74HC4046AD-T [NXP]

IC PLL FREQUENCY SYNTHESIZER, PDSO16, SOT-109, SO-16, PLL or Frequency Synthesis Circuit;
74HC4046AD-T
型号: 74HC4046AD-T
厂家: NXP    NXP
描述:

IC PLL FREQUENCY SYNTHESIZER, PDSO16, SOT-109, SO-16, PLL or Frequency Synthesis Circuit

光电二极管
文件: 总34页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
For a complete data sheet, please also download:  
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information  
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines  
74HC/HCT4046A  
Phase-locked-loop with VCO  
1997 Nov 25  
Product specification  
Supersedes data of September 1993  
File under Integrated Circuits, IC06  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
provided at pin 10 (DEMOUT). In contrast to conventional  
techniques where the DEMOUT voltage is one threshold  
voltage lower than the VCO input voltage, here the  
DEMOUT voltage equals that of the VCO input. If  
DEMOUT is used, a load resistor (RS) should be connected  
from DEMOUT to GND; if unused, DEMOUT should be left  
open. The VCO output (VCOOUT) can be connected  
directly to the comparator input (COMPIN), or connected  
via a frequency-divider. The VCO output signal has a duty  
factor of 50% (maximum expected deviation 1%), if the  
VCO input is held at a constant DC level. A LOW level at  
the inhibit input (INH) enables the VCO and demodulator,  
while a HIGH level turns both off to minimize standby  
power consumption.  
FEATURES  
Low power consumption  
Centre frequency of up to 17 MHz (typ.) at VCC = 4.5 V  
Choice of three phase comparators: EXCLUSIVE-OR;  
edge-triggered JK flip-flop;  
edge-triggered RS flip-flop  
Excellent VCO frequency linearity  
VCO-inhibit control for ON/OFF keying and for low  
standby power consumption  
Minimal frequency drift  
Operating power supply voltage range:  
VCO section 3.0 to 6.0 V  
digital section 2.0 to 6.0 V  
The only difference between the HC and HCT versions is  
the input level specification of the INH input. This input  
disables the VCO section. The sections of the comparator  
are identical, so that there is no difference in the  
SIGIN (pin 14) or COMPIN (pin 3) inputs between the HC  
and HCT versions.  
Zero voltage offset due to op-amp buffering  
Output capability: standard  
ICC category: MSI.  
GENERAL DESCRIPTION  
Phase comparators  
The 74HC/HCT4046A are high-speed Si-gate CMOS  
devices and are pin compatible with the “4046” of the  
“4000B” series. They are specified in compliance with  
JEDEC standard no. 7A.  
The signal input (SIGIN) can be directly coupled to the  
self-biasing amplifier at pin 14, provided that the signal  
swing is between the standard HC family input logic levels.  
Capacitive coupling is required for signals with smaller  
swings.  
The 74HC/HCT4046A are phase-locked-loop circuits that  
comprise a linear voltage-controlled oscillator (VCO) and  
three different phase comparators (PC1, PC2 and PC3)  
with a common signal input amplifier and a common  
comparator input.  
Phase comparator 1 (PC1)  
This is an EXCLUSIVE-OR network. The signal and  
comparator input frequencies (fi) must have a 50% duty  
factor to obtain the maximum locking range. The transfer  
characteristic of PC1, assuming ripple (fr = 2fi) is  
The signal input can be directly coupled to large voltage  
signals, or indirectly coupled (with a series capacitor) to  
small voltage signals. A self-bias input circuit keeps small  
voltage signals within the linear region of the input  
amplifiers. With a passive low-pass filter, the “4046A”  
forms a second-order loop PLL. The excellent VCO  
linearity is achieved by the use of linear op-amp  
techniques.  
V
suppressed, is: VDEMOUT  
=
CC (φ  
φCOMPIN)  
SIGIN  
----------  
π
where VDEMOUT is the demodulator output at pin 10;  
DEMOUT = VPC1OUT (via low-pass filter).  
V
VCC  
˙
The VCO requires one external capacitor C1 (between  
C1A and C1B) and one external resistor R1 (between  
R1 and GND) or two external resistors R1 and R2  
(between R1 and GND, and R2 and GND). Resistor R1  
and capacitor C1 determine the frequency range of the  
VCO. Resistor R2 enables the VCO to have a frequency  
offset if required.  
The phase comparator gain is:Kp  
=
(V r) .  
----------  
π
The average output voltage from PC1, fed to the VCO  
input via the low-pass filter and seen at the demodulator  
output at pin 10 (VDEMOUT), is the resultant of the phase  
differences of signals (SIGIN) and the comparator input  
(COMPIN) as shown in Fig.6. The average of VDEMOUT is  
equal to 12VCC when there is no signal or noise at  
SIGIN and with this input the VCO oscillates at the centre  
frequency (fo). Typical waveforms for the PC1 loop locked  
at fo are shown in Fig.7.  
The high input impedance of the VCO simplifies the design  
of low-pass filters by giving the designer a wide choice of  
resistor/capacitor ranges. In order not to load the low-pass  
filter, a demodulator output of the VCO input voltage is  
1997 Nov 25  
2
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
The frequency capture range (2fc) is defined as the  
frequency range of input signals on which the PLL will lock  
if it was initially out-of-lock. The frequency lock range  
