M29W160ET70ZA3E [NUMONYX]

Flash, 1MX16, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-48;
M29W160ET70ZA3E
型号: M29W160ET70ZA3E
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 1MX16, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-48

内存集成电路
文件: 总42页 (文件大小:1209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M29W160ET  
M29W160EB  
16 Mbit (2Mb x8 or 1Mb x16, Boot Block)  
3V Supply Flash Memory  
FEATURES SUMMARY  
„ SUPPLY VOLTAGE  
Figure 1. Packages  
V
CC = 2.7V to 3.6V for Program, Erase  
and Read  
„ ACCESS TIMES: 70, 90ns  
„ PROGRAMMING TIME  
10μs per Byte/Word typical  
„ 35 MEMORY BLOCKS  
TSOP48 (N)  
12 x 20mm  
1 Boot Block (Top or Bottom Location)  
2 Parameter and 32 Main Blocks  
„ PROGRAM/ERASE CONTROLLER  
FBGA  
Embedded Byte/Word Program  
algorithms  
„ ERASE SUSPEND and RESUME MODES  
TFBGA48 (ZA)  
6 x 8mm  
Read and Program another Block during  
Erase Suspend  
„ UNLOCK BYPASS PROGRAM COMMAND  
Faster Production/Batch Programming  
BGA  
„ TEMPORARY BLOCK UNPROTECTION  
MODE  
„ COMMON FLASH INTERFACE  
FBGA64 (ZS)  
11 x 13 mm  
64 bit Security Code  
„ LOW POWER CONSUMPTION  
Standby and Automatic Standby  
„ 100,000 PROGRAM/ERASE CYCLES per  
BLOCK  
„ ELECTRONIC SIGNATURE  
Manufacturer Code: 0020h  
Top Device Code M29W160ET: 22C4h  
Bottom Device Code M29W160EB: 2249h  
„ Automotive Grade Parts Available  
June 2009  
1/42  
M29W160ET, M29W160EB  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. FBGA 64-ball Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 6. Block Addresses (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7. Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Data Input/Output or Address Input (DQ15A-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reset/Block Temporary Unprotect (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
V
SS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Special Bus Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block Protection and Blocks Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 2. Bus Operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 3. Bus Operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2/42  
M29W160ET, M29W160EB  
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 4. Commands, 16-bit mode, BYTE = VIH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 5. Commands, 8-bit mode, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6. Program/Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 18  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 7. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 8. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. Data Toggle Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 9. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 11.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12.Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 13. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 14.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 14. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15.Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 15. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16.TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline, top view . 27  
Table 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 27  
Figure 17.TFBGA48 6x8mm - 6x8 ball array, 0.80 mm pitch, Package Outline, bottom view. . . . . 28  
Table 17. TFBGA48 6x8mm - 6x8 ball array, 0.80 mm pitch, Package Mechanical Data. . . . . . . . 28  
Figure 18.FBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package outline, bottom view29  
Table 18. FBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package mechanical data . . 29  
3/42  
M29W160ET, M29W160EB  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 19. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 20. Top Boot Block Addresses, M29W160ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 21. Bottom Boot Block Addresses, M29W160EB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 22. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 23. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 24. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 25. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 26. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 27. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
APPENDIX C.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 28. Programmer Technique Bus Operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 29. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4/42  
M29W160ET, M29W160EB  
SUMMARY DESCRIPTION  
The M29W160E is a 16 Mbit (2Mb x8 or 1Mb x16)  
non-volatile memory that can be read, erased and  
reprogrammed. These operations can be per-  
formed using a single low voltage (2.7 to 3.6V)  
supply. On power-up the memory defaults to its  
Read mode where it can be read in the same way  
as a ROM or EPROM.  
command set required to control the memory is  
consistent with JEDEC standards.  
The blocks in the memory are asymmetrically ar-  
ranged, see Figures 6 and 7, Block Addresses.  
The first or last 64 KBytes have been divided into  
four additional blocks. The 16 KByte Boot Block  
can be used for small initialization code to start the  
microprocessor, the two 8 KByte Parameter  
Blocks can be used for parameter storage and the  
remaining 32K is a small Main Block where the ap-  
plication may be stored.  
Chip Enable, Output Enable and Write Enable sig-  
nals control the bus operation of the memory.  
They allow simple connection to most micropro-  
cessors, often without additional logic.  
The memory is divided into blocks that can be  
erased independently so it is possible to preserve  
valid data while old data is erased. Each block can  
be protected independently to prevent accidental  
Program or Erase commands from modifying the  
memory. Program and Erase commands are writ-  
ten to the Command Interface of the memory. An  
on-chip Program/Erase Controller simplifies the  
process of programming or erasing the memory by  
taking care of all of the special operations that are  
required to update the memory contents.  
The memory is offered TSOP48 (12 x 20mm) and  
TFBGA48 (0.8mm pitch) packages. The memory  
is supplied with all the bits erased (set to ’1’).  
The end of a program or erase operation can be  
detected and any error conditions identified. The  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A19  
DQ0-DQ7  
DQ8-DQ14  
DQ15A–1  
E
Address Inputs  
Data Inputs/Outputs  
Data Inputs/Outputs  
Data Input/Output or Address Input  
Chip Enable  
V
CC  
20  
15  
A0-A19  
DQ0-DQ14  
DQ15A–1  
W
E
G
Output Enable  
M29W160ET  
M29W160EB  
W
Write Enable  
G
RB  
RP  
Reset/Block Temporary Unprotect  
Ready/Busy Output  
Byte/Word Organization Select  
Supply Voltage  
RP  
RB  
BYTE  
BYTE  
VCC  
V
SS  
VSS  
Ground  
AI06849B  
NC  
Not Connected Internally  
5/42  
M29W160ET, M29W160EB  
Figure 3. TSOP Connections  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
48  
A16  
BYTE  
V
SS  
DQ15A–1  
DQ7  
DQ14  
DQ6  
A8  
DQ13  
DQ5  
A19  
NC  
W
DQ12  
DQ4  
RP  
NC  
NC  
RB  
A18  
A17  
A7  
12  
13  
37  
36  
V
M29W160ET  
M29W160EB  
CC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
G
A6  
A5  
A4  
A3  
V
E
SS  
A2  
A1  
24  
25  
A0  
AI06850  
6/42  
M29W160ET, M29W160EB  
Figure 4. TFBGA Connections (Top view through package)  
1
2
3
4
5
6
A9  
A13  
A
B
A3  
A4  
A7  
A17  
A6  
RB  
NC  
W
RP  
A8  
A10  
A12  
A14  
C
D
E
F
A2  
A1  
A0  
E
A18  
NC  
A11  
A5  
NC  
A19  
DQ5  
DQ12  
A15  
DQ2  
DQ10  
DQ11  
DQ3  
DQ7  
DQ14  
DQ13  
DQ6  
DQ0  
DQ8  
DQ9  
DQ1  
A16  
BYTE  
DQ15  
A–1  
G
H
G
V
CC  
V
DQ4  
V
SS  
SS  
AI02985B  
7/42  
M29W160ET, M29W160EB  
Figure 5. FBGA 64-ball Connections (Top view through package)  
7
8
1
2
3
4
5
6
RB  
W
RP  
NC  
A
B
NC  
NC  
A3  
A4  
A7  
A17  
A6  
A9  
A8  
A13  
A12  
NC  
NC  
NC  
V
/WP  
PP  
A2  
A1  
A0  
E
A18  
NC  
A10  
A11  
DQ7  
A14  
A15  
A16  
BYTE  
C
D
NC  
NC  
A5  
A19  
V
CC  
DQ2  
NC  
DQ5  
DQ0  
V
SS  
E
F
V
NC  
DQ8  
DQ9  
DQ1  
DQ10  
DQ11  
DQ3  
DQ12  
DQ14  
DQ13  
DQ6  
CC  
DQ15  
A–1  
V
NC  
G
NC  
NC  
CC  
G
H
V
V
NC  
DQ4  
SS  
SS  
AI12719_16-Mbit_bis  
8/42  
M29W160ET, M29W160EB  
Figure 6. Block Addresses (x8)  
M29W160ET  
Top Boot Block Addresses (x8)  
M29W160EB  
Bottom Boot Block Addresses (x8)  
1FFFFFh  
16 KByte  
1FC000h  
1FBFFFh  
1FFFFFh  
64 KByte  
64 KByte  
1F0000h  
1EFFFFh  
8 KByte  
1FA000h  
1F9FFFh  
1E0000h  
Total of 31  
64 KByte Blocks  
8 KByte  
1F8000h  
1F7FFFh  
32 KByte  
1F0000h  
1EFFFFh  
01FFFFh  
64 KByte  
64 KByte  
