M29W400DB45ZE6E [NUMONYX]

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory; 4兆位( 512 KB ×8或256 KB ×16 ,引导块) 3 V电源闪存
M29W400DB45ZE6E
型号: M29W400DB45ZE6E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
4兆位( 512 KB ×8或256 KB ×16 ,引导块) 3 V电源闪存

闪存 内存集成电路
文件: 总48页 (文件大小:1025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W400DT  
M29W400DB  
4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block)  
3 V supply Flash memory  
Features  
Supply voltage  
– V = 2.7 V to 3.6 V for Program, Erase  
CC  
and Read  
(1)  
SO44 (M)  
Access time: 45, 55, 70 ns  
Programming time  
– 10 µs per byte/word typical  
11 memory blocks  
– 1 boot block (top or bottom location)  
– 2 parameter and 8 main blocks  
TSOP48 (N)  
12 x 20 mm  
Program/Erase controller  
FBGA  
– Embedded byte/word program algorithms  
Erase Suspend and Resume modes  
– Read and Program another block during  
Erase Suspend  
(1)  
TFBGA48 (ZA)  
6 x 9 mm  
Unlock bypass program command  
– Faster production/batch programming  
FBGA  
Temporary block unprotection mode  
Low power consumption  
– Standby and Automatic Standby  
TFBGA48 (ZE)  
6 x 8 mm  
100,000 Program/Erase cycles per block  
Electronic signature  
– Manufacturer code: 0020h  
1. These packages are no more in mass production.  
Top device code M29W400DT: 00EEh  
– Bottom device code M29W400DB: 00EFh  
®
– ECOPACK packages  
December 2007  
Rev 6  
1/48  
www.numonyx.com  
1
Contents  
M29W400DT, M29W400DB  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Address inputs (A0-A17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data inputs/outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data inputs/outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data input/output or Address input (DQ15A-1) . . . . . . . . . . . . . . . . . . . . 13  
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset/Block Temporary Unprotect (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ready/Busy output (RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.10 Byte/Word Organization Select (BYTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.11 VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.12  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Special bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block protection and blocks unprotection . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
4.2  
4.3  
4.4  
4.5  
Read/Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Auto Select command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Unlock Bypass command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Unlock Bypass Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/48  
M29W400DT, M29W400DB  
Contents  
4.6  
4.7  
4.8  
4.9  
Unlock Bypass Reset command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Chip Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.10 Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.11 Block Protect and Chip Unprotect commands . . . . . . . . . . . . . . . . . . . . . 22  
5
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.1  
5.2  
5.3  
5.4  
5.5  
Data Polling bit (DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Toggle bit (DQ6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Error bit (DQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Erase Timer bit (DQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Alternative Toggle bit (DQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Appendix A Block address table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Appendix B Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
B.1  
B.2  
Programmer technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
In-system technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3/48  
List of tables  
M29W400DT, M29W400DB  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bus operations, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
IL  
Bus operations, BYTE = V  
IH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Program, Erase times and Program, Erase endurance cycles. . . . . . . . . . . . . . . . . . . . . . 22  
Commands, 16-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
IH  
Commands, 8-bit mode, BYTE = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
IL  
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Write AC characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Write AC characteristics, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reset/Block Temporary Unprotect AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SO44 – 44 lead plastic small outline, 525 mils body width, package mechanical data . . . 35  
TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data . . . . 36  
TFBGA48 6 x 9 mm, 6 x 8 active ball array, 0.80 mm pitch, package mechanical data. . . 37  
TFBGA48 6 x 8 mm, 6 x 8 active ball array, 0.80 mm pitch, package mechanical data. . . 38  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Top boot block addresses M29W400DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Bottom boot block addresses M29W400DB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Programmer technique bus operations, BYTE = V or V  
IH  
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4/48  
M29W400DT, M29W400DB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SO connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block addresses (x 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block addresses (x 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data polling flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Data toggle flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 11. Read mode AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 12. Write AC waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13. Write AC waveforms, Chip Enable controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 14. Reset/Block Temporary Unprotect AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 15. SO44 - 44 lead plastic small outline, 525 mils body width, package outline. . . . . . . . . . . . 35  
Figure 16. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 36  
Figure 17. TFBGA48 6 x 9 mm, 6 x 8 active ball array, 0.80 mm pitch, bottom view package outline 37  
Figure 18. TFBGA48 6 x 8 mm, 6 x 8 active ball array, 0.80 mm pitch, bottom view package outline 38  
Figure 19. Programmer equipment block protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 20. Programmer equipment chip unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. In-system equipment block protect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 22. In-system equipment chip unprotect flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5/48  
Description  
M29W400DT, M29W400DB  
1
Description  
The M29W400D is a 4 Mbit (512 K x 8 or 256 K x 16) non-volatile memory that can be read,  
erased and reprogrammed. These operations can be performed using a single low voltage  
(2.7 to 3.6 V) supply. On power-up the memory defaults to its Read mode where it can be  
read in the same way as a ROM or EPROM.  
The memory is divided into blocks that can be erased independently so it is possible to  
preserve valid data while old data is erased. Each block can be protected independently to  
prevent accidental Program or Erase commands from modifying the memory. Program and  
Erase commands are written to the command interface of the memory. An on-chip  
Program/Erase controller simplifies the process of programming or erasing the memory by  
taking care of all of the special operations that are required to update the memory contents.  
