935237460112 [NXP]

IC HORIZ/VERT DEFLECTION IC, PDIP32, PLASTIC, SDIP-32, Deflection IC;
935237460112
型号: 935237460112
厂家: NXP    NXP
描述:

IC HORIZ/VERT DEFLECTION IC, PDIP32, PLASTIC, SDIP-32, Deflection IC

光电二极管
文件: 总63页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA4853; TDA4854  
I2C-bus autosync deflection  
controllers for PC/TV monitors  
Product specification  
1999 Jul 13  
Supersedes data of 1998 May 12  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
FEATURES  
Concept features  
Full horizontal plus vertical autosync capability; TV and  
VCR mode included  
Extended horizontal frequency range from  
15 to 130 kHz  
Vertical section  
Comprehensive set of I2C-bus driven geometry  
I2C-bus controllable vertical picture size, picture  
adjustments and functions, including standby mode  
position, linearity (S-correction) and linearity balance  
Output for I2C-bus controllable vertical sawtooth and  
parabola (for pin unbalance and parallelogram)  
Very good vertical linearity  
Moire cancellation  
Start-up and switch-off sequence for safe operation of  
all power components  
Vertical picture size independent of frequency  
Differential current outputs for DC coupling to vertical  
booster  
X-ray protection  
Flexible switched mode B+ supply function block for  
feedback and feed forward converter  
50 to 160 Hz vertical autosync range.  
Internally stabilized voltage reference  
East-West (EW) section  
Drive signal for focus amplifiers with combined  
horizontal and vertical parabola waveforms (TDA4854)  
I2C-bus controllable output for horizontal pincushion,  
horizontal size, corner and trapezium correction  
DC controllable inputs for Extremely High Tension  
(EHT) compensation  
Optional tracking of EW drive waveform with line  
frequency selectable by I2C-bus.  
SDIP32 package.  
Focus section of TDA4854  
Synchronization  
I2C-bus controllable output for horizontal and vertical  
parabolas  
Can handle all sync signals (horizontal, vertical,  
composite and sync-on-video)  
Vertical parabola is independent of frequency and tracks  
with vertical adjustments  
Output for video clamping (leading/trailing edge  
selectable by I2C-bus), vertical blanking and protection  
blanking  
Horizontal parabola independent of frequency  
Pre-correction of delay in focus output stage.  
Output for fast unlock status of horizontal  
synchronization and blanking on grid 1 of picture tube.  
Horizontal section  
I2C-bus controllable wide range linear picture position,  
pin unbalance and parallelogram correction via  
horizontal phase  
Frequency-locked loop for smooth catching of horizontal  
frequency  
TV mode at 15.625 or 15.750 kHz selectable by I2C-bus  
Simple frequency preset of fmin and fmax by external  
resistors  
Low jitter  
Soft start for horizontal and B+ control drive signals.  
1999 Jul 13  
2
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
GENERAL DESCRIPTION  
The TDA4854 provides extended functions e.g. as a  
flexible B+ control, an extensive set of geometry control  
facilities, and a combined output for horizontal and vertical  
focus signals.  
The TDA4854 is a high performance and efficient solution  
for autosync monitors. All functions are controllable by  
I2C-bus.  
The TDA4853 is an economy version of the TDA4854,  
especially designed for use in 14” and 15” monitors with  
combined EHT generation. It provides the same features  
as the TDA4854 except for the dynamic focus block.  
The TDA4854 provides synchronization processing,  
horizontal and vertical synchronization with full autosync  
capability, a TV/VCR mode and very short settling times  
after mode changes. External power components are  
given a great deal of protection. The IC generates the drive  
waveforms for DC-coupled vertical boosters such as the  
TDA486x and TDA835x.  
Together with the I2C-bus driven Philips TDA488x video  
processor family, a very advanced system solution is  
offered.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
MIN.  
9.2  
TYP. MAX. UNIT  
supply voltage  
supply current  
16  
V
ICC  
70  
9
mA  
mA  
%
%
%
%
%
V
ICC(stb)  
VSIZE  
VGA  
supply current during standby mode  
vertical size  
60  
100  
VGA overscan for vertical size  
vertical position  
16.8  
±11.5  
VPOS  
VLIN  
vertical linearity (S-correction)  
vertical linearity balance  
2  
46  
VLINBAL  
VHSIZE  
VHPIN  
±2.5  
horizontal size voltage  
0.13  
0.04  
0.02  
3.6  
1.42  
0.69  
horizontal pincushion voltage (EW parabola)  
horizontal size modulation voltage  
horizontal trapezium correction voltage  
horizontal corner correction voltage  
horizontal position  
V
VHEHT  
VHTRAP  
VHCOR  
HPOS  
HPARAL  
HPINBAL  
Tamb  
V
±0.33  
V
0.64  
+0.08  
V
±13  
±1  
±1  
%
%
%
°C  
horizontal parallelogram  
EW pin unbalance  
operating ambient temperature  
20  
+70  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA4853  
TDA4854  
SDIP32  
SDIP32  
plastic shrink dual in-line package; 32 leads (400 mil)  
plastic shrink dual in-line package; 32 leads (400 mil)  
SOT232-1  
SOT232-1  
1999 Jul 13  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  e
EHT compensation  
via vertical size  
7 V  
EHT compensation  
via horizontal size  
22  
100  
nF  
(5%)  
150  
nF  
kΩ  
1.2 V  
(1%)  
VREF  
23  
VCAP  
24  
VAGC  
22  
VSMOD  
21  
HSMOD  
31  
EWDRV  
11  
VERTICAL  
SYNC INPUT  
AND POLARITY  
CORRECTION  
VERTICAL  
SYNC  
INTEGRATOR  
VERTICAL  
OSCILLATOR  
AND AGC  
EHT COMPENSATION  
12  
13  
EW-OUTPUT  
VERTICAL OUTPUT  
VSYNC 14  
(TTL level)  
VOUT2  
VOUT1  
HORIZONTAL SIZE  
AND  
VERTICAL SIZE  
HORIZONTAL PINCUSHION  
HORIZONTAL CORNER  
HORIZONTAL TRAPEZIUM  
HORIZONTAL SIZE  
VERTICAL LINEARITY  
VERTICAL LINEARITY  
BALANCE  
VIDEO CLAMPING  
AND  
VERTICAL BLANK  
VERTICAL POSITION  
VERTICAL SIZE, VOVSCN  
CLBL 16  
clamping  
blanking  
or  
OUTPUT  
ASYMMETRIC  
EW-CORRECTION  
20 ASCOR  
17  
HUNLOCK  
OUTPUT  
HUNLOCK  
PROTECTION  
AND SOFT START  
TDA4853  
19  
18  
SDA  
SCL  
2
I C-BUS  
RECEIVER  
2
X-RAY  
I C-BUS REGISTERS  
6
4
3
5
BDRV  
BSENS  
BOP  
V
CC  
10  
(2)  
B+ CONTROL  
APPLICATION  
B+  
CONTROL  
9.2 to 16 V  
SUPPLY  
AND  
REFERENCE  
7
COINCIDENCE DETECTOR  
FREQUENCY DETECTOR  
TV MODE  
PGND  
SGND  
X-RAY  
PROTECTION  
BIN  
25  
H/C SYNC INPUT  
AND POLARITY  
CORRECTION  
PLL1 AND  
HORIZONTAL  
POSITION  
PLL2, PARALLELOGRAM,  
PIN UNBALANCE AND  
SOFT START  
HORIZONTAL  
OUTPUT  
STAGE  
HSYNC  
HDRV  
8
15  
HORIZONTAL  
OSCILLATOR  
(TTL level)  
26  
27  
28  
29  
30  
1
9
2
32  
MGM101  
(video)  
HPLL1 HBUF  
HREF  
HCAP  
HPLL2  
HFLB  
XSEL XRAY  
i.c.  
10 nF  
(2%)  
8.2 nF  
R
HBUF  
(1)  
3.3 kΩ  
8.2  
nF  
R
HREF  
(1%)  
100 nF  
(1) For the calculation of fH range see Section “Calculation of line frequency range”.  
(2) See Figs 23 and 24.  
Fig.1 Block diagram and application circuit of TDA4853.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  e
EHT compensation  
via vertical size  
7 V  
EHT compensation  
via horizontal size  
22  
100  
nF  
(5%)  
150  
nF  
kΩ  
1.2 V  
(1%)  
VREF  
23  
VCAP  
24  
VAGC  
22  
VSMOD  
21  
HSMOD  
31  
EWDRV  
11  
VERTICAL  
SYNC INPUT  
AND POLARITY  
CORRECTION  
VERTICAL  
SYNC  
INTEGRATOR  
VERTICAL  
OSCILLATOR  
AND AGC  
EHT COMPENSATION  
12  
13  
EW-OUTPUT  
VERTICAL OUTPUT  
VSYNC 14  
(TTL level)  
VOUT2  
VOUT1  
HORIZONTAL SIZE  
AND  
VERTICAL SIZE  
HORIZONTAL PINCUSHION  
HORIZONTAL CORNER  
HORIZONTAL TRAPEZIUM  
HORIZONTAL SIZE  
VERTICAL LINEARITY  
VERTICAL LINEARITY  
BALANCE  
VIDEO CLAMPING  
AND  
VERTICAL BLANK  
VERTICAL POSITION  
VERTICAL SIZE, VOVSCN  
CLBL 16  
clamping  
blanking  
or  
OUTPUT  
ASYMMETRIC  
EW-CORRECTION  
20 ASCOR  
32 FOCUS  
17  
HUNLOCK  
OUTPUT  
HUNLOCK  
PROTECTION  
AND SOFT START  
FOCUS  
TDA4854  
HORIZONTAL  
19  
18  
AND VERTICAL  
SDA  
SCL  
2
I C-BUS  
RECEIVER  
2
X-RAY  
I C-BUS REGISTERS  
6
4
3
5
BDRV  
BSENS  
BOP  
V
CC  
10  
(2)  
B+ CONTROL  
APPLICATION  
B+  
CONTROL  
9.2 to 16 V  
SUPPLY  
AND  
REFERENCE  
7
PGND  
SGND  
COINCIDENCE DETECTOR  
FREQUENCY DETECTOR  
TV MODE  
X-RAY  
PROTECTION  
BIN  
25  
H/C SYNC INPUT  
AND POLARITY  
CORRECTION  
PLL1 AND  
HORIZONTAL  
POSITION  
PLL2, PARALLELOGRAM,  
PIN UNBALANCE AND  
SOFT START  
HORIZONTAL  
OUTPUT  
STAGE  
HSYNC  
HDRV  
8
15  
HORIZONTAL  
OSCILLATOR  
(TTL level)  
26  
27  
28  
29  
30  
1
9
2
MGM065  
(video)  
HPLL1 HBUF  
HREF  
HCAP  
HPLL2  
HFLB  
XSEL XRAY  
10 nF  
(2%)  
8.2 nF  
R
HBUF  
(1)  
3.3 kΩ  
8.2  
nF  
R
HREF  
(1%)  
100 nF  
(1) For the calculation of fH range see Section “Calculation of line frequency range”.  
(2) See Figs 23 and 24.  
Fig.2 Block diagram and application circuit of TDA4854.  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PINNING  
SYMBOL  
HFLB  
PIN  
DESCRIPTION  
1
horizontal flyback input  
X-ray protection input  
B+ control OTA output  
B+ control comparator input  
B+ control OTA input  
B+ control driver output  
power ground  
XRAY  
BOP  
2
3
BSENS  
BIN  
4
5
BDRV  
PGND  
HDRV  
XSEL  
6
7
8
horizontal driver output  
select input for X-ray reset  
supply voltage  
9
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
32  
EWDRV  
VOUT2  
VOUT1  
VSYNC  
HSYNC  
CLBL  
EW waveform output  
vertical output 2 (ascending sawtooth)  
vertical output 1 (descending sawtooth)  
vertical synchronization input  
horizontal/composite synchronization input  
video clamping pulse/vertical blanking output  
HUNLOCK  
SCL  
horizontal synchronization unlock/protection/vertical blanking output  
I2C-bus clock input  
I2C-bus data input/output  
SDA  
ASCOR  
VSMOD  
VAGC  
VREF  
VCAP  
SGND  
HPLL1  
HBUF  
HREF  
HCAP  
HPLL2  
HSMOD  
i.c.  
output for asymmetric EW corrections  
input for EHT compensation (via vertical size)  
external capacitor for vertical amplitude control  
external resistor for vertical oscillator  
external capacitor for vertical oscillator  
signal ground  
external filter for PLL1  
buffered f/v voltage output  
reference current for horizontal oscillator  
external capacitor for horizontal oscillator  
external filter for PLL2/soft start  
input for EHT compensation (via horizontal size)  
internally connected; note 1: TDA4853  
output for horizontal and vertical focus: TDA4854  
FOCUS  
Note  
1. External connections to this pin are not allowed.  
1999 Jul 13  
6
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
handbook, halfpage  
handbook, halfpage  
HFLB  
XRAY  
BOP  
i.c.  
HFLB  
XRAY  
BOP  
FOCUS  
HSMOD  
HPLL2  
HCAP  
HREF  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
HSMOD  
HPLL2  
HCAP  
HREF  
HBUF  
HPLL1  
SGND  
VCAP  
VREF  
VAGC  
VSMOD  
ASCOR  
SDA  
3
3
BSENS  
BIN  
BSENS  
BIN  
4
4
5
5
BDRV  
PGND  
HDRV  
XSEL  
BDRV  
PGND  
HDRV  
XSEL  
HBUF  
6
6
HPLL1  
SGND  
VCAP  
7
7
8
8
TDA4853  
TDA4854  
9
9
V
V
VREF  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
CC  
CC  
EWDRV  
VOUT2  
VOUT1  
VSYNC  
HSYNC  
CLBL  
EWDRV  
VOUT2  
VOUT1  
VSYNC  
HSYNC  
CLBL  
VAGC  
VSMOD  
ASCOR  
SDA  
SCL  
SCL  
HUNLOCK  
HUNLOCK  
MGM066  
MGM067  
Fig.3 Pin configuration for TDA4853.  
Fig.4 Pin configuration for TDA4854.  
FUNCTIONAL DESCRIPTION  
Vertical sync integrator  
Horizontal sync separator and polarity correction  
Normalized composite sync signals from HSYNC are  
integrated on an internal capacitor in order to extract  
vertical sync pulses. The integration time is dependent on  
the horizontal oscillator reference current at HREF  
(pin 28). The integrator output directly triggers the vertical  
oscillator.  
HSYNC (pin 15) is the input for horizontal synchronization  
signals, which can be DC-coupled TTL signals (horizontal  
or composite sync) and AC-coupled negative-going video  
sync signals. Video syncs are clamped to 1.28 V and  
sliced at 1.4 V. This results in a fixed absolute slicing level  
of 120 mV related to top sync.  
Vertical sync slicer and polarity correction  
For DC-coupled TTL signals the input clamping current is  
limited. The slicing level for TTL signals is 1.4 V.  
Vertical sync signals (TTL) applied to VSYNC (pin 14) are  
sliced at 1.4 V. The output signal of the sync slicer is  
integrated on an internal capacitor to detect and normalize  
the sync polarity. The output signals of vertical sync  
integrator and sync normalizer are disjuncted before they  
are fed to the vertical oscillator.  
The separated sync signal (either video or TTL) is  
integrated on an internal capacitor to detect and normalize  
the sync polarity.  
Normalized horizontal sync pulses are used as input  
signals for the vertical sync integrator, the PLL1 phase  
detector and the frequency-locked loop.  
The presence of equalization pulses is allowed for correct  
function of the PLL1 phase detector only in TV mode.  
1999 Jul 13  
7
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Video clamping/vertical blanking generator  
The internal frequency detector then starts tuning the  
oscillator. Very small DC currents at HPLL1 (pin 26) are  
used to perform this tuning with a well defined change rate.  
When coincidence between horizontal sync and oscillator  
frequency is detected, the search mode is first replaced by  
a soft-lock mode which lasts for the first part of the next  
vertical period. The soft-lock mode is then replaced by a  
normal PLL operation. This operation ensures smooth  
tuning and avoids fast changes of horizontal frequency  
during catching.  
The video clamping/vertical blanking signal at CLBL  
(pin 16) is a two-level sandcastle pulse which is especially  
suitable for video ICs such as the TDA488x family, but also  
for direct applications in video output stages.  
The upper level is the video clamping pulse, which is  
triggered by the horizontal sync pulse. Either the leading or  
trailing edge can be selected by setting control bit CLAMP  
via the I2C-bus. The width of the video clamping pulse is  
determined by an internal single-shot multivibrator.  
In this concept it is not allowed to load HPLL1.  
The lower level of the sandcastle pulse is the vertical  
blanking pulse, which is derived directly from the internal  
oscillator waveform. It is started by the vertical sync and  
stopped with the start of the vertical scan. This results in  
optimum vertical blanking. Two different vertical blanking  
The frequency dependent voltage at this pin is fed  
internally to HBUF (pin 27) via a sample-and-hold and  
buffer stage. The sample-and-hold stage removes all  
disturbances caused by horizontal sync or composite  
vertical sync from the buffered voltage. An external  
times are accessible, by control bit VBLK, via the I2C-bus. resistor connected between pins HBUF and HREF defines  
the frequency range.  
Blanking will be activated continuously if one of the  
following conditions is true:  
Out-of-lock indication (pin HUNLOCK)  
Soft start of horizontal and B+ drive [voltage at HPLL2  
Pin HUNLOCK is floating during search mode if no sync  
(pin 30) pulled down externally or by the I2C-bus]  
pulses are applied, or if a protection condition is true.  
All this can be detected by the microcontroller if a pull-up  
resistor is connected to its own supply voltage.  
PLL1 is unlocked while frequency-locked loop is in  
search mode or if horizontal sync pulses are absent  
No horizontal flyback pulses at HFLB (pin 1)  
For an additional fast vertical blanking at grid 1 of the  
picture tube a 1 V signal referenced to ground is available  
X-ray protection is activated  
Supply voltage at VCC (pin 10) is low (see Fig.25).  