32 KByte  
8 KByte  
8 KByte  
16 KByte  
1E0000h  
010000h  
00FFFFh  
008000h  
007FFFh  
Total of 31  
64 KByte Blocks  
006000h  
005FFFh  
01FFFFh  
64 KByte  
010000h  
00FFFFh  
004000h  
003FFFh  
64 KByte  
000000h  
000000h  
AI06851  
Note: Also see Appendix A, Tables 20 and 21 for a full listing of the Block Addresses.  
9/42  
M29W160ET, M29W160EB  
Figure 7. Block Addresses (x16)  
M29W160ET  
M29W160EB  
Top Boot Block Addresses (x16)  
Bottom Boot Block Addresses (x16)  
FFFFFh  
8 KWord  
FE000h  
FDFFFh  
FFFFFh  
32 KWord  
32 KWord  
F8000h  
F7FFFh  
4 KWord  
FD000h  
FCFFFh  
F0000h  
Total of 31  
32 KWord Blocks  
4 KWord  
FC000h  
FBFFFh  
16 KWord  
F8000h  
F7FFFh  
0FFFFh  
32 KWord  
32 KWord  
16 KWord  
4 KWord  
4 KWord  
8 KWord  
F0000h  
08000h  
07FFFh  
04000h  
03FFFh  
Total of 31  
32 KWord Blocks  
03000h  
02FFFh  
0FFFFh  
32 KWord  
08000h  
07FFFh  
02000h  
01FFFh  
32 KWord  
00000h  
00000h  
AI06852  
Note: Also see Appendix A, Tables 20 and 21 for a full listing of the Block Addresses.  
10/42  
M29W160ET, M29W160EB  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram, and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Inputs (A0-A19). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the Program/Erase Con-  
troller.  
Data Inputs/Outputs (DQ0-DQ7). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation. During Bus  
Write operations they represent the commands  
sent to the Command Interface of the Program/  
Erase Controller.  
Read and Bus Write operations after tPHEL or  
t
RHEL, whichever occurs last. See the Ready/Busy  
Output section, Table 15 and Figure 15, Reset/  
Temporary Unprotect AC Characteristics for more  
details.  
Holding RP at VID will temporarily unprotect the  
protected Blocks in the memory. Program and  
Erase operations on all blocks will be possible.  
The transition from VIH to VID must be slower than  
tPHPHH  
.
Ready/Busy Output (RB). The Ready/Busy pin  
is an open-drain output that can be used to identify  
when the device is performing a Program or Erase  
operation. During Program or Erase operations  
Ready/Busy is Low, VOL. Ready/Busy is high-im-  
pedance during Read mode, Auto Select mode  
and Erase Suspend mode.  
After a Hardware Reset, Bus Read and Bus Write  
operations cannot begin until Ready/Busy be-  
comes high-impedance. See Table 15 and Figure  
15, Reset/Temporary Unprotect AC Characteris-  
tics.  
Data Inputs/Outputs (DQ8-DQ14). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation when BYTE  
is High, VIH. When BYTE is Low, VIL, these pins  
are not used and are high impedance. During Bus  
Write operations the Command Register does not  
use these bits. When reading the Status Register  
these bits should be ignored.  
The use of an open-drain output allows the Ready/  
Busy pins from several memories to be connected  
to a single pull-up resistor. A Low will then indicate  
that one, or more, of the memories is busy.  
Data Input/Output or Address Input (DQ15A-1).  
When BYTE is High, VIH, this pin behaves as a  
Data Input/Output pin (as DQ8-DQ14). When  
BYTE is Low, VIL, this pin behaves as an address  
pin; DQ15A–1 Low will select the LSB of the Word  
on the other addresses, DQ15A–1 High will select  
the MSB. Throughout the text consider references  
to the Data Input/Output to include this pin when  
BYTE is High and references to the Address In-  
puts to include this pin when BYTE is Low except  
when stated explicitly otherwise.  
Chip Enable (E). The Chip Enable, E, activates  
the memory, allowing Bus Read and Bus Write op-  
erations to be performed. When Chip Enable is  
High, VIH, all other pins are ignored.  
Byte/Word Organization Select (BYTE). The  
Byte/Word Organization Select pin is used to  
switch between the 8-bit and 16-bit Bus modes of  
the memory. When Byte/Word Organization Se-  
lect is Low, VIL, the memory is in 8-bit mode, when  
it is High, VIH, the memory is in 16-bit mode.  
V
CC Supply Voltage. The VCC Supply Voltage  
supplies the power for all operations (Read, Pro-  
gram, Erase etc.).  
The Command Interface is disabled when the VCC  
Supply Voltage is less than the Lockout Voltage,  
V
LKO. This prevents Bus Write operations from ac-  
Output Enable (G). The Output Enable, G, con-  
trols the Bus Read operation of the memory.  
Write Enable (W). The Write Enable, W, controls  
the Bus Write operation of the memory’s Com-  
mand Interface.  
cidentally damaging the data during power up,  
power down and power surges. If the Program/  
Erase Controller is programming or erasing during  
this time then the operation aborts and the memo-  
ry contents being altered will be invalid.  
A 0.1μF capacitor should be connected between  
the VCC Supply Voltage pin and the VSS Ground  
pin to decouple the current surges from the power  
supply. The PCB track widths must be sufficient to  
carry the currents required during program and  
Reset/Block Temporary Unprotect (RP). The  
Reset/Block Temporary Unprotect pin can be  
used to apply a Hardware Reset to the memory or  
to temporarily unprotect all Blocks that have been  
protected.  
A Hardware Reset is achieved by holding Reset/  
Block Temporary Unprotect Low, VIL, for at least  
erase operations, ICC3  
.
V
SS Ground. The VSS Ground is the reference for  
all voltage measurements. The two VSS pins of the  
device must be connected to the system ground.  
t
PLPX. After Reset/Block Temporary Unprotect  
goes High, VIH, the memory will be ready for Bus  
11/42  
M29W160ET, M29W160EB  
BUS OPERATIONS  
There are five standard bus operations that control  
the device. These are Bus Read, Bus Write, Out-  
put Disable, Standby and Automatic Standby. See  
Tables 2 and 3, Bus Operations, for a summary.  
Typically glitches of less than 5ns on Chip Enable  
or Write Enable are ignored by the memory and do  
not affect bus operations.  
ance state. To reduce the Supply Current to the  
Standby Supply Current, ICC2, Chip Enable should  
be held within VCC ± 0.2V. For the Standby current  
level see Table 11, DC Characteristics.  
During program or erase operations the memory  
will continue to use the Program/Erase Supply  
Current, ICC3, for Program or Erase operations un-  
til the operation completes.  
Automatic Standby. If CMOS levels (VCC ± 0.2V)  
are used to drive the bus and the bus is inactive for  
150ns or more the memory enters Automatic  
Standby where the internal Supply Current is re-  
duced to the Standby Supply Current, ICC2. The  
Data Inputs/Outputs will still output data if a Bus  
Read operation is in progress.  
Bus Read. Bus Read operations read from the  
memory cells, or specific registers in the Com-  
mand Interface. A valid Bus Read operation in-  
volves setting the desired address on the Address  
Inputs, applying a Low signal, VIL, to Chip Enable  
and Output Enable and keeping Write Enable  
High, VIH. The Data Inputs/Outputs will output the  
value, see Figure 12, Read Mode AC Waveforms,  
and Table 12, Read AC Characteristics, for details  
of when the output becomes valid.  
Bus Write. Bus Write operations write to the  
Command Interface. A valid Bus Write operation  
begins by setting the desired address on the Ad-  
dress Inputs. The Address Inputs are latched by  
the Command Interface on the falling edge of Chip  
Enable or Write Enable, whichever occurs last.  
The Data Inputs/Outputs are latched by the Com-  
mand Interface on the rising edge of Chip Enable  
or Write Enable, whichever occurs first. Output En-  
able must remain High, VIH, during the whole Bus  
Write operation. See Figures 13 and 14, Write AC  
Waveforms, and Tables 13 and 14, Write AC  
Characteristics, for details of the timing require-  
ments.  
Special Bus Operations. Additional bus opera-  
tions can be performed to read the Electronic Sig-  
nature and also to apply and remove Block  
Protection. These bus operations are intended for  
use by programming equipment and are not usu-  
ally used in applications. They require VID to be  
applied to some pins.  
Electronic Signature. The memory has two  
codes, the manufacturer code and the device  
code, that can be read to identify the memory.  
These codes can be read by applying the signals  
listed in Tables 2 and 3, Bus Operations.  
Block Protection and Blocks Unprotection.  
Each block can be separately protected against  
accidental Program or Erase. Protected blocks  
can be unprotected to allow data to be changed.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when Output Enable is  
High, VIH.  
Standby. When Chip Enable is High, VIH, the  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high-imped-  