The end of a program or erase operation can be detected and any error conditions  
identified. The command set required to control the memory is consistent with JEDEC  
standards.  
The blocks in the memory are asymmetrically arranged, see Figure 5 and Figure 6, Block  
addresses. The first or last 64 Kbytes have been divided into four additional blocks. The  
16 Kbyte boot block can be used for small initialization code to start the microprocessor, the  
two 8 Kbyte parameter blocks can be used for parameter storage and the remaining  
32 Kbyte is a small main block where the application may be stored.  
Chip Enable, Output Enable and Write Enable signals control the bus operation of the  
memory. They allow simple connection to most microprocessors, often without additional  
logic.  
The memory is offered in SO44, TSOP48 (12 x 20 mm), TFBGA48 0.8 mm pitch (6 x 9 mm  
and 6 x 8 mm) packages. The memory is supplied with all the bits erased (set to ’1’).  
In order to meet environmental requirements, Numonyx offers the M29W400D in  
®
ECOPACK packages. ECOPACK packages are Lead-free. The category of second level  
interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label.  
6/48  
M29W400DT, M29W400DB  
Figure 1. Logic diagram  
Description  
V
CC  
18  
15  
A0-A17  
DQ0-DQ14  
W
E
DQ15A–1  
BYTE  
RB  
M29W400DT  
M29W400DB  
G
RP  
V
SS  
AI06853  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
A0-A17  
DQ0-DQ7  
DQ8-DQ14  
DQ15A–1  
E
Address inputs  
Inputs  
I/O  
Data inputs/outputs  
Data inputs/outputs  
Data input/output or Address input  
Chip Enable  
I/O  
I/O  
Input  
Input  
Input  
Input  
Output  
Output  
G
Output Enable  
W
Write Enable  
RP  
Reset/Block Temporary Unprotect  
Ready/Busy output  
Byte/word organization select  
Supply voltage  
RB  
BYTE  
VCC  
VSS  
Ground  
NC  
Not connected internally  
7/48  
Description  
M29W400DT, M29W400DB  
Figure 2.  
SO connections  
NC  
RB  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RP  
2
W
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
3
A8  
4
A9  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
M29W400DT  
M29W400DB  
BYTE  
V
V
SS  
DQ15A–1  
SS  
G
DQ0  
DQ8  
DQ7  
DQ14  
DQ6  
DQ1  
DQ9  
DQ13  
DQ5  
DQ2  
DQ10  
DQ3  
DQ12  
DQ4  
DQ11  
V
CC  
AI06855  
1. NC = Not connected.  
8/48  
M29W400DT, M29W400DB  
Description  
Figure 3.  
TSOP connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
NC  
NC  
W
DQ12  
DQ4  
RP  
NC  
NC  
RB  
NC  
A17  
A7  
12  
13  
37  
36  
V
M29W400DT  
M29W400DB  
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI06854  
1. NC = Not connected.  
9/48  
Description  
M29W400DT, M29W400DB  
Figure 4.  
TFBGA connections (top view through package)  
1
2
3
4
5
6
A9  
A8  
A
B
C
D
E
F
A3  
A4  
A7  
RB  
NC  
W
A13  
A12  
RP  
A17  
A2  
A1  
A6  
A5  
NC  
NC  
NC  
NC  
A10  
A11  
A14  
A15  
A0  
DQ0  
DQ2  
DQ5  
DQ7  
A16  
DQ12  
DQ14  
DQ13  
DQ6  
E
DQ8  
DQ9  
DQ1  
DQ10  
DQ11  
DQ3  
BYTE  
DQ15  
A–1  
G
H
G
V
CC  
V
DQ4  
V
SS  
SS  
AI06856  
1. NC = Not connected.  
10/48  
M29W400DT, M29W400DB  
Figure 5. Block addresses (x 8)  
Description  
M29W400DT  
Top boot block addresses (x 8)  
M29W400DB  
Bottom boot block addresses (x 8)  
7FFFFh  
7FFFFh  
16 Kbyte  
8 Kbyte  
8 Kbyte  
32 Kbyte  
64 Kbyte  
64 Kbyte  
64 Kbyte  
7C000h  
7BFFFh  
70000h  
6FFFFh  
7A000h  
79FFFh  
60000h  
Total of 7  
64 Kbyte blocks  
78000h  
77FFFh  
70000h  
6FFFFh  
1FFFFh  
64 Kbyte  
32 Kbyte  
8 Kbyte  
8 Kbyte  
16 Kbyte  
60000h  
10000h  
0FFFFh  
08000h  
07FFFh  
Total of 7  
64 Kbyte blocks  
06000h  
05FFFh  
1FFFFh  
64 Kbyte  
64 Kbyte  
10000h  
0FFFFh  
04000h  
03FFFh  
00000h  
00000h  
AI06857b  
1. Also see Appendix A: Block address table, Table 21: Top boot block addresses M29W400DT and  
Table 22: Bottom boot block addresses M29W400DB for a full listing of the block addresses.  
11/48  
Description  
M29W400DT, M29W400DB  
Figure 6.  
Block addresses (x 16)  
M29W400DT  
Top boot block addresses (x 16)  
M29W400DB  
Bottom boot block addresses (x 16)  
3FFFFh  
3FFFFh  
8 Kword  
4 Kword  
4 Kword  
16 Kword  
32 Kword  
32 Kword  
32 Kword  
3E000h  
3DFFFh  
38000h  
37FFFh  
3D000h  
3CFFFh  
30000h  
Total of 7  
32 Kword blocks  
3C000h  
3BFFFh  
38000h  
37FFFh  
0FFFFh  
32 Kword  
16 Kword  
4 Kword  
4 Kword  
8 Kword  
30000h  
08000h  
07FFFh  
04000h  
03FFFh  
Total of 7  
32 Kword blocks  
03000h  
02FFFh  
0FFFFh  
32 Kword  
32 Kword  
08000h  
07FFFh  
02000h  
01FFFh  
00000h  
00000h  
AI06858b  
1. Also see Appendix A: Block address table, Table 21: Top boot block addresses M29W400DT and  
Table 22: Bottom boot block addresses M29W400DB for a full listing of the block addresses.  
12/48  
M29W400DT, M29W400DB  
Signal descriptions  
2
Signal descriptions  
See Figure 1: Logic diagram, and Table : , for a brief overview of the signals connected to  
this device.  
2.1  
2.2  
2.3  
Address inputs (A0-A17)  
The Address inputs select the cells in the memory array to access during Bus Read  
operations. During Bus Write operations they control the commands sent to the command  
interface of the Program/Erase controller.  
Data inputs/outputs (DQ0-DQ7)  
The Data inputs/outputs output the data stored at the selected address during a Bus Read  
operation. During Bus Write operations they represent the commands sent to the command  
interface of the Program/Erase controller.  
Data inputs/outputs (DQ8-DQ14)  
The Data inputs/outputs output the data stored at the selected address during a Bus Read  
operation when BYTE is High, V . When BYTE is Low, V , these pins are not used and are  
IH  
IL  
high impedance. During Bus Write operations the Command Register does not use these  
bits. When reading the Status Register these bits should be ignored.  
2.4  
Data input/output or Address input (DQ15A-1)  
When BYTE is High, V , this pin behaves as a Data input/output pin (as DQ8-DQ14). When  
IH  
BYTE is Low, V , this pin behaves as an address pin; DQ15A–1 Low will select the LSB of  
IL  
the word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text  
consider references to the Data input/output to include this pin when BYTE is High and  
references to the Address inputs to include this pin when BYTE is Low except when stated  
explicitly otherwise.  
2.5  
2.6  
Chip Enable (E)  
The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to  
be performed. When Chip Enable is High, V , all other pins are ignored.  
IH  
Output Enable (G)  
The Output Enable, G, controls the Bus Read operation of the memory.  
13/48  
Signal descriptions  
M29W400DT, M29W400DB  
2.7  
2.8  
Write Enable (W)  
The Write Enable, W, controls the Bus Write operation of the memory’s command interface.  
Reset/Block Temporary Unprotect (RP)  
The Reset/Block Temporary Unprotect pin can be used to apply a hardware reset to the  
memory or to temporarily unprotect all blocks that have been protected.  
A hardware reset is achieved by holding Reset/Block Temporary Unprotect Low, V , for at  
IL  
least t  
. After Reset/Block Temporary Unprotect goes High, V , the memory will be  
PLPX  
IH  
ready for Bus Read and Bus Write operations after t  
or t  
, whichever occurs last.  
RHEL  
PHEL  
See the Ready/Busy output section, Table 15: Reset/Block Temporary Unprotect AC  
characteristics and Figure 14: Reset/Block Temporary Unprotect AC waveforms, for more  
details.  
Holding RP at V will temporarily unprotect the protected blocks in the memory. Program  
ID  
and Erase operations on all blocks will be possible. The transition from V to V must be  
IH  
ID  
slower than t  
.
PHPHH  
2.9  
Ready/Busy output (RB)  