(2fL) is defined as the frequency range of input signals on  
which the loop will stay locked if it was initially in lock. The  
capture range is smaller or equal to the lock range.  
and comparator inputs are equal in both phase and  
frequency. At this stable point the voltage on C2 remains  
constant as the PC2 output is in 3-state and the VCO input  
at pin 9 is a high impedance. Also in this condition, the  
signal at the phase comparator pulse output (PCPOUT) is a  
HIGH level and so can be used for indicating a locked  
condition.  
With PC1, the capture range depends on the low-pass  
filter characteristics and can be made as large as the lock  
range.  
This configuration retains lock even with very noisy input  
signals. Typical behaviour of this type of phase  
comparator is that it can lock to input frequencies close to  
the harmonics of the VCO centre frequency.  
Thus, for PC2, no phase difference exists between  
SIGIN and COMPIN over the full frequency range of the  
VCO. Moreover, the power dissipation due to the low-pass  
filter is reduced because both p and n-type drivers are  
“OFF” for most of the signal input cycle. It should be noted  
that the PLL lock range for this type of phase comparator  
is equal to the capture range and is independent of the  
low-pass filter. With no signal present at SIGIN the  
VCO adjusts, via PC2, to its lowest frequency.  
Phase comparator 2 (PC2)  
This is a positive edge-triggered phase and frequency  
detector. When the PLL is using this comparator, the loop  
is controlled by positive signal transitions and the duty  
factors of SIGIN and COMPIN are not important. PC2  
comprises two D-type flip-flops, control-gating and a  
3-state output stage. The circuit functions as an up-down  
counter (Fig.5) where SIGIN causes an up-count and  
COMPIN a down-count. The transfer function of PC2,  
assuming ripple (fr = fi) is suppressed,  
Phase comparator 3 (PC3)  
This is a positive edge-triggered sequential phase detector  
using an RS-type flip-flop. When the PLL is using this  
comparator, the loop is controlled by positive signal  
transitions and the duty factors of SIGIN and COMPIN are  
not important. The transfer characteristic of PC3,  
assuming ripple (fr = fi) is suppressed,  
V
V
CC (φ SIGIN φCOMPIN  
)
is: VDEMOUT  
=
CC (φ SIGIN φCOMPIN  
)
is: VDEMOUT  
=
----------  
----------  
2π  
4π  
where VDEMOUT is the demodulator output at pin 10;  
VDEMOUT = VPC3OUT (via low-pass filter).  
where VDEMOUT is the demodulator output at pin 10;  
VDEMOUT = VPC2OUT (via low-pass filter).  
V
V
CC (V r) .  
The phase comparator gain is:Kp  
=
CC (V r) .  
The phase comparator gain is:Kp  
=
----------  
----------  
2π  
4π  
The average output from PC3, fed to the VCO via the  
low-pass filter and seen at the demodulator output at  
pin 10 (VDEMOUT), is the resultant of the phase differences  
of SIGIN and COMPIN as shown in Fig.10. Typical  
waveforms for the PC3 loop locked at fo are shown in  
Fig.11.  
VDEMOUT is the resultant of the initial phase differences of  
SIGIN and COMPIN as shown in Fig.8. Typical waveforms  
for the PC2 loop locked at fo are shown in Fig.9.  
When the frequencies of SIGIN and COMPIN are equal but  
the phase of SIGIN leads that of COMPIN, the p-type  
output driver at PC2OUT is held “ON” for a time  
corresponding to the phase difference (φDEMOUT). When  
the phase of SIGIN lags that of COMPIN, the n-type driver  
is held “ON”.  
The phase-to-output response characteristic of PC3  
(Fig.10) differs from that of PC2 in that the phase angle  
between SIGIN and COMPIN varies between 0° and  
360° and is 180° at the centre frequency. Also PC3 gives  
a greater voltage swing than PC2 for input phase  
differences but as a consequence the ripple content of the  
VCO input signal is higher. The PLL lock range for this type  
of phase comparator and the capture range are dependent  
on the low-pass filter. With no signal present at SIGIN the  
VCO adjusts, via PC3, to its lowest frequency.  
When the frequency of SIGIN is higher than that of  
COMPIN, the p-type output driver is held “ON” for most of  
the input signal cycle time, and for the remainder of the  
cycle both n and p- type drivers are ”OFF” (3-state). If the  
SIGIN frequency is lower than the COMPIN frequency, then  
it is the n-type driver that is held “ON” for most of the cycle.  
Subsequently, the voltage at the capacitor (C2) of the  
low-pass filter connected to PC2OUT varies until the signal  
1997 Nov 25  
3
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
QUICK REFERENCE DATA  
GND = 0 V; Tamb = 25 °C  
TYPICAL  
UNIT  
SYMBOL  
PARAMETER  
VCO centre frequency  
CONDITIONS  
HC HCT  
fo  
C1 = 40 pF; R1 = 3 k; VCC = 5 V 19  
3.5 3.5  
24 24  
19  
MHz  
pF  
CI  
input capacitance (pin 5)  
CPD  
power dissipation capacitance per  
package  
notes 1 and 2  
pF  
Notes  
1. CPD is used to determine the dynamic power dissipation (PD in µW):  
PD = CPD × VCC2 × fi + (CL × VCC2 × fo) where:  
fi = input frequency in MHz.  
fo = output frequency in MHz.  
CL = output load capacitance in pF.  
VCC = supply voltage in V.  
(CL × VCC2 × fo) = sum of outputs.  
2. Applies to the phase comparator section only (VCO disabled). For power dissipation of the VCO and demodulator  