There are two methods available for protecting  
and unprotecting the blocks, one for use on pro-  
gramming equipment and the other for in-system  
use. Block Protect and Blocks Unprotect opera-  
tions are described in Appendix C.  
Table 2. Bus Operations, BYTE = VIL  
Data Inputs/Outputs  
Address Inputs  
Operation  
E
G
W
DQ15A–1, A0-A19  
DQ14-DQ8  
DQ7-DQ0  
Data Output  
Data Input  
Hi-Z  
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH  
VIL  
VIH  
X
Bus Read  
Cell Address  
Hi-Z  
Bus Write  
Command Address  
Hi-Z  
Output Disable  
Standby  
X
X
Hi-Z  
VIH  
Hi-Z  
Hi-Z  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
Read Manufacturer  
Code  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
Hi-Z  
Hi-Z  
20h  
A0 = VIH, A1 = VIL, A9 = VID,  
Others VIL or VIH  
C4h (M29W160ET)  
49h (M29W160EB)  
Read Device Code  
Note: X = V or V  
IL  
.
IH  
12/42  
M29W160ET, M29W160EB  
Table 3. Bus Operations, BYTE = VIH  
Address Inputs  
A0-A19  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
Bus Read  
E
G
W
VIL  
VIL  
X
VIL  
VIH  
VIH  
X
VIH  
VIL  
VIH  
X
Cell Address  
Data Output  
Data Input  
Hi-Z  
Bus Write  
Command Address  
Output Disable  
Standby  
X
X
VIH  
Hi-Z  
A0 = VIL, A1 = VIL, A9 = VID,  
Others VIL or VIH  
Read Manufacturer  
Code  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
0020h  
A0 = VIH, A1 = VIL, A9 = VID,  
Others VIL or VIH  
22C4h (M29W160ET)  
2249h (M29W160EB)  
Read Device Code  
Note: X = V or V  
.
IH  
IL  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. Failure to observe a valid sequence of Bus  
Write operations will result in the memory return-  
ing to Read mode. The long command sequences  
are imposed to maximize data security.  
From the Auto Select mode the Manufacturer  
Code can be read using a Bus Read operation  
with A0 = VIL and A1 = VIL. The other address bits  
may be set to either VIL or VIH. The Manufacturer  
Code for Numonyx is 0020h.  
The Device Code can be read using a Bus Read  
operation with A0 = VIH and A1 = VIL. The other  
address bits may be set to either VIL or VIH. The  
Device Code for the M29W160ET is 22C4h and  
for the M29W160EB is 2249h.  
The address used for the commands changes de-  
pending on whether the memory is in 16-bit or 8-  
bit mode. See either Table 4, or 5, depending on  
the configuration that is being used, for a summary  
of the commands.  
The Block Protection Status of each block can be  
read using a Bus Read operation with A0 = VIL,  
A1 = VIH, and A12-A19 specifying the address of  
the block. The other address bits may be set to ei-  
ther VIL or VIH. If the addressed block is protected  
then 01h is output on Data Inputs/Outputs DQ0-  
DQ7, otherwise 00h is output.  
Program Command. The Program command  
can be used to program a value to one address in  
the memory array at a time. The command re-  
quires four Bus Write operations, the final write op-  
eration latches the address and data, and starts  
the Program/Erase Controller.  
Read/Reset Command. The Read/Reset com-  
mand returns the memory to its Read mode where  
it behaves like a ROM or EPROM, unless other-  
wise stated. It also resets the errors in the Status  
Register. Either one or three Bus Write operations  
can be used to issue the Read/Reset command.  
The Read/Reset Command can be issued, be-  
tween Bus Write cycles before the start of a pro-  
gram or erase operation, to return the device to  
read mode. Once the program or erase operation  
has started the Read/Reset command is no longer  
accepted. The Read/Reset command will not  
abort an Erase operation when issued while in  
Erase Suspend.  
Auto Select Command. The Auto Select com-  
mand is used to read the Manufacturer Code, the  
Device Code and the Block Protection Status.  
Three consecutive Bus Write operations are re-  
quired to issue the Auto Select command. Once  
the Auto Select command is issued the memory  
remains in Auto Select mode until a Read/Reset  
command is issued. Read CFI Query and Read/  
Reset commands are accepted in Auto Select  
mode, all other commands are ignored.  
If the address falls in a protected block then the  
Program command is ignored, the data remains  
unchanged. The Status Register is never read and  
no error condition is given.  
During the program operation the memory will ig-  
nore all commands. It is not possible to issue any  
command to abort or pause the operation. Typical  
program times are given in Table 6. Bus Read op-  
erations during the program operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
After the program operation has completed the  
memory returns to the Read mode, unless an error  
13/42  
M29W160ET, M29W160EB  
has occurred. When an error occurs the memory  
continues to output the Status Register. A Read/  
Reset command must be issued to reset the error  
condition and return to Read mode.  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’. One of the Erase Com-  
mands must be used to set all the bits in a block or  
in the whole memory from ’0’ to ’1’.  
times are given in Table 6. All Bus Read opera-  
tions during the Chip Erase operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
After the Chip Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read Mode.  
Unlock Bypass Command. The Unlock Bypass  
command is used in conjunction with the Unlock  
Bypass Program command to program the memo-  
ry. When the access time to the device is long (as  
with some EPROM programmers) considerable  
time saving can be made by using these com-  
mands. Three Bus Write operations are required  
to issue the Unlock Bypass command.  
The Chip Erase Command sets all of the bits in un-  
protected blocks of the memory to ’1’. All previous  
data is lost.  
Block Erase Command. The Block Erase com-  
mand can be used to erase a list of one or more  
blocks. Six Bus Write operations are required to  
select the first block in the list. Each additional  
block in the list can be selected by repeating the  
sixth Bus Write operation using the address of the  
additional block. The Block Erase operation starts  
the Program/Erase Controller about 50μs after the  
last Bus Write operation. Once the Program/Erase  
Controller starts it is not possible to select any  
more blocks. Each additional block must therefore  
be selected within 50μs of the last block. The 50μs  
timer restarts when an additional block is selected.  
The Status Register can be read after the sixth  
Bus Write operation. See the Status Register sec-  
tion for details on how to identify if the Program/  
Erase Controller has started the Block Erase oper-  
ation.  
Once the Unlock Bypass command has been is-  
sued the memory will only accept the Unlock By-  
pass Program command and the Unlock Bypass  
Reset command. The memory can be read as if in  
Read mode.  
Unlock Bypass Program Command. The Un-  
lock Bypass Program command can be used to  
program one address in memory at a time. The  
command requires two Bus Write operations, the  
final write operation latches the address and data,  
and starts the Program/Erase Controller.  
The Program operation using the Unlock Bypass  
Program command behaves identically to the Pro-  
gram operation using the Program command. A  
protected block cannot be programmed; the oper-  
ation cannot be aborted and the Status Register is  
read. Errors must be reset using the Read/Reset  
command, which leaves the device in Unlock By-  
pass Mode. See the Program command for details  
on the behavior.  
Unlock Bypass Reset Command. The Unlock  
Bypass Reset command can be used to return to  
Read/Reset mode from Unlock Bypass Mode.  
Two Bus Write operations are required to issue the  
Unlock Bypass Reset command. Read/Reset  
command does not exit from Unlock Bypass  
Mode.  
Chip Erase Command. The Chip Erase com-  
mand can be used to erase the entire chip. Six Bus  
Write operations are required to issue the Chip  
Erase Command and start the Program/Erase  
Controller.  
If any selected blocks are protected then these are  
ignored and all the other selected blocks are  
erased. If all of the selected blocks are protected  
the Block Erase operation appears to start but will  
terminate within about 100μs, leaving the data un-  
changed. No error condition is given when protect-  
ed blocks are ignored.  
During the Block Erase operation the memory will  
ignore all commands except the Erase Suspend  
command. Typical block erase times are given in  
Table 6. All Bus Read operations during the Block  
Erase operation will output the Status Register on  
the Data Inputs/Outputs. See the section on the  