The Ready/Busy pin is an open-drain output that can be used to identify when the memory  
array can be read. Ready/Busy is high-impedance during Read mode, Auto Select mode  
and Erase Suspend mode.  
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy  
becomes high-impedance. See Table 15: Reset/Block Temporary Unprotect AC  
characteristics and Figure 14: Reset/Block Temporary Unprotect AC waveforms.  
During Program or Erase operations Ready/Busy is Low, V . Ready/Busy will remain Low  
OL  
during Read/Reset commands or hardware resets until the memory is ready to enter Read  
mode.  
2.10  
Byte/Word Organization Select (BYTE)  
The Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit Bus  
modes of the memory. When Byte/Word Organization Select is Low, V , the memory is in 8-  
IL  
bit mode, when it is High, V , the memory is in 16-bit mode.  
IH  
14/48  
M29W400DT, M29W400DB  
Signal descriptions  
2.11  
VCC supply voltage  
The V supply voltage supplies the power for all operations (Read, Program, Erase etc.).  
CC  
The command interface is disabled when the V supply voltage is less than the lockout  
CC  
voltage, V  
. This prevents Bus Write operations from accidentally damaging the data  
LKO  
during power-up, power-down and power surges. If the Program/Erase controller is  
programming or erasing during this time then the operation aborts and the memory contents  
being altered will be invalid.  
A 0.1 µF capacitor should be connected between the V supply voltage pin and the V  
CC  
SS  
ground pin to decouple the current surges from the power supply. The PCB track widths  
must be sufficient to carry the currents required during program and erase operations, I  
.
CC3  
2.12  
VSS ground  
The V ground is the reference for all voltage measurements.  
SS  
15/48  
Bus operations  
M29W400DT, M29W400DB  
3
Bus operations  
There are five standard bus operations that control the device. These are Bus Read, Bus  
Write, Output Disable, Standby and Automatic Standby. See Table 2 and Table 3, Bus  
operations, for a summary. Typically glitches of less than 5 ns on Chip Enable or Write  
Enable are ignored by the memory and do not affect bus operations.  
3.1  
Bus Read  
Bus Read operations read from the memory cells, or specific registers in the command  
interface. A valid Bus Read operation involves setting the desired address on the Address  
inputs, applying a Low signal, V , to Chip Enable and Output Enable and keeping Write  
IL  
Enable High, V . The Data inputs/outputs will output the value, see Figure 11: Read mode  
IH  
AC waveforms, and Table 12: Read AC characteristics, for details of when the output  
becomes valid.  
3.2  
Bus Write  
Bus Write operations write to the command interface. A valid Bus Write operation begins by  
setting the desired address on the Address inputs. The Address inputs are latched by the  
command interface on the falling edge of Chip Enable or Write Enable, whichever occurs  
last. The Data inputs/outputs are latched by the command interface on the rising edge of  
Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, V ,  
IH  
during the whole Bus Write operation. See Figure 12 and Figure 13, Write AC waveforms,  
and Table 13 and Table 14, Write AC characteristics, for details of the timing requirements.  
3.3  
3.4  
Output Disable  
The Data inputs/outputs are in the high impedance state when Output Enable is High, V .  
IH  
Standby  
When Chip Enable is High, V , the memory enters Standby mode and the Data  
IH  
inputs/outputs pins are placed in the high-impedance state. To reduce the Supply current to  
the Standby Supply current, I  
, Chip Enable should be held within V  
0.2 V. For the  
CC2  
CC  
Standby current level see Table 11: DC characteristics.  
During program or erase operations the memory will continue to use the Program/Erase  
Supply current, I , for Program or Erase operations until the operation completes.  
CC3  
3.5  
Automatic Standby  
If CMOS levels (V  
0.2 V) are used to drive the bus and the bus is inactive for 150 ns or  
CC  
more the memory enters Automatic Standby where the internal Supply current is reduced to  
the Standby Supply current, I  
operation is in progress.  
. The Data inputs/outputs will still output data if a Bus Read  
CC2  
16/48  
M29W400DT, M29W400DB  
Bus operations  
3.6  
Special bus operations  
Additional bus operations can be performed to read the electronic signature and also to  
apply and remove block protection. These bus operations are intended for use by  
programming equipment and are not usually used in applications. They require V to be  
ID  
applied to some pins.  
3.7  
3.8  
Electronic signature  
The memory has two codes, the manufacturer code and the device code, that can be read  
to identify the memory. These codes can be read by applying the signals listed in Table 2  
and Table 3, Bus operations.  
Block protection and blocks unprotection  
Each block can be separately protected against accidental Program or Erase. Protected  
blocks can be unprotected to allow data to be changed.  
There are two methods available for protecting and unprotecting the blocks, one for use on  
programming equipment and the other for in-system use. Block Protect and Chip Unprotect  
operations are described in Appendix B: Block protection.  
(1)  
Table 2.  
Bus operations, BYTE = V  
IL  
Data inputs/outputs  
Address inputs  
DQ15A–1, A0-A17  
Operation  
E
G
W
DQ14-DQ8  
DQ7-DQ0  
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell address  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Data output  
Data input  
Hi-Z  
VIL  
VIH  
X
Command address  
X
VIH  
X
Hi-Z  
A0 = VIL, A1 = VIL,  
VIH A9 = VID,  
others VIL or VIH  
Read  
manufacturer code  
VIL  
VIL  
Hi-Z  
20h  
EEh  
(M29W400DT)  
A0 = VIH, A1 = VIL,  
VIH A9 = VID,  
others VIL or VIH  
Read device code  
VIL  
VIL  
Hi-Z  
EFh  
(M29W400DB)  
1. X = VIL or VIH  
.
17/48  
Bus operations  
M29W400DT, M29W400DB  
Table 3.  
Bus operations, BYTE = V  
IH  
Address inputs  
A0-A17  
Data inputs/outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
Bus Read  
Bus Write  
Output Disable  
Standby  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH Cell address  
Data output  
Data input  
Hi-Z  
VIL  
VIH  
X
Command address  
X
VIH  
X
Hi-Z  
A0 = VIL, A1 = VIL,  
VIH A9 = VID,  
others VIL or VIH  
Read manufacturer  
code  
VIL  
VIL  
VIL  
VIL  
0020h  
A0 = VIH, A1 = VIL,  
VIH A9 = VID,  
others VIL or VIH  
00EEh (M29W400DT)  
00EFh (M29W400DB)  
Read device code  
1. X = VIL or VIH  
.
18/48  
M29W400DT, M29W400DB  
Command interface  
4
Command interface  
All Bus Write operations to the memory are interpreted by the command interface.  
Commands consist of one or more sequential Bus Write operations. Failure to observe a  
valid sequence of Bus Write operations will result in the memory returning to Read mode.  
The long command sequences are imposed to maximize data security.  
The address used for the commands changes depending on whether the memory is in 16-  
bit or 8-bit mode. See either Table 5, or Table 6, depending on the configuration that is being  
used, for a summary of the commands.  
4.1  
4.2  
Read/Reset command  
The Read/Reset command returns the memory to its Read mode where it behaves like a  
ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register.  
Either one or three Bus Write operations can be used to issue the Read/Reset command.  
The Read/Reset command can be issued, between Bus Write cycles before the start of a  
program or erase operation, to return the device to Read mode. Once the program or erase  
