSTD1  
CSTD0  
0
0
1
0
1
0
0
1
1
1
0
1
D6  
D5  
D4  
D6  
D5  
D4  
D6  
D5  
D4  
D6  
D5  
D4  
Colour standard control automatic switching between PAL N and  
NTSC 4.43 (60 Hz)  
Colour standard control automatic switching between NTSC N and  
PAL M  
Colour standard control automatic switching between SECAM and  
PAL 4.43 (60 Hz)  
Clear DTO (CDTO)  
Disabled  
CDTO  
CDTO  
0
1
D7  
D7  
Every time CDTO is set, the internal subcarrier DTO phase is reset to 0°  
and the RTCO output generates a logic 0 at time slot 68 (see RTCO  
description Fig.20). So an identical subcarrier phase can be generated by  
an external device (e.g. an encoder).  
1998 May 15  
50  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.15 SUBADDRESS 10  
Table 27 Format/delay control SA 10  
CONTROL BITS D2 to D0  
YDEL1  
LUMINANCE DELAY COMPENSATION  
(STEPS IN 2/LLC)  
YDEL2  
YDEL0  
4...  
...0...  
...3  
1
0
0
0
0
1
0
0
1
Table 28 VREF pulse position and length VRLN SA 10 (D3)  
VREF at 60 Hz 525 LINES(1)  
VRLN  
VREF at 50 Hz 625 LINES(1)  
0
1
0
1
Length  
240  
242  
286  
288  
Line number  
Field 1(2)  
Field 2(2)  
first  
last  
258 (261)  
first  
last  
259 (262)  
first  
24  
last  
309  
622  
first  
23  
last  
310  
623  
19 (22)  
18 (21)  
282 (285) 521 (524) 281 (284) 522 (525)  
337  
336  
Notes  
1. Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9).  
2. The numbers given in parenthesis refer to CCIR line counting.  
Table 29 Fine position of HS HDEL0 and HDEL1 SA 10  
CONTROL BITS D5 and D4  
FINE POSITION OF HS WITH A STEP SIZE  
OF 2/LLC  
HDEL1  
HDEL0  
0
1
2
3
0
0
1
1
0
1
0
1
Table 30 Output format selection OFTS0 and OFTS1 SA 10  
CONTROL BITS D7 and D6  
FORMATS  
OFTS1  
OFTS0  
RGB (5, 6 and 5), RGB (8, 8 and 8)  
(dependent on control bit RGB888); see  
Table 32  
0
0
YUV 422 16 bits  
YUV 411 12 bits  
0
1
1
1
0
1
YUV CCIR-656 8 bits  
1998 May 15  
51  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.16 SUBADDRESS 11  
Table 31 Output control 1 SA 11  
FUNCTION  
BIT NAME  
LOGIC LEVEL  
CONTROL BIT  
Colour on (COLO)  
Automatic colour killer  
Colour forced on  
COLO  
COLO  
0
1
D0  
D0  
Decoder VIP bypassed (VIPB)  
DMSD data to YUV output  
VIPB  
VIPB  
0
1
D1  
D1  
ADC data to YUV output; dependent on mode settings  
Output enable horizontal/vertical sync (OEHV)  
HS, HREF, VREF and VS high-impedance inputs  
Outputs HS, HREF, VREF and VS active  
OEHV  
OEHV  
0
1
D2  
D2  
Output enable YUV data (OEYC)  
VPO-bus high-impedance inputs  
Output VPO-bus active  
OEYC  
OEYC  
0
1
D3  
D3  
Inverse composite blank (COMPO)  
VREF is vertical reference  
COMPO  
COMPO  
0
1
D4  
D4  
VREF is inverse composite blank  
FEI control (FECO)  
FEI sampling at CREF = LOW  
(SAA7110 compatible); (see Fig.19)  
FECO  
FECO  
0
1
D5  
D5  
FEI sampling at CREF = HIGH  
Compatibility to SAA7199 (CM99)  
Default value  
CM99  
CM99  
0
1
D6  
D6  
To be set if SAA7199 (digital encoder) is used for  
re-encoding in conjunction with RTCO  
General purpose switch (GPSW)  
Switches directly pin 64 GPSW  
GPSW  
GPSW  
0
1
D7  
D7  
1998 May 15  
52  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.17 SUBADDRESS 12  
Table 32 Output control 2 SA 12, D7 to D6, D4 to D0  
FUNCTION  
Analog test select (AOSL)  
BIT NAME  
LOGIC LEVEL  
CONTROL BIT  
AOUT connected to internal test point 1  
AOSL1  
AOSL0  
AOSL1  
AOSL0  
AOSL1  
AOSL0  
AOSL1  
AOSL0  
0
0
0
1
1
0
1
1
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
AOUT connected to input AD1  
AOUT connected to input AD2  
AOUT connected to internal test point 2  
Dithering (noise shaping) control (DIT)  
Dithering off  
DIT  
DIT  
0
1
D2  
D2  
Dithering on  
RGB output format selection (RGB888)  
RGB (5, 6 and 5)  
RGB (8, 8 and 8)  
RGB888  
RGB888  
0
1
D3  
D3  