Status Register for more details.  
After the Block Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
If any blocks are protected then these are ignored  
and all the other blocks are erased. If all of the  
blocks are protected the Chip Erase operation ap-  
pears to start but will terminate within about 100μs,  
leaving the data unchanged. No error condition is  
given when protected blocks are ignored.  
During the erase operation the memory will ignore  
all commands. It is not possible to issue any com-  
mand to abort the operation. Typical chip erase  
The Block Erase Command sets all of the bits in  
the unprotected selected blocks to ’1’. All previous  
data in the selected blocks is lost.  
Erase Suspend Command. The Erase Suspend  
Command may be used to temporarily suspend a  
14/42  
M29W160ET, M29W160EB  
Block Erase operation and return the memory to  
Read mode. The command requires one Bus  
Write operation.  
an Erase Suspend. The Read/Reset command  
must be issued to return the device to Read Array  
mode before the Resume command will be ac-  
cepted.  
Erase Resume Command. The Erase Resume  
command must be used to restart the Program/  
Erase Controller from Erase Suspend. An erase  
can be suspended and resumed more than once.  
The Program/Erase Controller will suspend within  
the Erase Suspend Latency Time (refer to Table 6  
for value) of the Erase Suspend Command being  
issued. Once the Program/Erase Controller has  
stopped the memory will be set to Read mode and  
the Erase will be suspended. If the Erase Suspend  
command is issued during the period when the  
memory is waiting for an additional block (before  
the Program/Erase Controller starts) then the  
Erase is suspended immediately and will start im-  
mediately when the Erase Resume Command is  
issued. It is not possible to select any further  
blocks to erase after the Erase Resume.  
Read CFI Query Command. The Read CFI  
Query Command is used to read data from the  
Common Flash Interface (CFI) Memory Area. This  
command is valid when the device is in the Read  
Array mode, or when the device is in Auto Select  
mode.  
One Bus Write cycle is required to issue the Read  
CFI Query Command. Once the command is is-  
sued subsequent Bus Read operations read from  
the Common Flash Interface Memory Area.  
The Read/Reset command must be issued to re-  
turn the device to the previous mode (the Read Ar-  
ray mode or Auto Select mode). A second Read/  
Reset command would be needed if the device is  
to be put in the Read Array mode from Auto Select  
mode.  
During Erase Suspend it is possible to Read and  
Program cells in blocks that are not being erased;  
both Read and Program operations behave as  
normal on these blocks. If any attempt is made to  
program in a protected block or in the suspended  
block then the Program command is ignored and  
the data remains unchanged. The Status Register  
is not read and no error condition is given. Read-  
ing from blocks that are being erased will output  
the Status Register.  
See Appendix B, Tables 22, 23, 24, 25, 26 and 27  
for details on the information contained in the  
Common Flash Interface (CFI) memory area.  
It is also possible to issue the Auto Select, Read  
CFI Query and Unlock Bypass commands during  
15/42  
M29W160ET, M29W160EB  
Table 4. Commands, 16-bit mode, BYTE = VIH  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
555  
555  
555  
555  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
555  
555  
555  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
555  
2AA  
2AA  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
BA  
10  
30  
Block Erase  
6+ 555  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
55  
98  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.  
All values in the table are in hexadecimal.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t  
Care. DQ15A–1 is A–1 when BYTE is V or DQ15 when BYTE is V  
.
IH  
IL  
Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued.  
Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/  
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional  
Bus Write Operations until Timeout Bit is set.  
Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-  
mands on non-erasing blocks as normal.  
Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Pro-  
gram/Erase Controller completes and the memory returns to Read Mode.  
CFI Query. Command is valid when device is ready to read array data or when device is in Auto Select mode.  
16/42  
M29W160ET, M29W160EB  
Table 5. Commands, 8-bit mode, BYTE = VIL  
Bus Write Operations  
3rd 4th  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Command  
1st  
2nd  
5th  
6th  
1
3
3
4
3
X
F0  
AA  
AA  
AA  
AA  
Read/Reset  
AAA  
AAA  
AAA  
AAA  
555  
555  
555  
555  
55  
55  
55  
55  
X
F0  
90  
A0  
20  
Auto Select  
Program  
AAA  
AAA  
AAA  
PA  
PD  
Unlock Bypass  
Unlock Bypass  
Program  
2
X
A0  
PA  
PD  
Unlock Bypass Reset  
Chip Erase  
2
6
X
90  
AA  
AA  
B0  
30  
X
00  
55  
55  
AAA  
555  
555  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
55  
AAA  
BA  
10  
30  
Block Erase  
6+ AAA  
Erase Suspend  
Erase Resume  
Read CFI Query  
1
1
1
X
X
AA  
98  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block.  
All values in the table are in hexadecimal.  
The Command Interface only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t  
Care. DQ15A–1 is A–1 when BYTE is V or DQ15 when BYTE is V  
.
IH  
IL  
Read/Reset. After a Read/Reset command, read the memory as normal until another command is issued.  
Auto Select. After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status.  
Program, Unlock Bypass Program, Chip Erase, Block Erase. After these commands read the Status Register until the Program/  
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional  
Bus Write Operations until Timeout Bit is set.  
Unlock Bypass. After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands.  
Unlock Bypass Reset. After the Unlock Bypass Reset command read the memory as normal until another command is issued.  
Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-  
mands on non-erasing blocks as normal.  
Erase Resume. After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Pro-  
gram/Erase Controller completes and the memory returns to Read Mode.  
CFI Query. Command is valid when device is ready to read array data or when device is in Auto Select mode.  
17/42  
M29W160ET, M29W160EB  
Table 6. Program/Erase Times and Program/Erase Endurance Cycles  
Typ (1,2)  
Max(2)  
60 (3)  
Parameter  
Min  
Unit  
s
Chip Erase  
29  
1.6 (4)  
25 (4)  
Block Erase (64 KBytes)  
Erase Suspend Latency Time  
Program (Byte or Word)  
0.8  
20  
s
μs  
μs  
s
200 (3)  
120 (3)  
60 (3)  
13  
Chip Program (Byte by Byte)  
26  
Chip Program (Word by Word)  
Program/Erase Cycles (per Block)  
Data Retention  
13  
s
100,000  
20  
cycles  
years  
Note: 1. Typical values measured at room temperature and nominal voltages.  
2. Sampled, but not 100% tested.  
3. Maximum value measured at worst case conditions for both temperature and V after 100,000 program/erase cycles .  
CC  
4. Maximum value measured at worst case conditions for both temperature and V  
.
CC  
STATUS REGISTER  
Bus Read operations from any address always  
read the Status Register during Program and  
Erase operations. It is also read during Erase Sus-  
pend when an address within a block being erased  
is accessed.  
Toggle Bit (DQ6). The Toggle Bit can be used to  
identify whether the Program/Erase Controller has  
successfully completed its operation or if it has re-  
sponded to an Erase Suspend. The Toggle Bit is  
output on DQ6 when the Status Register is read.  
The bits in the Status Register are summarized in  
Table 7, Status Register Bits.  
During Program and Erase operations the Toggle  
Bit changes from ’0’ to ’1’ to ’0’, etc., with succes-  
sive Bus Read operations at any address. After  
successful completion of the operation the memo-  
ry returns to Read mode.  
Data Polling Bit (DQ7). The Data Polling Bit can  
be used to identify whether the Program/Erase  
Controller has successfully completed its opera-  
tion or if it has responded to an Erase Suspend.  
The Data Polling Bit is output on DQ7 when the  
Status Register is read.  
During Erase Suspend mode the Toggle Bit will  
output when addressing a cell within a block being  
erased. The Toggle Bit will stop toggling when the  
Program/Erase Controller has suspended the  
Erase operation.  
During Program operations the Data Polling Bit  
outputs the complement of the bit being pro-  