operation has started the Read/Reset command is no longer accepted. The Read/Reset  
command will not abort an Erase operation when issued while in Erase Suspend.  
Auto Select command  
The Auto Select command is used to read the manufacturer code, the device code and the  
Block Protection status. Three consecutive Bus Write operations are required to issue the  
Auto Select command. Once the Auto Select command is issued the memory remains in  
Auto Select mode until another command is issued.  
From the Auto Select mode the manufacturer code can be read using a Bus Read operation  
with A0 = V and A1 = V . The other address bits may be set to either V or V . The  
IL  
IL  
IL  
IH  
manufacturer code for Numonyx is 0020h.  
The device code can be read using a Bus Read operation with A0 = V and A1 = V . The  
IH  
IL  
other address bits may be set to either V or V . The device code for the M29W400DT is  
IL  
IH  
00EEh and for the M29W400DB is 00EFh.  
The Block Protection status of each block can be read using a Bus Read operation with  
A0 = V , A1 = V , and A12-A17 specifying the address of the block. The other address bits  
IL  
IH  
may be set to either V or V . If the addressed block is protected then 01h is output on  
IL  
IH  
Data inputs/outputs DQ0-DQ7, otherwise 00h is output.  
4.3  
Program command  
The Program command can be used to program a value to one address in the memory array  
at a time. The command requires four Bus Write operations, the final write operation latches  
the address and data and starts the Program/Erase controller.  
If the address falls in a protected block then the Program command is ignored, the data  
remains unchanged. The Status Register is never read and no error condition is given.  
19/48  
Command interface  
M29W400DT, M29W400DB  
During the program operation the memory will ignore all commands. It is not possible to  
issue any command to abort or pause the operation. Typical program times are given in  
Table 4: Program, Erase times and Program, Erase endurance cycles. Bus Read operations  
during the program operation will output the Status Register on the Data inputs/outputs. See  
the section on the Status Register for more details.  
After the program operation has completed the memory will return to the Read mode, unless  
an error has occurred. When an error occurs the memory will continue to output the Status  
Register. A Read/Reset command must be issued to reset the error condition and return to  
Read mode.  
Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase  
commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.  
4.4  
4.5  
Unlock Bypass command  
The Unlock Bypass command is used in conjunction with the Unlock Bypass Program  
command to program the memory. When the access time to the device is long (as with  
some EPROM programmers) considerable time saving can be made by using these  
commands. Three Bus Write operations are required to issue the Unlock Bypass command.  
Once the Unlock Bypass command has been issued the memory will only accept the Unlock  
Bypass Program command and the Unlock Bypass Reset command. The memory can be  
read as if in Read mode.  
Unlock Bypass Program command  
The Unlock Bypass Program command can be used to program one address in memory at  
a time. The command requires two Bus Write operations, the final write operation latches  
the address and data and starts the Program/Erase controller.  
The Program operation using the Unlock Bypass Program command behaves identically to  
the Program operation using the Program command. A protected block cannot be  
programmed; the operation cannot be aborted and the Status Register is read. Errors must  
be reset using the Read/Reset command, which leaves the device in Unlock Bypass mode.  
See the Program command for details on the behavior.  
4.6  
4.7  
Unlock Bypass Reset command  
The Unlock Bypass Reset command can be used to return to Read/Reset mode from  
Unlock Bypass mode. Two Bus Write operations are required to issue the Unlock Bypass  
Reset command. Read/Reset command does not exit from Unlock Bypass mode.  
Chip Erase command  
The Chip Erase command can be used to erase the entire chip. Six Bus Write operations  
are required to issue the Chip Erase command and start the Program/Erase controller.  
If any blocks are protected then these are ignored and all the other blocks are erased. If all  
of the blocks are protected the Chip Erase operation appears to start but will terminate  
20/48  
M29W400DT, M29W400DB  
Command interface  
within about 100 µs, leaving the data unchanged. No error condition is given when protected  
blocks are ignored.  
During the erase operation the memory will ignore all commands. It is not possible to issue  
any command to abort the operation. Typical chip erase times are given in Table 4. All Bus  
Read operations during the Chip Erase operation will output the Status Register on the Data  
inputs/outputs. See the section on the Status Register for more details.  
After the Chip Erase operation has completed the memory will return to the Read mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
The Chip Erase command sets all of the bits in unprotected blocks of the memory to ’1’. All  
previous data is lost.  
4.8  
Block Erase command  
The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write  
operations are required to select the first block in the list. Each additional block in the list can  
be selected by repeating the sixth Bus Write operation using the address of the additional  
block. The Block Erase operation starts the Program/Erase controller about 50 µs after the  
last Bus Write operation. Once the Program/Erase controller starts it is not possible to select  
any more blocks. Each additional block must therefore be selected within 50 µs of the last  
block. The 50 µs timer restarts when an additional block is selected. The Status Register  
can be read after the sixth Bus Write operation. See the Status Register for details on how  
to identify if the Program/Erase controller has started the Block Erase operation.  
If any selected blocks are protected then these are ignored and all the other selected blocks  
are erased. If all of the selected blocks are protected the Block Erase operation appears to  
start but will terminate within about 100 µs, leaving the data unchanged. No error condition  
is given when protected blocks are ignored.  
During the Block Erase operation the memory will ignore all commands except the Erase  
Suspend command. Typical block erase times are given in Table 4. All Bus Read operations  
during the Block Erase operation will output the Status Register on the Data inputs/outputs.  
See the section on the Status Register for more details.  
After the Block Erase operation has completed the memory will return to the Read mode,  
unless an error has occurred. When an error occurs the memory will continue to output the  
Status Register. A Read/Reset command must be issued to reset the error condition and  
return to Read mode.  
The Block Erase command sets all of the bits in the unprotected selected blocks to ’1’. All  
previous data in the selected blocks is lost.  
4.9  
Erase Suspend command  
The Erase Suspend command may be used to temporarily suspend a Block Erase operation  
and return the memory to Read mode. The command requires one Bus Write operation.  
The Program/Erase controller will suspend within the Erase Suspend Latency time after the  
Erase Suspend command is issued (see Table 4 for numerical values). Once the  
