935216230112 [NXP]

IC DATACOM, INTERFACE CIRCUIT, PDIP8, 0.300 INCH, PLASTIC, MO-001, SOT97-1, DIP-8, Network Interface;
935216230112
型号: 935216230112
厂家: NXP    NXP
描述:

IC DATACOM, INTERFACE CIRCUIT, PDIP8, 0.300 INCH, PLASTIC, MO-001, SOT97-1, DIP-8, Network Interface

电信 光电二极管 电信集成电路
文件: 总22页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCA82C251  
CAN transceiver for 24 V systems  
Product specification  
2000 Jan 13  
Supersedes data of 1997 Mar 14  
File under Integrated Circuits, IC18  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
FEATURES  
GENERAL DESCRIPTION  
Fully compatible with the “ISO 11898-24 V” standard  
Slope control to reduce RFI  
The PCA82C251 is the interface between the CAN  
protocol controller and the physical bus. It is primarily  
intended for applications (up to 1 Mbaud) in trucks and  
buses. The device provides differential transmit capability  
to the bus and differential receive capability to the CAN  
controller.  
Thermally protected  
Short-circuit proof to battery and ground in 24 V  
powered systems  
Low-current standby mode  
An unpowered node does not disturb the bus lines  
At least 110 nodes can be connected  
High speed (up to 1 Mbaud)  
High immunity against electromagnetic interference.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
4.5  
MAX.  
5.5  
UNIT  
V
ICC  
supply current  
standby mode  
275  
µA  
1/tbit  
VCAN  
Vdiff  
maximum transmission speed  
CANH, CANL input/output voltage  
differential bus voltage  
ambient temperature  
non-return-to-zero  
1
Mbaud  
36  
1.5  
40  
+36  
3.0  
+125  
V
V
Tamb  
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
CODE  
SOT97-1  
SOT96-1  
PCA82C251  
PCA82C251T  
PCA82C251U  
DIP8  
SO8  
plastic dual in-line package; 8 leads (300 mil)  
plastic small outline package; 8 leads body width 3.9 mm  
bare die; 2840 × 1780 × 380 µm  
2000 Jan 13  
2
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
BLOCK DIAGRAM  
V
CC  
3
1
PROTECTION  
DRIVER  
TXD  
8
SLOPE/  
Rs  
STANDBY  
7
6
4
CANH  
CANL  
RXD  
RECEIVER  
5
REFERENCE  
VOLTAGE  
V
ref  
PCA82C251  
2
MBG613  
GND  
Fig.1 Block diagram.  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
transmit data input  
TXD  
GND  
VCC  
1
2
3
4
5
6
handbook, halfpage  
TXD  
1
2
8
7
6
5
Rs  
ground  
supply voltage  
GND  
CANH  
CANL  
PCA82C251  
RXD  
Vref  
receive data output  
reference voltage output  
V
3
4
CC  
V
RXD  
ref  
CANL  
LOW-level CAN voltage  
input/output  
MBG612  
CANH  
Rs  
7
8
HIGH-level CAN voltage  
input/output  
Fig.2 Pin configuration.  
slope resistor input  
2000 Jan 13  
3
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
FUNCTIONAL DESCRIPTION  
Pin 8 (Rs) allows three different modes of operation to be  
selected: high-speed, slope control or standby.  
The PCA82C251 is the interface between the CAN  
protocol controller and the physical bus. It is primarily  
intended for applications up to 1 Mbaud in trucks and  
buses. The device provides differential transmit capability  
to the bus and differential receive capability to the CAN  
controller. It is fully compatible with the “ISO 11898-24 V”  
standard.  
For high-speed operation, the transmitter output  
transistors are simply switched on and off as fast as  
possible. In this mode, no measures are taken to limit the  
rise and fall slope. Use of a shielded cable is  
recommended to avoid RFI problems. The high-speed  
mode is selected by connecting pin 8 to ground.  
A current limiting circuit protects the transmitter output  