grammed to DQ7. After successful completion of  
the Program operation the memory returns to  
Read mode and Bus Read operations from the ad-  
dress just programmed output DQ7, not its com-  
plement.  
During Erase operations the Data Polling Bit out-  
puts ’0’, the complement of the erased state of  
DQ7. After successful completion of the Erase op-  
eration the memory returns to Read Mode.  
If any attempt is made to erase a protected block,  
the operation is aborted, no error is signalled and  
DQ6 toggles for approximately 100μs. If any at-  
tempt is made to program a protected block or a  
suspended block, the operation is aborted, no er-  
ror is signalled and DQ6 toggles for approximately  
1μs.  
Figure 9, Data Toggle Flowchart, gives an exam-  
ple of how to use the Data Toggle Bit.  
In Erase Suspend mode the Data Polling Bit will  
output a ’1’ during a Bus Read operation within a  
block being erased. The Data Polling Bit will  
change from a ’0’ to a ’1’ when the Program/Erase  
Controller has suspended the Erase operation.  
Figure 8, Data Polling Flowchart, gives an exam-  
ple of how to use the Data Polling Bit. A Valid Ad-  
dress is the address being programmed or an  
address within the block being erased.  
Error Bit (DQ5). The Error Bit can be used to  
identify errors detected by the Program/Erase  
Controller. The Error Bit is set to ’1’ when a Pro-  
gram, Block Erase or Chip Erase operation fails to  
write the correct data to the memory. If the Error  
Bit is set a Read/Reset command must be issued  
before other commands are issued. The Error bit  
is output on DQ5 when the Status Register is read.  
18/42  
M29W160ET, M29W160EB  
Note that the Program command cannot change a  
bit set to ’0’ back to ’1’ and attempting to do so will  
set DQ5 to ‘1’. A Bus Read operation to that ad-  
dress will show the bit is still ‘0’. One of the Erase  
commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’  
During Chip Erase and Block Erase operations the  
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with  
successive Bus Read operations from addresses  
within the blocks being erased. A protected block  
is treated the same as a block not being erased.  
Once the operation completes the memory returns  
to Read mode.  
During Erase Suspend the Alternative Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc. with successive  
Bus Read operations from addresses within the  
blocks being erased. Bus Read operations to ad-  
dresses within blocks not being erased will output  
the memory cell data as if in Read mode.  
After an Erase operation that causes the Error Bit  
to be set the Alternative Toggle Bit can be used to  
identify which block or blocks have caused the er-  
ror. The Alternative Toggle Bit changes from ’0’ to  
’1’ to ’0’, etc. with successive Bus Read Opera-  
tions from addresses within blocks that have not  
erased correctly. The Alternative Toggle Bit does  
not change if the addressed block has erased cor-  
rectly.  
Erase Timer Bit (DQ3). The Erase Timer Bit can  
be used to identify the start of Program/Erase  
Controller operation during a Block Erase com-  
mand. Once the Program/Erase Controller starts  
erasing the Erase Timer Bit is set to ’1’. Before the  
Program/Erase Controller starts the Erase Timer  
Bit is set to ’0’ and additional blocks to be erased  
may be written to the Command Interface. The  
Erase Timer Bit is output on DQ3 when the Status  
Register is read.  
Alternative Toggle Bit (DQ2). The Alternative  
Toggle Bit can be used to monitor the Program/  
Erase controller during Erase operations. The Al-  
ternative Toggle Bit is output on DQ2 when the  
Status Register is read.  
Table 7. Status Register Bits  
Operation  
Program  
Address  
DQ7  
DQ6  
DQ5  
DQ3  
DQ2  
RB  
Any Address  
DQ7  
Toggle  
0
0
Program During Erase  
Suspend  
Any Address  
DQ7  
Toggle  
0
0
Program Error  
Chip Erase  
Any Address  
Any Address  
DQ7  
Toggle  
Toggle  
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
Toggle  
Erasing Block  
Toggle  
Toggle  
Block Erase before  
timeout  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
Toggle  
Block Erase  
Erase Suspend  
Erase Error  
Non-Erasing Block  
Erasing Block  
Toggle  
No Toggle  
Toggle  
No Toggle  
Non-Erasing Block  
Good Block Address  
Faulty Block Address  
Data read as normal  
0
0
Toggle  
Toggle  
1
1
1
No Toggle  
Toggle  
1
Note: Unspecified data bits should be ignored.  
19/42  
M29W160ET, M29W160EB  
Figure 8. Data Polling Flowchart  
Figure 9. Data Toggle Flowchart  
START  
START  
READ DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
READ  
DQ5 & DQ6  
DQ7  
=
DATA  
YES  
DQ6  
NO  
=
TOGGLE  
NO  
YES  
NO  
DQ5  
= 1  
NO  
DQ5  
= 1  
YES  
YES  
READ DQ7  
at VALID ADDRESS  
READ DQ6  
TWICE  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
NO  
FAIL  
TOGGLE  
YES  
FAIL  
PASS  
PASS  
AI03598  
AI01370C  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the Numonyx SURE Pro-  
gram and other relevant quality documents.  
Table 8. Absolute Maximum Ratings  
Symbol  
TBIAS  
Parameter  
Min  
–50  
–65  
–0.6  
–0.6  
–0.6  
Max  
125  
Unit  
°C  
°C  
V
Temperature Under Bias  
Storage Temperature  
TSTG  
150  
Input or Output Voltage (1,2)  
Supply Voltage  
VIO  
VCC  
VID  
VCC +0.6  
4
V
Identification Voltage  
13.5  
V
Note: 1. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.  
2. Maximum voltage may overshoot to V +2V during transition and for less than 20ns during transitions.  
CC  
20/42  
M29W160ET, M29W160EB  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 9, Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 9. Operating and AC Measurement Conditions  
M29W160E  
80 1  
Parameter  
70  
7A  
90  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
VCC Supply Voltage  
2.7  
3.6  
2.7  
3.6  
2.5  
3.6  
2.7  
3.6  
V
Ambient Operating  
Temperature  
85 / 125 2  
30  
–40  
–40  
85  
–40  
125  
–40  
85  
°C  
Load Capacitance  
(CL)  
30  
30  
30  
pF  
ns  
V
Input Rise and Fall  
Times  
10  
0 to VCC  
10  
10  
10  
Input Pulse  
Voltages  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
0 to VCC  
VCC/2  
Input and Output  
Timing Ref.  
Voltages  
V
CC/2  
V
1.This option is allowed only with 40 °C to 125 °C devices.  
2.85 °C is for industrial part code, while 125 °C is for the autograde part.  
Figure 10. AC Measurement I/O Waveform  
Figure 11. AC Measurement Load Circuit  
V
V
CC  
CC  
V
CC  
V
/2  
CC  
25kΩ  
0V  
DEVICE  
UNDER  
TEST  
AI04498  
25kΩ  
0.1µF  
C
L
AI04499  
C
includes JIG capacitance  
L
21/42  
M29W160ET, M29W160EB  
Table 10. Device Capacitance  
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
IN = 0V  
Min  
Max  
6
Unit  
pF  
V
COUT  
VOUT = 0V  
12  
pF  
Note: Sampled only, not 100% tested.  
Table 11. DC Characteristics  
Symbol  
ILI  
Parameter  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Min  
Typ  
Max  
±1  
Unit  
Input Leakage Current  
Output Leakage Current  
μA  
μA  
ILO  
±1  
E = VIL, G = VIH,  
f = 6MHz  
ICC1  
Supply Current (Read)  
4.5  
35  
10  
mA  
μA  
mA  
E = VCC ±0.2V,  
RP = VCC ±0.2V  
ICC2  
Supply Current (Standby)  
100  
Supply Current  
(Program/Erase)  
Program/Erase  
Controller active  
(1)  
20  
ICC3  
VIL  
VIH  
VOL  
VOH  
VID  
IID  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
Identification Voltage  
Identification Current  
–0.5  
0.8  
V
V
0.7VCC  
VCC +0.3  
0.45  
IOL = 1.8mA  
V
VCC –0.4  
11.5  
IOH = –100μA  
V
12.5  
100  
V
A9 = VID  
μA  
Program/Erase Lockout  
Supply Voltage  
VLKO  
1.8  
2.3  
V
Note: 1. Sampled only, not 100% tested.  
22/42  
M29W160ET, M29W160EB  
Figure 12. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A19/  
A–1  
tAVQV  
tAXQX  
E
tELQV  
tELQX  
tEHQX  
tEHQZ  
G
tGLQX  
tGLQV  
tGHQX  
tGHQZ  
DQ0-DQ7/  
DQ8-DQ15  
VALID  
tBHQV  
BYTE  
tELBL/tELBH  
tBLQZ  
AI02922  
Table 12. Read AC Characteristics  
M29W160E  
70/7A/80 (2)  
Symbol  
Alt  
Parameter  
Test Condition  
Unit  
90  
E = VIL,  
Min  
tAVAV  
tRC  
Address Valid to Next Address Valid  
Address Valid to Output Valid  
70  
70  
90  
ns  
ns  
G = VIL  
E = VIL,  
Max  
tAVQV  
tACC  
90  
G = VIL  
(1)  
tLZ  
tCE  
tOLZ  
tOE  
tHZ  
G = VIL  
G = VIL  
E = VIL  
E = VIL  
G = VIL  
E = VIL  
Chip Enable Low to Output Transition  
Chip Enable Low to Output Valid  
Output Enable Low to Output Transition  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
Min  
Max  
Min  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
tELQX  
tELQV  
70  
0
90  
0
(1)  
tGLQX  
tGLQV  
Max  
Max  
Max  
25  
25  
25  
35  
30  
30  
(1)  
tEHQZ  
(1)  