at this output. The continuous protection blanking  
(see Section “Video clamping/vertical blanking generator”)  
is also available at this pin. Horizontal unlock blanking can  
be switched off, by control bit BLKDIS via the I2C-bus  
while vertical blanking is maintained.  
Horizontal unlock blanking can be switched off, by control  
bit BLKDIS, via the I2C-bus while vertical blanking and  
protection blanking is maintained.  
Frequency-locked loop  
TV mode  
The frequency-locked loop can lock the horizontal  
oscillator over a wide frequency range. This is achieved by  
a combined search and PLL operation. The frequency  
range is preset by two external resistors and the  
In applications with TV signals the standard  
frequency-to-voltage converter operation will be disturbed  
by equalizing sync pulses and phase jumps occurring in  
VCR signals. To avoid this, a TV mode has been  
implemented. It can be accessed by choosing the  
horizontal TV sync frequencies of 15.625 or 15.75 kHz as  
the minimum frequency for the horizontal oscillator.  
Applying TV signals will cause the frequency-to-voltage  
converter to scan down to this frequency in normal  
operation. If the control bit TVMOD is sent by the I2C-bus,  
the HBUF output is clamped to 2.5 V and an internally  
defined PLL1 control range of ±10% is established.  
To return to standard operation of the  
f
6.5  
-------  
1
--m----a--x-  
fmin  
recommended maximum ratio is  
=
This can, for instance, be a range from 15.625 to 90 kHz  
with all tolerances included.  
Without a horizontal sync signal the oscillator will be  
free-running at fmin. Any change of sync conditions is  
detected by the internal coincidence detector. A deviation  
of more than 4% between horizontal sync and oscillator  
frequency will switch the horizontal section into search  
mode. This means that PLL1 control currents are switched  
off immediately.  
frequency-to-voltage converter the bit TVMOD has to be  
reset. For an optimal operation with VCR signals the RC  
combination at pin HPLL1 has to be switched externally.  
1999 Jul 13  
8
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Horizontal oscillator  
The resistor RHBUFpar is calculated as the value of RHREF  
and RHBUF in parallel. The formulae for RHBUF also takes  
into account the voltage swing across this resistor  
The horizontal oscillator is of the relaxation type and  
requires a capacitor of 10 nF to be connected at HCAP  
(pin 29). For optimum jitter performance the value of 10 nF  
must not be changed.  
R
HREF × R  
RHBUF  
=
HBUFpar × 0.8 = 805 Ω  
---------------------------------------------  
R
HREF RHBUFpar  
The minimum oscillator frequency is determined by a  
resistor connected between pin HREF and ground.  
A resistor connected between pins HREF and HBUF  
defines the frequency range.  
PLL1 phase detector  
The phase detector is a standard type using switched  
current sources, which are independent of the horizontal  
frequency. It compares the middle of the horizontal sync  
with a fixed point on the oscillator sawtooth voltage.  
The PLL1 loop filter is connected to HPLL1 (pin 26).  
The reference current at pin HREF also defines the  
integration time constant of the vertical sync integration.  
Calculation of line frequency range  
See also Section “Horizontal position adjustment and  
corrections”.  
The oscillator frequencies fmin and fmax must first be  
calculated. This is achieved by adding the spread of the  
relevant components to the highest and lowest sync  
frequencies fsync(min) and fsync(max). The oscillator is driven  
Horizontal position adjustment and corrections  
A linear adjustment of the relative phase between the  
horizontal sync and the oscillator sawtooth (in PLL1 loop)  
is achieved via register HPOS. Once adjusted, the relative  
phase remains constant over the whole frequency range.  
by the currents in RHREF and RHBUF  
.
The following example is a 31.45 to 90 kHz application:  
Table 1 Calculation of total spread  
Correction of pin unbalance and parallelogram is achieved  
by modulating the phase between the oscillator sawtooth  
and horizontal flyback (in loop PLL2) via registers  
HPARAL and HPINBAL. If those asymmetric EW  
corrections are performed in the deflection stage, both  
registers can be disconnected from the horizontal phase  
via control bit ACD. This does not change the output at  
pin ASCOR.  
spread of  
for fmax  
for fmin  
IC  
CHCAP  
±3%  
±2%  
±2%  
±7%  
±5%  
±2%  
±2%  
±9%  
RHREF, RHBUF  
Total  
Horizontal moire cancellation  
Thus the typical frequency range of the oscillator in this  
example is:  
To achieve a cancellation of horizontal moire (also known  
as ‘video moire’), the horizontal frequency is  
fmax = fsync(max) × 1.07 = 96.3 kHz  
divided-by-two to achieve a modulation of the horizontal  
phase via PLL2. The amplitude is controlled by  
register HMOIRE. To avoid a visible structure on screen  
the polarity changes with half of the vertical frequency.  
Control bit MOD disables the moire cancellation function.  
fsync(min)  
fmin  
=
= 28.9 kHz  
----------------------  
1.09  
The TV mode is centred around fmin with a control range of  
±10%. Activation of the TV mode is only allowed between  
15.625 and 35 kHz.  
The resistors RHREF and RHBUFpar can be calculated using  
the following formulae:  
78 × kHz × kΩ  
min + 0.0012 × fm2 in[kHz]  
RHREF  
=
= 2.61 kΩ  
-----------------------------------------------------------------  
f
78 × kHz × kΩ  
max + 0.0012 × fm2 ax[kHz]  
RHBUFpar  
=
= 726 Ω  
--------------------------------------------------------------------  
f
1999 Jul 13  
9
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PLL2 phase detector  
Output stage for line drive pulses [HDRV (pin 8)]  
The PLL2 phase detector is similar to the PLL1 detector  
and compares the line flyback pulse at HFLB (pin 1) with  
the oscillator sawtooth voltage. The control currents are  
independent of the horizontal frequency. The PLL2  
detector thus compensates for the delay in the external  
horizontal deflection circuit by adjusting the phase of the  
HDRV (pin 8) output pulse.  
An open-collector output stage allows direct drive of an  
inverting driver transistor because of a low saturation  
voltage of 0.3 V at 20 mA. To protect the line deflection  
transistor, the output stage is disabled (floating) for a low  
supply voltage at VCC (see Fig.25).  
The duty cycle of line drive pulses is slightly dependent on  
the actual horizontal frequency. This ensures optimum  
drive conditions over the whole frequency range.  
For the TDA4854 external modulation of the PLL2 phase  
is not allowed, because this would disturb the start  
advance of the horizontal focus parabola.  
X-ray protection  
The X-ray protection input XRAY (pin 2) provides a voltage  
detector with a precise threshold. If the input voltage at  
XRAY exceeds this threshold for a certain time then  
control bit SOFTST is reset, which switches the IC into  
protection mode. In this mode several pins are forced into  
defined states:  
Soft start and standby  
If HPLL2 is pulled to ground by resetting the  
register SOFTST, the horizontal output pulses, vertical  
output currents and B+ control driver pulses will be  
inhibited. This means that HDRV (pin 8), BDRV (pin 6),  
VOUT1 (pin 13) and VOUT2 (pin 12) are floating in this  
state. If HPLL2 is pulled to ground by an external DC  
current, vertical output currents stay active while HDRV  
(pin 8) and BDRV (pin 6) are in floating state. In both cases  
the PLL2 and the frequency-locked loop are disabled,  
CLBL (pin 16) provides a continuous blanking signal and  
HUNLOCK (pin 17) is floating.  
HUNLOCK (pin 17) is floating  
The capacitor connected to HPLL2 (pin 30) is  
discharged  
Horizontal output stage (HDRV) is floating  
B+ control driver stage (BDRV) is floating  
Vertical output stages (VOUT1 and VOUT2) are floating  
CLBL provides a continuous blanking signal.  
This option can be used for soft start, protection and  
power-down modes. When the HPLL2 pin is released  
again, an automatic soft start sequence on the horizontal  
drive as well as on the B+ drive output will be performed  
(see Figs 26 and 27).  
There are two different methods of restarting the IC:  
1. XSEL (pin 9) is open-circuit or connected to ground.  
The control bit SOFTST must be set to logic 1 via the  
I2C-bus. The IC then returns to normal operation via  
soft start.  
A soft start can only be performed if the supply voltage for  
the IC is a minimum of 8.6 V.  
2. XSEL (pin 9) is connected to VCC via an external  
resistor. The supply voltage of the IC must be switched  
off for a certain period of time before the IC can be  
restarted again using the standard power-on  
procedure.  
The soft start timing is determined by the filter capacitor at  
HPLL2 (pin 30), which is charged with a constant current  
during soft start. If the voltage at pin 30 (HPLL2) reaches  
1.1 V, the vertical output currents are enabled. At 1.7 V the  
horizontal driver stage generates very small output pulses.  
The width of these pulses increases with the voltage at  
HPLL2 until the final duty cycle is reached. The voltage at  
HPLL2 increases further and performs a soft start at BDRV  
(pin 6) as well. The voltage at HPLL2 continues to rise until  
HPLL2 enters its normal operating range. The internal  
charge current is now disabled. Finally PLL2 and the  
frequency-locked loop are activated. If both functions  
reach normal operation, HUNLOCK (pin 17) switches from  
the floating status to normal vertical blanking, and  
continuous blanking at CLBL (pin 16) is removed.  
1999 Jul 13  
10  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Vertical oscillator and amplitude control  
Adjustment of vertical size, VGA overscan and EHT  
compensation  
This stage is designed for fast stabilization of vertical size  
after changes in sync frequency conditions.  
The amplitude of the differential output currents at VOUT1  
and VOUT2 can be adjusted via register VSIZE.  
Register VOVSCN can activate a +17% step in vertical  
size for the VGA350 mode.  
The free-running frequency ffr(V) is determined by the  
resistor RVREF connected to pin 23 and the capacitor  
CVCAP connected to pin 24. The value of RVREF is not only  
VSMOD (pin 21) can be used for a DC controlled EHT  
compensation of vertical size by correcting the differential  
output currents at VOUT1 and VOUT2. The EW  
waveforms, (vertical focus), pin unbalance and  
optimized for noise and linearity performance in the whole  
vertical and EW section, but also influences several  
internal references. Therefore the value of RVREF must not  
be changed.  
parallelogram corrections are not affected by VSMOD.  
Capacitor CVCAP should be used to select the free-running  
The adjustments for vertical size and vertical position also  
affect the waveforms of the horizontal pincushion, vertical  
linearity (S-correction), vertical linearity balance, focus  
parabola, pin unbalance and parallelogram correction.  
The result of this interaction is that no re-adjustment of  
these parameters is necessary after an adjustment of  
vertical picture size or position.  
frequency of the vertical oscillator in accordance with the  
1
following formula: ffr(V)  
=
-----------------------------------------------------------  
10.8 × RVREF × CVCAP  
To achieve a stabilized amplitude the free-running  
frequency ffr(V), without adjustment, should be at least 10%  
lower than the minimum trigger frequency.  
The contributions shown in Table 2 can be assumed.  
Adjustment of vertical position, vertical linearity and  
vertical linearity balance  
Table 2 Calculation of ffr(V) total spread  
Register VPOS provides a DC shift at the sawtooth  
outputs VOUT1 and VOUT2 (pins 13 and 12) and the EW  
drive output EWDRV (pin 11) in such a way that the whole  
picture moves vertically while maintaining the correct  
geometry.  
Contributing elements  
Minimum frequency offset between ffr(V) and 10%  
lowest trigger frequency  
Spread of IC  
Spread of RVREF  
Spread of CVCAP  
Total  
±3%  
±1%  
±5%  
19%  
Register VLIN is used to adjust the amount of vertical  
S-correction in the output signal. This function can be  
switched off by control bit VSC.  
Register VLINBAL is used to correct the unbalance of the  
vertical S-correction in the output signal. This function can  
be switched off by control bit VLC.  
Result for 50 to 160 Hz application:  
50 Hz  
f fr(V)  
=
= 42 Hz  
---------------  
1.19  
Adjustment of vertical moire cancellation  
The AGC of the vertical oscillator can be disabled by  
setting control bit AGCDIS via the I2C-bus. A precise  
external current has to be injected into VCAP (pin 24) to  
obtain the correct vertical size. This special application  
mode can be used when the vertical sync pulses are  
serrated (shifted); this condition is found in some display  
modes, e.g. when using a 100 Hz up converter for video  
signals.  
To achieve a cancellation of vertical moire (also known as  
‘scan moire’) the vertical picture position can be modulated  
by half the vertical frequency. The amplitude of the  
modulation is controlled by register VMOIRE and can be  
switched off via control bit MOD.  
Application hint: VAGC (pin 22) has a high input  
impedance during scan. Therefore, the pin must not be  
loaded externally otherwise non-linearities in the vertical  
output currents may occur due to the changing charge  
current during scan.  
1999 Jul 13  
11  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Horizontal pincushion (including horizontal size,  
corner correction and trapezium correction)  
VHSIZE  
V
HSIZE + VHEHT 1 –  
----------------  
14.4 V  
--------------------------------------------------------------------------  
14.4 V  
g(HSIZE, HSMOD) = 1 –  
EWDRV (pin 11) provides a complete EW drive waveform.  
The components horizontal pincushion, horizontal size,  
corner correction and trapezium correction are controlled  
by the registers HPIN, HSIZE, HCOR and HTRAP.  
HTRAP can be set to zero by control bit VPC.  
IHREF  
h(IHREF) =  
-------------------------------  
IHREF  
f = 70kHz  
Two different modes of operation can be chosen for the  
EW output waveform via control bit FHMULT:  
The pincushion (EW parabola) amplitude, corner and  
trapezium correction track with the vertical picture size  
(VSIZE) and also with the adjustment for vertical picture  
position (VPOS). The corner correction does not track with  
the horizontal pincushion (HPIN).  
1. Mode 1  
Horizontal size is controlled via register HSIZE and  
causes a DC shift at the EWDRV output. The complete  
waveform is also multiplied internally by a signal  
proportional to the line frequency [which is detected  
via the current at HREF (pin 28)]. This mode is to be  
used for driving EW diode modulator stages which  
require a voltage proportional to the line frequency.  
Further the horizontal pincushion amplitude, corner and  
trapezium correction track with the horizontal picture size,  
which is adjusted via register HSIZE and the analog  
modulation input HSMOD.  
If the DC component in the EWDRV output signal is  
increased via HSIZE or IHSMOD, the pincushion, corner and  
trapezium component of the EWDRV output will be  
2. Mode 2  
The EW drive waveform does not track with the line  
frequency. This mode is to be used for driving EW  
modulators which require a voltage independent of the  
line frequency.  
VHSIZE  