stage against short-circuit to positive and negative battery  
voltage. Although the power dissipation is increased  
during this fault condition, this feature will prevent  
destruction of the transmitter output stage.  
The slope control mode allows the use of an unshielded  
twisted pair or a parallel pair of wires as bus lines.  
To reduce RFI, the rise and fall slope should be limited.  
The rise and fall slope can be programmed with a resistor  
connected from pin 8 to ground. The slope is proportional  
to the current output at pin 8.  
If the junction temperature exceeds a value of  
approximately 160 °C, the limiting current of both  
transmitter outputs is decreased. Because the transmitter  
is responsible for the major part of the power dissipation,  
this will result in a reduced power dissipation and hence a  
lower chip temperature. All other parts of the IC will remain  
operating. The thermal protection is particularly needed  
when a bus line is short-circuited.  
If a HIGH level is applied to pin 8, the circuit enters a low  
current standby mode. In this mode, the transmitter is  
switched off and the receiver is switched to a low current.  
If dominant bits are detected (differential bus voltage  
>0.9 V), RXD will be switched to a LOW level.  
The microcontroller should react to this condition by  
switching the transceiver back to normal operation  
(via pin 8). Because the receiver is slower in standby  
mode, the first message will be lost at higher bit rates.  
The CANH and CANL lines are also protected against  
electrical transients which may occur in an automotive  
environment.  
Table 1 Truth table of the CAN transceiver  
VCC  
TXD  
CANH  
CANL  
BUS STATE  
RXD  
4.5 to 5.5 V  
4.5 to 5.5 V  
0
HIGH  
LOW  
dominant  
recessive  
floating  
0
1 (or floating)  
X(1)  
floating  
floating  
1(2)  
1(2)  
4.5 < VCC < 5.5 V  
floating if  
floating if  
VRs > 0.75VCC  
VRs > 0.75VCC  
0 < VCC < 4.5 V  
floating  
floating  
floating  
floating  
X(1)  
Notes  
1. X = don’t care.  
2. If another bus node is transmitting a dominant bit, then RXD is logic 0.  
Table 2 Pin Rs summary  
CONDITION FORCED AT PIN Rs  
MODE  
RESULTING VOLTAGE OR CURRENT AT PIN Rs  
VRs > 0.75VCC  
10 µA < IRs < 200 µA  
VRs < 0.3VCC  
standby  
IRs < 10 µA  
0.4VCC < VRs < 0.6VCC  
IRs < 500 µA  
slope control  
high-speed  
2000 Jan 13  
4
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referenced to pin 2;  
positive input current.  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
0.3  
0.3  
MAX.  
+7.0  
VCC + 0.3 V  
UNIT  
V
Vn  
V6  
DC voltage at pins 1, 4, 5 and 8  
DC voltage at pin 6 (CANL)  
0 V < VCC < 5.5 V; TXD HIGH 36  
or floating  
+36  
+36  
+36  
V
V
V
0 V < VCC < 5.5 V; no time  
limit; note 1  
36  
36  
0 V < VCC < 5.5 V; no time  
limit; note 2  
V7  
DC voltage at pin 7 (CANH)  
0 V < VCC < 5.5 V; no time limit 36  
+36  
V
V
Vtr  
transient voltage on pins 6 and 7 see Fig.8  
storage temperature  
200  
55  
+200  
+150  
+125  
+150  
+2500  
+250  
Tstg  
Tamb  
Tvj  
°C  
°C  
°C  
V
ambient temperature  
40  
virtual junction temperature  
note 3  
note 4  
note 5  
40  
Vesd  
electrostatic discharge voltage  
2500  
250  
V
Notes  
1. TXD is LOW. Short-circuit protection provided for slew rates up to 5 V/µs for voltages above +30 V.  
2. Short-circuit applied when TXD is HIGH, followed by TXD switched to LOW.  
3. In accordance with “IEC 60747-1”. An alternative definition of virtual junction temperature is:  