sections see Figs 22, 23 and 24.  
ORDERING INFORMATION  
See “74HC/HCT/HCU/HCMOS Logic Package Information”.  
APPLICATIONS  
FM modulation and demodulation  
Frequency synthesis and multiplication  
Frequency discrimination  
Tone decoding  
Data synchronization and conditioning  
Voltage-to-frequency conversion  
Motor-speed control.  
PACKAGE OUTLINES  
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.  
1997 Nov 25  
4
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
PIN DESCRIPTION  
PIN NO.  
SYMBOL  
NAME AND FUNCTION  
1
PCPOUT  
PC1OUT  
COMPIN  
VCOOUT  
INH  
phase comparator pulse output  
phase comparator 1 output  
comparator input  
2
3
4
VCO output  
5
inhibit input  
6
C1A  
capacitor C1 connection A  
capacitor C1 connection B  
ground (0 V)  
7
C1B  
8
GND  
9
VCOIN  
DEMOUT  
R1  
VCO input  
10  
11  
12  
13  
14  
15  
16  
demodulator output  
resistor R1 connection  
resistor R2 connection  
phase comparator 2 output  
signal input  
R2  
PC2OUT  
SIGIN  
PC3OUT  
VCC  
phase comparator 3 output  
positive supply voltage  
Fig.1 Pin configuration.  
Fig.2 Logic symbol.  
Fig.3 IEC logic symbol.  
1997 Nov 25  
5
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
C1  
6
7
4
3
14  
C1  
C1  
V
COMP  
SIG  
IN  
A
B
CO OUT  
IN  
4046A  
identical to 4046A  
R
R
12  
11  
2
1
PC1  
7046A  
PHASE  
COMPARATOR  
1
OUT  
2
R2  
R1  
PC2  
PHASE  
COMPARATOR  
2
OUT 13  
VCO  
PC2  
OUT 13  
R3  
PHASE  
COMPARATOR PCP  
2
OUT  
1
R4  
C2  
LOCK  
DETECTOR  
PC3  
PHASE  
COMPARATOR  
3
OUT 15  
LD  
1
C
DEM  
VCO  
IN  
LD  
INH  
OUT  
5
10  
R
9
MGA847  
15  
C
CLD  
S
(a)  
(b)  
Fig.4 Functional diagram.  
Fig.5 Logic diagram.  
6
1997 Nov 25  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
VCC  
VDEMOUT = VPC2OUT  
=
---------- (φ SIGIN φCOMPIN  
)
π
φDEMOUT = (φSIGIN − φCOMPIN).  
Fig.6 Phase comparator 1: average output voltage versus input phase difference.  
Fig.7 Typical waveforms for PLL using phase comparator 1, loop locked at fo.  
VCC  
VDEMOUT = VPC2OUT  
=
---------- (φ SIGIN φCOMPIN  
)
4π  
φDEMOUT = (φSIGIN − φCOMPIN).  
Fig.8 Phase comparator 2: average output voltage versus input phase difference.  
7
1997 Nov 25  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Fig.9 Typical waveforms for PLL using phase comparator 2, loop locked at fo.  
VCC  
VDEMOUT = VPC3OUT  
=
---------- (φ SIGIN φCOMPIN  
2π  
)
φDEMOUT = (φSIGIN − φCOMPIN).  
Fig.10 Phase comparator 3: average output voltage versus input phase difference:  
Fig.11 Typical waveforms for PLL using phase comparator 3, loop locked at fo.  
8
1997 Nov 25  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
RECOMMENDED OPERATING CONDITIONS FOR 74HC/HCT  
74HC  
74HCT  
SYMBOL  
PARAMETER  
UNIT CONDITIONS  
min. typ. max. min. typ. max.  
VCC  
VCC  
DC supply voltage  
3.0  
2.0  
5.0 6.0  
5.0 6.0  
4.5  
4.5  
5.0  
5.0  
5.5  
5.5  
V
V
DC supply voltage if VCO  
section is not used  
VI  
DC input voltage range  
DC output voltage range  
0
VCC  
VCC  
0
0
VCC  
VCC  
V
V
VO  
0
Tamb  
operating ambient  
temperature range  
40  
+85 40  
+85 °C  
see DC and AC  
CHARACTERISTICS  
Tamb  
tr, tf  
operating ambient  
temperature range  
40  
+125 40  
+125 °C  
input rise and fall times (pin 5)  
6.0 1000  
6.0  
6.0  
6.0  
500 ns  
500 ns  
500 ns  
VCC = 2.0 V  
VCC = 4.5 V  
6.0 500  
6.0 400  
VCC = 6.0 V  
RATINGS  
Limiting values in accordance with the Absolute Maximum System (IEC 134)  
Voltages are referenced to GND (ground = 0 V)  
SYMBOL  
PARAMETER  
MIN.  
MAX. UNIT  
CONDITIONS  
VCC  
±IIK  
±IOK  
±IO  
DC supply voltage  
0.5  
+7  
20  
20  
25  
V
DC input diode current  
DC output diode current  
mA  
mA  
mA  
for VI < −0.5 V or VI > VCC + 0.5 V  
for VO < −0.5 V or VO > VCC + 0.5 V  
for 0.5 V < VO < VCC + 0.5 V  
DC output source or sink  
current  
±ICC; ±IGND DC VCC or GND current  
50  
mA  
Tstg  
Ptot  
storage temperature range  
65  
+150  
°C  
power dissipation per package  
for temperature range: 40 to +125 °C  
74HC/HCT  
plastic DIL  
750  
500  
mW  
mW  
above + 70 °C: derate linearly with 12 mW/K  
plastic mini-pack (SO)  
above + 70 °C: derate linearly with 8 mW/K  
1997 Nov 25  
9
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
DC CHARACTERISTICS FOR 74HC  
Quiescent supply current  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
VCC  
OTHER  
(V)  
74HC  
SYMBOL PARAMETER  
+25  
UNIT  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
quiescent supply  
current (VCO  
disabled)  
pins 3, 5, and 14 at VCC;  
6.0 pin 9 at GND; II at pins  
ICC  
8.0  
80.0  
160.0 µA  
3 and 14 to be excluded  
Phase comparator section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HC  
VCC  
(V)  
SYM-  
BOL  
PARAMETER  
UNIT  
OTHER  
+25  
40 to +85 40 to +125  
VI  
min. typ. max. min. max. min. max.  
VIH  
DC coupled  
HIGH level input voltage  
SIGIN, COMPIN  
1.5  
1.2  
1.5  
1.5  
V
V
V
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
3.15 2.4  
3.15  
4.2  
3.15  
4.2  
4.2  
3.2  
VIL  
DC coupled  
LOW level input voltage  
SIGIN, COMPIN  
0.8 0.5  
2.1 1.35  
2.8 1.8  
2.0  
0.5  
0.5  
1.35  
1.8  
1.35  
1.8  
VOH  
HIGH level output voltage 1.9  
PCPOUT, PCnOUT  
1.9  
1.9  
4.4  