Chrominance interpolation filter function (CBR)  
Cubic interpolation (default)  
CBR  
CBR  
0
1
D4  
D4  
Linear interpolation (lower bandwidth)  
3-state control VPO7 to VPO0 (TCLO)  
VPO7 to VPO0 depends on OEYC, FEI only (default)  
(see Figs 18, 19 and 22)  
TCLO  
TCLO  
0
1
D5  
D5  
VPO7 to VPO0 in 3-state [and OFTS (1 : 0) = 3]  
(see Tables 3 and 6)  
Real time outputs mode select (RTSE0)  
ODD switched to output pin 40  
VL switched to output pin 40  
RTSE0  
RTSE0  
0
1
D6  
D6  
Real time outputs mode select (RTSE1)  
PLIN switched to output pin 39  
RTSE1  
RTSE1  
0
1
D7  
D7  
HL switched to output pin 39  
1998 May 15  
53  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.18 SUBADDRESS 13  
Table 33 Output control 3 SA 13  
FUNCTION  
BIT NAME  
LOGIC LEVEL  
CONTROL BIT  
Bypass control LOW for VPO7 to VPO0  
No bypass  
BCLO1  
BCLO0  
BCLO1  
BCLO0  
BCLO1  
BCLO0  
BCLO1  
BCLO0  
0
0
0
1
1
0
1
1
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
Permanent bypass  
Bypass controlled by V_GATE  
Bypass controlled by delayed V_GATE  
Bypass control HIGH for VPO15 to VPO8  
No bypass  
BCHI1  
BCHI0  
BCHI1  
BCHI0  
BCHI1  
BCHI0  
BCHI1  
BCHI0  
0
0
0
1
1
0
1
1
D3  
D2  
D3  
D2  
D3  
D2  
D3  
D2  
Permanent bypass  
Bypass controlled by V_GATE  
Bypass controlled by delayed V_GATE  
Clock Reference Output Control  
CREF is independent of VREF  
CCTR1  
CCTR0  
CCTR1  
CCTR0  
CCTR1  
CCTR0  
CCTR1  
CCTR0  
0
0
0
1
1
0
1
1
D5  
D4  
D5  
D4  
D5  
D4  
D5  
D4  
CREF is LOW if VREF = 0  
CREF is HIGH if VREF = 0  
CREF always = 1  
Vertical Reference Output Control (VREF)  
Internal VREF  
VCTR1  
VCTR0  
VCTR1  
VCTR0  
VCTR1  
VCTR0  
VCTR1  
VCTR0  
0
0
0
1
1
0
1
1
D7  
D6  
D7  
D6  
D7  
D6  
D7  
D6  
VREF_CCIR  
Programmable V_GATE  
Delayed programmable V_GATE  
1998 May 15  
54  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
17.2.19 SUBADDRESS 15  
Table 34 Start of decoded data on VPO-port SA 15; note 1  
MSB  
(SA 17,  
D0)  
FRAME  
CONTROL BITS D7 to D0  
DECIMA  
L VALUE  
FIELD  
LINE(2)  
COUNTING  
VSTA8  
VSTA7  
VSTA6  
VSTA5  
VSTA4  
VSTA3  
VSTA2  
VSTA1  
VSTA0  
50 Hz 1st  
2nd  
1
314  
312  
0....  
1
0
0
1
1
1
0
0
0
1st  
2
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
0
0
0
1
0
0
1
2nd  
315  
1st  
312  
....310  
262  
2nd  
625  
60 Hz 1st  
2nd  
1 (4)  
264 (267)  
2 (5)  
1st  
0....  
2nd  
265 (268)  
262 (265)  
525 (3)  
1st  
....260  
2nd  
Notes  
1. Start of decoded data on VPO-port (end of bypassed region; start of VREF if selected by VCTR1 and VCTR0; see Figs 8 and 10).  
2. Line numbers in brackets refer to CCIR line counting.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
17.2.20 SUBADDRESS 16  
TABLE 35 STOP OF DECODED DATA ON VPO-PORT SA 16; NOTE 1  
MSB  
FRAME  
CONTROL BITS D7 to D0  
DECIMAL  
(SA 17, D0)  
FIELD  
LINE(2)  
COUNTING  
VALUE  
VSTO8  
VSTO7  
VSTO6  
VSTO5  
VSTO4  
VSTO3  
VSTO2  
VSTO1  
VSTO0  
50 Hz 1st  
2nd  
1
314  
312  
1
0
0
1
1
1
0
0
0
1st  
2
0....  
....310  
262  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
0
0
0
1
0
0
1
2nd  
315  
1st  
312  
2nd  
625  
60 Hz 1st  
2nd  
1 (4)  
264 (267)  
2 (5)  
1st  
0....  
2nd  
265 (268)  
262 (265)  
525 (3)  
1st  
....260  
2nd  
NOTES  
1. STOP OF DECODED DATA ON VPO-PORT (BEGIN OF BYPASSED REGION; STOP OF VREF IF SELECTED BY VCTR1 AND VCTR0; SEE FIGS 8 AND 10).  
2. LINE NUMBERS IN BRACKETS REFER TO CCIR LINE COUNTING.  
17.2.21 SUBADDRESS 17  
Table 36 Sign bits of the VBI-data stream control  
FUNCTION  
BIT NAME  
LOGIC LEVEL  
CONTROL BIT  
VBI-data stream start (VSTA8); see SA 15  
Sign bit VBI-data stream start  
VSTA8  
VSTO8  
see Table 34  
see Table 35  
D0  
D1  
VBI-data stream stop (VSTO8); see SA 16  
Sign bit VBI-data stream stop  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