tDF  
tGHQZ  
tEHQX  
tGHQX  
tAXQX  
Chip Enable, Output Enable or Address  
Transition to Output Transition  
tOH  
Min  
0
5
0
5
ns  
ns  
tELBL  
tELBH  
tELFL  
tELFH  
Chip Enable to BYTE Low or High  
Max  
tBLQZ  
tBHQV  
tFLQZ  
tFHQV  
BYTE Low to Output Hi-Z  
BYTE High to Output Valid  
Max  
Max  
25  
30  
30  
40  
ns  
ns  
Note: 1. Sampled only, not 100% tested.  
2. 70 ns becomes 80 ns if the 80 ns device code is used.  
23/42  
M29W160ET, M29W160EB  
Figure 13. Write AC Waveforms, Write Enable Controlled  
tAVAV  
A0-A19/  
VALID  
A–1  
tWLAX  
tAVWL  
tWHEH  
E
tELWL  
tWHGL  
G
tGHWL  
tWLWH  
W
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHEL  
RB  
tWHRL  
AI02923  
Table 13. Write AC Characteristics, Write Enable Controlled  
M29W160E  
Symbol  
Alt  
Parameter  
Unit  
70/7A/80 (2)  
90  
90  
0
tAVAV  
tELWL  
tWC  
tCS  
tWP  
tDS  
Address Valid to Next Address Valid  
Chip Enable Low to Write Enable Low  
Write Enable Low to Write Enable High  
Input Valid to Write Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Max  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWLWH  
tDVWH  
tWHDX  
tWHEH  
tWHWL  
tAVWL  
tWLAX  
tGHWL  
tWHGL  
45  
45  
0
50  
50  
0
tDH  
tCH  
tWPH  
tAS  
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Write Enable Low  
Address Valid to Write Enable Low  
Write Enable Low to Address Transition  
Output Enable High to Write Enable Low  
Write Enable High to Output Enable Low  
Program/Erase Valid to RB Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
30  
50  
35  
tWHRL  
tVCHEL  
VCC High to Chip Enable Low  
Min  
50  
μs  
Note: 1. Sampled only, not 100% tested.  
2. 70 ns becomes 80 ns if the 80 ns device code is used.  
24/42  
M29W160ET, M29W160EB  
Figure 14. Write AC Waveforms, Chip Enable Controlled  
tAVAV  
A0-A19/  
VALID  
A–1  
tELAX  
tAVEL  
tEHWH  
tEHGL  
W
tWLEL  
G
tGHEL  
tELEH  
E
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ7/  
DQ8-DQ15  
V
CC  
tVCHWL  
RB  
tEHRL  
AI02924  
Table 14. Write AC Characteristics, Chip Enable Controlled  
M29W160E  
Unit  
Symbol  
Alt  
Parameter  
70/7A/80 (2)  
90  
tAVAV  
tWLEL  
tELEH  
tDVEH  
tEHDX  
tEHWH  
tEHEL  
tAVEL  
tELAX  
tGHEL  
tEHGL  
tWC  
tWS  
tCP  
Address Valid to Next Address Valid  
Write Enable Low to Chip Enable Low  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
70  
0
90  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
45  
45  
0
50  
50  
0
tDS  
tDH  
tWH  
tCPH  
tAS  
Chip Enable High to Input Transition  
Chip Enable High to Write Enable High  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
0
0
30  
0
30  
0
tAH  
45  
0
50  
0
tOEH  
tBUSY  
tVCS  
0
0
(1)  
Program/Erase Valid to RB Low  
VCC High to Write Enable Low  
Max  
Min  
30  
50  
35  
50  
ns  
tEHRL  
tVCHWL  
μs  
Note: 1. Sampled only, not 100% tested.  
2. 70 ns becomes 80 ns if the 80 ns device code is used.  
25/42  
M29W160ET, M29W160EB  
Figure 15. Reset/Block Temporary Unprotect AC Waveforms  
W, E, G  
tPHWL, tPHEL, tPHGL  
RB  
tRHWL, tRHEL, tRHGL  
tPHPHH  
tPLPX  
RP  
tPLYH  
AI02931B  
Table 15. Reset/Block Temporary Unprotect AC Characteristics  
M29W160E  
Symbol  
Alt  
Parameter  
Unit  
70/7A/80  
90  
(1)  
tPHWL  
RP High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
tPHEL  
tRH  
Min  
Min  
50  
50  
ns  
(1)  
tPHGL  
(1)  
tRHWL  
RB High to Write Enable Low, Chip Enable Low,  
Output Enable Low  
(1)  
tRB  
0
0
ns  
tRHEL  
(1)  
tRHGL  
tPLPX  
tRP  
RP Pulse Width  
Min  
500  
10  
500  
10  
ns  
(1)  
tREADY  
tVIDR  
RP Low to Read Mode  
RP Rise Time to VID  
Max  
μs  
tPLYH  
(1)  
Min  
500  
500  
ns  
tPHPHH  
Note: 1. Sampled only, not 100% tested.  
26/42  
M29W160ET, M29W160EB  
PACKAGE MECHANICAL  
Figure 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline, top view  
1
48  
e
D1  
B
L1  
24  
25  
A2  
A
E1  
E
A1  
α
L
DIE  
C
CP  
TSOP-G  
Note: Drawing is not to scale.  
Table 16. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
1.200  
0.150  
1.050  
0.270  
0.210  
0.080  
12.100  
20.200  
18.500  
Typ  
Max  
A
A1  
A2  
B
0.0472  
0.0059  
0.0413  
0.0106  
0.0083  
0.0031  
0.4764  
0.7953  
0.7283  
0.100  
1.000  
0.220  
0.050  
0.950  
0.170  
0.100  
0.0039  
0.0394  
0.0087  
0.0020  
0.0374  
0.0067  
0.0039  
C
CP  
D1  
E
12.000  
20.000  
18.400  
0.500  
0.600  
0.800  
3
11.900  
19.800  
18.300  
0.4724  
0.7874  
0.7244  
0.0197  
0.0236  
0.0315  
3
0.4685  
0.7795  
0.7205  
E1  
e
L
0.500  
0.700  
0.0197  
0.0276  
L1  
α
0
5
0
5
27/42  
M29W160ET, M29W160EB  
Figure 17. TFBGA48 6x8mm - 6x8 ball array, 0.80 mm pitch, Package Outline, bottom view  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z32  
Table 17. TFBGA48 6x8mm - 6x8 ball array, 0.80 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
4.000  
6.100  
0.2362  
0.1575  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.000  
1.200  
0.400  
0.400  
7.900  
8.100  
0.3150  
0.2205  
0.0315  
0.0394  
0.0472  
0.0157  
0.0157  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
28/42  
M29W160ET, M29W160EB  
Figure 18. FBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package outline, bottom view  
D
D1  
FD  
FE  
SD  
SE  
E
E1  
ddd  
BALL "A1"  
A
e
b
A2  
A1  
BGA-Z23  
Table 18. FBGA64 11 x 13 mm—8 x 8 active ball array, 1 mm pitch, package mechanical data  
millimeters  
inches  
Min  
Symbol  
Typ  
Min  
Max  
1.40  
0.53  
Typ  
Max  
A
A1  
A2  
b
0.055  
0.48  
0.80  
0.43  
0.018  
0.031  
0.016  
0.025  
0.437  
0.55  
10.90  
0.65  
11.10  
0.021  
0.429  
D
11.00  
7.00  
0.433  
0.275  
D1  
ddd  
e
0.15  
0.0059  
1.00  
13.0  
7.00  
2.00  
3.00  
0.50  
0.50  
0.039  
0.511  
0.275  
0.078  
0.118  
0.0196  
0.0196  
E
12.90  
13.10  
0.507  
0.515  
E1  
FD  
FE  
SD  
SE  
29/42  
M29W160ET, M29W160EB  
PART NUMBERING  
Table 19. Ordering Information Scheme  
Example:  
M29W160EB  
7A  
N
3
S
E
Device Type  
M29 = Parallel Flash Memory  
Device Function  
W = 2.7 V to 3.6 V main family  
Array Size  
160E = 16 Mbit Memory Array  
Configuration  
T = Top Boot  
B = Bottom Boot  
Speed Class  
7A = 70 ns device speed in conjunction with temperature  
range = 6 to denote Auto Grade (–40 to 85 °C) parts  
70 = 70 ns device speed in conjunction with temperature  
range = 6 to denote Industrial Grade (–40 to 85 °C) parts;  
or in conjunction with temperature range = 3 to denote  
Auto Grade (–40 to 125 °C) parts  
80 = 80 ns access time Auto Device in conjunction with  
temperature range = 3 and voltage extension = S  
90 = 90 ns device speed in conjunction with temperature  
range = 6 to denote Industrial Grade (–40 to 85 °C) parts  
Package Option  
N = TSOP48: 12 x 20 mm  
ZA = TFBGA48: 6x8 mm, 0.80mm pitch  
ZS = FBGA64: 11 x 13 mm, 1 mm pitch  
Temperature Range  
6 = Temperature range (–40 to 85 °C)  
3 = Automotive temperature range (–40 to 125 °C)  
Voltage Extension  
Blank = Standard option  
S = VCCmin extension to 2.5 °C and available only with 80  
ns Speed Class Option  
Packing Option  
Blank = Standard Packing  
T = Tape and Reel Packing  
E = RoHS, Standard Packing  
F = RoHS, Tape & Reel Packing  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,  
please contact the Numonyx Sales Office nearest to you.  
30/42  
M29W160ET, M29W160EB  
APPENDIX A. BLOCK ADDRESS TABLE  
Table 20. Top Boot Block Addresses,  
M29W160ET  
Table 21. Bottom Boot Block Addresses,  
M29W160EB  
Size  
(KBytes)  
Address Range  
(x8)  
Address Range  
(x16)  
Size  
(KBytes)  
Address Range  
(x8)  
Address Range  
(x16)  
#
#
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
16  
8
1FC000h-1FFFFFh FE000h-FFFFFh  
1FA000h-1FBFFFh FD000h-FDFFFh  
1F8000h-1F9FFFh FC000h-FCFFFh  
1F0000h-1F7FFFh F8000h-FBFFFh  
1E0000h-1EFFFFh F0000h-F7FFFh  
1D0000h-1DFFFFh E8000h-EFFFFh  
1C0000h-1CFFFFh E0000h-E7FFFh  
1B0000h-1BFFFFh D8000h-DFFFFh  
1A0000h-1AFFFFh D0000h-D7FFFh  
190000h-19FFFFh C8000h-CFFFFh  
180000h-18FFFFh C0000h-C7FFFh  
170000h-17FFFFh B8000h-BFFFFh  
160000h-16FFFFh B0000h-B7FFFh  
150000h-15FFFFh A8000h-AFFFFh  
140000h-14FFFFh A0000h-A7FFFh  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
32  
8
1F0000h-1FFFFFh F8000h-FFFFFh  
1E0000h-1EFFFFh F0000h-F7FFFh  
1D0000h-1DFFFFh E8000h-EFFFFh  
1C0000h-1CFFFFh E0000h-E7FFFh  
1B0000h-1BFFFFh D8000h-DFFFFh  
1A0000h-1AFFFFh D0000h-D7FFFh  
190000h-19FFFFh C8000h-CFFFFh  
180000h-18FFFFh C0000h-C7FFFh  
170000h-17FFFFh B8000h-BFFFFh  
160000h-16FFFFh B0000h-B7FFFh  
150000h-15FFFFh A8000h-AFFFFh  
140000h-14FFFFh A0000h-A7FFFh  
130000h-13FFFFh 98000h-9FFFFh  
120000h-12FFFFh 90000h-97FFFh  
110000h-11FFFFh 88000h-8FFFFh  
100000h-10FFFFh 80000h-87FFFh  
0F0000h-0FFFFFh 78000h-7FFFFh  