Program/Erase controller has stopped the memory will be set to Read mode and the Erase  
21/48  
Command interface  
M29W400DT, M29W400DB  
will be suspended. If the Erase Suspend command is issued during the period when the  
memory is waiting for an additional block (before the Program/Erase controller starts) then  
the Erase is suspended immediately and will start immediately when the Erase Resume  
command is issued. It is not possible to select any further blocks to erase after the Erase  
Resume.  
During Erase Suspend it is possible to Read and Program cells in blocks that are not being  
erased; both Read and Program operations behave as normal on these blocks. If any  
attempt is made to program in a protected block or in the suspended block then the Program  
command is ignored and the data remains unchanged. The Status Register is not read and  
no error condition is given. Reading from blocks that are being erased will output the Status  
Register.  
It is also possible to issue the Auto Select and Unlock Bypass commands during an Erase  
Suspend. The Read/Reset command must be issued to return the device to Read Array  
mode before the Resume command will be accepted.  
4.10  
4.11  
Erase Resume command  
The Erase Resume command must be used to restart the Program/Erase controller from  
Erase Suspend. An erase can be suspended and resumed more than once.  
Block Protect and Chip Unprotect commands  
Each block can be separately protected against accidental program or erase. The whole  
chip can be unprotected to allow the data inside the blocks to be changed.  
Block Protect and Chip Unprotect operations are described in Appendix B: Block protection.  
Table 4.  
Program, Erase times and Program, Erase endurance cycles  
Parameter  
Min  
Typ(1)(2)  
Max(2)  
Unit  
Chip Erase (all bits in the memory set to ‘0’)  
Chip Erase  
2.5  
6
s
35(3)  
6(4)  
s
s
Block Erase (64 Kbytes)  
Program (byte or word)  
0.8  
10  
5.5  
2.8  
18  
200(3)  
30(3)  
15(3)  
25(4)  
µs  
Chip Program (byte by byte)  
Chip Program (word by word)  
Erase Suspend latency time  
Program/Erase cycles (per block)  
Data retention  
s
s
µs  
100,000  
20  
cycles  
years  
1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and VCC after 100,000  
Program/Erase cycles.  
4. Maximum value measured at worst case conditions for both temperature and VCC  
.
22/48  
M29W400DT, M29W400DB  
Command interface  
(1)  
Table 5.  
Commands, 16-bit mode, BYTE = V  
IH  
Bus Write operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
555  
555  
555  
555  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
555  
555  
555  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
2
X
X
A0  
90  
PA  
X
PD  
00  
Unlock Bypass  
Reset  
Chip Erase  
6
6+  
1
555  
555  
X
AA  
AA  
B0  
30  
2AA  
2AA  
55  
55  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
Erase Suspend  
Erase Resume  
1
X
1. X Don’t care, PA Program Address, PD Program Data, BA Any address in the block. All values in the table are in  
hexadecimal. The command interface only uses A-1; A0-A10 and DQ0-DQ7 to verify the commands; A11-A17, DQ8-DQ14  
and DQ15 are Don't care. DQ15A-1 is A-1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
(1)  
Table 6.  
Commands, 8-bit mode, BYTE = V  
IL  
Bus Write operations  
Command  
1st  
2nd  
3rd  
4th  
5th  
6th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
AAA  
AAA  
AAA  
AAA  
555  
555  
555  
555  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
AAA  
AAA  
AAA  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
AAA  
555  
555  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
BA  
10  
30  
Block Erase  
6+ AAA  
Erase Suspend  
Erase Resume  
1
1
X
X
1. X Don’t care, PA Program Address, PD Program Data, BA Any address in the block. All values in the table are in  
hexadecimal. The command interface only uses A-1; A0-A10 and DQ0-DQ7 to verify the commands; A11-A17, DQ8-DQ14  
and DQ15 are Don't care. DQ15A-1 is A-1 when BYTE is VIL or DQ15 when BYTE is VIH  
.
23/48  
Status Register  
M29W400DT, M29W400DB  
5
Status Register  
Bus Read operations from any address always read the Status Register during Program and  
Erase operations. It is also read during Erase Suspend when an address within a block  
being erased is accessed.  
The bits in the Status Register are summarized in Table 7: Status Register bits.  
5.1  
Data Polling bit (DQ7)  
The Data Polling bit can be used to identify whether the Program/Erase controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Data  
Polling bit is output on DQ7 when the Status Register is read.  
During Program operations the Data Polling bit outputs the complement of the bit being  
programmed to DQ7. After successful completion of the Program operation the memory  
returns to Read mode and Bus Read operations from the address just programmed output  
DQ7, not its complement.  
During Erase operations the Data Polling bit outputs ’0’, the complement of the erased state  
of DQ7. After successful completion of the Erase operation the memory returns to Read  
mode.  
In Erase Suspend mode the Data Polling bit will output a ’1’ during a Bus Read operation  
within a block being erased. The Data Polling bit will change from a ’0’ to a ’1’ when the  
Program/Erase controller has suspended the Erase operation.  
Figure 7: Data polling flowchart, gives an example of how to use the Data Polling bit. A valid  
address is the address being programmed or an address within the block being erased.  
5.2  
Toggle bit (DQ6)  
The Toggle bit can be used to identify whether the Program/Erase controller has  
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle  
bit is output on DQ6 when the Status Register is read.  
During Program and Erase operations the Toggle bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations at any address. After successful completion of the  
operation the memory returns to Read mode.  
During Erase Suspend mode the Toggle bit will output when addressing a cell within a block  
being erased. The Toggle bit will stop toggling when the Program/Erase controller has  
suspended the Erase operation.  
If any attempt is made to erase a protected block, the operation is aborted, no error is  
signalled and DQ6 toggles for approximately 100 µs. If any attempt is made to program a  
protected block or a suspended block, the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 1 µs.  
Figure 8: Data toggle flowchart, gives an example of how to use the Data Toggle bit.  
24/48  
M29W400DT, M29W400DB  
Status Register  
5.3  
Error bit (DQ5)  
The Error bit can be used to identify errors detected by the Program/Erase controller. The  
Error bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the  
correct data to the memory. If the Error bit is set a Read/Reset command must be issued  
before other commands are issued. The Error bit is output on DQ5 when the Status Register  
is read.  
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to  
do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’.  
One of the Erase commands must be used to set all the bits in a block or in the whole  
memory from ’0’ to ’1’  
5.4  
5.5  
Erase Timer bit (DQ3)  
The Erase Timer bit can be used to identify the start of Program/Erase controller operation  
during a Block Erase command. Once the Program/Erase controller starts erasing, the  
Erase Timer bit is set to ’1’. Before the Program/Erase controller starts the Erase Timer bit is  
set to ‘0’ and additional blocks to be erased may be written to the command interface. The  
Erase Timer bit is output on DQ3 when the Status Register is read.  