V
HSIZE + VHEHT 1 –  
----------------  
14.4 V  
-------------------------------------------------------------------------  
14.4  
reduced by a factor of 1 –  
Output stage for asymmetric correction waveforms  
[ASCOR (pin 20)]  
The value 14.4 V is a virtual voltage for calculation only.  
The output pin can not reach this value, but the gain (and  
DC bias) of the external application should be such that the  
horizontal deflection is reduced to zero when EWDRV  
reaches 14.4 V.  
This output is designed as a voltage output for  
superimposed waveforms of vertical parabola and  
sawtooth. The amplitude and polarity of both signals can  
be changed via registers HPARAL and HPINBAL.  
HSMOD can be used for a DC controlled EHT  
compensation by correcting horizontal size, horizontal  
pincushion, corner and trapezium. The control range at  
this pin tracks with the actual value of HSIZE. For an  
increasing DC component VHSIZE in the EWDRV output  
signal, the DC component VHEHT caused by IHSMOD will be  
Application hint: The TDA4854 offers two possibilities to  
control registers HPINBAL and HPARAL.  
1. Control bit ACD = 1  
The two registers now control the horizontal phase by  
means of internal modulation of the PLL2 horizontal  
phase control. The ASCOR output (pin 20) can be left  
unused, but it will always provide an output signal  
because the ASCOR output stage is not influenced by  
the control bit ACD.  
V HSIZE  
reduced by a factor of 1 –  
as shown in the equation  
----------------  
14.4 V  
above.  
The whole EWDRV voltage is calculated as follows:  
2. Control bit ACD = 0  
V
V
EWDRV = 1.2 V + [VHSIZE + VHEHT × f(HSIZE) + (VHPIN  
HCOR + VHTRAP) × g(HSIZE, HSMOD)] × h(IHREF  
+
)
The internal modulation via PLL2 is disconnected.  
In order to obtain the required effect on the screen,  
pin ASCOR must now be fed to the DC amplifier which  
controls the DC shift of the horizontal deflection. This  
option is useful for applications which already use a  
DC shift transformer.  
Where:  
V HEHT  
IHSMOD  
=
× 0.69  
-------------------  
120 µA  
VHSIZE  
f(HSIZE) = 1 –  
----------------  
14.4 V  
If the tube does not need HPINBAL and HPARAL, then pin  
ASCOR can be used for other purposes, i.e. for a simple  
dynamic convergence.  
1999 Jul 13  
12  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
TDA4854: dynamic focus section [FOCUS (pin 32)]  
Boost converter in feedback mode (see Fig.23)  
In this application the OTA is used as an error amplifier  
with a limited output voltage range. The flip-flop is set on  
the rising edge of the signal at HDRV. A reset will be  
generated when the voltage at BSENS, taken from the  
current sense resistor, exceeds the voltage at BOP.  
This section generates a complete drive signal for dynamic  
focus applications. The amplitude of the horizontal  
parabola is internally stabilized, thus it is independent of  
the horizontal frequency. The amplitude can be adjusted  
via register HFOCUS. Changing horizontal size may  
require a correction of HFOCUS. To compensate for the  
delay in external focus amplifiers a ‘pre-correction’ for the  
phase of the horizontal parabola has been implemented.  
The amplitude of the vertical parabola is independent of  
frequency and tracks with all vertical adjustments.  
The amplitude can be adjusted via register VFOCUS.  
FOCUS (pin 32) is designed as a voltage output for the  
superimposed vertical and horizontal parabolas.  
If no reset is generated within a line period. The rising  
edge of the next HDRV pulse forces the flip-flop to reset.  
The flip-flop is set immediately after the voltage at  
BSENS has dropped below the threshold voltage  
VRESTART(BSENS)  
.
Buck converter in feed forward mode (see Fig.24)  
This application uses an external RC combination at  
BSENS to provide a pulse width which is independent  
from the horizontal frequency. The capacitor is charged  
via an external resistor and discharged by the internal  
discharge circuit. For normal operation the discharge  
circuit is activated when the flip-flop is reset by the  
internal voltage comparator. The capacitor will now be  
discharged with a constant current until the internally  
controlled stop level VSTOP(BSENS) is reached. This level  
will be maintained until the rising edge of the next HDRV  
pulse sets the flip-flop again and disables the discharge  
circuit.  
B+ control function block  
The B+ control function block of the TDA4853; TDA4854  
consists of an Operational Transconductance Amplifier  
(OTA), a voltage comparator, a flip-flop and a discharge  
circuit. This configuration allows easy applications for  
different B+ control concepts. See also Application Note  
AN96052: “B+ converter Topologies for Horizontal  
Deflection and EHT with TDA4855/58”.  
GENERAL DESCRIPTION  
If no reset is generated within a line period, the rising  
edge of the next HDRV pulse automatically starts the  
discharge sequence and resets the flip-flop. When the  
voltage at BSENS reaches the threshold voltage  
The non-inverting input of the OTA is connected internally  
to a high precision reference voltage. The inverting input is  
connected to BIN (pin 5). An internal clamping circuit limits  
the maximum positive output voltage of the OTA.  
The output itself is connected to BOP (pin 3) and to the  
inverting input of the voltage comparator.  
VRESTART(BSENS), the discharge circuit will be disabled  
automatically and the flip-flop will be set immediately.  
This behaviour allows a definition of the maximum duty  
cycle of the B+ control drive pulse by the relationship of  
charge current to discharge current.  
The non-inverting input of the voltage comparator can be  
accessed via BSENS (pin 4).  
B+ drive pulses are generated by an internal flip-flop and  
fed to BDRV (pin 6) via an open-collector output stage.  
This flip-flop is set at the rising edge of the signal at HDRV  
(pin 8). The falling edge of the output signal at BDRV has  
a defined delay of td(BDRV) to the rising edge of the HDRV  
pulse (see Fig.23). When the voltage at BSENS exceeds  
the voltage at BOP, the voltage comparator output resets  
the flip-flop and, therefore, the open-collector stage at  
BDRV is floating again.  
Supply voltage stabilizer, references, start-up  
procedures and protection functions  
The TDA4853; TDA4854 provides an internal supply  
voltage stabilizer for excellent stabilization of all internal  
references. An internal gap reference, especially designed  
for low-noise, is the reference for the internal horizontal  
and vertical supply voltages. All internal reference currents  
and drive current for the vertical output stage are derived  
from this voltage via external resistors.  
An internal discharge circuit allows a well defined  
discharge of capacitors at BSENS. BDRV is active at a  
LOW-level output voltage (see Figs 23 and 24), thus it  
requires an external inverting driver stage.  
If either the supply voltage is below 8.3 V or no data from  
the I2C-bus has been received after power-up, the internal  
soft start and protection functions do not allow any of those  
outputs [HDRV, BDRV, VOUT1, VOUT2 and HUNLOCK  
(see Fig.25)] to be active.  
The B+ function block can be used for B+ deflection  
modulators in many different ways. Two popular  
application combinations are as follows:  
1999 Jul 13  
13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
For supply voltages below 8.3 V the internal I2C-bus will  
not generate an acknowledge and the IC is in standby  
mode. This is because the internal protection circuit has  
generated a reset signal for the soft start  
register SOFTST. Above 8.3 V data is accepted and all  
registers can be loaded. If the register SOFTST has  
received a set from the I2C-bus, the internal soft start  
procedure is released, which activates all mentioned  
outputs.  
When the protection mode is active, several pins of the  
TDA4853; TDA4854 are forced into a defined state:  
HDRV (horizontal driver output) is floating  
BDRV (B+ control driver output) is floating  
HUNLOCK (indicates, that the frequency-to-voltage  
converter is out of lock) is floating (HIGH via external  
pull-up resistor)  
CLBL provides a continuous blanking signal  
VOUT1 and VOUT2 (vertical outputs) are floating  
The capacitor at HPLL2 is discharged.  
If during normal operation the supply voltage has dropped  
below 8.1 V, the protection mode is activated and  
HUNLOCK (pin 17) changes to the protection status and is  
floating. This can be detected by the microcontroller.  
If the soft start procedure is activated via the I2C-bus, all of  
these actions will be performed in a well defined sequence  
(see Figs 25 and 26).  
This protection mode has been implemented in order to  
protect the deflection stages and the picture tube during  
start-up, shut-down and fault conditions. This protection  
mode can be activated as shown in Table 3.  
Table 3 Activation of protection mode  
ACTIVATION  
RESET  
Low supply voltage at  
pin 10  
increase supply voltage;  
reload registers;  
soft start via I2C-bus  
Power dip, below 8.1 V  
reload registers;  
soft start via I2C-bus  
X-ray protection (pin 2)  
triggered, XSEL (pin 9) is  
open-circuit or connected  
to ground  
reload registers;  
soft start via I2C-bus  
X-ray protection (pin 2)  
triggered, XSEL (pin 9)  
connected to VCC via an  
external resistor  
switch VCC off and on  
again, reload registers;  
soft start via I2C-bus  
HPLL2 (pin 30) externally release pin 30  
pulled to ground  
1999 Jul 13  
14  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134); all voltages measured with respect to ground.  
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT  
VCC  
supply voltage  
input voltage for pins:  
BIN  
0.5  
+16  
V
Vi(n)  
0.5  
0.5  
0.5  
0.5  
+6.0  
+6.5  
+8.0  
+8.0  
V
V
V
V
HSYNC, VSYNC, VREF, HREF, VSMOD and HSMOD  
SDA and SCL  
XRAY  
Vo(n)  
output voltage for pins:  
VOUT2, VOUT1 and HUNLOCK  
BDRV and HDRV  
0.5  
0.5  
0.5  
+6.5  
+16  
+6.0  
100  
+10  
10  
1
V
V
VI/O(n)  
Io(HDRV)  
Ii(HFLB)  
Io(CLBL)  
Io(BOP)  
Io(BDRV)  
Io(EWDRV)  
Io(FOCUS)  
Tamb  
input/output voltages at pins BOP and BSENS  
horizontal driver output current  
horizontal flyback input current  
video clamping pulse/vertical blanking output current  
B+ control OTA output current  
B+ control driver output current  
EW driver output current  
V
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
10  
50  
5  
focus driver output current  
5  
operating ambient temperature  
junction temperature  
20  
+70  
150  
Tj  
Tstg  
storage temperature  
55  
150  
+150 °C  
+150  
VESD  
electrostatic discharge for all pins  
note 1  
note 2  
V
2000 +2000 V  
Notes  
1. Machine model: 200 pF; 0.75 µH; 10 .  
2. Human body model: 100 pF; 7.5 µH; 1500 .  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
K/W  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
55  
QUALITY SPECIFICATION  
In accordance with “URF-4-2-59/601”; EMC emission/immunity test in accordance with “DIS 1000 4.6” (IEC 801.6).  
SYMBOL  
PARAMETER  
emission test  
immunity test  
CONDITIONS  
MIN.  
TYP.  
1.5  
2.0  
MAX.  
UNIT  
mV  
VEMC  
note 1  
note 1  
V
Note  
1. Tests are performed with application reference board. Tests with other boards will have different results.  
1999 Jul 13  
15  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
CHARACTERISTICS  
VCC = 12 V; Tamb = 25 °C; peripheral components in accordance with Figs 1 and 2; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Horizontal sync separator  
INPUT CHARACTERISTICS FOR DC-COUPLED TTL SIGNALS: PIN HSYNC  
Vi(HSYNC)  
VHSYNC(sl)  
tr(HSYNC)  
sync input signal voltage  
slicing voltage level  
1.7  
V
1.2  
10  
10  
0.7  
1.4  
1.6  
500  
500  
V
rise time of sync pulse  
fall time of sync pulse  
minimum width of sync pulse  
input current  
ns  
ns  
µs  
µA  
µA  
tf(HSYNC)  
tW(HSYNC)(min)  
Ii(HSYNC)  
VHSYNC = 0.8 V  
HSYNC = 5.5 V  
200  
10  
V
INPUT CHARACTERISTICS FOR AC-COUPLED VIDEO SIGNALS (SYNC-ON-VIDEO, NEGATIVE SYNC POLARITY)  
VHSYNC  
sync amplitude of video input  
signal voltage  
Rsource = 50 Ω  
300  
mV  
mV  
VHSYNC(sl)  
slicing voltage level  
Rsource = 50 Ω  
90  
120  
150  
(measured from top sync)  
Vclamp(HSYNC)  
Ich(HSYNC)  
top sync clamping voltage level Rsource = 50 Ω  
1.1  
1.7  
1.28  
2.4  
1.5  
3.4  
V
charge current for coupling  
capacitor  
VHSYNC > Vclamp(HSYNC)  
µA  
tW(HSYNC)(min)  
Rsource(max)  
minimum width of sync pulse  
maximum source resistance  
differential input resistance  
0.7  
µs  
duty cycle = 7%  
during sync  
1500  
Ri(diff)(HSYNC)  
80  
Automatic polarity correction for horizontal sync  
horizontal sync pulse width  
related to line period  
25  
%
tP(H)  
-----------  
tH  
td(HPOL)  
delay time for changing polarity  
0.3  
1.8  
ms  
Vertical sync integrator  
tint(V) integration time for generation fH = 15.625 kHz;  
14  
7
20  
26  
µs  
µs  
µs  
µs  
of a vertical trigger pulse  
IHREF = 0.52 mA  
fH = 31.45 kHz;  
IHREF = 1.052 mA  
10  
13  
fH = 64 kHz;  
IHREF = 2.141 mA  
3.9  
2.5  
5.7  
3.8  
6.5  
4.5  
fH = 100 kHz;  
IHREF = 3.345 mA  
Vertical sync slicer (DC-coupled, TTL compatible): pin VSYNC  
Vi(VSYNC)  
VVSYNC(sl)  
Ii(VSYNC)  
sync input signal voltage  
slicing voltage level  
input current  
1.7  
1.2  
V
1.4  
1.6  
±10  
V
0 V < VSYNC < 5.5 V  
µA  
1999 Jul 13  
16  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Automatic polarity correction for vertical sync  
tW(VSYNC)(max)  
td(VPOL)  
maximum width of vertical sync  
pulse  
400  
µs  
delay time for changing polarity  
0.45  
1.8  
ms  
Video clamping/vertical blanking output: pin CLBL  
tclamp(CLBL)  
Vclamp(CLBL)  
width of video clamping pulse  
measured at VCLBL = 3 V  
0.6  
0.7  
0.8  
µs  
top voltage level of video  
clamping pulse  
4.32  
4.75  
5.23  
V
TCclamp  
temperature coefficient of  
Vclamp(CLBL)  
4
mV/K  
ns/V  
ns  
STPSclamp  
td(HSYNCt-CLBL)  
steepness of slopes for  
clamping pulse  
RL = 1 M; CL = 20 pF  
50  
130  
delay between trailing edge of clamping pulse triggered  
horizontal sync and start of  
video clamping pulse  
on trailing edge of  
horizontal sync;  
control bit CLAMP = 0;  
measured at VCLBL = 3 V  
tclamp1(max)  
maximum duration of video  
clamping pulse referenced to  
end of horizontal sync  
1.0  
µs  
ns  
µs  
V
td(HSYNCl-CLBL)  
delay between leading edge of clamping pulse triggered  
300  
horizontal sync and start of  
video clamping pulse  
on leading edge of  
horizontal sync;  
control bit CLAMP = 1;  
measured at VCLBL = 3 V  
tclamp2(max)  
maximum duration of video  
clamping pulse referenced to  
end of horizontal sync  
0.15  
2.1  
Vblank(CLBL)  
tblank(CLBL)  
top voltage level of vertical  
blanking pulse  
notes 1 and 2  
1.7  
1.9  
width of vertical blanking pulse control bit VBLK = 0  
220  
305  
260  
350  
2
300  
395  
µs  
at pins CLBL and HUNLOCK  
control bit VBLK = 1  
µs  
TCblank  
temperature coefficient of  
Vblank(CLBL)  
mV/K  
Vscan(CLBL)  
TCscan  
output voltage during vertical  
scan  
ICLBL = 0  
0.59  
0.63  
0.67  
V
temperature coefficient of  
Vscan(CLBL)  
2  
mV/K  
Isink(CLBL)  
IL(CLBL)  
internal sink current  
external load current  
2.4  
mA  
mA  
3.0  
1999 Jul 13  
17  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Horizontal oscillator: pins HCAP and HREF  
ffr(H)  
free-running frequency without RHBUF = ;  
30.53  
31.45  
32.39  
kHz  
PLL1 action (for testing only)  