5.9  
3.7  
5.2  
2.0 VIH IO = 20 µA  
or  
VIL  
4.4  
4.5  
4.4  
4.5  
6.0  
IO = 20 µA  
IO = 20 µA  
5.9  
6.0  
5.9  
VOH  
HIGH level output voltage 3.98 4.32  
PCPOUT, PCnOUT  
3.84  
5.34  
V
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
5.48 5.81  
6.0  
IO = 5.2 mA  
VOL  
LOW level output voltage  
PCPOUT, PCnOUT  
0
0
0
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.4  
0.4  
2.0 VIH IO = 20 µA  
or  
VIL  
0.1  
4.5  
6.0  
IO = 20 µA  
IO = 20 µA  
0.1  
VOL  
LOW level output voltage  
PCPOUT, PCnOUT  
0.15 0.26  
0.16 0.26  
0.33  
0.33  
V
4.5 VIH IO = 4.0 mA  
or  
6.0  
IO = 5.2 mA  
VIL  
±II  
input leakage current  
SIGIN, COMPIN  
3.0  
4.0  
5.0  
µA  
2.0 VCC  
or  
GND  
7.0  
9.0  
11.0  
27.0  
45.0  
10.0  
3.0  
18.0  
30.0  
0.5  
23.0  
38.0  
5.0  
4.5  
6.0  
±IOZ  
3-state  
µA  
6.0 VIH VO = VCC or  
OFF-state current  
PC2OUT  
or  
VIL  
GND  
1997 Nov 25  
10  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
T
amb (°C)  
TEST CONDITIONS  
VCC  
74HC  
SYM-  
PARAMETER  
BOL  
UNIT  
OTHER  
(V)  
+25  
40 to +85 40 to +125  
VI  
min. typ. max. min. max. min. max.  
RI  
input resistance  
SIGIN, COMPIN  
800  
250  
150  
kΩ  
kΩ  
kΩ  
3.0 VI at self-bias  
operating point;  
VI = 0.5 V;  
6.0  
4.5  
see Figs 12, 13  
and 14  
VCO section  
Voltages are referenced to GND (ground = 0 V)  
T
amb (°C)  
TEST CONDITIONS  
74HC  
VCC  
(V)  
SYM-  
BOL  
PARAMETER  
UNIT  
OTHER  
VI  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
VIH  
HIGH level  
input voltage  
INH  
2.1  
1.7  
2.1  
2.1  
V
V
V
3.0  
4.5  
6.0  
3.0  
4.5  
6.0  
3.15 2.4  
3.15  
4.2  
3.15  
4.2  
4.2  
3.2  
1.3  
2.1  
2.8  
3.0  
4.5  
6.0  
VIL  
LOW level  
input voltage  
INH  
0.9  
0.9  
0.9  
1.35  
1.8  
1.35  
1.8  
1.35  
1.8  
VOH  
HIGH level  
output voltage  
VCOOUT  
2.9  
4.4  
5.9  
2.9  
2.9  
4.4  
5.9  
3.7  
5.2  
3.0 VIH  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 4.0 mA  
IO = 5.2 mA  
or  
VIL  
4.4  
4.5  
5.9  
6.0  
VOH  
HIGH level  
output voltage  
VCOOUT  
3.98 4.32  
5.48 5.81  
3.84  
5.34  
V
V
4.5 VIH  
or  
VIL  
6.0  
VOL  
LOW level  
output voltage  
VCOOUT  
0
0
0
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.4  
0.4  
3.0 VIH  
IO = 20 µA  
IO = 20 µA  
IO = 20 µA  
IO = 4.0 mA  
IO = 5.2 mA  
or  
VIL  
0.1  
4.5  
0.1  
6.0  
VOL  
VOL  
±II  
LOW level  
output voltage  
VCOOUT  
0.15 0.26  
0.16 0.26  
0.33  
0.33  
V
4.5 VIH  
or  
VIL  
6.0  
LOW level output  
voltage C1A, C1B  
0.40  
0.40  
0.47  
0.47  
0.54  
0.54  
V
4.5 VIH  
IO = 4.0 mA  
IO = 5.2 mA  
or  
VIL  
6.0  
input leakage  
current  
INH, VCOIN  
0.1  
1.0  
1.0  
µA  
kΩ  
6.0 VCC  
or  
GND  
R1  
resistor range  
3.0  
3.0  
3.0  
300  
300  
300  
3.0  
4.5  
6.0  
note 1  
1997 Nov 25  
11  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
T
amb (°C)  
TEST CONDITIONS  
VCC  
74HC  
SYM-  
BOL  
PARAMETER  
UNIT  
kΩ  
pF  
OTHER  
(V)  
+25  
40 to +85 40 to +125  
VI  
min. typ. max. min. max. min. max.  
R2  
resistor range  
3.0  
3.0  
3.0  
40  
300  
300  
300  
3.0  
4.5  
6.0  
3.0  
4.5  
6.0  
3.0  
4.5  
6.0  
note 1  
C1  
capacitor range  
no  
limit  
40  
40  
VVCOIN operating voltage  
range at VCOIN  
1.1  
1.1  
1.1  
1.9  
3.4  
4.9  
V
over the range  
specified for  
R1; for linearity  
see Figs 20  
and 21  
Note  
1. The parallel value of R1 and R2 should be more than 2.7 k. Optimum performance is achieved when R1 and/ or  
R2 are/is > 10 k.  
Demodulator section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
OTHER  
74HC  
SYMBOL PARAMETER  
UNIT  
VCC  
V
+25  
40 to+85 40 to +125  
min. typ. max. min. max. min. max.  
RS  
resistor range  
50  
50  
50  
300  
300  
300  
kΩ  
3.0 at RS > 300 kΩ  
the leakage current can  
influence VDEMOUT  
4.5  
6.0  
VOFF  
offset voltage  
VCOIN to VDEMOUT  
±30  
±20  
±10  
25  
mV 3.0 VI = VVCOIN = 1/2 VCC;  
values taken over  
RS range; see Fig.15  
6.0  
4.5  
RD  
dynamic output  
3.0 VDEMOUT = 1/2 VCC  
resistance at DEMOUT  
25  
4.5  
6.0  
25  
1997 Nov 25  
12  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
AC CHARACTERISTICS FOR 74HC  
Phase comparator section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
T
amb (°C)  
TEST  
CONDITIONS  
74HC  
OTHER  
UNIT  
SYMBOL PARAMETER  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL  
tPLH  
/
/
/
propagation delay  
SIGIN, COMPIN  
to PC1OUT  
63  
23  
18  
96  
35  
28  
77  
28  
22  
83  
30  
24  
99  
36  
29  
19  
7
200  
40  
250  
50  
300  
60  
ns  
ns  
ns  
ns  
ns  
ns  
mV  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
2.0  
4.5  
6.0  
2.0  
3.0  
4.5  
6.0  
Fig.16  
Fig.16  
Fig.16  
Fig.17  
Fig.17  
Fig.16  
fi = 1 MHz  
34  
43  
51  
tPHL  
tPLH  
propagation delay  
SIGIN, COMPIN  
to PCPOUT  
340  
68  
425  
85  
510  
102  
87  
58  
72  
tPHL  
tPLH  
propagation delay  
SIGIN, COMPIN  
to PC3OUT  
270  
54  
340  
68  
405  
81  
46  
58  
69  
tPZH  
tPZL  
/
/
3-state output enable  
time SIGIN, COMPIN  
to PC2OUT  
280  
56  
350  
70  
420  
84  
48  
60  
71  
tPHZ  
tPLZ  
3-state output disable  
time SIGIN, COMPIN  
to PC2OUT  
325  
65  
405  
81  
490  
98  
55  
69  
83  
tTHL  
/
output transition time  