Alternative Toggle bit (DQ2)  
The Alternative Toggle bit can be used to monitor the Program/Erase controller during Erase  
operations. The Alternative Toggle bit is output on DQ2 when the Status Register is read.  
During Chip Erase and Block Erase operations the Toggle bit changes from ’0’ to ’1’ to ’0’,  
etc., with successive Bus Read operations from addresses within the blocks being erased. A  
protected block is treated the same as a block not being erased. Once the operation  
completes the memory returns to Read mode.  
During Erase Suspend the Alternative Toggle bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive Bus Read operations from addresses within the blocks being erased. Bus Read  
operations to addresses within blocks not being erased will output the memory cell data as if  
in Read mode.  
After an Erase operation that causes the Error bit to be set the Alternative Toggle bit can be  
used to identify which block or blocks have caused the error. The Alternative Toggle bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read operations from addresses  
within blocks that have not erased correctly. The Alternative Toggle bit does not change if  
the addressed block has erased correctly.  
(1)  
Table 7.  
Status Register bits  
Operation  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Program  
Any address  
DQ7  
Toggle  
0
0
Program during  
Erase Suspend  
Any address  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any address  
Any address  
DQ7  
0
Toggle  
Toggle  
1
0
1
0
0
Toggle  
25/48  
Status Register  
M29W400DT, M29W400DB  
(1)  
Table 7.  
Status Register bits (continued)  
Operation  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Erasing block  
0
Toggle  
0
0
Toggle  
0
Block Erase  
before timeout  
Non-erasing  
block  
No  
Toggle  
0
0
0
Toggle  
Toggle  
Toggle  
0
0
0
0
1
1
0
0
0
Erasing block  
Toggle  
Block Erase  
Non-erasing  
block  
No  
Toggle  
No  
Toggle  
Erasing block  
1
0
Toggle  
1
1
0
0
Erase Suspend  
Non-erasing  
block  
Data read as normal  
Good block  
address  
No  
Toggle  
0
0
Toggle  
Toggle  
1
1
1
1
Erase Error  
Faulty block  
address  
Toggle  
1. Unspecified data bits should be ignored.  
Figure 7.  
Data polling flowchart  
START  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
NO  
DQ5  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
DQ7  
=
YES  
DATA  
NO  
FAIL  
PASS  
AI03598  
26/48  
M29W400DT, M29W400DB  
Figure 8. Data toggle flowchart  
Status Register  
START  
READ DQ6  
READ  
DQ5 & DQ6  
DQ6  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
YES  
READ DQ6  
TWICE  
DQ6  
=
NO  
TOGGLE  
YES  
FAIL  
PASS  
AI01370C  
27/48  
Maximum rating  
M29W400DT, M29W400DB  
6
Maximum rating  
Stressing the device above the rating listed in Table 8: Absolute maximum ratings may  
cause permanent damage to the device. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability. These are stress ratings only and  
operation of the device at these or any other conditions above those indicated in the  
operating sections of this specification is not implied. Refer also to the Numonyx SURE  
Program and other relevant quality documents.  
Table 8.  
Symbol  
Absolute maximum ratings  
Parameter  
Min  
Max  
Unit  
TBIAS  
TSTG  
TLEAD  
VIO  
Temperature under bias  
Storage temperature  
–50  
–65  
125  
°C  
°C  
°C  
V
150  
(1)  
Lead temperature during soldering  
Input or output voltage(2)(3)  
Supply voltage  
–0.6  
–0.6  
–0.6  
VCC+0.6  
4
VCC  
V
VID  
Identification voltage  
13.5  
V
1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the Numonyx  
ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances  
(RoHS) 2002/95/EU.  
2. Minimum voltage may undershoot to –2 V during transition and for less than 20 ns during transitions.  
3. Maximum voltage may overshoot to VCC+2 V during transition and for less than 20 ns during transitions.  
28/48  
M29W400DT, M29W400DB  
DC and AC parameters  
7
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 9: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 9.  
Operating and AC measurement conditions  
M29W400D  
Parameter  
45  
55  
70  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
V
CC supply voltage  
3.0  
–40  
0
3.6  
85  
70  
2.7  
–40  
0
3.6  
85  
70  
2.7  
–40  
0
3.6  
85  
70  
V
Ambient operating temperature (range 6)  
Ambient operating temperature (range 1)  
Load capacitance (CL)  
°C  
30  
30  
100  
pF  
ns  
V
Input rise and fall times  
10  
10  
10  
Input pulse voltages  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
Input and output timing ref. voltages  
V
Figure 9.  
AC measurement I/O waveform  
V
CC  
V
/2  
CC  
0 V  
AI04498  
Figure 10. AC measurement load circuit  
V
V
CC  
CC  
25 kΩ  
DEVICE  
UNDER  
TEST  
25 kΩ  
0.1 µF  
C
L
AI04499  
C
includes JIG capacitance  
L
29/48  
DC and AC parameters  
M29W400DT, M29W400DB  
(1)  
Table 10. Device capacitance  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
CIN  
Input capacitance  
Output capacitance  
VIN = 0 V  
6
pF  
pF  
COUT  
VOUT = 0 V  
12  
1. Sampled only, not 100% tested.  
Table 11. DC characteristics  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
ILI  
Input Leakage current  
Output Leakage current  
0 V VIN VCC  
1
1
µA  
µA  
ILO  
0 V VOUT VCC  
E = VIL, G = VIH,  
f = 6 MHz  
ICC1  
Supply current (Read)  
10  
mA  
µA  
E = VCC 0.2 V,  
RP = VCC 0.2 V  
ICC2  
Supply current (Standby)  
100  
Supply current  
(Program/Erase)  
Program/Erase  
controller active  
(1)  
ICC3  
20  
mA  
VIL  
VIH  
VOL  
VOH  
VID  
IID  
Input Low voltage  
Input High voltage  
Output Low voltage  
Output High voltage  
Identification voltage  
Identification current  
–0.5  
0.8  
V
V
0.7VCC  
VCC + 0.3  
0.45  
IOL = 1.8 mA  
V
IOH = –100 µA  
VCC – 0.4  
11.5  
V
12.5  
100  
V
A9 = VID  
µA  
Program/Erase Lockout supply  
voltage  
VLKO  
1.8  
2.3  
V
1. Sampled only, not 100% tested.  
Figure 11. Read mode AC waveforms  
tAVAV  
VALID  
A0-A17/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tEHQX  
tELQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI02907  
30/48  
M29W400DT, M29W400DB  
DC and AC parameters  
Table 12. Read AC characteristics  
M29W400D  
Unit  
Symbol  
Alt  
Parameter  
Test condition  
45  
55  
70  
E = VIL,  
G = VIL  
tAVAV  
tAVQV  
tRC  
Address Valid to Next Address Valid  
Address Valid to Output Valid  
Min  
45  
55  
70  
ns  
ns  
E = VIL,  
G = VIL  
tACC  
Max  
45  
55  
70  
(1)  
tELQX  
tLZ  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
G = VIL  
G = VIL  
Min  
0
0
0
ns  
ns  
tELQV  
tCE  
Max  
45  
55  
70  
Output Enable Low to Output  
Transition  
(1)  
tGLQX  
tOLZ  
E = VIL  
Min  
0
0
0
ns  
tGLQV  
tOE  
tHZ  
tDF  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
E = VIL  
G = VIL  
E = VIL  
Max  
Max  
Max  
25  
20  
20  
30  
25  
25  
35  
30  
30  
ns  
ns  
ns  
(1)  
tEHQZ  
(1)  
tGHQZ  
tEHQX  
tGHQX  
Chip Enable, Output Enable or  
Address Transition to Output Transition  
tOH  
Min  
0
5
0
5
0
5
ns  
ns  
tAXQX  
tELBL  
tELBH  
tBLQZ  
tBHQV  
tELFL  
tELFH  
Chip Enable to BYTE Low or High  
BYTE Low to Output Hi-Z  
Max  
tFLQZ  
Max  
Max  
25  
30  
25  
30  
30  
40  
ns  
ns  
tFHQV BYTE High to Output Valid  
1. Sampled only, not 100% tested.  
31/48  
DC and AC parameters  
M29W400DT, M29W400DB  
Figure 12. Write AC waveforms, Write Enable controlled  
tAVAV  
A0-A17/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI01869C  
Table 13. Write AC characteristics, Write Enable controlled  
M29W400D  
Symbol  
Alt  
Parameter  
Unit  
45  
55  
70  
tAVAV  