RHREF = 2.4 k;  
CHCAP = 10 nF; note 3  
ffr(H)  
TCfr  
spread of free-running  
frequency (excluding spread of  
external components)  
±3.0  
%
temperature coefficient of  
free-running frequency  
100  
0
+100  
106/K  
fH(max)  
VHREF  
maximum oscillator frequency  
130  
kHz  
V
voltage at input for reference  
current  
2.43  
2.55  
2.68  
Unlock blanking detection: pin HUNLOCK  
Vscan(HUNLOCK)  
low level voltage of HUNLOCK saturation voltage in case  
of locked PLL1; internal  
250  
mV  
sink current = 1 mA  
Vblank(HUNLOCK)  
TCblank  
blanking level of HUNLOCK  
external load current = 0  
0.9  
1
1.1  
V
temperature coefficient of  
Vblank(HUNLOCK)  
0.9  
mV/K  
TCsink  
Isink(int)  
temperature coefficient of  
Isink(HUNLOCK)  
0.15  
2.0  
%/K  
mA  
internal sink current  
for blanking pulses;  
PLL1 locked  
1.4  
2.6  
IL(max)  
IL  
maximum external load current VHUNLOCK = 1 V  
leakage current VHUNLOCK = 5 V in case of  
2  
±5  
mA  
µA  
unlocked PLL1 and/or  
protection active  
PLL1 phase comparator and frequency-locked loop: pins HPLL1 and HBUF  
tW(HSYNC)(max)  
maximum width of horizontal  
sync pulse (referenced to line  
period)  
25  
80  
%
tlock(HPLL1)  
Ictrl(HPLL1)  
total lock-in time of PLL1  
control currents  
40  
ms  
notes 4 and 5  
locked mode, level 1  
locked mode, level 2  
15  
µA  
µA  
V
145  
2.5  
VHBUF  
buffered f/v voltage at HBUF  
(pin 27)  
minimum horizontal  
frequency  
maximum horizontal  
frequency  
0.5  
V
1999 Jul 13  
18  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Phase adjustments and corrections via PLL1 and PLL2  
HPOS  
horizontal position (referenced register HPOS = 0  
13  
%
to horizontal period)  
register HPOS = 127  
0
%
%
%
register HPOS = 255  
13  
0.8  
HPINBAL  
horizontal pin unbalance  
correction via HPLL2  
(referenced to horizontal  
period)  
register HPINBAL = 0;  
control bit HPC = 0; note 6  
register HPINBAL = 15;  
control bit HPC = 0; note 6  
0.8  
0
%
%
%
%
%
%
%
%
register HPINBAL = X;  
control bit HPC = 1; note 6  
HPARAL  
horizontal parallelogram  
correction (referenced to  
horizontal period)  
register HPARAL = 0;  
control bit HBC = 0; note 6  
0.8  
0.8  
0
register HPARAL = 15;  
control bit HBC = 0; note 6  
register HPARAL = X;  
control bit HBC = 1; note 6  
HMOIRE  
relative modulation of  
horizontal position by 0.5fH;  
phase alternates with 0.5fV  
register HMOIRE = 0;  
control bit MOD = 0  
0
register HMOIRE = 31;  
control bit MOD = 0  
0.05  
0
HMOIREoff  
moire cancellation off  
control bit MOD = 1  
PLL2 phase detector: pins HFLB and HPLL2  
φPLL2  
PLL2 control (advance of  
horizontal drive with respect to register HPINBAL = 07;  
middle of horizontal flyback)  
maximum advance;  
36  
%
%
register HPARAL = 07  
minimum advance;  
7
register HPINBAL = 07;  
register HPARAL = 07  
Ictrl(PLL2)  
PLL2 control current  
75  
28  
µA  
ΦPLL2  
relative sensitivity of PLL2  
phase shift related to horizontal  
period  
mV/%  
VPROT(PLL2)(max)  
Ich(PLL2)  
maximum voltage for PLL2  
protection mode/soft start  
4.4  
1
V
charge current for external  
capacitor during soft start  
VHPLL2 < 3.7 V  
µA  
HORIZONTAL FLYBACK INPUT: PIN HFLB  
Vpos(HFLB)  
Vneg(HFLB)  
Ipos(HFLB)  
Ineg(HFLB)  
Vsl(HFLB)  
positive clamping voltage  
IHFLB = 5 mA  
5.5  
0.75  
6
V
negative clamping voltage  
positive clamping current  
negative clamping current  
slicing level  
IHFLB = 1 mA  
V
mA  
mA  
V
2  
2.8  
1999 Jul 13  
19  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Output stage for line driver pulses: pin HDRV  
OPEN-COLLECTOR OUTPUT STAGE  
Vsat(HDRV)  
saturation voltage  
IHDRV = 20 mA  
HDRV = 60 mA  
0.3  
V
I
0.8  
10  
V
ILO(HDRV)  
output leakage current  
VHDRV = 16 V  
µA  
AUTOMATIC VARIATION OF DUTY CYCLE  
tHDRV(OFF)/tH  
relative tOFF time of HDRV  
output; measured at  
HDRV = 3 V; HDRV duty cycle  
is modulated by the relation  
IHREF/IVREF  
IHDRV = 20 mA;  
fH = 31.45 kHz; see Fig.16  
42  
45  
48  
%
%
%
V
I
HDRV = 20 mA;  
45.5  
49  
48.5  
52  
51.5  
55  
fH = 58 kHz; see Fig.16  
IHDRV = 20 mA;  
fH = 110 kHz; see Fig.16  
X-ray protection: pins XRAY and XSEL  
VXRAY(sl)  
slicing voltage level for latch  
minimum width of trigger pulse  
input resistance at pin 2  
6.22  
6.39  
6.56  
30  
V
tW(XRAY)(min)  
Ri(XRAY)  
5
5
µs  
kΩ  
kΩ  
kΩ  
VXRAY < 6.38 V + VBE  
500  
V
XRAY > 6.38 V + VBE  
standby mode  
XRAYrst  
reset of X-ray latch  
pin 9 open-circuit or  
connected to GND  
set control bit SOFTST via  
the I2C-bus  
pin 9 connected to VCC via switch off VCC then re-apply  
RXSEL  
VCC  
VCC(XRAY)(min)  
minimum supply voltage for  
correct function of the X-ray  
latch  
pin 9 connected to VCC via  
RXSEL  
4
V
VCC(XRAY)(max)  
RXSEL  
maximum supply voltage for  
reset of the X-ray latch  
pin 9 connected to VCC via  
RXSEL  
no reset via I2C-bus  
2
V
external resistor at pin 9  
56  
130  
kΩ  
Vertical oscillator [oscillator frequency in application without adjustment of free-running frequency ffr(V)  
]
ffr(V)  
free-running frequency  
RVREF = 22 k;  
CVCAP = 100 nF  
40  
42  
43.3  
160  
Hz  
Hz  
V
fcr(V)  
vertical frequency catching  
range  
constant amplitude; note 7 50  
VVREF  
td(scan)  
voltage at reference input for  
vertical oscillator  
3.0  
delay between trigger pulse  
and start of ramp at VCAP  
(pin 24) (width of vertical  
blanking pulse)  
control bit VBLK = 0  
control bit VBLK = 1  
220  
260  
350  
300  
395  
µs  
µs  
305  
IVAGC  
amplitude control current  
control bit AGCDIS = 0  
control bit AGCDIS = 1  
±120  
±200  
±300  
µA  
µA  
0
1999 Jul 13  
20  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
CVAGC  
PARAMETER  
CONDITIONS  
MIN.  
150  
TYP.  
MAX.  
220  
UNIT  
nF  
external capacitor at VAGC  
(pin 22)  
Differential vertical current outputs  
ADJUSTMENT OF VERTICAL SIZE INCLUDING VGA AND EHT COMPENSATION; see Fig.5  
VSIZE  
vertical size without VGA  
overscan (referenced to  
nominal vertical size)  
register VSIZE = 0;  
bit VOVSCN = 0; note 8  
60  
%
%
%
%
register VSIZE = 127;  
bit VOVSCN = 0; note 8  
100  
70  
VSIZEVGA  
vertical size with VGA overscan register VSIZE = 0;  
(referenced to nominal vertical bit VOVSCN = 1; note 8  
size)  
register VSIZE = 127;  
115.9  
116.8  
117.7  
bit VOVSCN = 1; note 8  
VSMODEHT  
EHT compensation on vertical IVSMOD = 0  
0
%
%
size via VSMOD (pin 21)  
IVSMOD = 120 µA  
7  
(referenced to 100% vertical  
size)  
Ii(VSMOD)  
input current (pin 21)  
VSMOD = 0  
0
µA  
µA  
VSMOD = 7%  
120  
Ri(VSMOD)  
Vref(VSMOD)  
fro(VSMOD)  
input resistance  
300  
500  
reference voltage at input  
roll-off frequency (3 dB)  
5.0  
V
IVSMOD = 60 µA  
+ 15 µA (RMS)  
1
MHz  
ADJUSTMENT OF VERTICAL POSITION; see Fig.6  
VPOS  
vertical position (referenced to register VPOS = 0;  
11.5  
11.5  
0
%
%
%
100% vertical size)  
control bit VPC = 0  
register VPOS = 127;  
control bit VPC = 0  
register VPOS = X;  
control bit VPC = 1  
ADJUSTMENT OF VERTICAL LINEARITY; see Fig.7  
VLIN  
vertical linearity (S-correction) register VLIN = 0;  
control bit VSC = 0; note 8  
2
%
%
%
%
register VLIN = 15;  
control bit VSC = 0; note 8  
46  
0
register VLIN = X;  
control bit VSC = 1; note 8  
δVLIN  
symmetry error of S-correction maximum VLIN  
±0.7  
1999 Jul 13  
21  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
ADJUSTMENT OF VERTICAL LINEARITY BALANCE; see Fig.8  
VLINBAL  
vertical linearity balance  
(referenced to 100% vertical  
size)  
register VLINBAL = 0;  
control bit VLC = 0; note 8  
3.3  
2.5  
1.7  
%
register VLINBAL = 15;  
control bit VLC = 0; note 8  
1.7  
2.5  
0
3.3  
%
%
%
%
%
register VLINBAL = X;  
control bit VLC = 1; note 8  
VMOIRE  
modulation of vertical picture  
position by 12 vertical  
frequency (related to 100%  
vertical size)  
register VMOIRE = 0;  
control bit MOD = 0  
0
register VMOIRE = 31;  
control bit MOD = 0  
0.08  
0
moire cancellation off  
control bit MOD = 1  
Vertical output stage: pins VOUT1 and VOUT2; see Fig.29  
IVOUT(nom)(p-p)  
nominal differential output  
current (peak-to-peak value)  
IVOUT = IVOUT1 IVOUT2  
nominal settings; note 8  
;
0.76  
0.54  
0.85  
0.6  
0.94  
0.66  
mA  
mA  
Io(VOUT)(max)  
maximum output current at pins control bit VOVSCN = 1  
VOUT1 and VOUT2  
VVOUT  
allowed voltage at outputs  
0
4.2  
V
δIos(vert)(max)  
maximum offset error of vertical nominal settings; note 8  
output currents  
±2.5  
%
δIlin(vert)(max)  
maximum linearity error of  
vertical output currents  
nominal settings; note 8  
±1.5  
%
EW drive output  
EW DRIVE OUTPUT STAGE: PIN EWDRV; see Figs 9 to 12  
Vconst(EWDRV)  
bottom output voltage at pin  
EWDRV (internally stabilized)  
register HPIN = 0;  
1.05  
1.2  
1.35  
V
register HCOR = 04;  
register HTRAP = 08;  
register HSIZE = 255  
Vo(EWDRV)(max)  
IL(EWDRV  
maximum output voltage  
load current  
note 9  
7.0  
V
)
±2  
600  
mA  
106/K  
TCEWDRV  
temperature coefficient of  
output signal  
VHPIN(EWDRV)  
horizontal pincushion voltage  
register HPIN = 0; note 8  
register HPIN = 63; note 8  
0.04  
1.42  
0.08  
V
V
V
VHCOR(EWDRV)  
horizontal corner correction  
voltage  
register HCOR = 0;  
control bit VSC = 0; note 8  
register HCOR = 31;  
control bit VSC = 0; note 8  
0.64  
V
V
register HCOR = X;  
0
control bit VSC = 1; note 8  
1999 Jul 13  
22  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VHTRAP(EWDRV)  
horizontal trapezium correction register HTRAP = 15;  
0.33  
V
voltage  
control bit VPC = 0; note 8  
register HTRAP = 0;  
control bit VPC = 0; note 8  
0.33  
0
V
V
V
register HTRAP = X;  
control bit VPC = 1; note 8  
VHSIZE(EWDRV)  
horizontal size voltage  
register HSIZE = 255;  
note 8  
0.13  
register HSIZE = 0; note 8  
IHSMOD = 0; note 8  
3.6  
V
V
V
VHEHT(EWDRV)  
EHT compensation on  
horizontal size via HSMOD  
(pin 31)  
0.69  
0.02  
I
HSMOD = 120 µA; note 8  
Ii(HSMOD)  
input current (pin 31)  
VHEHT = 0.02 V  
VHEHT = 0.69 V  
0
µA  
µA  
120  
Ri(HSMOD)  
Vref(HSMOD)  
fro(HSMOD)  
input resistance  
300  
500  
reference voltage at input  
roll-off frequency (3 dB)  
IHSMOD = 0  
5.0  
V
IHSMOD = 60 µA  
+ 15 µA (RMS)  
1
MHz  
TRACKING OF EWDRV OUTPUT SIGNAL WITH HORIZONTAL FREQUENCY PROPORTIONAL VOLTAGE  
fH(MULTI)  
horizontal frequency range for  
tracking  
15  
80  
kHz  
V
VPAR(EWDRV)  
parabola amplitude at EWDRV IHREF = 1.052 mA;  
0.72  
(pin 11)  
fH = 31.45 kHz;  
control bit FHMULT = 1;  
note 10  
I
HREF = 2.341 mA;  
1.42  
V
fH = 70 kHz;  
control bit FHMULT = 1;  
note 10  
function disabled;  
control bit FHMULT = 0;  
note 10  
1.42  
V
LEEWDRV  
linearity error of horizontal  
frequency tracking  
8
%
Output for asymmetric EW corrections: pin ASCOR  
VHPARAL(ASCOR)  
vertical sawtooth voltage for  
EW parallelogram correction  
register HPARAL = 0;  
control bit HPC = 0; note 8  
0.825  
0.825  
0.05  
V
V
V
register HPARAL = 15;  
control bit HPC = 0; note 8  
register HPARAL = X;  
control bit HPC = 1; note 8  
1999 Jul 13  
23  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
1.0  
MAX.  
UNIT  
VHPINBAL(ASCOR) vertical parabola voltage for pin register HPINBAL = 0;  
V
unbalance correction  
control bit HBC = 0; note 8  
register HPINBAL = 15;  
control bit HBC = 0; note 8  
1.0  
0.05  
4
V
V
V
register HPINBAL = X;  
control bit HBC = 1; note 8  
Vo(ASCOR)(max)(p-p) maximum output voltage swing  
(peak-to-peak value)  
Vo(ASCOR)(max)  
Vc(ASCOR)  
Vo(ASCOR)(min)  
Io(ASCOR)(max)  
maximum output voltage  
centre voltage  
6.5  
4.0  
1.9  
1.5  
50  
V
V
minimum output voltage  
maximum output current  
V
V
ASCOR 1.9 V  
ASCOR 1.9 V  
mA  
µA  
Io(sink)(ASCOR)(max) maximum output sink current  
V
Focus section: pin FOCUS; TDA4854 only  
VHFOCUS(p-p)  
amplitude of horizontal  
parabola (peak-to-peak value)  
register HFOCUS = 0  
register HFOCUS = 31  
1.9 µs < tfb < 5.5 µs  
typical tprecor = 350 ns  
0.06  
3.2  
350  
V
V
tprecor  
pre-correction of phase  
ns  
µs  
tW(hfb)(min)  
minimum horizontal flyback  
pulse width  
1.9  
tW(hfb)(max)  
maximum horizontal flyback  
pulse width  
typical tprecor = 350 ns  
typical td = 300 ns  
5.5  
12.5  
µs  
µs  
V
tW(hfb)(TV)(max)  
VVFOCUS(p-p)  
maximum horizontal flyback  
pulse width (TV)  
amplitude of vertical parabola  
(peak-to-peak value)  
register VFOCUS = 0;  
note 8  
0.02  
0.8  
register VFOCUS = 07;  
note 8  
V
Vo(FOCUS)(max)  
Vo(FOCUS)(min)  
Io(FOCUS)(max)  
CL(FOCUS)(max)  
maximum output voltage  
minimum output voltage  
maximum output current  
maximum capacitive load  
IFOCUS = 0  
IFOCUS = 0  
5.7  
1.7  
±1.5  
6
2
6.3  
2.3  
V
V
mA  
pF  
20  
B+ control section; see Figs 23 and 24  
TRANSCONDUCTANCE AMPLIFIER: PINS BIN AND BOP  
Vi(BIN)  
input voltage pin 5  
0
5.25  
±1  
V
Ii(BIN)(max)  
Vref(int)  
maximum input current pin 5  
µA  
V
reference voltage at internal  
non-inverting input of OTA  
2.37  
2.5  
2.58  
Vo(BOP)(min)  
Vo(BOP)(max)  
Io(BOP)(max)  
gm(OTA)  
minimum output voltage pin 3  
0.5  
5.6  
V
maximum output voltage pin 3 IBOP < 1 mA  
maximum output current pin 3  
5.0  
5.3  
±500  
50  
V
µA  
mS  
dB  
transconductance of OTA  
open-loop voltage gain  
note 11  
note 12  
30  
70  
Gv(ol)  
86  
1999 Jul 13  
24  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
CBOP(min)  
PARAMETER  
CONDITIONS  
MIN.  
10  
TYP.  
MAX.  
UNIT  
nF  
minimum value of capacitor at  
pin 3  
VOLTAGE COMPARATOR: PIN BSENS  
Vi(BSENS)  
voltage range of positive  
comparator input  
0
0
5
5
V
Vi(BOP)  
voltage range of negative  
comparator input  
V
IL(BSENS)(max)  
maximum leakage current  
discharge disabled  
2  
µA  
OPEN-COLLECTOR OUTPUT STAGE: PIN BDRV  
Io(BDRV)(max)  
ILO(BDRV)  
maximum output current  
output leakage current  
saturation voltage  
20  
mA  
µA  
mV  
ns  
VBDRV = 16 V  
IBDRV < 20 mA  
3
Vsat(BDRV)  
300  
toff(BDRV)(min)  
td(BDRV-HDRV)  
minimum off-time  
250  
500  
delay between BDRV pulse  
and HDRV pulse  
measured at  
VHDRV = VBDRV = 3 V  
ns  
BSENS DISCHARGE CIRCUIT: PIN BSENS  
VSTOP(BSENS)  
discharge stop level  
capacitive load;  
0.85  
1.0  
1.15  
V
I
BSENS = 0.5 mA  
Idch(BSENS)  
discharge current  
VBSENS > 2.5 V  
fault condition  
4.5  
1.2  
2
6.0  
1.3  
7.5  
1.4  
mA  
V
Vth(BSENS)(restart)  
CBSENS(min)  
threshold voltage for restart  
minimum value of capacitor at  
BSENS (pin 4)  
nF  
Internal reference, supply voltage, soft start and protection  
VCC(stab)  
external supply voltage for  
complete stabilization of all  
internal references  
9.2  
16  
V
ICC  
supply current  
70  
9
mA  
mA  
ICC(stb)  
standby supply current  
STDBY = 1; VPLL2 < 1 V;  
3.5 V < VCC < 16 V  
PSRR  
power supply rejection ratio of f = 1 kHz  
internal supply voltage  
50  
dB  
V
VCC(blank)  
supply voltage level for  
activation of continuous  
blanking  
VCC decreasing from 12 V 8.2  
8.6  
9.0  
VCC(blank)(min)  
minimum supply voltage level  
for function of continuous  
blanking  
VCC decreasing from 12 V 2.5  
3.5  
8.3  
4.0  
8.7  
V
V
Von(VCC)  
supply voltage level for  
activation of HDRV, BDRV,  
VOUT1, VOUT2 and  
HUNLOCK  
VCC increasing from below 7.9  
typical 8 V  
1999 Jul 13  
25  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SYMBOL  
Voff(VCC)  
PARAMETER  
CONDITIONS  
MIN.  
7.7  
TYP.  
8.1  
MAX.  
8.5  
UNIT  
supply voltage level for  
V
CC decreasing from  
V
deactivation of BDRV, VOUT1, above typical 8.3 V  
VOUT2 and HUNLOCK; also  
sets register SOFTST  
THRESHOLDS DERIVED FROM HPLL2 VOLTAGE  
VHPLL2(blank)(ul)  
VHPLL2(bduty)(ul)  
VHPLL2(bduty)(ll)  