Tvj = Tamb + Pd × Rth(vj-a), where Rth(vj-a) is a fixed value to be used for the calculation of Tvj. The rating for Tvj limits  
the allowable combinations of power dissipation (Pd) and ambient temperature (Tamb).  
4. Classification A: human body model; C = 100 pF; R = 1500 ; V = ±2500 V.  
5. Classification B: machine model; C = 200 pF; R = 0 ; V = ±250 V.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
thermal resistance from junction to ambient  
PCA82C251  
CONDITIONS  
in free air  
VALUE  
UNIT  
100  
160  
K/W  
K/W  
PCA82C251T  
QUALITY SPECIFICATION  
According to “SNW-FQ-611 part E”.  
2000 Jan 13  
5
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
CHARACTERISTICS  
VCC = 4.5 to 5.5 V; Tamb = 40 to + 125 °C; RL = 60 ; I8 > 10 µA; unless otherwise specified; all voltages referenced  
to ground (pin 2); positive input current; all parameters are guaranteed over the ambient temperature range by design,  
but only 100% tested at +25 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
I3  
supply current  
dominant; V1 = 1 V;  
78  
mA  
V
CC < 5.1 V  
dominant; V1 = 1 V;  
CC < 5.25 V  
dominant; V1 = 1 V;  
CC < 5.5 V  
80  
mA  
mA  
mA  
µA  
V
85  
V
recessive; V1 = 4 V;  
R8 = 47 kΩ  
10  
standby; note 1  
275  
DC bus transmitter  
VIH  
VIL  
IIH  
HIGH-level input voltage  
output recessive  
output dominant  
V1 = 4 V  
0.7VCC  
0.3  
200  
100  
2.0  
VCC + 0.3 V  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
recessive bus voltage  
0.3VCC  
+30  
600  
3.0  
V
µA  
µA  
V
IIL  
V1 = 1 V  
V6, 7  
ILO  
V1 = 4 V; no load  
2 V< (V6, V7) < 7 V  
5 V< (V6, V7) < 36 V  
off-state output leakage  
current  
2  
+2  
mA  
mA  
V
10  
+10  
4.5  
V7  
CANH output voltage  
V1 = 1 V; VCC = 4.75 to 5.5 V 3.0  
V1 = 1 V; VCC = 4.5 to 4.75 V 2.75  
4.5  
V
V6  
CANL output voltage  
V1 = 1 V  
0.5  
1.5  
1.5  
500  
2.0  
V
V6,7  
difference between output V1 = 1 V  
voltage at pins 6 and 7  
3.0  
V
V1 = 1 V; RL = 45 Ω  
V
V1 = 4 V; no load  
short-circuit CANH current V7 = 5 V  
+50  
200  
mV  
mA  
mA  
mA  
Isc7  
V7 = 36 V  
100  
Isc6  
short-circuit CANL current V6 = 36 V  
200  
DC bus receiver [V1 = 4 V; pins 6 and 7 externally driven; 2 V < (V6, V7) < 7 V; unless otherwise specified]  
Vdiff(r)  
differential input voltage  
(recessive)  
note 2  
1.0  
+0.5  
+0.4  
5.0  
V
V
V
V
7 V < (V6, V7) < 12 V; note 2 1.0  
Vdiff(d)  
differential input voltage  
(dominant)  
0.9  
7 V < (V6, V7) < 12 V; not  
1.0  
5.0  
standby mode  
standby mode  
standby mode;  
0.97  
0.91  
5.0  
5.0  
V
V
VCC = 4.5 to 5.10 V  
Vdiff(hys)  
differential input hysteresis see Fig.5  
150  
mV  
2000 Jan 13  
6
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
VCC  
UNIT  
VOH  
HIGH-level output voltage I4 = 100 µA  
0.8VCC  
V
(pin 4)  
VOL  
LOW-level output voltage  
(pin 4)  
I4 = 1 mA  
0
0
5
0.2VCC  
1.5  
V
V
I4 = 10 mA  
Ri  
CANH, CANL input  
resistance  
25  
kΩ  
Rdiff  
differential input resistance  
20  
100  
kΩ  
Reference output  
Vref reference output voltage  
V8 = 1 V; I5 < 50 µA  
V8 = 4 V; I5 < 5 µA  
0.45VCC  
0.4VCC  
0.55VCC  
0.6VCC  
V
V
Timing (RL = 60 ; CL = 100 pF; unless otherwise specified. See Figs 3 and 4)  
tbit  
minimum bit time  
R8 = 0 Ω  
R8 = 0 Ω  
1
µs  
ns  
ns  
ns  
tonTXD  
toffTXD  
tonRXD  
delay TXD to bus active  
50  
80  
120  
delay TXD to bus inactive R8 = 0 Ω  
40  
55  
delay TXD to receiver  
active  
R8 = 0 Ω  
toffRXD  
delay TXD to receiver  
inactive  
R8 = 0 ; Tamb < +85 °C;  
VCC = 4.5 to 5.1 V  
