74HCT534DB [NXP]

暂无描述;
74HCT534DB
型号: 74HCT534DB
厂家: NXP    NXP
描述:

暂无描述

触发器
文件: 总13页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT534  
Octal D-type flip-flop; positive  
edge-trigger; 3-state; inverting  
1998 Apr 10  
Product specification  
Supersedes data of September 1993  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
The 74HC/HCT534 are octal D-type flip-flops featuring  
separate D-type inputs for each flip-flop and inverting  
3-state outputs for bus oriented applications. A clock (CP)  
and an output enable (OE) input are common to all  
flip-flops.  
FEATURES  
3-state inverting outputs for bus oriented applications  
8-bit positive, edge-triggered register  
Common 3-state output enable input  
Output capability: bus driver  
The 8 flip-flops will store the state of their individual  
D-inputs that meet the set-up and hold times requirements  
on the LOW-to-HIGH CP transition. When OE is LOW, the  
contents of the 8 flip-flops are available at the outputs.  
When OE is HIGH, the outputs go to the high impedance  
OFF-state. Operation of the OE input does not affect the  
state of the flip-flops.  
ICC category: MSI.  
GENERAL DESCRIPTION  
The 74HC/HCT534 are high-speed Si-gate CMOS devices  
and are pin compatible with low power Schottky TTL  
(LSTTL). They are specified in compliance with JEDEC  
standard no. 7A.  
The “534” is functionally identical to the “374”, but has  
inverted outputs.  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns  
TYPICAL  
SYMBOL  
PARAMETER  
CONDITIONS  
UNIT  
ns  
HC  
HCT  
13  
t
PHL/ tPLH  
propagation delay CP to Qn  
maximum clock frequency  
input capacitance  
CL = 15 pF; VCC = 5 V 12  
61  
fmax  
CI  
40  
3.5  
19  
MHz  
pF  
3.5  
19  
CPD  
power dissipation capacitance per flip-flop  
notes 1 and 2  
pF  
Notes  
1.  
CPD is used to determine the dynamic power dissipation (PD in µW):  
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:  
fi = input frequency in MHz.  
fo = output frequency in MHz.  
(CL × VCC2 × fo) = sum of outputs.  
CL = output load capacitance in pF.  
VCC = supply voltage in V.  
2. For HC the condition is VI = GND to VCC; for HCT the condition is VI = GND to VCC 1.5 V.  
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
74HC534  
74HC534  
74HCT534  
74HCT534  
SO20  
DIP20  
SO20  
DIP20  
plastic small outline package; 20 leads; body width 7.5 mm  
plastic dual in-line package; 20 leads (300 mil)  
SOT163-1  
SOT146-1  
SOT163-1  
SOT146-1  
plastic small outline package; 20 leads; body width 7.5 mm  
plastic dual in-line package; 20 leads (300 mil)  
1998 Apr 10  
2
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
3-state output enable input (active LOW)  
1
OE  
2, 5, 6, 9, 12, 15, 16, 19  
Q0 to Q7  
D0 to D7  
GND  
3-state outputs  
3, 4, 7, 8, 13, 14, 17, 18  
data inputs  
10  
11  
20  
ground (0 V)  
CP  
clock input (LOW-to-HIGH, edge-triggered)  
positive supply voltage  
VCC  
page  
page  
1
V
OE  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CC  
EN  
C1  
11  
CP  
page  
11  
Q
0
Q
D
7
3
4
2
5
D
0
3
7
6
D
D
D
D
D
D
D
D
Q
Q
Q
Q
Q
Q
Q
Q
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
3
4
7
8
2
1D  
D
D
1
4
5
6
9
7
6
Q
Q
D
5
Q
1
8
9
6
5
534  
13  
14  
17  
18  
12  
15  
16  
19  
6
Q
2
D
2
13  
14  
17  
18  
12  
15  
16  
19  
7
5
4
D
D
3
8
OE  
9
Q
4
Q
3
1
MGM955  
CP  
GND  
10  
MGM956  
MGM954  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
1998 Apr 10  
3
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
handbook, halfpage  
D
Q
Q
Q
Q
Q
Q
Q
Q
3
4
2
5
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
D
D
D
D
D
D
D
7
6
FF1  
to  
FF8  
8
9
3-STATE  
OUTPUTS  
13  
14  
17  
18  
12  
15  
16  
19  
CP  
OE  
11  
1
MGM957  
Fig.4 Functional diagram.  
FUNCTION TABLE  
OPERATING MODES  
INPUTS  
OUTPUTS  
Q0 to Q7  
INTERNAL FLIP-FLOPS  
OE  
CP  
Dn  
load and read register  
L
L
l
L
H
L
H
L
h
l
load register and disable outputs  
H
H
Z
Z
h
H
Note  
1. H = HIGH voltage level; h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition  
L = LOW voltage level; I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition  
Z = high impedance OFF-state; = LOW-to-HIGH clock transition.  
1998 Apr 10  
4
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
D
D
D
D
D
D
D
6
D
7
0
1
2
3
4
5
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
CP  
CP  
CP  
CP  
CP  
CP  
CP  
CP  
FF  
1
FF  
2
FF  
3
FF  
4
FF  
5
FF  
6
FF  
7
FF  
8
CP  
OE  
Q
Q
Q
Q
Q
Q
Q
Q
7
0
1
2
3
4
5
6
MGM958  
Fig.5 Logic diagram.  
1998 Apr 10  
5
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
DC CHARACTERISTICS FOR 74HC  
For the DC characteristics see chapter “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: bus driver ICC category: MSI.  
AC CHARACTERISTICS FOR 74HC  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