17.2.22 SUBADDRESS 1A (READ-ONLY REGISTER)  
Table 37 Line-21 text slicer status SA 1A, D3 to D0  
I2C-BUS  
STATUS BIT  
NAME  
FUNCTION  
STATUS BIT  
F1RDY  
F1VAL  
F2RDY  
F2VAL  
new data on field 1 has been acquired (for asynchronous reading); active HIGH  
line-21 of field 1 carries valid data; active HIGH  
D0  
D1  
D2  
D3  
new data on field 2 has been acquired (for asynchronous reading); active HIGH  
line-21 of field 2 carries valid data; active HIGH  
17.2.23 SUBADDRESS 1B (READ-ONLY REGISTER)  
Table 38 First decoded data byte of the text slicer SA 1B  
I2C-BUS  
TEXT DATA  
BITS  
FUNCTION  
DATA BITS  
BYTE1 (6 to 0) data bit 6 to 0 of first data byte  
D6 to D0  
D7  
P1  
parity error flag bit; bit goes HIGH when a parity error has occurred  
17.2.24 SUBADDRESS 1C (READ-ONLY REGISTER)  
Table 39 Second decoded data byte of the text slicer SA 1C  
I2C-BUS  
TEXT DATA  
BITS  
FUNCTION  
DATA BITS  
BYTE2 (6 to 0) data bit 6 to 0 of second data byte  
D6 to D0  
D7  
P2  
parity error flag bit; bit goes HIGH when a parity error has occurred  
17.2.25 SUBADDRESS 1F (READ-ONLY REGISTER)  
Table 40 Status byte SA 1F  
I2C-BUS  
STATUS BIT  
NAME  
FUNCTION  
STATUS BIT  
CODE  
colour signal in accordance with selected standard has been detected; active  
HIGH  
D0  
SLTCA  
WIPA  
slow time constant active in WIPA-mode; active HIGH  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
white peak loop is activated; active HIGH  
GLIMB  
GLIMT  
FIDT  
gain value for active luminance channel is limited [min (bottom)]; active HIGH  
gain value for active luminance channel is limited [max (top)]; active HIGH  
identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz  
status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked  
HLCK  
STTC  
status bit for horizontal phase loop; LOW = TV time-constant,  
HIGH = VTR time-constant  
1998 May 15  
57  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
18 FILTER CURVES  
18.1 Anti-alias filter curve  
MGD138  
6
V
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.41 Anti-alias filter.  
18.2 TUF-block filter curve  
MGG067  
6
V
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.42 Interpolation filter for the upsampled CVBS-signal.  
58  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
18.3 Luminance filter curves  
MGD139  
18  
V
Y
(dB)  
(1)  
6
6  
(2)  
(4)  
(3)  
(1)  
(2)  
(4)  
(3)  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.  
Fig.43 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture bandpass centre  
frequencies.  
MGD140  
18  
V
Y
(dB)  
6
(1)  
(2)  
(3)  
(4)  
6  
18  
30  
(4)  
(3)  
(2)  
(1)  
0
2
4
6
8
f
Y (MHz)  
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.  
Fig.44 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors.  
1998 May 15  
59  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
MGD141  
18  
V
Y
(dB)  
6
(1)  
(2)  
(4)  
(3)  
6  
18  
30  
(1)  
(2)  
(4)  
(3)  
0
2
4
6
8
f
Y (MHz)  
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.  
Fig.45 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre  
frequencies.  
MGD142  
18  
V
Y
(dB)  
(1)  
(2)  
(3)  
(4)  
6
6  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = C0H; (2) = C1H; (3) = C2H; (4) = C3H.  
Fig.46 Luminance control SA 09H, Y/C mode, prefilter on, different aperture factors.  
60  
1998 May 15  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
MGD143  
18  
V
Y
(dB)  
6
(1)  
(2)  
(3)  
(4)  
6  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = 80H; (2) = 81H; (3) = 82H; (4) = 83H.  
Fig.47 Luminance control SA 09H, Y/C mode, prefilter off, different aperture factors.  
MGD144  
18  
V
Y
(dB)  
6
(1)  
(2)  
(1)  
(4)  
(2)  
(4)  
(3)  
(3)  
6  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.  