tELWL  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
tWC  
tCS  
tWP  
tDS  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
45  
0
55  
0
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
30  
25  
0
30  
30  
0
30  
45  
0
tDH  
tCH  
tWPH  
tAS  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
0
30  
0
30  
0
30  
0
tAH  
40  
0
45  
0
45  
0
tOEH  
tBUSY  
tVCS  
0
0
0
(1)  
tWHRL  
30  
50  
30  
50  
35  
50  
tVCHEL  
VCC High to Chip Enable Low  
1. Sampled only, not 100% tested.  
32/48  
M29W400DT, M29W400DB  
DC and AC parameters  
Figure 13. Write AC waveforms, Chip Enable controlled  
tAVAV  
A0-A17/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
W
tWLEL  
tEHGL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI01870C  
Table 14. Write AC characteristics, Chip Enable controlled  
M29W400D  
Symbol  
Alt  
Parameter  
Unit  
45  
55  
70  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC  
tWS  
tCP  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
Min  
45  
0
55  
0
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
30  
25  
0
30  
30  
0
30  
45  
0
tDS  
tDH  
tWH  
tCPH  
tAS  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
0
30  
0
30  
0
30  
0
tAH  
40  
0
45  
0
45  
0
tOEH  
tBUSY  
tVCS  
0
0
0
(1)  
tEHRL  
30  
50  
30  
50  
35  
50  
tVCHWL  
VCC High to Write Enable Low  
1. Sampled only, not 100% tested.  
33/48  
DC and AC parameters  
M29W400DT, M29W400DB  
Figure 14. Reset/Block Temporary Unprotect AC waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPLPX  
RP  
tPHPHH  
tPLYH  
AI02931  
Table 15. Reset/Block Temporary Unprotect AC characteristics  
M29W400D  
55  
Symbol  
Alt  
Parameter  
Unit  
45  
70  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
tPHEL  
tRH  
Min  
Min  
50  
50  
0
50  
ns  
ns  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable  
Low, Output Enable Low  
(1)  
tRHEL  
tRB  
0
0
(1)  
tRHGL  
tPLPX  
tRP  
RP Pulse width  
Min  
Max  
Min  
500 500 500  
10 10 10  
500 500 500  
ns  
µs  
ns  
(1)  
tPLYH  
tREADY RP Low to Read mode  
tVIDR RP Rise time to VID  
(1)  
tPHPHH  
1. Sampled only, not 100% tested.  
34/48  
M29W400DT, M29W400DB  
Package mechanical  
8
Package mechanical  
Figure 15. SO44 - 44 lead plastic small outline, 525 mils body width, package outline  
A2  
A
C
b
e
CP  
D
N
E
EH  
1
A1  
α
L
SO-d  
1. Drawing is not to scale.  
Table 16. SO44 – 44 lead plastic small outline, 525 mils body width, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
2.80  
0.110  
0.10  
2.20  
0.35  
0.10  
0.004  
0.087  
0.014  
0.004  
2.30  
0.40  
0.15  
2.40  
0.50  
0.20  
0.08  
28.40  
13.50  
16.25  
0.091  
0.016  
0.006  
0.094  
0.020  
0.008  
0.003  
1.118  
0.531  
0.640  
C
CP  
D
28.20  
13.30  
16.00  
1.27  
28.00  
13.20  
15.75  
1.110  
0.524  
0.630  
0.050  
0.031  
1.102  
0.520  
0.620  
E
EH  
e
L
0.80  
a
8
8
N
44  
44  
35/48  
Package mechanical  
M29W400DT, M29W400DB  
Figure 16. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package outline  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
1. Drawing is not to scale.  
Table 17. TSOP48 – 48 lead plastic thin small outline, 12 x 20 mm, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
1.20  
0.15  
1.05  
0.27  
0.21  
0.08  
12.10  
20.20  
18.50  
0.047  
0.006  
0.041  
0.011  
0.008  
0.003  
0.476  
0.795  
0.728  
0.10  
1.00  
0.22  
0.05  
0.95  
0.17  
0.10  
0.004  
0.039  
0.009  
0.002  
0.037  
0.007  
0.004  
C
CP  
D1  
E
12.00  
20.00  
18.40  
0.50  
0.60  
0.80  
3
11.90  
19.80  
18.30  
0.472  
0.787  
0.724  
0.020  
0.024  
0.031  
3
0.468  
0.779  
0.720  
E1  
e
L
0.50  
0.70  
0.020  
0.028  
L1  
a
0
5
0
5
36/48  
M29W400DT, M29W400DB  
Package mechanical  
Figure 17. TFBGA48 6 x 9 mm, 6 x 8 active ball array, 0.80 mm pitch, bottom view  
package outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z00  
1. Drawing is not to scale.  
Table 18. TFBGA48 6 x 9 mm, 6 x 8 active ball array, 0.80 mm pitch, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.20  
0.047  
0.20  
0.008  
1.00  
0.45  
6.10  
0.039  
0.40  
6.00  
4.00  
0.35  
5.90  
0.016  
0.236  
0.157  
0.014  
0.232  
0.018  
D
0.240  
D1  
ddd  
E
0.10  
9.10  
0.004  
9.00  
0.80  
5.60  
1.00  
1.70  
0.40  
0.40  
8.90  
0.354  
0.031  
0.220  
0.039  
0.067  
0.016  
0.016  
0.350  
0.358  
e
E1  
FD  
FE  
SD  
SE  
37/48  
Package mechanical  
M29W400DT, M29W400DB  
Figure 18. TFBGA48 6 x 8 mm, 6 x 8 active ball array, 0.80 mm pitch, bottom view  
package outline  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
1. Drawing is not to scale.  
Table 19. TFBGA48 6 x 8 mm, 6 x 8 active ball array, 0.80 mm pitch, package  
mechanical data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.20  
0.047  
0.26  
0.010  
0.90  
0.45  
6.10  
0.035  
0.35  
5.90  
0.014  
0.232  
0.018  
D
6.00  
4.00  
0.236  
0.157  
0.240  
D1  
ddd  
E
0.10  
8.10  
0.004  
8.00  
5.60  
0.80  
1.00  
1.20  
0.40  
0.40  
7.90  
0.315  
0.220  
0.031  
0.039  
0.047  
0.016  
0.016  
0.311  
0.319  
E1  
e
FD  
FE  
SD  
SE  
38/48  
M29W400DT, M29W400DB  
Part numbering  
9
Part numbering  
Table 20. Ordering information scheme  
Example:  
M29W400DT  
55  
N
6
T
Device type  
M29  
Operating voltage  
W = VCC = 2.7 to 3.6 V  
Device Function  
400D = 4 Mbit (512 K x 8 or 256 K x 16), boot block  
Array matrix  
T = Top boot  
B = Bottom boot  
Speed  
45 = 45 ns  
55 = 55 ns  
70 = 70 ns  
Package  
M = SO44  
N = TSOP48: 12 x 20 mm  
ZA = TFBGA48: 6 x 9 mm  
ZE = TFBGA48: 6 x 8 mm  
Temperature range  
6 = –40 to 85 °C  
1 = 0 to 70 °C  
Option  
Blank = Standard packing  
T = Tape & Reel packing  
E = ECOPACK package, standard packing  
F = ECOPACK package, Tape & Reel packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact the Numonyx Sales Office nearest to you.  
39/48  
Block address table  
M29W400DT, M29W400DB  
Appendix A  
Block address table  
Table 21. Top boot block addresses M29W400DT  
#
Size (Kbytes)  
Address range (x 8)  
Address range (x 16)  
10  
9
8
7
6
5
4
3
2
1
0
16  
8
7C000h-7FFFFh  
7A000h-7BFFFh  
78000h-79FFFh  
70000h-77FFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
00000h-0FFFFh  
3E000h-3FFFFh  
3D000h-3DFFFh  
3C000h-3CFFFh  
38000h-3BFFFh  
30000h-37FFFh  
28000h-2FFFFh  
20000h-27FFFh  
18000h-1FFFFh  
10000h-17FFFh  
08000h-0FFFFh  
00000h-07FFFh  
8
32  
64  
64  
64  
64  
64  
64  
64  
Table 22. Bottom boot block addresses M29W400DB  
#
Size (Kbytes)  
Address range (x 8)  
Address range (x 16)  
10  
9
8
7
6
5
4
3
2
1
0
64  
64  
64  
64  
64  
64  
64  
32  
8
70000h-7FFFFh  
60000h-6FFFFh  
50000h-5FFFFh  
40000h-4FFFFh  
30000h-3FFFFh  
20000h-2FFFFh  
10000h-1FFFFh  
08000h-0FFFFh  
06000h-07FFFh  
04000h-05FFFh  
00000h-03FFFh  
38000h-3FFFFh  
30000h-37FFFh  
28000h-2FFFFh  
20000h-27FFFh  
18000h-1FFFFh  
10000h-17FFFh  
08000h-0FFFFh  
04000h-07FFFh  
03000h-03FFFh  
02000h-02FFFh  
00000h-01FFFh  
8
16  
40/48  
M29W400DT, M29W400DB  
Block protection  
Appendix B  
Block protection  
Block protection can be used to prevent any operation from modifying the data stored in the  
Flash. Each block can be protected individually. Once protected, Program and Erase  
operations on the block fail to change the data.  
There are three techniques that can be used to control block protection, these are the  
programmer technique, the in-system technique and temporary unprotection. temporary  
unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is  
described in the Section 2: Signal descriptions.  
Unlike the command interface of the Program/Erase controller, the techniques for protecting  