T
amb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL PARAMETER  
UNIT  
WAVEFORMS  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL/ tPLH propagation delay  
nCP to nQn  
41  
15  
12  
33  
12  
10  
41  
15  
12  
14  
5
165  
33  
205  
41  
250  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.0 Fig.6  
4.5  
28  
35  
43  
6.0  
t
t
t
PZH/ tPZL 3-state output enable  
150  
30  
190  
38  
225  
45  
2.0 Fig.7  
4.5  
time  
OE to Qn  
26  
33  
38  
6.0  
PHZ/ tPLZ 3-state output disable  
150  
30  
190  
38  
225  
45  
2.0 Fig.7  
4.5  
time  
OE to Qn  
26  
33  
38  
6.0  
THL/ tTLH output transition time  
60  
75  
90  
2.0 Fig.6  
4.5  
12  
15  
18  
4
10  
13  
15  
6.0  
tW  
clock pulse width  
HIGH or LOW  
80  
16  
14  
60  
12  
10  
5
19  
7
100  
20  
17  
75  
15  
13  
5
120  
24  
20  
90  
18  
15  
5
2.0 Fig.6  
4.5  
6
6.0  
tsu  
set-up time  
Dn to CP  
6
2.0 Fig.8  
4.5  
2
2
6.0  
th  
hold time  
Dn to CP  
3  
1  
1  
18  
55  
66  
2.0 Fig.8  
4.5  
5
5
5
5
5
5
6.0  
fmax  
maximum clock pulse  
frequency  
6.0  
30  
35  
4.8  
24  
28  
4.0  
20  
24  
MHz 2.0 Fig.6  
4.5  
6.0  
1998 Apr 10  
6
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
DC CHARACTERISTICS FOR 74HCT  
For the DC characteristics see chapter “74HC/HCT/HCU/HCMOS Logic Family Specifications”.  
Output capability: bus driver ICC category: MSI.  
Note to HCT types  
The value of additional quiescent supply current (ICC) for a unit load of 1 is given in the family specifications.  
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.  
INPUT  
UNIT LOAD COEFFICIENT  
1.25  
OE  
CP  
Dn  
0.90  
0.35  
AC CHARACTERISTICS FOR 74HCT  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
WAVEFORMS  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max min. max. min. max.  
t
PHL/ tPLH propagation delay  
CP to Qn  
16  
16  
18  
5
30  
30  
30  
12  
38  
38  
38  
15  
45  
45  
45  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.5  
Fig.6  
Fig.7  
Fig.7  
Fig.6  
Fig.6  
Fig.8  
Fig.8  
Fig.6  
tPZH/ tPZL 3-state output enable time  
OE to Qn  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
tPHZ/ tPLZ 3-state output disable  
time OE to Qn  
tTHL/ tTLH output transition time  
tW  
clock pulse width  
HIGH or LOW  
23  
12  
5
14  
4
29  
15  
5
35  
18  
5
tsu  
th  
set-up time  
Dn to CP  
hold time  
Dn to CP  
1  
36  
fmax  
maximum clock pulse  
frequency  
22  
18  
15  
MHz 4.5  
1998 Apr 10  
7
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
AC WAVEFORMS  
1/f  
d
max  
(1)  
V
CP INPUT  
M
t
t
W
t
PHL  
PLH  
(1)  
t
V
Q
OUTPUT  
M
n
t
MGM959  
TLH  
THL  
(1) HC: VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.6 Waveforms showing the clock (CP) to output (Qn) propagation delays, the clock pulse width, output  
transition times and the maximum clock pulse frequency.  
t
t
a
r
f
90%  
(1)  
V
OE INPUT  
M
10%  
t
t
PZL  
PLZ  
Q
OUTPUT  
n
(1)  
V
LOW-to-OFF  
OFF-to-LOW  
M
10%  
t
t
PHZ  
PZH  
90%  
Q
OUTPUT  
n
(1)  
V
HIGH-to-OFF  
OFF-to-HIGH  
M
outputs  
enabled  
outputs  
enabled  
outputs  
disabled  
MGM961  
(1) HC: VM = 50%; VI = GND to VCC  
.
HCT: VM = 1.3 V; VI = GND to 3 V.  
Fig.7 Waveforms showing the 3-state enable and disable times.  
8
1998 Apr 10  
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
(1)  
V
CP INPUT  
M
t
t
su  
su  
t
t
h
h
(1)  
D
INPUT  
V
n
M
(1)  
Q
OUTPUT  
V
M
n
MGM960  
The shaded areas indicate when the input is permitted to change for predictable output performance.  
(1) HC: VM = 50%; VI = GND to VCC  
HCT: VM = 1.3 V; VI = GND to 3 V.  
.
Fig.8 Waveforms showing the data set-up and hold times for Dn input.  
1998 Apr 10  
9
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
PACKAGE OUTLINES  
DIP20: plastic dual in-line package; 20 leads (300 mil)  
SOT146-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
M
H
20  
11  
pin 1 index  
E
1
10  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
(1)  
(1)  
Z
1
2
UNIT  
mm  
b
b
c
D
E
e
e
1
L
M
M
H
w
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
0.36  
0.23  
26.92  
26.54  
6.40  
6.22  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.0  
0.068  
0.051  
0.021  
0.015  
0.014  
0.009  
1.060  
1.045  
0.25  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.078  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-05-24  
SOT146-1  
SC603  
1998 Apr 10  
10  
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT163-1  
075E04  
MS-013AC  
1998 Apr 10  
11  
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1998 Apr 10  
12  
Philips Semiconductors  
Product specification  
Octal D-type flip-flop; positive edge-trigger;  
3-state; inverting  
74HC/HCT534  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1998 Apr 10  
13  