Fig.48 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre  
frequencies.  
1998 May 15  
61  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
MGD145  
18  
V
Y
(dB)  
6
(1)  
(2)  
(3)  
(4)  
(4)  
(3)  
(2)  
(1)  
6  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.  
Fig.49 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors.  
MGD146  
18  
V
Y
(dB)  
6
(1)  
(2)  
(4)  
(3)  
(1)  
(2)  
(4)  
(3)  
6  
18  
30  
0
2
4
6
8
f
Y (MHz)  
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.  
Fig.50 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre  
frequencies.  
1998 May 15  
62  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
18.4 Chrominance filter curves  
MGD147  
6
V
(dB)  
0
6  
(1)  
(2)  
(3)  
(4)  
12  
18  
24  
30  
36  
42  
48  
54  
(4)  
(1)  
(3)  
(2)  
0
0.54  
1.08  
1.62  
2,16  
2.7  
f
(MHz)  
(1) Transfer characteristics of the chrominance low-pass dependent on CHBW[1 : 0] settings. CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3)  
CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11.  
Fig.51 Chrominance filter.  
19 I2C-BUS START SET-UP  
The given values force the following behaviour of the SAA7111A:  
– The analog input AI11 expects a signal in CVBS format; analog anti-alias filter active  
– Automatic field detection  
– YUV 4 : 2 : 2 16-bit output format enabled  
– Outputs HS, HREF, VREF and VS active  
– Contrast, brightness and saturation control in accordance with CCIR standards  
– Chrominance processing with nominal bandwidth (800 kHz).  
1998 May 15  
63  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
Table 41 I2C-bus start set-up values  
VALUES (BIN)  
(HEX)  
SUB  
(HEX)  
FUNCTION  
chip version  
NAME(1)  
7
6
5
4
3
2
1
0
START  
00  
01  
02  
ID07 to ID00; see Table 9  
read only  
reserved  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
analog input control 1  
FUSE1 and FUSE0, GUDL2 to GUDL0,  
MODE2 to MODE0  
C0  
03  
analog input control 2  
X, HLNRS, VBSL, WPOFF, HOLDG,  
GAFIX, GAI28 and GAI18  
0
0
1
0
0
0
1
1
33  
04  
05  
06  
07  
08  
analog input control 3  
analog input control 4  
horizontal sync start  
horizontal sync stop  
sync control  
GAI17 to GAI10  
GAI27 to GAI20  
HSB7 to HSB0  
HSS7 to HSS0  
0
0
1
1
1
0
0
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
00  
00  
EB  
E0  
88  
AUFD, FSEL, EXFIL, X, VTRC, HPLL,  
VNOI1 and VNOI0  
09  
luminance control  
BYPS, PREF, BPSS1 and BPSS0, VBLB,  
UPTCV, APER1 and APER0  
0
0
0
0
0
0
0
1
01  
0A  
0B  
0C  
0D  
0E  
luminance brightness  
luminance contrast  
BRIG7 to BRIG0  
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
1
80  
47  
40  
00  
01  
CONT7 to CONT0  
chrominance saturation SATN7 to SATN0  
chroma hue control  
chrominance control  
HUEC7 to HUEC0  
CDTO, CSTD2 to CSTD0, DCCF, FCTC,  
CHBW1 and CHBW0  
0F  
10  
reserved  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
40  
format/delay control  
OFTS1 and OFTS0, HDEL1 and HDEL0,  
VRLN, YDEL2 to YDEL0  
11  
12  
13  
output control 1  
output control 2  
output control 3  
GPSW, CM99, FECO, COMPO, OEYC,  
OEHV, VIPB, and COLO  
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
1
1C  
00  
00  
RTSE1 and RTSE0, TCLO, CBR,  
RGB888 DIT, AOSL1 and AOSL0  
CCTR1 and CCTR0, BCHI1 and BCHI0,  
BCLO1 and BCLO0, VCTR1 and VCTR0  
0
0
0
0
0
0
0
0
14  
15  
16  
17  
reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
VBI-data stream start  
VBI-data stream stop  
MSBs for VBI control  
VSTA7 to VSTA0  
VSTO7 to VSTO0  
X, X, X, X, X, X, VSTO8, and VSTA8  
18-19 reserved  
1A  
text slicer status  
0, 0, 0, 0, F2VAL, F2RDY,  
F1VAL, and F1RDY  
read only register  
1B  
1C  
decoded bytes of the  
text slicer  
P1, BYTE1 (6 to 0)  
P2, BYTE2 (6 to 0)  
1D-1E reserved  
0
0
0
0
0
0
0
0
00  
1F  
status byte  