80  
150  
ns  
R8 = 0 ; VCC = 4.5 to 5.1 V  
R8 = 0 ; Tamb < +85 °C  
R8 = 0 Ω  
80  
90  
90  
170  
170  
190  
400  
550  
ns  
ns  
ns  
ns  
ns  
R8 = 47 kΩ  
290  
440  
tonRXD  
delay TXD to receiver  
active  
R8 = 47 kΩ  
SR  
CANH, CANL slew rate  
R8 = 47 kΩ  
7
V/µs  
µs  
tWAKE  
wake-up time from standby see Fig.6  
(via pin 8)  
20  
tdRXDL  
bus dominant to RXD LOW V8 = 4 V; see Fig.7  
3
µs  
Standby/slope control (pin 8)  
Vstb  
input voltage for standby  
mode  
0.75VCC  
V
Islope  
slope control mode current  
slope control mode voltage  
10  
200  
µA  
Vslope  
0.4VCC  
0.6VCC  
V
Notes  
1. I1 = I4 = I5 = 0 mA; 0 V < V6 < VCC; 0 V < V7 < VCC; V8 = VCC; Tamb < 90 °C.  
2. This is valid for the receiver in all modes: high-speed, slope control and standby.  
2000 Jan 13  
7
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
TEST AND APPLICATION INFORMATION  
100 nF  
+
5 V  
V
CC  
3
TXD  
CANH  
1
7
6
V
ref  
5
4
PCA82C251  
60  
100 pF  
CANL  
RXD  
2
8
GND  
Rs  
30 pF  
MBG614  
Fig.3 Test circuit for dynamic characteristics.  
V
CC  
V
TXD  
0 V  
0.9 V  
V
diff  
0.5 V  
0.7V  
CC  
V
RXD  
0.3V  
CC  
t
t
offTXD  
onTXD  
t
t
offRXD  
MBG615  
onRXD  
Fig.4 Timing diagram for dynamic characteristics.  
8
2000 Jan 13  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
MBG616  
V
RXD  
HIGH  
LOW  
hysteresis  
0.5  
0.9  
V
(V)  
diff  
Fig.5 Hysteresis.  
V
CC  
V
Rs  
0 V  
V
RXD  
MBG617  
t
WAKE  
VTXD = 1 V.  
Fig.6 Timing diagram for wake up from standby.  
1.5 V  
0 V  
V
diff  
V
RXD  
MBG618  
t
dRXDL  
VRs = 4 V; VTXD = 4 V.  
Fig.7 Timing diagram for bus dominant to RXD low.  
9
2000 Jan 13  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
100 nF  
+
5 V  
V
CC  
3
500 pF  
500 pF  
TXD  
CANH  
1
5
4
7
6
V
ref  
SCHAFFNER  
GENERATOR  
PCA82C251  
60 Ω  
CANL  
RXD  
2
8
MBG619  
GND  
Rs  
47 kΩ  
The waveforms of the applied transients shall be in accordance with “ISO 7637 part 1”, test pulses 1, 2, 3a and 3b.  
Fig.8 Test circuit for automotive transients.  
P8xC592  
CAN-CONTROLLER  
CTX0 CRX0 CRX1 PX,Y  
R
ext  
+
5 V  
V
TXD  
RXD  
ref  
Rs  
V
CC  
PCA82C251  
CAN-TRANSCEIVER  
100 nF  
GND  
CANH  
CANL  
CAN BUS  
LINE  
120 Ω  
120 Ω  
MBG620  
(1) The output control register of the P8xC592 should be programmed to 1AH (push-pull operation, dominant = LOW).  
(2) If no slope control is desired: Rext = 0.  
Fig.9 Application of the PCA82C251 CAN Transceiver.  
2000 Jan 13  
10  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
BONDING PAD LOCATIONS  
COORDINATES(1)  
SYMBOL  
PAD  
x
y
TXD  
GND  
VCC  
1
2
3
4
5
6
7
8
196  
1080  
1567  
2644  
2644  
1490  
748  
137  
137  
137  
RXD  
Vref  
137  
1644  
1644  
1644  
1610  
CANL  
CANH  
Rs  
200  
Note  
1. All coordinates (µm) represent the position of the centre of each pad with respect to the bottom left-hand corner of  
the die (x/y = 0).  
5
7
6
8
1.78  
mm  
PCA82C251U  
1
2
3
4
0
x
0
y
MGL944  
2.84 mm  
Fig.10 Bonding pad locations.  
2000 Jan 13  
11  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
PACKAGE OUTLINES  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT97-1  
050G01  
MO-001  
SC-504-8  
2000 Jan 13  
12  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
v
c
y
H
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT96-1  
076E03  
MS-012  
2000 Jan 13  
13  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
SOLDERING  
Introduction  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Through-hole mount packages  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Surface mount packages  