and unprotecting blocks change between different Flash memory suppliers. For example,  
the techniques for AMD parts will not work on Numonyx parts. Care should be taken when  
changing drivers for one part to work on another.  
B.1  
Programmer technique  
The programmer technique uses high (V ) voltage levels on some of the bus pins. These  
ID  
cannot be achieved using a standard microprocessor bus, therefore the technique is  
recommended only for use in programming equipment.  
To protect a block follow the flowchart in Figure 19: Programmer equipment block protect  
flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then all  
blocks can be unprotected at the same time. To unprotect the chip follow Figure 20:  
Programmer equipment chip unprotect flowchart. Table 23: Programmer technique bus  
operations, BYTE = V or V , gives a summary of each operation.  
IH  
IL  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not abort the procedure before  
reaching the end. Chip Unprotect can take several seconds and a user message should be  
provided to show that the operation is progressing.  
B.2  
In-system technique  
The in-system technique requires a high voltage level on the Reset/Blocks Temporary  
Unprotect pin, RP. This can be achieved without violating the maximum ratings of the  
components on the microprocessor bus, therefore this technique is suitable for use after the  
Flash has been fitted to the system.  
To protect a block follow the flowchart in Figure 21: In-system equipment block protect  
flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then all  
the blocks can be unprotected at the same time. To unprotect the chip follow Figure 22: In-  
system equipment chip unprotect flowchart.  
The timing on these flowcharts is critical. Care should be taken to ensure that, where a  
pause is specified, it is followed as closely as possible. Do not allow the microprocessor to  
service interrupts that will upset the timing and do not abort the procedure before reaching  
the end. Chip Unprotect can take several seconds and a user message should be provided  
to show that the operation is progressing.  
41/48  
Block protection  
M29W400DT, M29W400DB  
Table 23. Programmer technique bus operations, BYTE = V or V  
IH  
IL  
Address inputs  
A0-A17  
Data inputs/outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A9 = VID,  
A12-A17 block address,  
VIL  
pulse  
Block Protect  
VIL VID  
X
X
others = X  
VIL  
pulse  
A9 = VID, A12 = VIH, A15 = VIH,  
others = X  
Chip Unprotect  
VID VID  
A0 = VIL, A1 = VIH, A6 = VIL,  
A9 = VID,  
A12-A17 block address,  
Pass = XX01h  
Retry = XX00h  
Block Protection  
Verify  
VIL VIL  
VIH  
others = X  
A0 = VIL, A1 = VIH, A6 = VIH,  
A9 = VID,  
A12-A17 block address,  
Block  
Unprotection  
Verify  
Retry = XX01h  
Pass = XX00h  
VIL VIL  
VIH  
others = X  
42/48  
M29W400DT, M29W400DB  
Figure 19. Programmer equipment block protect flowchart  
Block protection  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4 µs  
W = V  
IL  
Wait 100 µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
E = V  
IL  
Wait 4 µs  
G = V  
IL  
Wait 60 ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
E, G = V  
IH  
IH  
YES  
PASS  
A9 = V  
IH  
E, G = V  
IH  
AI03469  
FAIL  
43/48  
Block protection  
M29W400DT, M29W400DB  
Figure 20. Programmer equipment chip unprotect flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4 µs  
W = V  
IL  
Wait 10 ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4 µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60 ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
IH  
IH  
E, G = V  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI03470  
44/48  
M29W400DT, M29W400DB  
Figure 21. In-system equipment block protect flowchart  
Block protection  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 100 µs  
WRITE 40h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4 µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
++n  
= 25  
NO  
RP = V  
IH  
YES  
ISSUE READ/RESET  
COMMAND  
RP = V  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI03471  
45/48  
Block protection  
Figure 22. In-system equipment chip unprotect flowchart  
M29W400DT, M29W400DB  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10 ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4 µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI03472  
46/48  
M29W400DT, M29W400DB  
Revision history  
10  
Revision history  
Table 24. Document revision history  
Date  
Revision  
Changes  
26-Jul-2002  
01  
Initial release  
Revision numbering modified: a minor revision will be indicated by  
incrementing the digit after the dot, and a major revision, by incrementing  
the digit before the dot (revision version 01 equals 1.0). Revision history  
moved to end of document.  
Typical after 100k W/E cycles column removed from Table 4: Program,  
Erase times and Program, Erase endurance cycles, Data retention and  
Erase Suspend latency time parameters added. Common Flash  
interface removed from datasheet.  
19-Feb-2003  
2.0  
Lead-free package options E and F added to Table 20: Ordering  
information scheme.  
Document promoted from Product Preview to Preliminary Data status.  
tWLWH and tELEH parameters modified for all speed classes in Table 13:  
Write AC characteristics, Write Enable controlled and Table 14: Write AC  
characteristics, Chip Enable controlled. Minor text changes. TSOP48  
package updated (Figure 16 and Table 17).  
28-May-2003  
30-Sep-2003  
2.1  
2.2  
Document status changed to Full datasheet. TFBGA48 6 x 8 package  
added.  
TLEAD parameter added in Table 8: Absolute maximum ratings.  
tGLQV modified in Table 12: Read AC characteristics.  
RB pin description corrected in Table : .  
6-Oct-2003  
2.3  
3
16-Jan-2004  
Tape and Reel option updated in Table 20: Ordering information scheme.  
8-Jun-2004  
4
Lead-free packaging promotion updated in Section 1: Description,  
Section 6: Maximum rating and Section 9: Part numbering.  
ECOPACK® text added in Section 1: Description.  
Updated options E and F in Table 20: Ordering information scheme.  
Small text changes.  
07-Aug-2007  
10-Dec-2007  
5
6
Applied Numonyx branding.  
47/48  
M29W400DT, M29W400DB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR  
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT  
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY  
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF  
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility  
applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,  
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves  
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by  
visiting Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.  
48/48  

相关型号:

M29W400DB45ZE6F

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB45ZE6F

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX

M29W400DB45ZE6T

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB45ZE6T

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX

M29W400DB55M1

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB55M1

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX

M29W400DB55M1E

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB55M1E

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX

M29W400DB55M1F

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB55M1F

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX

M29W400DB55M1T

4 Mbit (512Kb x8 or 256Kb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W400DB55M1T

4 Mbit (512 Kb x 8 or 256 Kb x 16, boot block) 3 V supply Flash memory
NUMONYX