STTC, HLCK, FIDT, GLIMT, GLIMB,  
WIPA, SLTCA and CODE  
read only register  
Note  
1. All X values must be set to LOW.  
1998 May 15  
64  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
20 PACKAGE OUTLINES  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-01  
SOT314-2  
1998 May 15  
65  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm  
SOT393-1  
y
X
A
48  
33  
32  
49  
Z
E
e
A
2
H
A
E
(A )  
3
E
A
1
θ
w M  
p
L
p
b
pin 1 index  
L
17  
64  
detail X  
16  
1
w M  
v
M
A
b
p
Z
e
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.25 2.75  
0.10 2.55  
0.45 0.23 14.1 14.1  
0.30 0.13 13.9 13.9  
17.45 17.45  
16.95 16.95  
1.03  
0.73  
1.2  
0.8  
1.2  
0.8  
mm  
3.00  
0.25  
0.8  
1.60  
0.16 0.16 0.10  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
96-05-21  
97-08-04  
SOT393-1  
MS-022  
1998 May 15  
66  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
If wave soldering cannot be avoided, for LQFP and  
QFP packages with a pitch (e) larger than 0.5 mm, the  
following conditions must be observed:  
21 SOLDERING  
21.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
21.2 Reflow soldering  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering techniques are suitable for all LQFP and  
QFP packages.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
The choice of heating method may be influenced by larger  
plastic QFP packages (44 leads, or more). If infrared or  
vapour phase heating is used and the large packages are  
not absolutely dry (less than 0.1% moisture content by  
weight), vaporization of the small amount of moisture in  
them can cause cracking of the plastic body. For more  
information, refer to the Drypack chapter in our “Quality  
Reference Handbook” (order code 9397 750 00192).  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
21.4 Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow peak temperatures range from  
215 to 250 °C.  
21.3 Wave soldering  
Wave soldering is not recommended for LQFP and QFP  
packages. This is because of the likelihood of solder  
bridging due to closely-spaced leads and the possibility of  
incomplete solder penetration in multi-lead devices.  
CAUTION  
Wave soldering is NOT applicable for all LQFP and  
QFP packages with a pitch (e) equal or less than  
0.5 mm.  
1998 May 15  
67  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
22 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
23 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
24 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1998 May 15  
68  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
NOTES  
1998 May 15  
69  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
NOTES  
1998 May 15  
70  
Philips Semiconductors  
Product specification  
Enhanced Video Input Processor (EVIP)  
SAA7111A  
NOTES  
1998 May 15  
71  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA60  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
655102/1200/04/pp72  
Date of release: 1998 May 15  
Document order number: 9397 750 03118  
Go to Philips Semiconductors' home page  
Select & Go...  
Catalog  
& Datasheets  
Information as of 2000-08-24  
Catalog by Function  
Discrete semiconductors  
Audio  
SAA7111A; Enhanced Video Input Processor (EVIP)  
Clocks and Watches  
Data communications  
Microcontrollers  
Peripherals  
Standard analog  
Video  
Description  
Features  
Applications  
Datasheet  
Products, packages, availability and ordering  
Find similar products  
PAL delay line for correcting PAL phase errors  
Wired communications  
Wireless communications  
l
l
l
Real time status information output (RTCO)  
Brightness Contrast Saturation (BCS) control on-chip  
The YUV (CCIR-601) bus supports a data rate of:  
Catalog by System  
Automotive  
Consumer Multimedia  
Systems  