REFLOW SOLDERING  
MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Jan 13  
14  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
suitable(2)  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable  
Surface mount  
BGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable(3)  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, SMS  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Jan 13  
15  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips’ delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors  
has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing,  
handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in  
which the die is used.  
2000 Jan 13  
16  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
NOTES  
2000 Jan 13  
17  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
NOTES  
2000 Jan 13  
18  
Philips Semiconductors  
Productspecification  
CAN transceiver for 24 V systems  
PCA82C251  
NOTES  
2000 Jan 13  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
285002/03/pp20  
Date of release: 2000 Jan 13  
Document order number: 9397 750 06611  
Philips Semiconductors: Product information on PCA82C251, CAN transceiver for 24 V systems  
Go to Philips  
Semiconductors' home  
Catalog & Datasheets  
Product INFOrmation page  
Information as of 2001-06-12  
Catalog by Function  
PCA82C251; CAN transceiver for 24 V systems  
Catalog by System  
Cross reference  
Description  
Subscribe  
to  
To be kept informed on PCA82C251,  
subscribe to eNews.  
Features  
Datasheet  
Models  
Packages  
Products, packages, availability and ordering  
Find similar products  
Application notes  
-
order this  
Selection guides  
Other technical documentation  
End of Life information  
Description  
Go  
The PCA82C251 is the interface between the CAN protocol controller and the physical bus. It is primarily  
intended for applications (up to 1 Mbaud) in trucks and buses. The device provides differential transmit capability  
to the bus and differential receive capability to the CAN controller.  
Relevant Links  
About catalog tree  
-
-
-
-
-
-
-
About search  
About this site  
Features  
Subscribe to eNews  
Go  
Catalog & Datasheets  
Fully compatible with the 'ISO 11898-24 V' standard  
Slope control to reduce RFI  
Search  
PCA82C251  
PCA82C251  
Thermally protected  
-
Short-circuit proof to battery and ground in 24 V powered systems  
Low-current standby mode  
An unpowered node does not disturb the bus lines  
At least 110 nodes can be connected  
High speed (up to 1 Mbaud)  
High immunity against electromagnetic interference.  
Datasheet  
Go  
File  
size  
(kB)  
Publication  
release date  
Page  
count  
Type nr.  
Title  
Datasheet status  
Datasheet  
PCA82C251 CAN transceiver for 24 V 13-Jan-00  
systems  
Product Specification 20  
95  
Download  
Down  
Products, packages, availability and ordering  
Go  
marking/packing  
North American  
Partnumber  
Order code  
(12nc)  
Partnumber  
package  
device status  
buy online  
Down
IC packing  
info  
SOT97-1  
(DIP8)  
Standard  
Marking * Tube  
order this  
PCA82C251/N3 PCA82C251N  
PCA82C251T/N3 PCA82C251TD  
9352 162 30112  
9351 960 20112  
Full production  
-
SOT96  
(SO8;  
MS-012AA;  
076E03S)  
Standard  
Marking * Tube  
order this  
-
Full production  
file:///E|/export/projects/bitting2/imaging/BITTING/mail_pdf/cpl_images/pca82c251t.html (1 of 2) [7/17/2001 5:21:29 PM]  
 