75  
95  
110  
22  
tTLH  
15  
19  
6
13  
16  
19  
VI(p-p)  
AC coupled input sensitivity  
(peak-to-peak value) at  
SIGIN or COMPIN  
9
11  
15  
33  
1997 Nov 25  
13  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
VCO section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HC  
SYMBOL PARAMETER  
+25  
UNIT  
OTHER  
VCC  
(V)  
40 to +85 40 to +125  
min. typ. max. typ. max. min. max.  
f/T  
fo  
frequency stability  
with temperature  
change  
0.20  
0.15  
0.14  
%/K 3.0 VI = VVCOIN = 1/2 VCC;  
R1 = 100 k; R2 = ;  
C1 = 100 pF; see Fig.18  
4.5  
6.0  
VCO centre  
7.0  
10.0  
MHz 3.0 VVCOIN = 1/2 VCC;  
frequency (duty  
factor = 50%)  
R1 = 3 k; R2 = ;  
C1 = 40 pF; see Fig.19  
11.0 17.0  
4.5  
6.0  
13.0 21.0  
fVCO  
VCO frequency  
linearity  
1.0  
0.4  
0.3  
50  
%
%
3.0 R1 = 100 k; R2 = ;  
C1 = 100 pF;  
see Figs 20 and 21  
6.0  
4.5  
δVCO  
duty factor at  
VCOOUT  
3.0  
4.5  
6.0  
50  
50  
DC CHARACTERISTICS FOR 74HCT  
Quiescent supply current  
Voltages are referenced to GND (ground = 0 V)  
T
amb (°C)  
74HCT  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
TEST CONDITIONS  
SYMBOL PARAMETER  
UNIT  
OTHER  
VCC  
(V)  
+25  
ICC  
quiescent supply  
current  
(VCO disabled)  
8.0  
80.0  
160.0 µA  
6.0  
pins 3, 5 and 14  
at VCC; pin 9 at  
GND; II at  
pins 3 and 14 to  
be excluded  
ICC  
additional quiescent  
supply current per  
input pin for unit load  
coefficient is 1 (note 1)  
VI = VCC 2.1 V  
100 360  
450  
490  
µA  
4.5  
to  
5.5  
pins 3 and 14  
at VCC  
;
pin 9 at GND;  
II at pins 3 and 14  
to be excluded  
Note  
1. The value of additional quiescent supply current (ICC) for a unit load of 1 is given above.  
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.  
INPUT  
UNIT LOAD COEFFICIENT  
INH  
1.00  
1997 Nov 25  
14  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
DC CHARACTERISTICS FOR 74HCT  
Phase comparator section  
Voltages are referenced to GND (ground = 0 V)  
T
amb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
VI  
OTHER  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min typ. max min max min. max.  
VIH  
VIL  
DC coupled  
HIGH level input  
voltage SIGIN, COMPIN  
3.15 2.4  
V
4.5  
4.5  
DC coupled  
LOW level input  
voltage  
2.1 1.35  
V
SIGIN, COMPIN  
VOH  
VOH  
VOL  
VOL  
±II  
HIGH level output  
4.4 4.5  
3.98 4.32  
0
4.4  
4.4  
3.7  
V
4.5 VIH IO = 20 µA  
voltage PCPOUT  
PCnOUT  
,
or  
VIL  
HIGH level output  
3.84  
V
4.5 VIH IO = 4.0 mA  
voltage PCPOUT  
PCnOUT  
,
or  
VIL  
LOW level output  
voltage  
PCPOUT, PCnOUT  
0.1  
0.1  
0.33  
38  
0.1  
0.4  
45  
V
4.5 VIH IO = 20 µA  
or  
VIL  
LOW level output  
voltage  
PCPOUT, PCnOUT  
0.15 0.26  
30  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
input leakage current  
SIGIN, COMPIN  
µA  
5.5 VCC  
or  
GN  
D
±IOZ  
3-state OFF-state  
current PC2OUT  
0.5  
5.0  
10.0 µA  
kΩ  
5.5 VIH VO = VCC or  
or  
GND  
VIL  
RI  
input resistance  
SIGIN, COMPin  
250  
4.5 VI at self-bias  
operating  
point;  
VI = 0.5 V;  
see Figs 12, 13 and  
14  
1997 Nov 25  
15  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
DC CHARACTERISTICS FOR 74HCT  
VCO section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
+25  
UNIT  
VI  
OTHER  
VCC  
(V)  
40 to +85 40 to +125  
min typ. max min max min. max.  
VIH  
VIL  
HIGH level  
input voltage INH  
2.0  
1.6  
2.0  
2.0  
V
4.5  
to  
5.5  
LOW level  
input voltage INH  
1.2 0.8  
4.5  
0.8  
0.8  
V
4.5  
to  
5.5  
VOH  
VOH  
VOL  
VOL  
VOL  
±II  
HIGH level output  
voltage VCOOUT  
4.4  
4.4  
4.4  
3.7  
V
4.5 VIH IO = 20 µA  
or  
VIL  
HIGH level output  
voltage VCOOUT  
3.98 4.32  
3.84  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
LOW level output  
voltage VCOOUT  
0
0.1  
0.1  
0.1  
0.4  
V
4.5 VIH IO = 20 µA  
or  
VIL  
LOW level output  
voltage VCOOUT  
0.15 0.26  
0.40  
0.33  
0.47  
1.0  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
LOW level output  
voltage C1A, C1B  
(test purposes only)  
0.54  
1.0  
V
4.5 VIH IO = 4.0 mA  
or  
VIL  
input leakage  
current  
0.1  
µA  
5.5 VCC  
or  
INH, VCOIN  
GND  
R1  
R2  
C1  
resistor range  
resistor range  
capacitor range  
3.0  
3.0  
40  
300  
300  
kΩ  
kΩ  
pF  
4.5  
4.5  
4.5  
note 1  
note 1  
no  
limit  
VVCOIN  
operating voltage  
range at VCOIN  
1.1  
3.4  
V
4.5  
over the  
range  
specified for  
R1; for  
linearity see  
Figs 20  
and 21  
Note  
1. The parallel value of R1 and R2 should be more than 2.7 k. Optimum performance is achieved when R1 and/or R2  
are/is > 10 k.  
1997 Nov 25  
16  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
DC CHARACTERISTICS FOR 74HCT  
Demodulator section  
Voltages are referenced to GND (ground = 0 V)  
Tamb (°C)  
TEST CONDITIONS  
OTHER  
74HCT  
SYMBOL PARAMETER  
+25  
UNIT  
VCC  
(V)  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
50 300  
RS  
resistor range  
kΩ  
4.5  
at RS > 300 kΩ  
the leakage current can  
influence VDEMOUT  
VOFF  
offset voltage  
VCOIN to  
VDEMOUT  
±20  
mV  
4.5  
4.5  
VI = VVCOIN = 1/2 VCC  
values taken over  
RS range; see Fig.15  
;
RD  
dynamic output  
resistance at  
DEMOUT  
25  
VDEMOUT = 1/2 VCC  
AC CHARACTERISTICS FOR 74HCT  