– 864 ´ f = 13.5 MHz for 625 line sources  
H
– 858 ´ f = 13.5 MHz for 525 line sources.  
H
Communications  
PC/PC-peripherals  
l
Data output streams for 16, 12 or 8-bit width with the following formats:  
– YUV 4 :1 :1 (12-bit)  
– YUV 4 :2 :2 (16-bit)  
Cross reference  
– YUV 4 :2 :2 (CCIR-656) (8-bit)  
– RGB (5, 6and 5) (16-bit) with dither  
– RGB (8, 8and 8) (24-bit) with special application.  
Models  
Packages  
l
l
l
l
l
l
Odd/even field identification by a non interlace CVBS input signal  
Fix level for RGB output format during horizontal blanking  
720 active samples per line on the YUV bus  
Application notes  
Selection guides  
Other technical documentation  
End of Life information  
Datahandbook system  
One user programmable general purpose switch on an output pin  
Built-in line-21 text slicer  
A 27 MHz Vertical Blanking Interval (VBI) data bypass programmable by I PC-bus for INTERCAST applications  
2
l
l
Power-on control  
Two via I PC-bus switchable outputs for the digitized CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0)  
2
Relevant Links  
l
l
l
l
Chip enable function (reset for the clock generator and power save mode up from chip version 3)  
Compatible with memory-based features (line-locked clock)  
About catalog tree  
About search  
About this site  
Subscribe to eNews  
Catalog & Datasheets  
Search  
Boundary scan test circuit complies with the ‘IEEE Std. 1149.1- 1990’ (ID-Code = 0 F111 02 B)  
I PC-bus controlled (full read-back ability by an external controller)  
2
l
l
Low power (<0.5 W), low voltage (3.3 V), small package (LQFP64)  
5 V tolerant digital I/O ports.  
SAA7111A  
SAA7111A  
Applications  
l Desktop/Notebook (PCMCIA) video  
Multimedia  
l Multimedia  
l Digital television  
l Image processing  
l Video phone  
l Intercast.  
Datasheet  
File  
size  
(kB)  
Publication  
release date Datasheet status  
Page  
count  
Type nr.  
Title  
Datasheet  
Download  
SAA7111A Enhanced Video Input Processor  
(EVIP)  
15-May-98  
Product  
Specification  
72  
441  
Products, packages, availability and ordering  
North American  
Partnumber  
Order code  
(12nc)  
Partnumber  
marking/packing  
package device status buy online  
Standard Marking * Tray Dry  
Pack, Bakeable, Single  
SAA7111AH/02  
SAA7111AHBG-S  
SAA7111AHBG  
9352 327 00551  
SOT393 Full production  
SOT393 Full production  
SOT393 Full production  
SOT393 Full production  
SOT393 Full production  
SOT314 Full production  
SOT314 Full production  
SOT314 Full production  
SOT314 Full production  
SOT314 Full production  
-
-
-
Standard Marking * Tray Dry  
Pack, Bakeable, Multiple  
9352 327 00557  
9352 636 52557  
9352 600 18551  
9352 600 18557  
9352 327 10518  
9352 327 10551  
9352 327 10557  
9352 600 17551  
9352 600 17557  
Standard Marking * Tray Dry  
Pack, Bakeable, Multiple  
SAA7111AH/02/S5  
SAA7111AH/03  
Standard Marking * Tray Dry  
Pack, Bakeable, Single  
Standard Marking * Tray Dry  
Pack, Bakeable, Multiple  
Standard Marking * Reel Dry  
Pack, SMD, 13"  
SAA7111AHZ/02  
SAA7111AHZ/03  
-
-
-
Standard Marking * Tray Dry  
Pack, Bakeable, Single  
SAA7111AHZBD-S  
SAA7111AHZBD  
Standard Marking * Tray Dry  
Pack, Bakeable, Multiple  
Standard Marking * Tray Dry  
Pack, Bakeable, Single  
Standard Marking * Tray Dry  
Pack, Bakeable, Multiple  
Please read information about some discontinued variants of this product.  
Find similar products:  
SAA7111A links to the similar products page containing an overview of products that are similar in function or related to the part  
number(s) as listed on this page. The similar products page includes products from the same catalog tree(s) , relevant selection guides  
and products from the same functional category.  
Copyright © 2000  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  