VHPLL2(hduty)(ul)  
VHPLL2(hduty)(ll)  
VHPLL2(stby)(ll)  
upper limit voltage for  
continuous blanking  
4.7  
3.4  
2.8  
2.8  
1.7  
1.1  
V
V
V
V
V
V
upper limit voltage for variation  
of BDRV duty cycle  
lower limit voltage for variation  
of BDRV duty cycle  
upper limit voltage for variation  
of HDRV duty cycle  
lower limit voltage for variation  
of HDRV duty cycle  
lower limit voltage for VOUT1  
and VOUT2 to be active via  
I2C-bus soft start  
VHPLL2(stby)(ul)  
VHPLL2(stby)(ll)  
upper limit voltage for standby  
voltage  
1
0
V
V
lower limit voltage for VOUT1  
and VOUT2 to be active via  
external DC current  
Notes  
1. For duration of vertical blanking pulse see subheading ‘Vertical oscillator [oscillator frequency in application without  
adjustment of free-running frequency ffr(V)]’.  
2. Continuous blanking at CLBL (pin 16) will be activated, if one of the following conditions is true:  
a) No horizontal flyback pulses at HFLB (pin 1) within a line  
b) X-ray protection is triggered  
c) Voltage at HPLL2 (pin 30) is low during soft start  
d) Supply voltage at VCC (pin 10) is low  
e) PLL1 unlocked while frequency-locked loop is in search mode.  
3. Oscillator frequency is fmin when no sync input signal is present (continuous blanking at pins 16 and 17).  
4. Loading of HPLL1 (pin 26) is not allowed.  
5. Voltage at HPLL1 (pin 26) is fed to HBUF (pin 27) via a buffer. Disturbances caused by horizontal sync are removed  
by an internal sample-and-hold circuit.  
6. All vertical and EW adjustments in accordance with note 8, but VSIZE = 80% (register VSIZE = 63 and control  
bit VOVSCN = 0).  
7. Value of resistor at VREF (pin 23) may not be changed.  
8. All vertical and EW adjustments are specified at nominal vertical settings; unless otherwise specified, which means:  
a) VSIZE = 100% (register VSIZE = 127 and control bit VOVSCN = 0)  
b) VSMOD = 0 (no EHT compensation)  
1999 Jul 13  
26  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
c) VPOS centred (register VPOS = X and control  
bit VPC = 1)  
10. If fH tracking is enabled, the amplitude of the complete  
EWDRV output signal (horizontal pincushion + corner  
correction + DC shift + trapezium) will be changed  
proportional to IHREF. The EWDRV low level of 1.2 V  
remains fixed.  
d) VLIN = 0 (register VLIN = X and control  
bit VSC = 1)  
e) VLINBAL = 0 (register VLINBAL = X and control  
bit VLC = 1)  
11. First pole of transconductance amplifier is 5 MHz  
without external capacitor (will become the second  
pole, if the OTA operates as an integrator).  
f) FHMULT = 0  
g) HPARAL = 0 (register HPARAL = X and control  
bit HPC = 1)  
VBOP  
12. Open-loop gain is  
at f = 0 with no resistive load  
-------------  
VBIN  
and CBOP = 10 nF [from BOP (pin 3) to GND].  
h) HPINBAL = 0 (register HPINBAL = X and control  
bit HBC = 1)  
i) Vertical oscillator synchronized  
j) HSIZE = 255.  
9. The output signal at EWDRV (pin 11) may consist of  
horizontal pincushion + corner correction + DC shift +  
trapezium correction. If the control bit VOVSCN is set,  
and the VPOS adjustment is set to an extreme value,  
the tip of the parabola may be clipped at the upper limit  
of the EWDRV output voltage range. The waveform of  
corner correction will clip if the vertical sawtooth  
adjustment exceeds 110% of the nominal setting.  
Vertical and EW adjustments  
MBG590  
handbook, halfpage  
MBG592  
handbook, halfpage  
I
VOUT1  
I
VOUT1  
I
VOUT2  
I
VOUT2  
(1)  
(1)  
l  
l  
l  
l  
2
1
2
1
t
t
(1) I1 is the maximum amplitude setting at register VSIZE = 127,  
control bit VOVSCN = 0, control bit VPC = 1,  
control bit VSC = 1 and control bit VLC = 1.  
I  
VSIZE = 2 × 100%  
-------  
(1) I1 is the maximum amplitude setting at register VSIZE = 127  
I1  
and control bit VPC = 1.  
I  
I2 I  
VSMOD = 2 × 100%  
1 × 100%  
-------  
VPOS =  
---------------------  
I1  
2 × ∆I1  
Fig.5 Adjustment of vertical size.  
Fig.6 Adjustment of vertical position.  
1999 Jul 13  
27  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
MGM068  
handbook, halfpage  
MBG594  
handbook, halfpage  
I
VOUT1  
I
I
VOUT1  
VOUT2  
l /∆t  
I
2
VOUT2  
(1)  
l  
/∆t  
1
(1)  
I  
I  
2
1
t
t
(1) I1 is the maximum amplitude setting at register VSIZE = 127  
(1) I1 is the maximum amplitude setting at register VSIZE = 127,  
register VOVSCN = 0, control bit VPC = 1, control bit VLIN = 1  
and control bit VLINBAL = 0.  
and VLIN = 0%.  
I1 I  
VLIN =  
2 × 100%  
---------------------  
I1  
I1 I  
VLINBAL =  
2 × 100%  
---------------------  
2 × ∆I1  
Fig.7 Adjustment of vertical linearity (vertical  
S-correction).  
Fig.8 Adjustment of vertical linearity balance.  
MGM070  
MGM069  
handbook, halfpage  
handbook, halfpage  
V
EWDRV  
V
EWDRV  
V
HCOR(EWDRV)  
V
HPIN(EWDRV)  
t
t
Fig.9 Adjustment of parabola amplitude at  
pin EWDRV.  
Fig.10 Influence of corner correction at  
pin EWDRV.  
1999 Jul 13  
28  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
MGM072  
MGM071  
handbook, halfpage  
handbook, halfpage  
V
EWDRV  
V
EWDRV  
V
HTRAP(EWDRV)  
V
HSIZE(EWDRV)  
+
V
HEHT(EWDRV)  
t
t
Fig.12 Influence of HSIZE and EHT compensation  
at pin EWDRV.  
Fig.11 Influence of trapezium at pin EWDRV.  
MGM073  
handbook, halfpage  
handbook, halfpage  
MGM074  
V
V
ASCOR  
ASCOR  
V
V
c(ASCOR)  
c(ASCOR)  
V
HPARAL(ASCOR)  
V
HPINBAL(ASCOR)  
t
t
Fig.13 Adjustment of parallelogram at pin ASCOR.  
Fig.14 Adjustment of pin balance at pin ASCOR.  
1999 Jul 13  
29  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Pulse diagrams  
4.0 V  
automatic trigger level  
3.8 V synchronized trigger level  
vertical oscillator sawtooth  
at VCAP (pin 24)  
1.4 V  
vertical sync pulse  
inhibited  
internal trigger  
inhibit window  
(typical 4 ms)  
vertical blanking pulse  
at CLBL (pin 16)  
vertical blanking pulse  
at HUNLOCK (pin 17)  
I
VOUT1  
differential output currents  
VOUT1 (pin 13) and  
VOUT2 (pin 12)  
I
VOUT2  
7.0 V maximum  
EW drive waveform  
at EWDRV (pin 11)  
DC shift 3.6 V maximum  
low-level 1.2 V fixed  
MGM075  
Fig.15 Pulse diagram for vertical part.  
30  
1999 Jul 13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
horizontal oscillator sawtooth  
at HCAP (pin 29)  
horizontal sync pulse  
PLL1 control current  
at HPLL1 (pin 26)  
-
+
video clamping pulse  
at CLBL (pin 16)  
vertical blanking level  
triggered on trailing edge  
of horizontal sync  
line flyback pulse  
at HFLB (pin 1)  
PLL2 control current  
at HPLL2 (pin 30)  
+
PLL2  
control range  
line drive pulse  
at HDRV (pin 8)  
45 to 52% of line period  
horizontal focus parabola  
at FOCUS (pin 32)  
t
precor  
MGM076  
Fig.16 Pulse diagram for horizontal part.  
31  
1999 Jul 13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
MGM077  
relative t  
/t  
HDRV(OFF) H  
(%)  
52  
45  
15 30  
110 130  
f
(kHz)  
H
Fig.17 Relative tOFF time of HDRV as a function of horizontal frequency.  
composite sync (TTL)  
at HSYNC (pin 15)  
internal integration of  
composite sync  
internal vertical  
trigger pulse  
PLL1 control voltage  
at HPLL1 (pin 26)  
clamping and blanking  
pulses at CLBL (pin 16)  
MGC947  
a. Reduced influence of vertical sync on horizontal phase.  
composite sync (TTL)  
at HSYNC (pin 15)  
clamping and blanking  
pulses at CLBL (pin 16)  
MBG596  
b. Generation of video clamping pulses during vertical sync with serration pulses.  
Fig.18 Pulse diagrams for composite sync applications.  
1999 Jul 13  
32  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
I2C-BUS PROTOCOL  
I2C-bus data format  
S(1)  
SLAVE ADDRESS(2)  
A(3)  
SUBADDRESS(4)  
A(3)  
DATA(5)  
A(3)  
P(6)  
Notes  
1. S = START condition.  
2. SLAVE ADDRESS (MAD) = 1000 1100.  
3. A = acknowledge, generated by the slave. No acknowledge, if the supply voltage is below 8.3 V for start-up and 8.1 V  
for shut-down procedure.  
4. SUBADDRESS (SAD).  
5. DATA, if more than 1 byte of DATA is transmitted, then no auto-increment of the significant subaddress is performed.  
6. P = STOP condition.  
It should be noted that clock pulses according to the 400 kHz specification are accepted for 3.3 and 5 V applications  
(reference level = 1.8 V). Default register values after power-up are random. All registers have to be preset via software  
before the soft start is enabled.  
Important: If the register contents are changed during the vertical scan, this might result in a visible interference on the  
screen. The cause for this interference is the abrupt change in picture geometry which takes effect at random locations  
within the visible picture.  
To avoid this kind of interference, the adjustment of the critical geometry parameters HSIZE, HPOS, VSIZE and VPOS  
should be synchronized with the vertical flyback. This should be done in such a way that the adjustment change takes  
effect during the vertical blanking time (see Fig.19).  
For very slow I2C-bus interfaces, it might be necessary to delay the transmission of the last byte (or only the last bit) of  
an I2C-bus message until the start of the vertical sync or vertical blanking.  
vertical  
sync pulse  
vertical  
blanking pulse  
SDA  
parameter change takes effect  
MGM088  
Fig.19 Timing of the I2C-bus transmission for interference-free adjustment.  
1999 Jul 13  
33  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Table 4 List of I2C-bus controlled switches; notes 1 and 2  
REGISTER ASSIGNMENT  
CONTROL  
FUNCTION  
BIT  
SAD  
(HEX)  
D7 D6 D5 D4 D3 D2 D1 D0  
BLKDIS  
0: vertical, protection and horizontal unlock blanking  
available on pins CLBL and HUNLOCK  
01  
X
#
#
#
#
#
#
D0  
1: only vertical and protection blanking available on  
pins CLBL and HUNLOCK  
HBC  
0: HPINBAL (parabola) waveform enabled  
1: HPINBAL (parabola) waveform disabled  
0: HPARAL (sawtooth) waveform enabled  
1: HPARAL (sawtooth) waveform disabled  
0: AGC in vertical oscillator active  
01  
01  
01  
01  
01  
01  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0D  
0D  
X
X
X
X
X
X
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
D1 #  
HPC  
D2 #  
#
AGCDIS  
VSC  
D3 #  
#
#
#
#
X
#
1: AGC in vertical oscillator inhibited  
0: VLIN and HCOR adjustments enabled  
1: VLIN and HCOR adjustments forced to centre value  
0: horizontal and vertical moire cancellation enabled  
1: horizontal and vertical moire cancellation disabled  
0: TV mode at fmin not activated  
D4 #  
#
#
#
#
#
MOD  
D5 #  
#
#
#
#
#
TVMOD  
FHMULT  
VOVSCN  
CLAMP  
VBLK  
D6 #  
#
#
#
#
#
1: TV mode at fmin activated  
0: EW output independent of horizontal frequency  
1: EW output tracks with horizontal frequency  
0: vertical size 100%  
#
#
#
#
#
#
#
#
#
D0  
#
#
D2 X  
1: vertical size 116.8% for VGA350  
0: trailing edge for horizontal clamp  
#
D3 #  
X
X
X
X
X
#
#
1: leading edge for horizontal clamp  
0: vertical blanking = 260 µs  
#
D4 #  
#
#
#
#
X
X
#
1: vertical blanking = 340 µs  
VLC  
0: VLINBAL adjustment enabled  
#
D5 #  
#
#
#
X
X
#
1: VLINBAL adjustment forced to centre value  
0: VPOS and HTRAP adjustments enabled  
1: VPOS and HTRAP adjustments forced to centre value  
0: ASCOR disconnected from PLL2  
1: ASCOR internally connected with PLL2  
0: internal power supply enabled  
VPC  
#
D6 #  
#
#
X
X
#
ACD  
D7 #  
#
#
STDBY(3)  
X
X
X
X
X
X
D0  
1: internal power supply disabled  
SOFTST(3) 0: soft start not released (pin HPLL2 pulled to ground)  
D1 #  
1: soft start is released (power-up via pin HPLL2)  
Notes  
1. X = don’t care.  
2. # = this bit is occupied by another function. If the register is addressed, the bit values for both functions must be  
transferred.  
3. Bits STDBY and SOFTST can be reset by internal protection circuit.  
1999 Jul 13  
34  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 5 List of I2C-bus controlled functions and those accessible by pins; notes 1 and 2  
REGISTER ASSIGNMENT  
SAD  
(HEX)  
CONTROL  
BIT  
FUNCTION  
TRACKS WITH  
FUNCTION  
NAME  
BITS  
RANGE  
D7 D6 D5 D4 D3 D2 D1 D0  
Horizontal size  
Vertical position  
HSIZE  
VPOS  
8
7
4
00  
02  
03  
D7 D6 D5 D4 D3 D2 D1 D0  
0.1 to 3.6 V  
HSMOD  
VSMOD  
D7 D6 D5 D4 D3 D2 D1  
X
#
VPC  
VLC  
±11.5%  
Vertical linearity  
balance  
VLINBAL  
X
D6 D5 D4 D3  
#
#
±2.5% of 100%  
vertical size  
VSIZE, VOVSCN,  
VPOS and  
VSMOD  
Moire cancellation  
via vertical  
position  
VMOIRE  
HPIN  
3
6
5
03  
04  
05  
#
#
X
X
#
#
#
D2 D1 D0  
MOD  
0 to 0.08% of  
vertical amplitude  
Horizontal  
pincushion  
X
X
D5 D4 D3 D2 D1 D0  
0 to 1.44 V  
VSIZE, VOVSCN,  
VPOS, HSIZE and  
HSMOD  
Moire cancellation  
via horizontal  
position  
HMOIRE  
X
D4 D3 D2 D1 D0  
MOD  
0 to 0.05% of  
horizontal period  
Horizontal  
position  
HPOS  
VLIN  
8
4
06  
07  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4  
±13% of horizontal  
period  
Vertical linearity  
#
#
#
#
VSC  
2 to 46%  
VSIZE, VOVSCN,  
VPOS and  
VSMOD  
EW pin balance  
Vertical size  
HPINBAL  
4
07  
#
#
#
#
D3 D2 D1 D0 HBC and ±1% of  
VSIZE, VOVSCN  
and VPOS  
ACD  
horizontal period  
VSIZE  
HCOR  
7
5
08  
09  
D7 D6 D5 D4 D3 D2 D1  
X
60 to 100%  
VSMOD  
Horizontal corner  
correction  
X
X
X
D4 D3 D2 D1 D0  
VSC  
+6 to 46% of  
parabola  
VSIZE, VOVSCN,  
VPOS, HSIZE and  
HSMOD  
amplitude  
Horizontal  
trapezium  
correction  
HTRAP  
4
4
0C  
0C  
D7 D6 D5 D4  
#
#
#
#
VPC  
±0.33 V  
VSIZE, VOVSCN,  
VPOS, HSIZE and  
HSMOD  
Horizontal  
parallelogram  
HPARAL  
#
#
#
#
D3 D2 D1 D0 HPC and ±1% of horizontal VSIZE, VOVSCN  
ACD period and VPOS  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
REGISTER ASSIGNMENT  
SAD  
(HEX)  
CONTROL  
BIT  
FUNCTION  
TRACKS WITH  
FUNCTION  
TDA4854  
NAME  
BITS  
RANGE  
D7 D6 D5 D4 D3 D2 D1 D0  
Vertical focus  
VFOCUS  
HFOCUS  
3
5
0A  
0A  
D7 D6 D5  
#
#
#
#
#
0 to 25%  
0 to 100%  
VSIZE, VOVSCN  
and VPOS  
Horizontal focus  
#
#
#
D4 D3 D2 D1 D0  
Notes  
1. X = don’t care.  
2. # = this bit is occupied by another function. If the register is addressed, the bit values for both functions must be transferred.  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Start-up procedure  
VCC < 8.3 V:  
START  
As long as the supply voltage is too low for correct  
operation, the IC will give no acknowledge due to  
internal Power-on reset (POR)  
Power-down mode (XXXX XXXX)  
L1  
L2  
no acknowledge is given by IC  
all register contents are random  
Supply current is 9 mA or less.  
VCC > 8.3 V:  
V
> 8.3 V  
CC  
The internal POR has ended and the IC is in standby  
Standby mode (XXXX XX01)  
mode  
STDBY = 1  
SOFTST = 0  
all other register contents are random  
Control bits STDBY and SOFTST are reset to their start  
values  
All other register contents are random  
Pin HUNLOCK is at HIGH-level.  
Setting control bit STDBY = 0:  
S
8CH  
A
0DH  
A
00H  
A P  
Protection mode (XXXX XX00)  
Enables internal power supply  
STDBY = 0  
SOFTST = 0  
all other register contents are random  
Supply current increases from 9 to 70 mA  
When VCC < 8.6 V register SOFTST cannot be set by  
the I2C-bus  
S
8CH  
A
SAD  
A
DATA A P  
Output stages are disabled, except the vertical output  
Pin HUNLOCK is at HIGH-level.  
Protection mode (XXXX XX00)  
Setting all registers to defined values:  
STDBY = 0  
SOFTST = 0  
registers are pre-set  
Due to the hardware configuration of the IC  
(no auto-increment) any register setting needs a  
complete 3-byte I2C-bus data transfer as follows:  
START - IC address - subaddress - data - STOP.  
no  
all registers defined?  
Setting control bit SOFTST = 1:  
yes  
Before starting the soft-start sequence a delay of  