0E0000h-0EFFFFh 70000h-77FFFh  
0D0000h-0DFFFFh 68000h-6FFFFh  
0C0000h-0CFFFFh 60000h-67FFFh  
0B0000h-0BFFFFh 58000h-5FFFFh  
0A0000h-0AFFFFh 50000h-57FFFh  
090000h-09FFFFh 48000h-4FFFFh  
080000h-08FFFFh 40000h-47FFFh  
070000h-07FFFFh 38000h-3FFFFh  
060000h-06FFFFh 30000h-37FFFh  
050000h-05FFFFh 28000h-2FFFFh  
040000h-04FFFFh 20000h-27FFFh  
030000h-03FFFFh 18000h-1FFFFh  
020000h-02FFFFh 10000h-17FFFh  
010000h-01FFFFh 08000h-0FFFFh  
008000h-00FFFFh 04000h-07FFFh  
006000h-007FFFh 03000h-03FFFh  
004000h-005FFFh 02000h-02FFFh  
000000h-003FFFh 00000h-01FFFh  
8
32  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
130000h-13FFFFh  
120000h-12FFFFh  
110000h-11FFFFh  
100000h-10FFFFh  
0F0000h-0FFFFFh  
98000h-9FFFFh  
90000h-97FFFh  
88000h-8FFFFh  
80000h-87FFFh  
78000h-7FFFFh  
0E0000h-0EFFFFh 70000h-77FFFh  
0D0000h-0DFFFFh 68000h-6FFFFh  
0C0000h-0CFFFFh 60000h-67FFFh  
0B0000h-0BFFFFh 58000h-5FFFFh  
0A0000h-0AFFFFh 50000h-57FFFh  
090000h-09FFFFh  
080000h-08FFFFh  
070000h-07FFFFh  
060000h-06FFFFh  
050000h-05FFFFh  
040000h-04FFFFh  
030000h-03FFFFh  
020000h-02FFFFh  
010000h-01FFFFh  
000000h-00FFFFh  
48000h-4FFFFh  
40000h-47FFFh  
38000h-3FFFFh  
30000h-37FFFh  
28000h-2FFFFh  
20000h-27FFFh  
18000h-1FFFFh  
10000h-17FFFh  
08000h-0FFFFh  
00000h-07FFFh  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
8
0
0
16  
31/42  
M29W160ET, M29W160EB  
APPENDIX B. COMMON FLASH INTERFACE (CFI)  
The Common Flash Interface is a JEDEC ap-  
proved, standardized data structure that can be  
read from the Flash memory device. It allows a  
system software to query the device to determine  
various electrical and timing parameters, density  
information and functions supported by the mem-  
ory. The system can interface easily with the de-  
vice, enabling the software to upgrade itself when  
necessary.  
and 27 show the addresses used to retrieve the  
data.  
The CFI data structure also contains a security  
area where a 64 bit unique security number is writ-  
ten (see Table 27, Security Code area). This area  
can be accessed only in Read mode by the final  
user. It is impossible to change the security num-  
ber after it has been written by Numonyx. Issue a  
Read command to return to Read mode.  
When the CFI Query Command is issued the de-  
vice enters CFI Query mode and the data structure  
is read from the memory. Tables 22, 23, 24, 25, 26  
Note: The Common Flash Interface is only avail-  
able for Temperature range 6 (–40 to 85°C).  
Table 22. Query Structure Overview  
Address  
Sub-section Name  
Description  
x16  
10h  
1Bh  
27h  
x8  
20h  
36h  
4Eh  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Primary Algorithm-specific Extended  
Query table  
Additional information specific to the Primary  
Algorithm (optional)  
40h  
80h  
61h  
C2h  
Security Code Area  
64 bit unique device number  
Note: Query data are always presented on the lowest order data outputs.  
Table 23. CFI Query Identification String  
Address  
Data  
Description  
Value  
x16  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
x8  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
0051h  
0052h  
0059h  
0002h  
0000h  
0040h  
0000h  
0000h  
0000h  
0000h  
0000h  
"Q"  
"R"  
"Y"  
Query Unique ASCII String "QRY"  
Primary Algorithm Command Set and Control Interface ID code 16 bit  
ID code defining a specific algorithm  
AMD  
Compatible  
Address for Primary Algorithm extended Query table (see Table 25)  
P = 40h  
NA  
Alternate Vendor Command Set and Control Interface ID Code second  
vendor - specified algorithm supported  
Address for Alternate Algorithm extended Query table  
NA  
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
32/42  
M29W160ET, M29W160EB  
Table 24. CFI Query System Interface Information  
Address  
Data  
Description  
Value  
x16  
x8  
V
V
CC Logic Supply Minimum Program/Erase voltage  
bit 7 to 4BCD value in volts  
bit 3 to 0BCD value in 100 mV  
1Bh  
36h  
0027h  
0036h  
2.7V  
3.6V  
CC Logic Supply Maximum Program/Erase voltage  
bit 7 to 4BCD value in volts  
1Ch  
38h  
bit 3 to 0BCD value in 100 mV  
VPP [Programming] Supply Minimum Program/Erase voltage  
PP [Programming] Supply Maximum Program/Erase voltage  
1Dh  
1Eh  
1Fh  
3Ah  
3Ch  
3Eh  
0000h  
0000h  
0004h  
NA  
NA  
V
Typical timeout per single Byte/Word program = 2n μs  
Typical timeout for minimum size write buffer program = 2n μs  
Typical timeout per individual block erase = 2n ms  
16μs  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
000Ah  
0000h  
0004h  
0000h  
0003h  
0000h  
NA  
1s  
Typical timeout for full chip erase = 2n ms  
NA  
Maximum timeout for Byte/Word program = 2n times typical  
Maximum timeout for write buffer program = 2n times typical  
Maximum timeout per individual block erase = 2n times typical  
Maximum timeout for chip erase = 2n times typical  
256μs  
NA  
8s  
NA  
33/42  
M29W160ET, M29W160EB  
Table 25. Device Geometry Definition  
Address  
Data  
Description  
Device Size = 2n in number of Bytes  
Value  
x16  
x8  
27h  
4Eh  
0015h  
2 MByte  
28h  
29h  
50h  
52h  
0002h  
0000h  
x8, x16  
Async.  
Flash Device Interface Code description  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Maximum number of Bytes in multi-Byte program or page = 2n  
NA  
4
Number of Erase Block Regions within the device.  
It specifies the number of regions within the device containing  
contiguous Erase Blocks of the same size.  
2Ch  
58h  
0004h  
2Dh  
2Eh  
5Ah  
5Ch  
0000h  
0000h  
Region 1 Information  
Number of identical size erase block = 0000h+1  
1
16 KByte  
2
2Fh  
30h  
5Eh  
60h  
0040h  
0000h  
Region 1 Information  
Block size in Region 1 = 0040h * 256 Byte  
31h  
32h  
62h  
64h  
0001h  
0000h  
Region 2 Information  
Number of identical size erase block = 0001h+1  
33h  
34h  
66h  
68h  
0020h  
0000h  
Region 2 Information  
Block size in Region 2 = 0020h * 256 Byte  
8 KByte  
1
35h  
36h  
6Ah  
6Ch  
0000h  
0000h  
Region 3 Information  
Number of identical size erase block = 0000h+1  
37h  
38h  
6Eh  
70h  
0080h  
0000h  
Region 3 Information  
Block size in Region 3 = 0080h * 256 Byte  
32 KByte  
31  
39h  
3Ah  
72h  
74h  
001Eh  
0000h  
Region 4 Information  
Number of identical-size erase block = 001Eh+1  
3Bh  
3Ch  
76h  
78h  
0000h  
0001h  
Region 4 Information  
Block size in Region 4 = 0100h * 256 Byte  
64 KByte  
34/42  
M29W160ET, M29W160EB  
Table 26. Primary Algorithm-Specific Extended Query Table  
Address  
Data  
Description  
Value  
x16  
40h  
41h  
42h  
43h  
44h  
45h  
x8  
80h  
82h  
84h  
86h  
88h  
8Ah  
0050h  
0052h  
0049h  
0031h  
0030h  
0000h  
"P"  
Primary Algorithm extended Query table unique ASCII string “PRI”  
"R"  
"I"  
Major version number, ASCII  
Minor version number, ASCII  
"1"  
"0"  
Yes  
Address Sensitive Unlock (bits 1 to 0)  
00 = required, 01= not required  
Silicon Revision Number (bits 7 to 2)  
46h  
47h  
48h  
49h  
8Ch  
8Eh  
90h  
92h  
0002h  
0001h  
0001h  
0004h  
Erase Suspend  
00 = not supported, 01 = Read only, 02 = Read and Write  
2
1
Block Protection  
00 = not supported, x = number of blocks in per group  
Temporary Block Unprotect  
00 = not supported, 01 = supported  
Yes  
4
Block Protect /Unprotect  
04 = M29W400B  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0000h  
0000h  
0000h  
Simultaneous Operations, 00 = not supported  
No  
No  
No  
Burst Mode, 00 = not supported, 01 = supported  
Page Mode, 00 = not supported, 01 = 4 page Word, 02 = 8 page Word  
Table 27. Security Code Area  
Address  
Data  
Description  
x16  
61h  
62h  
63h  
64h  
x8  
C3h, C2h  
C5h, C4h  
C7h, C6h  
C9h, C8h  
XXXX  
XXXX  
XXXX  
XXXX  
64 bit: unique device number  
35/42  
M29W160ET, M29W160EB  
APPENDIX C. BLOCK PROTECTION  
Block protection can be used to prevent any oper-  
ation from modifying the data stored in the Flash  
memory. Each Block can be protected individually.  
Once protected, Program and Erase operations  
on the block fail to change the data.  
Programmer Equipment Chip Unprotect Flow-  
chart. Table 28, Programmer Technique Bus Op-  
erations, gives a summary of each operation.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not abort the procedure before reaching the end.  
Chip Unprotect can take several seconds and a  
user message should be provided to show that the  
operation is progressing.  
There are three techniques that can be used to  
control Block Protection, these are the Program-  
mer technique, the In-System technique and Tem-  
porary Unprotection. Temporary Unprotection is  
controlled by the Reset/Block Temporary Unpro-  