Philips Semiconductors: Product information on PCA82C251, CAN transceiver for 24 V systems  
SOT96  
(SO8;  
MS-012AA;  
076E03S)  
Standard  
PCA82C251TD-T 9351 960 20118 Marking * Reel  
Pack, SMD, 13"  
order this  
-
Full production  
Products in the above table are all in production. Some variants are discontinued; click here for information on  
these variants.  
Find similar products:  
Go  
PCA82C251 links to the similar products page containing an overview of products that are similar in  
Produ  
function or related to the part number(s) as listed on this page. The similar products page includes products from  
the same catalog tree(s) , relevant selection guides and products from the same functional category.  
Copyright © 2001  
Royal Philips Electronics  
All rights reserved.  
Terms and conditions.  
file:///E|/export/projects/bitting2/imaging/BITTING/mail_pdf/cpl_images/pca82c251t.html (2 of 2) [7/17/2001 5:21:29 PM]  

相关型号:

935217190112

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

935217190118

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

935217190518

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, PLASTIC, SOT-187, LCC-44, Consumer IC:Other
NXP

935217880112

Bus Transceiver, ALVT Series, 2-Func, 8-Bit, True Output, BICMOS, PDSO48
NXP

935217880118

Bus Transceiver, ALVT Series, 2-Func, 8-Bit, True Output, BICMOS, PDSO48
NXP

935217890118

ALVT SERIES, DUAL 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, SOT362-1, TSSOP2-48
NXP

935217890512

ALVT SERIES, DUAL 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, SOT362-1, TSSOP2-48
NXP

935217890516

ALVT SERIES, DUAL 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, SOT362-1, TSSOP2-48
NXP

935217890518

ALVT SERIES, DUAL 8-BIT TRANSCEIVER, TRUE OUTPUT, PDSO48, 6.10 MM, PLASTIC, SOT362-1, TSSOP2-48
NXP

935218630118

LVC/LCX/Z SERIES, 8-BIT DRIVER, TRUE OUTPUT, PDSO20, 7.50 MM, PLASTIC, MS-013, SOT-163-1, SO-20
NXP

935218640118

LVC/LCX/Z SERIES, 8-BIT DRIVER, TRUE OUTPUT, PDSO20, 5.30 MM, PLASTIC, MO-150, SOT-339-1, SSOP-20
NXP

935218650112

LVC/LCX/Z SERIES, 8-BIT DRIVER, TRUE OUTPUT, PDSO20, 4.40 MM, PLASTIC, MO-153, SOT-360-1, TSSOP-20
NXP