minimum 80 ms is necessary to obtain correct function  
of the horizontal drive  
L3  
S
8CH  
A
0DH  
A
02H  
A P  
Soft-start sequence (XXXX XX10)  
HDRV duty cycle increases  
BDRV duty cycle increases  
PLL1 and PLL2 are enabled.  
STDBY = 0  
SOFTST = 1  
Operating mode (XXXX XX10)  
IC in full operation:  
STDBY = 0  
SOFTST = 1  
Pin HUNLOCK is at LOW-level when PLL1 is locked  
Any change of the register content will result in  
immediate change of the output behaviour  
no  
no  
change/refresh of data?  
yes  
SOFTST = 0?  
yes  
Setting control bit SOFTST = 0 is the only way (except  
power-down via pin VCC) to leave the operating mode.  
(1)  
L4  
S
8CH  
A
SAD  
A
DATA A P  
Soft-down sequence:  
MGM078  
See L4 of Fig.21 for starting the soft-down sequence.  
(1) See Fig.21.  
Fig.20 I2C-bus flow for start-up.  
1999 Jul 13  
37  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Protection and standby mode  
Soft-down sequence:  
L4  
Start the sequence by setting control bit SOFTST = 0  
BDRV duty cycle decreases  
S
8CH  
A
0DH  
A
00H  
A P  
HDRV duty cycle decreases.  
Protection mode:  
Soft-down sequence (XXXX XX00)  
STDBY = 0  
SOFTST = 0  
Pins HDRV and BDRV are floating  
Continuous blanking at pin CLBL is active  
Pin HUNLOCK is floating  
Protection mode (XXXX XX00)  
PLL1 and PLL2 are disabled  
STDBY = 0  
SOFTST = 0  
registers are set  
Register contents are kept in internal memory.  
Protection mode can be left by 3 ways:  
1. Entering standby mode by setting control  
bit SOFTST = 0 and control bit STDBY = 1  
no  
no  
STDBY = 1?  
yes  
SOFTST = 1?  
yes  
2. Starting the soft-start sequence by setting control  
bit SOFTST = 1 (bit STDBY = don’t care);  
see L3 of Fig.20 for continuation  
(1)  
L3  
3. Decreasing the supply voltage below 8.1 V.  
S
8CH  
A
0DH  
A
01H  
A P  
Standby mode:  
Set control bit STDBY = 1  
Standby mode (XXXX XX01)  
Driver outputs are floating (same as protection mode)  
STDBY = 1  
SOFTST = 0  
Supply current is 9 mA  
all other register contents are random  
Only the I2C-bus and protection circuits are operative  
Contents of all registers except the value of bit STDBY  
and bit SOFTST are lost  
(1)  
L2  
MBK382  
See L2 of Fig.20 for continuation.  
(1) See Fig.20.  
Fig.21 I2C-bus flow for protection and standby  
mode.  
1999 Jul 13  
38  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
(ANY Mode)  
V
< 8.1 V  
CC  
Power-Down Mode  
V
a soft-down sequency followed by a  
soft start sequence is generated  
internally.  
no acknowledge is given by IC  
all register contents are random  
CC  
8.6 V  
8.1 V  
V
IC enters standby mode.  
CC  
8.6 V  
8.1 V  
(1)  
L1  
MGM079  
(1) See Fig.20.  
Fig.22 I2C-bus flow for any mode.  
Power-down mode  
Power dip of VCC < 8.6 V:  
The soft-down sequence is started first.  
Then the soft-start sequence is generated internally.  
Power dip of VCC < 8.1 V or VCC shut-down:  
This function is independent from the operating mode, so it works under any condition.  
All driver outputs are immediately disabled  
IC enters standby mode.  
1999 Jul 13  
39  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
APPLICATION INFORMATION  
V
CC  
V
i
2
V
V
(1)  
V
HDRV  
HPLL2  
R6  
6
L
3
BDRV  
D2  
SOFT START  
OTA  
S
R
Q
Q
2.5 V  
TR1  
INVERTING  
BUFFER  
HORIZONTAL  
OUTPUT  
STAGE  
DISCHARGE  
5
3
4
D1  
C1  
1
horizontal  
flyback pulse  
V
V
BIN  
BOP  
R5  
4
R1  
R3  
V
BSENS  
R4  
C4  
R2  
MGM080  
C2  
C
BOP  
>10 nF  
EWDRV  
For f < 50 kHz and C2 < 47 nF calculation formulas and behaviour of the OTA are the same as for an OP. An exception is the limited output current at  
BOP (pin 3). See Chapter “Characteristics”, Row Head “B+ control section; see Figs 23 and 24”.  
(1) The recommended value for R6 is 1 k.  
a. Feedback mode application.  
1
horizontal  
flyback pulse  
2
3
V
HDRV  
t
on  
t
V
BDRV  
t
d(BDRV)  
off(min)  
V
= V  
BSENS  
V
BOP  
V
4
RESTART(BSENS)  
BSENS  
V
STOP(BSENS)  
MBG600  
b. Waveforms for normal operation.  
c. Waveforms for fault condition.  
Fig.23 Application and timing for feedback mode.  
1999 Jul 13  
40  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
V
horizontal  
flyback pulse  
CC  
1
2
V
(1)  
V
HDRV  
R4  
HPLL2  
6
INVERTING  
BUFFER  
SOFT START  
OTA  
HORIZONTAL  
OUTPUT  
S
R
Q
Q
STAGE  
2.5 V  
EHT  
transformer  
D2  
3
V
BDRV  
5 I  
DISCHARGE  
MOSFET  
TR1  
5
3
4
V
EHT adjustment  
BOP  
R1  
R2  
V
BIN  
R3  
D1  
MGM081  
4
V
BSENS  
TR2  
C
C1  
C
BSENS  
>2 nF  
power-down  
> 10 nF  
BOP  
(1) The recommended value for R4 is 1 k.  
a. Forward mode application.  
1
horizontal  
flyback pulse  
2
3
V
HDRV  
t
on  
t
V
BDRV  
t
(discharge time of C  
BSENS  
)
off  
d(BDRV)  
V
V
BOP  
BOP  
4
5
V
I
BSENS  
V
V
RESTART(BSENS)  
STOP(BSENS)  
MOSFET  
MBG602  
b. Waveforms for normal operation.  
c. Waveforms for fault condition.  
Fig.24 Application and timing for feed forward mode.  
1999 Jul 13  
41  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Start-up sequence and shut-down sequence  
MGM082  
V
CC  
8.6 V continuous blanking off  
PLL2 soft start/soft-down enabled  
(1)  
2
8.3 V data accepted from I C-bus  
video clamping pulse enabled if control bit STDBY = 0  
3.5 V  
continuous blanking (pin 16 and 17) activated  
time  
a. Start-up sequence.  
MGM083  
V
CC  
8.6 V continuous blanking (pin 16 and 17) activated  
(2)  
PLL2 soft-down sequence is triggered  
2
8.1 V no data accepted from I C-bus  
video clamping pulse disabled  
3.5 V continuous blanking disappears  
time  
b. Shut-down sequence.  
(1) See Figs 20, 21, 22, 26 and 27.  
(2) See Figs 26b and 27b.  
Fig.25 Start-up sequence and shut-down sequence.  
42  
1999 Jul 13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PLL2 soft start sequence and PLL2 soft-down sequence  
MGM084  
V
HPLL2  
4.7 V continuous blanking off  
PLL2 enabled  
frequency detector enabled  
HDRV/HFLB protection enabled  
3.4 V BDRV duty cycle has reached nominal value  
2.8 V BDRV duty cycle begins to increase  
HDRV duty cycle has reached nominal value  
duty cycle increases  
1.7 V  
HDRV duty cycle begins to increase  
1 V  
VOUT1 and VOUT2 enabled  
time  
a. PLL2 soft start sequence, via the I2C-bus, if VCC > 8.6 V.  
MGM085  
V
HPLL2  
4.7 V continuous blanking (pin 16 and 17) activated  
PLL2 disabled  
frequency detector disabled  
HDRV/HFLB protection disabled  
(1)  
3.4 V BDRV duty cycle begins to decrease  
2.8 V BDRV floating  
(1)  
HDRV duty cycle begins to decrease  
1.7 V HDRV floating  
1 V  
VOUT1 and VOUT2 floating  
time  
b. PLL2 soft-down sequence, via the I2C-bus, if VCC > 8.6 V.  
(1) HDRV, BDRV, VOUT2 and VOUT1 are floating for VCC < 8.6 V.  
Fig.26 PLL2 soft start sequence and PLL2 soft-down sequence via the I2C-bus.  
1999 Jul 13  
43  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
MHB108  
V
HPLL2  
4.6 V continuous blanking off  
PLL2 enabled  
frequency detector enabled  
HDRV/HFLB protection enabled  
3.3 V BDRV duty cycle has reached nominal value  
3.0 V BDRV duty cycle begins to increase  
HDRV duty cycle has reached nominal value  
1.7 V  
HDRV duty cycle begins to increase  
time  
a. PLL2 soft start sequence by external DC current, if VCC > 8.6 V.  
MHB109  
V
HPLL2  
4.6 V continuous blanking (pin 16 and 17) activated  
PLL2 disabled  
frequency detector disabled  
HDRV/HFLB protection disabled  
(1)  
3.3 V BDRV duty cycle begins to decrease  
3.0 V BDRV floating  
(1)  
HDRV duty cycle begins to decrease  
1.7 V HDRV floating  
time  
b. PLL2 soft-down sequence by external DC current, if VCC > 8.6 V.  
(1) HDRV, BDRV, VOUT2 and VOUT1 are floating for VCC < 8.6 V.  
Fig.27 PLL2 soft start sequence and PLL2 soft-down sequence by external DC current.  
1999 Jul 13  
44  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
X-ray latch triggered  
V
XRAY  
V
HUNLOCK  
BDRV duty cycle  
HDRV duty cycle  
VOUT1, VOUT2  
floating  
floating  
floating  
approximately 25 ms  
MGM087  
Fig.28 Activation of the soft-down sequence via pin XRAY.  
Vertical linearity error  
(1)  
handbook, halfpage  
I
VOUT  
MBG551  
(µA)  
+415  
(2)  
1
I
(3)  
I
2
0
(4)  
3
I
415  
V
VCAP  
(1) IVOUT = IVOUT1 IVOUT2  
.
(2) I1 = IVOUT at VVCAP = 1.9 V.  
(3) I2 = IVOUT at VVCAP = 2.6 V.  
(4) I3 = IVOUT at VVCAP = 3.3 V.  
I
1 I3  
Which means: I0  
=
--------------  
2
I
1 I2  
I2 I3  
Vertical linearity error = 1 max  
or  
--------------  
I0  
--------------  
I0  
Fig.29 Definition of vertical linearity error.  
45  
1999 Jul 13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
Printed-circuit board layout  
further connections to other components  
or ground paths are not allowed  
external components of  
horizontal section  
external components of  
vertical section  
pin 25 should be the 'star point'  
for all small signal components  
external components of  
horizontal section  
no external ground tracks  
connected here  
47 nF  
2.2 nF  
TDA4853; TDA4854  
470 pF  
100 µF  
12 V  
B-drive line in parallel  
to ground  
only this path may be connected  
to general ground of PCB  
MGM086  
SMD  
For optimum performance of the TDA4853; TDA4854 the ground paths must be routed as shown.  
Only one connection to other grounds on the PCB is allowed.  
Note: The tracks for HDRV and BDRV should be kept separate.  
Fig.30 Hints for printed-circuit board (PCB) layout.  
46  
1999 Jul 13  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
INTERNAL PIN CONFIGURATION  
PIN  
SYMBOL  
HFLB  
INTERNAL CIRCUIT  
1
1.5 kΩ  
1
7 x  
MBG561  
2
XRAY  
5 kΩ  
2
6.25 V  
MBG562  
3
BOP  
5.3 V  
3
MBG563  
4
BSENS  
4
MBG564  
1999 Jul 13  
47  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
BIN  
INTERNAL CIRCUIT  
5
5
MBG565  
6
BDRV  
6
MBG566  
7
8
PGND  
HDRV  
power ground, connected to substrate  
8
MGM089  
9
XSEL  
4 kΩ  
9
MBK381  
10  
11  
VCC  
10  
MGM090  
EWDRV  
108 Ω  
108 Ω  
11  
MBG570  
1999 Jul 13  
48  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
VOUT2  
INTERNAL CIRCUIT  
12  
13  
14  
MBG571  
12  
VOUT1  
MBG572  
13  
VSYNC  
100 Ω  
2 kΩ  
1.4 V  
14  
7.3 V  
MBG573  
15  
HSYNC  
1.28 V  
85 Ω  
7.3 V  
1.4 V  
15  
MBG574  
16  
CLBL  
16  
MBG575  
1999 Jul 13  
49  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
INTERNAL CIRCUIT  
17  
HUNLOCK  
17  
MGM091  
18  
SCL  
18  
MGM092  
19  
20  
SDA  
19  
MGM093  
ASCOR  
480 Ω  
20  
MGM094  
21  
VSMOD  
250 Ω  
5 V  
21  
MGM095  
1999 Jul 13  
50  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
VAGC  
INTERNAL CIRCUIT  
22  
22  
MBG581  
23  
VREF  
23  
3 V  
MBG582  
24  
VCAP  
24  
MBG583  
25  
26  
SGND  
HPLL1  
signal ground  
26  
4.3 V  
MGM096  
27  
HBUF  
5 V  
27  
MGM097  
1999 Jul 13  
51  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
HREF  
INTERNAL CIRCUIT  
28  
29  
HCAP  
2.525 V  
76 Ω  
28  
7.7 V  
29  
MBG585  
30  
HPLL2  
7.7 V  
30  
6.25 V  
HFLB  
MGM098  
31  
HSMOD  
250 Ω  
5 V  
31  
MGM099  
1999 Jul 13  
52  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PIN  
SYMBOL  
INTERNAL CIRCUIT  
32  
FOCUS(1)  
120 Ω  
32  
200 Ω  
120 Ω  
MGM100  
Note  
1. This pin is internally connected for TDA4853.  
Electrostatic discharge (ESD) protection  
pin  
pin  
7.3 V  
MBG559  
7.3 V  
MBG560  
Fig.31 ESD protection for pins 4, 11 to 13,  
16 and 17.  
Fig.32 ESD protection for pins 2, 3, 5, 18 to 24  
and 26 to 32.  
1999 Jul 13  
53  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
PACKAGE OUTLINE  
SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)  
SOT232-1  
D
M
E
A
2
A
A
L
1
c
(e )  
w M  
e
Z
1
b
1
M
H
b
32  
17  
pin 1 index  
E
1
16  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
A
A
2
max.  
(1)  
(1)  
Z
1
w
UNIT  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
min.  
max.  
1.3  
0.8  
0.53  
0.40  
0.32  
0.23  
29.4  
28.5  
9.1  
8.7  
3.2  
2.8  
10.7  
10.2  
12.2  
10.5  
mm  
4.7  
0.51  
3.8  
1.778  
10.16  
0.18  
1.6  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT232-1  
1999 Jul 13  
54  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
300 and 400 °C, contact may be up to 5 seconds.  
Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
1999 Jul 13  
55  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1999 Jul 13  
56  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
NOTES  
1999 Jul 13  
57  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
NOTES  
1999 Jul 13  
58  
Philips Semiconductors  
Product specification  
I2C-bus autosync deflection controllers for  
PC/TV monitors  
TDA4853; TDA4854  
NOTES  
1999 Jul 13  
59  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA67  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545004/02/pp60  
Date of release: 1999 Jul 13  
Document order number: 9397 750 05275  
Philips Semiconductors: Product information on TDA4853; TDA4854, I²C-bus autosync deflection controllers for PC/TV monitors  
Go to Philips  
Semiconductors' home  
Catalog & Datasheets  
Product INFOrmation page  
Information as of 2001-06-13  
Catalog by Function  
Catalog by System  
Cross reference  
TDA4853; TDA4854; I²C-bus autosync deflection controllers for PC/TV monitors  
Description  
Features  
Datasheet  
Products, packages, availability and ordering  
Find similar products  
Subscribe  
to  
To be kept informed on TDA4853; TDA4854,  
subscribe to eNews.  
Models  
Packages  
Application notes  
Selection guides  
Other technical documentation  
End of Life information  
-
order this  
Description  
Go  
The TDA4854 is a high performance and efficient solution for autosync monitors. All functions are  
controllable by I²C-bus.  
Relevant Links  
About catalog tree  
-
-
-
-
-
-
-
About search  
The TDA4854 provides synchronization processing, horizontal and vertical synchronization with full  
autosync capability, a TV/VCR mode and very short settling times after mode changes. External power  
components are given a great deal of protection. The IC generates the drive waveforms for  
DC-coupled vertical boosters such as the TDA486x and TDA835x.  
About this site  
Subscribe to eNews  
Catalog & Datasheets  
Search  
The TDA4854 provides extended functions e.g. as a flexible B+ control, an extensive set of geometry  
control facilities, and a combined output for horizontal and vertical focus signals.  
Produ
TDA4853; TDA4854  
Down
TDA4853; TDA4854  
-
The TDA4853 is an economy version of the TDA4854, especially designed for use in 14" and 15"  
monitors with combined EHT generation. It provides the same features as the TDA4854 except for the  
dynamic focus block.  
Together with the I²C-bus driven Philips TDA488x video processor family, a very advanced system  
solution is offered.  
Features  
Go  
Concept features  
Full horizontal plus vertical autosync capability; TV and VCR mode included  
Extended horizontal frequency range from 15 to 130 kHz  
Comprehensive set of I²C-bus driven geometry adjustments and functions, including standby  
mode  
Very good vertical linearity  
Moire cancellation  
Start-up and switch-off sequence for safe operation of all power components  
X-ray protection  
Flexible switched mode B+ supply function block for feedback and feed forward converter  
Internally stabilized voltage reference  
Drive signal for focus amplifiers with combined horizontal and vertical parabola waveforms  
(TDA4854)  
DC controllable inputs for Extremely High Tension (EHT) compensation  
SDIP32 package.  
Synchronization  
file:///E|/export/projects/bitting2/imaging/BITTING/mail_pdf/cpl_images/v2.html (1 of 3) [7/17/2001 6:28:04 PM]  
 