tection pin, RP; this is described in the Signal De-  
scriptions section.  
Unlike the Command Interface of the Program/  
Erase Controller, the techniques for protecting and  
unprotecting blocks could change between differ-  
ent Flash memory suppliers.  
In-System Technique  
The In-System technique requires a high voltage  
level on the Reset/Blocks Temporary Unprotect  
pin, RP. This can be achieved without violating the  
maximum ratings of the components on the micro-  
processor bus, therefore this technique is suitable  
for use after the Flash memory has been fitted to  
the system.  
Programmer Technique  
The Programmer technique uses high (VID) volt-  
age levels on some of the bus pins. These cannot  
be achieved using a standard microprocessor bus,  
therefore the technique is recommended only for  
use in Programming Equipment.  
To protect a block follow the flowchart in Figure 19,  
Programmer Equipment Block Protect Flowchart.  
During the Block Protect algorithm, the A19-A12  
Address Inputs indicate the address of the block to  
be protected. The block will be correctly protected  
only if A19-A12 remain valid and stable, and if  
Chip Enable is kept Low, VIL, all along the Protect  
and Verify phases.  
To protect a block follow the flowchart in Figure 21,  
In-System Block Protect Flowchart. To unprotect  
the whole chip it is necessary to protect all of the  
blocks first, then all the blocks can be unprotected  
at the same time. To unprotect the chip follow Fig-  
ure 22, In-System Chip Unprotect Flowchart.  
The timing on these flowcharts is critical. Care  
should be taken to ensure that, where a pause is  
specified, it is followed as closely as possible. Do  
not allow the microprocessor to service interrupts  
that will upset the timing and do not abort the pro-  
cedure before reaching the end. Chip Unprotect  
can take several seconds and a user message  
should be provided to show that the operation is  
progressing.  
The Chip Unprotect algorithm is used to unprotect  
all the memory blocks at the same time. This algo-  
rithm can only be used if all of the blocks are pro-  
tected first. To unprotect the chip follow Figure 20,  
Table 28. Programmer Technique Bus Operations, BYTE = VIH or VIL  
Address Inputs  
Data Inputs/Outputs  
DQ15A–1, DQ14-DQ0  
Operation  
E
G
W
A0-A19  
A9 = VID, A12-A19 Block Address  
Others = X  
VIL  
VID  
VID VIL Pulse  
VID VIL Pulse  
Block Protect  
X
X
A9 = VID, A12 = VIH, A15 = VIH  
Others = X  
Chip Unprotect  
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,  
A12-A19 Block Address  
Others = X  
Block Protection  
Verify  
Pass = XX01h  
Retry = XX00h  
VIL  
VIL  
VIL  
VIL  
VIH  
A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID,  
A12-A19 Block Address  
Others = X  
Block Unprotection  
Verify  
Retry = XX01h  
Pass = XX00h  
VIH  
36/42  
M29W160ET, M29W160EB  
Figure 19. Programmer Equipment Block Protect Flowchart  
START  
ADDRESS = BLOCK ADDRESS  
W = V  
IH  
n = 0  
G, A9 = V  
E = V  
,
ID  
IL  
Wait 4µs  
(1)  
W = V  
IL  
Wait 100µs  
W = V  
IH  
E, G = V  
,
IH  
A0, A6 = V  
A1 = V  
,
IL  
IH  
(1)  
E = V  
IL  
Wait 4µs  
G = V  
IL  
Wait 60ns  
Read DATA  
DATA  
=
01h  
NO  
YES  
++n  
= 25  
NO  
A9 = V  
IH  
E, G = V  
IH  
YES  
PASS  
A9 = V  
E, G = V  
IH  
IH  
AI03469b  
FAIL  
Note: 1. Address Inputs A19-A12 give the address of the block that is to be protected. It is imperative that they remain stable during the  
operation.  
2. During the Protect and Verify phases of the algorithm, Chip Enable E must be kept Low, V  
.
IL  
37/42  
M29W160ET, M29W160EB  
Figure 20. Programmer Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
(1)  
A6, A12, A15 = V  
IH  
E, G, A9 = V  
ID  
Wait 4µs  
W = V  
IL  
Wait 10ms  
W = V  
IH  
E, G = V  
IH  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1, A6 = V  
IL  
IH  
E = V  
IL  
Wait 4µs  
G = V  
IL  
INCREMENT  
CURRENT BLOCK  
Wait 60ns  
Read DATA  
NO  
YES  
DATA  
=
00h  
LAST  
BLOCK  
NO  
NO  
++n  
= 1000  
YES  
YES  
A9 = V  
A9 = V  
E, G = V  
IH  
IH  
E, G = V  
IH  
IH  
FAIL  
PASS  
AI03470  
38/42  
M29W160ET, M29W160EB  
Figure 21. In-System Equipment Block Protect Flowchart  
START  
n = 0  
RP = V  
ID  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
WRITE 60h  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 100µs  
WRITE 40h  
IL  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
Wait 4µs  
READ DATA  
ADDRESS = BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IL  
DATA  
NO  
=
01h  
YES  
RP = V  
++n  
= 25  
NO  
IH  
YES  
RP = V  
ISSUE READ/RESET  
COMMAND  
IH  
PASS  
ISSUE READ/RESET  
COMMAND  
FAIL  
AI03471  
39/42  
M29W160ET, M29W160EB  
Figure 22. In-System Equipment Chip Unprotect Flowchart  
START  
PROTECT ALL BLOCKS  
n = 0  
CURRENT BLOCK = 0  
RP = V  
ID  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
IH  
WRITE 60h  
ANY ADDRESS WITH  
A0 = V , A1 = V , A6 = V  
IL  
IH  
Wait 10ms  
WRITE 40h  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
Wait 4µs  
INCREMENT  
CURRENT BLOCK  
READ DATA  
ADDRESS = CURRENT BLOCK ADDRESS  
A0 = V , A1 = V , A6 = V  
IL  
IH  
IH  
DATA  
NO  
YES  
=
00h  
++n  
= 1000  
NO  
NO  
LAST  
BLOCK  
YES  
RP = V  
YES  
RP = V  
IH  
IH  
ISSUE READ/RESET  
COMMAND  
ISSUE READ/RESET  
COMMAND  
PASS  
FAIL  
AI03472  
40/42  
M29W160ET, M29W160EB  
REVISION HISTORY  
Table 29. Document Revision History  
Date  
Version  
Revision Details  
06-Aug-2002  
-01  
First Issue: originates from M29W160D datasheet dated 24-Jun-2002  
9x8mm FBGA48 package replaced by 6x8mm. VDD(min) reduced for -70ns  
speed class.  
Erase Suspend Latency Time (typical and maximum) added to Program, Erase  
Times and Program, Erase Endurance Cycles table. Logic Diagram corrected.  
27-Nov-2002  
1.1  
03-Dec-2002  
21-Mar-2003  
1.2  
2.0  
Package information corrected in ordering information table.  
Document promoted to full Datasheet status. Block Protect and Chip Unprotect  
algorithms specified in Appendix C, BLOCK PROTECTION.  
27-Jun-2003  
26-Jan-2004  
27-Mar-2008  
12-March-2009  
2.1  
3.0  
4.0  
5.0  
TSOP48 package information updated (see Figure 16 and Table 16).  
Block Erase Command clarified.  
Applied Numonyx branding.  
Added FBGA (ZS) package and ballout information.  
Revised Chip Erase signal value (maximum) in Table 6., Program/Erase Times  
and Program/Erase Endurance Cycles from 120 to 60 seconds  
Revised Block Erase (64-Kbytes) signal value (maximum) in Table 6., Program/  
Erase Times and Program/Erase Endurance Cycles from 6 to 1.6 seconds.  
Revised tGLQV (70 ns speed) value in Table 12., Read AC Characteristics from  
30 to 25 ns.  
7-April-2009  
6.0  
Added 7A and 80 ns columns to Table 9., Operating and AC Measurement  
Conditions;  
Added note 2 to tables: 12, 13, and 14.  
Updated the order information table as follows:  
Added 7A, 70, 80, and 90 ns speed class options  
Added temperature range = 3 Automotive  
Added Voltage extension option S.  
7-May-2009  
7.0  
8.0  
Corrected VCC supply voltage typographical errors in Table 9., Operating and AC  
Measurement Conditions  
18-June-2009  
41/42  
M29W160ET, M29W160EB  
Please Read Carefully:  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX  
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR  
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT  
OR OTHER INTELLECTUAL PROPERTY RIGHT.  
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx may make changes to specifications and product descriptions at any time, without notice.  
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2009, Numonyx, B.V., All Rights Reserved.  
42/42  

相关型号:

M29W160ET70ZA3F

Flash, 1MX16, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, ROHS COMPLIANT, TFBGA-48
NUMONYX

M29W160ET70ZA3T

Flash, 1MX16, 70ns, PBGA48, 6 X 8 MM, 0.80 MM PITCH, TFBGA-48
NUMONYX

M29W160ET70ZA6

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W160ET70ZA6

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
NUMONYX

M29W160ET70ZA6E

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W160ET70ZA6E

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
NUMONYX

M29W160ET70ZA6F

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W160ET70ZA6F

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
NUMONYX

M29W160ET70ZA6T

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
STMICROELECTR

M29W160ET70ZA6T

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory
NUMONYX

M29W160ET70ZS3

Flash, 1MX16, 70ns, PBGA64, 11 X 13 MM, 1 MM PITCH, FBGA-64
NUMONYX

M29W160ET70ZS3E

Flash, 1MX16, 70ns, PBGA64, 11 X 13 MM, 1 MM PITCH, ROHS COMPLIANT, FBGA-64
NUMONYX