Phase comparator section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
OTHER  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHL  
tPLH  
/
/
/
propagation delay  
SIGIN, COMPIN  
to PC1OUT  
23  
35  
28  
30  
40  
68  
54  
56  
50  
85  
68  
70  
60  
ns  
4.5  
4.5  
4.5  
4.5  
Fig.16  
Fig.16  
Fig.16  
Fig.17  
tPHL  
tPLH  
propagation delay  
SIGIN, COMPIN  
to PCPOUT  
102 ns  
tPHL  
tPLH  
propagation delay  
SIGIN, COMPIN  
to PC3OUT  
81  
84  
ns  
ns  
tPZH  
tPZL  
/
3-state output enable  
time SIGIN, COMPIN  
to PC2OUT  
1997 Nov 25  
17  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Tamb (°C)  
TEST CONDITIONS  
74HCT  
SYMBOL PARAMETER  
UNIT  
OTHER  
VCC  
(V)  
+25  
40 to +85 40 to +125  
min. typ. max. min. max. min. max.  
tPHZ  
tPLZ  
/
3-state output disable  
time SIGIN, COMPIN  
to PC2OUT  
36  
65  
15  
81  
19  
98  
22  
ns  
4.5  
Fig.17  
tTHL  
tTLH  
VI (p-p)  
/
output transition time  
7
ns  
4.5  
4.5  
Fig.16  
AC coupled input  
sensitivity  
15  
mV  
fi = 1 MHz  
(peak-to-peak value)  
at  
SIGIN or COMPIN  
VCO section  
GND = 0 V; tr = tf = 6 ns; CL = 50 pF  
Tamb (°C)  
74HCT  
40 to +85 40 to +125  
TEST CONDITIONS  
SYMBOL PARAMETER  
UNIT  
OTHER  
VCC  
(V)  
+25  
min. typ. max min. max min. max.  
f/T  
frequency stability  
with temperature  
change  
0.15  
%/K 4.5  
VI = VVCOIN withi  
n recommended  
range;  
R1 = 100 k;  
R2 = ;  
C1 = 100 pF;  
see Fig.18b  
fo  
VCO centre frequency 11.0 17.0  
(duty factor = 50%)  
MHz 4.5  
VVCOIN = 1/2 VCC  
;
R1 = 3 k;  
R2 = ;  
C1 = 40 pF;  
see Fig.19  
fVCO  
VCO frequency  
linearity  
0.4  
50  
%
%
4.5  
4.5  
R1 = 100 k;  
R2 = ;  
C1 = 100 pF;  
see Figs 20  
and 21  
δVCO  
duty factor at VCOOUT  
1997 Nov 25  
18  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
FIGURE REFERENCES FOR DC CHARACTERISTICS  
Fig.12 Typical input resistance curve at SIGIN,  
COMPIN.  
Fig.13 Input resistance at SIGIN, COMPIN with  
VI = 0.5 V at self-bias point.  
RS = 50 kΩ  
- - - - RS = 300 kΩ  
Fig.14 Input current at SIGIN, COMPIN with  
Fig.15 Offset voltage at demodulator output as a  
function of VCOIN and RS.  
VI = 0.5 V at self-bias point.  
1997 Nov 25  
19  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
AC WAVEFORMS  
(1) HC : VM = 50%; VI = GND to VCC  
Fig.16 Waveforms showing input (SIGIN, COMPIN) to output (PCPOUT, PC1OUT, PC3OUT) propagation delays  
and the output transition times.  
(1) HC : VM = 50%; VI = GND to VCC  
Fig.17 Waveforms showing the 3-state enable and disable times for PC2OUT  
.
1997 Nov 25  
20  
MSB710  
MSB711  
MSB712  
25  
25  
25  
book, halfpage  
handbook, halfpage  
handbook, halfpage  
V
=
CC  
3 V  
5 V  
f
f  
(%)  
f  
(%)  
(%)  
3 V  
5 V  
20  
20  
15  
20  
15  
6 V  
6 V  
V
=
15  
CC  
V
=
CC  
6 V  
5 V  
3 V  
3 V  
3 V  
5 V  
6 V  
A
10  
5
10  
5
10  
5
5 V  
6 V  
3 V  
4.5 V  
5 V  
6 V  
0
0
0
5  
10  
15  
20  
5
10  
15  
20  
5
10  
15  
20  
25  
50  
25  
50  
25  
50  
0
50  
100  
150  
0
50  
100  
T
150  
0
50  
100  
T
150  
o
o
o
T
( C)  
( C)  
( C)  
amb  
amb  
amb  
(a)  
(b)  
(c)  
To obtain optimum temperature stability, C1 must be as small as possible but larger than 100 pF.  
Fig.18 Frequency stability of the VCO as a function of ambient temperature with supply voltage as a parameter.  
without offset (R2 = ): (a) R1 = 3 k; (b) R1 = 10 k; (c) R1 = 300 k.  
− − − with offset  
In (b), the frequency stability for R1 = R2 = 10 kat 5 V is also given (curve A). This curve is set by the total VCO bias current, and is  
not simply the addition of the two 10 kstability curves. C1 = 100 pF; VVCO IN = 0.5 VCC  
(R1 = ): (a) R2 = 3 k; (b) R2 = 10 k; (c) R2 = 300 k.  
.
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
(d) R2 = 3 kΩ  
R1 = ∞  
(e) R2 = 10 kΩ  
R1 = ∞  
(f) R2 = 300 kΩ  
R1 = ∞  
To obtain optimum temperature stability, C1 must be as small as possible but larger than 100 pF.  
Fig.18 Continued.  
1997 Nov 25  
22  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
(b) R1 = 3 k;  
C1 = 100 nF  
(a) R1 = 3 k;  
C1 = 40 pF  
(d) R1 = 300 k;  
C1 = 100 nF  
(c) R1 = 300 k;  
C1 = 40 pF  
To obtain optimum temperature stability, C1 must be as small as possible but larger than 100 pF.  
Fig.19 Graphs showing VCO frequency (fVCO) as a function of the VCO input voltage (VVCOIN).  
1997 Nov 25  
23  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Fig.20 Definition of VCO frequency linearity:  
V = 0.5 V over the VCC range:  
for VCO linearity  
f1 + f2  
f‘ =  
--------------  
0
2
f‘0 f  
0 × 100%  
----------------  
Fig.21 Frequency linearity as a function of R1, C1  
linearity =  
f‘0  
and VCC: R2 = and V = 0.5 V.  
C1 = 40 pF  
- - - -C1 = 1 µF  
C1 = 40 pF  
- - - - C1 = 1 µF  
Fig.24 Typical dc power  
Fig.22 Power dissipation  
versus the value of R1:  
CL = 50 pF;  
Fig.23 Power dissipation  
versus the value of R2:  
CL = 50 pF;  
dissipation of  
demodulator sections  
as a function of RS:  
R1 = R2 = ;  
R2 = ;  
R1 = ;  
VVCOIN = 1/2 VCC  
Tamb = 25 °C.  
;
VVCOIN = GND = 0 V;  
Tamb = 25 °C.  
Tamb = 25 °C;  
VVCOIN = 1/2 VCC.  
1997 Nov 25  
24  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
APPLICATION INFORMATION  