Philips Semiconductors: Product information on TDA4853; TDA4854, I²C-bus autosync deflection controllers for PC/TV monitors  
Can handle all sync signals (horizontal, vertical, composite and sync-on-video)  
Output for video clamping (leading/trailing edge selectable by I²C-bus), vertical blanking and  
protection blanking  
Output for fast unlock status of horizontal synchronization and blanking on grid 1 of picture  
tube.  
Horizontal section  
I²C-bus controllable wide range linear picture position, pin unbalance and parallelogram  
correction via horizontal phase  
Frequency-locked loop for smooth catching of horizontal frequency  
TV mode at 15.625 or 15.750 kHz selectable by I²C-bus  
Simple frequency preset of fmin and fmax by external resistors  
Low jitter  
Soft start for horizontal and B+ control drive signals.  
Vertical section  
I²C-bus controllable vertical picture size, picture position, linearity (S-correction) and linearity  
balance  
Output for I²C-bus controllable vertical sawtooth and parabola (for pin unbalance and  
parallelogram)  
Vertical picture size independent of frequency  
Differential current outputs for DC coupling to vertical booster  
50 to 160 Hz vertical autosync range.  
East-West (EW) section  
I²C-bus controllable output for horizontal pincushion, horizontal size, corner and trapezium  
correction  
Optional tracking of EW drive waveform with line frequency selectable by I²C-bus.  
Focus section of TDA4854  
I²C-bus controllable output for horizontal and vertical parabolas  
Vertical parabola is independent of frequency and tracks with vertical adjustments  
Horizontal parabola independent of frequency  
Pre-correction of delay in focus output stage.  
Datasheet  
Go  
File  
Page size  
Publication  
Type nr.  
Title  
release date Datasheet status  
count (kB) Datasheet  
TDA4853;  
TDA4854  
I²C-bus autosync  
deflection controllers  
for PC/TV monitors  
13-Jul-99  
Product  
Specification  
60  
278  
Download  
Down  
Products, packages, availability and ordering  
Go  
North  
American  
Partnumber  
marking/packing  
Order code  
(12nc)  
Partnumber  
package device status  
buy online  
-
Down
IC packing  
info  
SOT232-1  
Development  
(SDIP32)  
Standard  
Marking * Tube  
TDA4853/V1  
9352 374 60112  
SOT232-1  
Standard  
Marking * Tube  
order this  
TDA4853/V2 TDA4853NB 9352 608 02112  
TDA4854/V2 TDA4854NB 9352 608 03112  
Full production  
(SDIP32)  
-
SOT232-1  
Standard  
Marking * Tube  
order this  
-
Full production  
(SDIP32)  
Products in the above table are all in production. Some variants are discontinued; click here for  
information on these variants.  
file:///E|/export/projects/bitting2/imaging/BITTING/mail_pdf/cpl_images/v2.html (2 of 3) [7/17/2001 6:28:04 PM]  
Philips Semiconductors: Product information on TDA4853; TDA4854, I²C-bus autosync deflection controllers for PC/TV monitors  
Find similar products:  
Go  
TDA4853; TDA4854 links to the similar products page containing an overview of products that  
Produ  
are similar in function or related to the part number(s) as listed on this page. The similar products page  
includes products from the same catalog tree(s) , relevant selection guides and products from the  
same functional category.  
Copyright © 2001  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  
file:///E|/export/projects/bitting2/imaging/BITTING/mail_pdf/cpl_images/v2.html (3 of 3) [7/17/2001 6:28:04 PM]  