相关型号:

935263657112

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 7.50 MM, PLASTIC, MS-013AC, SOT-163-1, SO-20, Bus Driver/Transceiver
NXP

935263657118

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 7.50 MM, PLASTIC, MS-013AC, SOT-163-1, SO-20, Bus Driver/Transceiver
NXP

935263658112

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 5.30 MM, PLASTIC, MO-150AE, SOT-339-1, SSOP-20, Bus Driver/Transceiver
NXP

935263658118

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 5.30 MM, PLASTIC, MO-150AE, SOT-339-1, SSOP-20, Bus Driver/Transceiver
NXP

935263679112

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 4.40 MM, PLASTIC, MO-153AC, SOT-360-1, TSSOP-20, Bus Driver/Transceiver
NXP

935263679118

IC LVT SERIES, OCTAL 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO20, 4.40 MM, PLASTIC, MO-153AC, SOT-360-1, TSSOP-20, Bus Driver/Transceiver
NXP

935263696118

IC CBT/FST/QS/5C/B SERIES, 10 1-BIT DRIVER, TRUE OUTPUT, PDSO24, PLASTIC, SOT-355, TSSOP-24, Bus Driver/Transceiver
NXP

935263699033

Dot Matrix LCD Driver
NXP

935263700033

Dot Matrix LCD Driver
NXP

935263704518

IC AM/FM, AUDIO DEMODULATOR, PQFP44, PLASTIC, QFP-44, Receiver IC
NXP

935263704557

IC AM/FM, AUDIO DEMODULATOR, PQFP44, PLASTIC, QFP-44, Receiver IC
NXP

935263733112

IC DUAL 4 LINE TO 1 LINE MULTIPLEXER, TRUE OUTPUT, PDSO20, 4.40 MM, PLASTIC, MO-153, SOT-360-1, TSSOP-20, Multiplexer/Demultiplexer
NXP