This information is a guide for the approximation of values of external components to be used with the 74HC/HCT4046A  
in a phase-lock-loop system.  
References should be made to Figs 29, 30 and 31 as indicated in the table.  
Values of the selected components should be within the following ranges:  
R1  
R2  
between 3 kand 300 k;  
between 3 kand 300 k;  
R1 + R2 parallel value > 2.7 k;  
C1  
greater than 40 pF.  
PHASE  
COMPARATOR  
SUBJECT  
DESIGN CONSIDERATIONS  
VCO frequency characteristic  
VCO frequency  
without extra  
offset  
PC1, PC2 or PC3  
With R2 = and R1 within the range 3 kΩ < R1 < 300 k, the  
characteristics of the VCO operation will be as shown in Fig.25.  
(Due to R1, C1 time constant a small offset remains when R2 = .).  
Fig.25 Frequency characteristic of VCO operating without offset:  
f0 = centre frequency; 2fL = frequency lock range.  
Selection of R1 and C1  
PC1  
Given fo, determine the values of R1 and C1 using Fig.29.  
PC2 or PC3  
Given fmax and fo, determine the values of R1 and C1 using Fig.29, use  
Fig.31 to obtain 2fL and then use this to calculate fmin  
.
1997 Nov 25  
25  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
PHASE  
SUBJECT  
DESIGN CONSIDERATIONS  
VCO frequency characteristic  
COMPARATOR  
VCO frequency  
with extra  
offset  
PC1, PC2 or PC3  
With R1 and R2 within the ranges 3 kΩ < R1 < 300 k,  
3 kΩ < R2 < 300 k, the characteristics of the VCO operation will be as  
shown in Fig.26.  
Fig.26 Frequency characteristic of VCO operating with offset:  
fo = centre frequency; 2fL = frequency lock range.  
Selection of R1, R2 and C1  
PC1, PC2 or PC3  
Given fo and fL, determine the value of product R1C1 by using Fig.31.  
Calculate foff from the equation foff = fo  
1.6fL.  
Obtain the values of C1 and R2 by using Fig.30.  
Calculate the value of R1 from the value of C1 and the product R1C1.  
PLL conditions  
with no signal at  
the SIGIN input  
PC1  
PC2  
PC3  
VCO adjusts to fo with φDEMOUT = 90° and VVCOIN = 1/2 VCC (see Fig.6).  
VCO adjusts to fo with φDEMOUT = 360° and VVCOIN = min. (see Fig.8).  
VCO adjusts to fo with φDEMOUT = 360° and VVCOIN = min. (see Fig.10).  
1997 Nov 25  
26  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
PHASE  
SUBJECT  
DESIGN CONSIDERATIONS  
COMPARATOR  
PLL frequency  
capture range  
PC1, PC2 or PC3  
Loop filter component selection  
(a) τ = R3 x C2 (b) amplitude characteristic (c) pole-zero diagram  
1
π
A small capture range (2f ) is obtained if 2f ≈  
2 π f L ⁄ τ  
--  
c
c
Fig. 27 Simple loop filter for PLL without offset; R3 500 .  
(a) τ1 = R3 x C2; (b) amplitude characteristic (c) pole-zero diagram  
τ2 = R4 x C2;  
τ3 = (R3 + R4) x C2  
Fig.28 Simple loop filter for PLL with offset; R3 + R4 500 .  
PLL locks on  
harmonics at  
centre frequency  
PC1 or PC3  
PC2  
yes  
no  
noise rejection at  
signal input  
PC1  
high  
PC2 or PC3  
PC1  
low  
AC ripple content  
when PLL is  
locked  
fr = 2fi, large ripple content at φDEMOUT = 90°  
fr = fi, small ripple content at φDEMOUT = 0°  
fr = fi, large ripple content at φDEMOUT = 180°  
PC2  
PC3  
1997 Nov 25  
27  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
To obtain optimum VCO performance, C1 must be as small as possible but larger than 100 pF.  
Interpolation for various values of R1 can be easily calculated because a constant R1C1 product will produce almost the same VCO output frequency.  
Fig.29 Typical value of VCO centre frequency (fo) as a function of C1: R2 = ; VVCOIN = 1/2 VCC; INH = GND;  
Tamb = 25 °C.  
1997 Nov 25  
28  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
To obtain optimum VCO performance, C1 must be as small as possible but larger than 100 pF.  
Interpolation for various values of R2 can be easily calculated because a constant R2C1 product will produce almost the same VCO output frequency.  
Fig.30 Typical value of frequency offset as a function of C1: R1 = ; VVCOIN = 1/2 VCC; INH = GND; Tamb = 25 °C.  
1997 Nov 25  
29  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Fig.31 Typical frequency lock range (2fL) versus the product R1C1: VVCOIN range = 0.9 to (VCC 0.9) V;  
R2 = ; VCO gain:  
2fL  
------------------------------------  
VVCOIN range  
˙
2 π (r s V) .  
KV  
=
1997 Nov 25  
30  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
PLL design example  
The VCO gain is:  
and the damping value ζ is defined as  
follows:  
˙
2fL × 2 × π  
The frequency synthesizer, used in  
the design example shown in Fig.32,  
has the following parameters:  
Kv  
=
=
----------------------------------------------  
1 + Kp × Kv × Kn × τ2  
1
0.9 (VCC 0.9)  
ζ =  
×
---------- -----------------------------------------------------  
2ωn (τ1 + τ2)  
Output frequency: 2 MHz to 3 MHz  
frequency steps : 100 kHz  
1 MHz  
-----------------  
3.2  
In Fig.33 the output frequency response to  
a step of input frequency is shown.  
=
× 2 π ≈ 2 × 106 r/s/V  
settling time  
overshoot  
:
:
1 ms  
< 20%  
The overshoot and settling time  
percentages are now used to determine  
ωn. From Fig.33 it can be seen that the  
damping ratio ζ = 0.45 will produce an  
overshoot of less than 20% and settle to  
within 5% at ωnt = 5. The required settling  
time is 1 ms.  
The gain of the phase  
comparator is:  