相关型号:

935237670112

IC LVC/LCX/Z SERIES, 16 1-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, SOT-370, SSOP-48, Bus Driver/Transceiver
NXP

935237670118

IC LVC/LCX/Z SERIES, 16 1-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, SOT-370, SSOP-48, Bus Driver/Transceiver
NXP

935237680112

IC LVC/LCX/Z SERIES, 16 1-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, SOT-362, TSSOP-48, Bus Driver/Transceiver
NXP

935237680118

LVC/LCX/Z SERIES, QUAD 4-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, MO-153, SOT-362, TSSOP-48
NXP

935237680512

LVC/LCX/Z SERIES, QUAD 4-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, MO-153, SOT-362, TSSOP-48
NXP

935237680518

LVC/LCX/Z SERIES, QUAD 4-BIT DRIVER, TRUE OUTPUT, PDSO48, PLASTIC, MO-153, SOT-362, TSSOP-48
NXP

935237690112

IC LVC/LCX/Z SERIES, 16 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, PLASTIC, SSOP3-48, Bus Driver/Transceiver
NXP

935237690118

IC LVC/LCX/Z SERIES, 16 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, PLASTIC, SSOP3-48, Bus Driver/Transceiver
NXP

935237700112

IC LVC/LCX/Z SERIES, 16 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, PLASTIC, TSSOP2-48, Bus Driver/Transceiver
NXP

935237700118

IC LVC/LCX/Z SERIES, 16 1-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, PLASTIC, TSSOP2-48, Bus Driver/Transceiver
NXP

935237700512

LVC/LCX/Z SERIES, DUAL 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, MO-153, SOT-362-1, TSSOP-48
NXP

935237710112

Bus Driver, LVC/LCX/Z Series, 16-Func, 1-Bit, True Output, CMOS, PDSO48
NXP