相关型号:

74HCT534N

IC HCT SERIES, 8-BIT DRIVER, INVERTED OUTPUT, PDIP20, 0.300 INCH, PLASTIC, MS-001, SC-603, SOT-146-1, DIP-20, Bus Driver/Transceiver
NXP

74HCT534N,652

74HCT534 - 5 V octal D-type flip-flop; positive-edge trigger; 3-state; inverting DIP 20-Pin
NXP

74HCT534NB

IC HCT SERIES, 8-BIT DRIVER, INVERTED OUTPUT, PDIP20, Bus Driver/Transceiver
NXP

74HCT534U

IC HCT SERIES, 8-BIT DRIVER, INVERTED OUTPUT, UUC, DIE, Bus Driver/Transceiver
NXP

74HCT540

Octal buffer/line driver; 3-state; inverting
NXP

74HCT540D

Octal buffer/line driver; 3-state; inverting
NXP

74HCT540D

Octal buffer/line driver; 3-state; invertingProduction
NEXPERIA

74HCT540D,652

74HC(T)540 - Octal buffer/line driver; 3-state; inverting SOP 20-Pin
NXP

74HCT540D,653

74HC(T)540 - Octal buffer/line driver; 3-state; inverting SOP 20-Pin
NXP

74HCT540D-Q100

Octal buffer/line driver; 3-state; invertingProduction
NEXPERIA

74HCT540D-T

IC HCT SERIES, 8-BIT DRIVER, INVERTED OUTPUT, PDSO20, PLASTIC, SO-20, Bus Driver/Transceiver
NXP

74HCT540DB

IC HCT SERIES, 8-BIT DRIVER, INVERTED OUTPUT, PDSO20, PLASTIC, SSOP-20, Bus Driver/Transceiver
NXP