The open-loop gain is  
H (s) x G (s) = Kp × Kf × Ko × Kn.  
VCC  
Kp  
=
= 0.4 V/r.  
------------  
4 × π  
Where:  
The transfer gain of the filter is  
given by:  
Kp = phase comparator gain  
Kf = low-pass filter transfer gain  
Ko = Kv/s VCO gain  
This results in:  
1 + τ2s  
Kf =  
.
------------------------------------  
5
--  
t
5
1 + (τ1 + τ2) s  
Kn = 1/n divider ratio  
ω n  
=
=
= 5 × 103 r/s.  
--------------  
0.001  
The programmable counter ratio  
Kn can be found as follows:  
Where:  
Rewriting the equation for natural  
frequency results in:  
τ 1 = R3C2 and τ2 = R4C2.  
fout  
2 MHz  
---------------------  
100 kHz  
Nmin.  
=
=
= 20  
----------  
fstep  
Kp × Kv × Kn  
The characteristics equation is:  
1 + H (s) × G (s) = 0.  
1 + τ2) =  
.
-------------------------------  
ω2n  
This results in:  
fout  
3 MHz  
---------------------  
100 kHz  
The maximum overshoot occurs at Nmax.:  
Nmax.  
=
=
= 30  
----------  
fstep  
1 + Kp × Kv × Kn × τ  
s2 +  
2s+  
0.4 × 2 × 106  
50002 × 30  
-----------------------------------------------------  
1 + τ2)  
1 + τ 2 ) =  
= 0.0011 s.  
---------------------------------  
The VCO is set by the values of R1,  
R2 and C1, R2 = 10 k(adjustable).  
The values can be determined using  
the information in the section  
“DESIGN CONSIDERATIONS”.  
With fo = 2.5 MHz and fL = 500 kHz  
this gives the following values  
(VCC = 5.0 V):  
Kp × Kv × Kn  
When C2 = 470 nF, then  
1 + τ2) × 2 × ωn × ζ 1  
= 0.  
-------------------------------  
1 + τ2)  
R4 =  
= 315 Ω  
----------------------------------------------------------------  
Kp × Kv × Kn × C2  
The natural frequency ωn is  
defined as follows:  
now R3 can be calculated:  
Kp × Kv × Kn  
τ1  
ωn  
=
------------------------------- .  
R1 = 10 kΩ  
R2 = 10 kΩ  
R3 =  
R4 = 2 k.  
-------  
1 + τ2)  
C2  
C1 = 500 pF  
1997 Nov 25  
31  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Fig.32 Frequency synthesizer.  
note  
For an extensive description and application example  
please refer to application note ordering number  
9398 649 90011.  
Also available a computer design program for PLL’s  
ordering number 9398 961 10061.  
MSB740  
0.6  
1.6  
= 0.3  
0.5  
0.707  
1.0  
ζ
1.4  
1.2  
0.4  
0.2  
∆ω (t)  
∆Θ (t)  
e
e
∆ω /ω  
∆Θ /ω  
e
n
e n  
= 5.0  
ζ
0
1.0  
0.8  
= 2.0  
ζ
0.2  
0.6  
0.4  
0.2  
0.4  
0.6  
0.8  
0
1.0  
0
1
2
3
4
5
6
7
8
ω
t
n
Fig.33 Type 2, second order frequency step response.  
Since the output frequency is proportional to the VCO  
control voltage, the PLL frequency response can be  
observed with an oscilloscope by monitoring pin 9 of the  
VCO. The average frequency response, as calculated by  
the Laplace method, is found experimentally by smoothing  
this voltage at pin 9 with a simple RC filter, whose time  
constant is long compared to the phase detector sampling  
rate but short compared to the PLL response time.  
Fig.34 Frequency compared to the time response.  
1997 Nov 25  
32  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
Typical reflow temperatures range from 215 to 250 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
WAVE SOLDERING  
Wave soldering can be used for all SO packages. Wave  
soldering is not recommended for SSOP and TSSOP  
packages, because of the likelihood of solder bridging due  
to closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
If wave soldering is used - and cannot be avoided for  
SSOP and TSSOP packages - the following conditions  
must be observed:  
DIP  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow and must incorporate solder  
thieves at the downstream end.  
Even with these conditions:  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Only consider wave soldering SSOP packages that  
have a body width of 4.4 mm, that is  
SSOP16 (SOT369-1) or SSOP20 (SOT266-1).  
Do not consider wave soldering TSSOP packages  
with 48 leads or more, that is TSSOP48 (SOT362-1)  
and TSSOP56 (SOT364-1).  
REPAIRING SOLDERED JOINTS  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
SO, SSOP and TSSOP  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO, SSOP  
and TSSOP packages.  
REPAIRING SOLDERED JOINTS  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method.  
1997 Nov 25  
33  
Philips Semiconductors  
Product specification  
Phase-locked-loop with VCO  
74HC/HCT4046A  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Nov 25  
34  

相关型号:

74HC4046ADB

Phase-locked-loop with VCO
NXP

74HC4046ADB,118

74HC(T)4046A - Phase-locked-loop with VCO SSOP1 16-Pin
NXP

74HC4046ADB-T

IC PLL FREQUENCY SYNTHESIZER, PDSO16, SOT-338-1, SSOP-16, PLL or Frequency Synthesis Circuit
NXP

74HC4046AN

Phase-locked-loop with VCO
NXP

74HC4046AN,652

74HC(T)4046A - Phase-locked-loop with VCO DIP 16-Pin
NXP

74HC4046APW

Phase-locked-loop with VCO
NXP

74HC4046APW

Phase-locked-loop with VCOProduction
NEXPERIA

74HC4046APW,112

74HC(T)4046A - Phase-locked-loop with VCO TSSOP 16-Pin
NXP

74HC4046APW-Q100

Phase-locked loop with VCOProduction
NEXPERIA

74HC4046APW-T

IC PLL FREQUENCY SYNTHESIZER, PDSO16, SOT-403-1, TSSOP-16, PLL or Frequency Synthesis Circuit
NXP

74HC4049

Hex inverting high-to-low level shifter
NXP

74HC4049D

Hex inverting high-to-low level shifter
NXP