JS28F256P30TF [NUMONYX]

Flash, 16MX16, 110ns, PDSO56, LEAD FREE, TSOP-56;
JS28F256P30TF
型号: JS28F256P30TF
厂家: NUMONYX B.V    NUMONYX B.V
描述:

Flash, 16MX16, 110ns, PDSO56, LEAD FREE, TSOP-56

时钟 光电二极管 内存集成电路 闪存
文件: 总91页 (文件大小:983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NumonyxTM StrataFlash® Embedded Memory  
(P30-65nm)  
256-Mbit, 512-Mbit (256M/256M)  
Datasheet  
Product Features  
„ High performance  
„ Security  
— 100 ns initial access for Easy BGA  
— 110 ns initial access for TSOP  
— 25 ns 16-word asynchronous-page read mode  
— 52 MHz with zero WAIT states, 17ns clock-to-  
data output synchronous-burst read mode  
— 4-, 8-, 16-, and continuous-word options for  
burst mode  
— One-Time Programmable Register:  
• 64 unique factory device identifier bits  
• 2112 user-programmable OTP bits  
— Absolute write protection: V = V  
PP  
SS  
— Power-transition erase/program lockout  
— Individual zero-latency block locking  
— Individual block lock-down  
— Buffered Enhanced Factory Programming  
(BEFP) at 2.0 MByte/s (Typ) using 512-word  
buffer  
— Password Access feature  
„ Software  
— 20 µs (Typ) program suspend  
— 20 µs (Typ) erase suspend  
— Numonyx™ Flash Data Integrator optimized  
— Basic Command Set and Extended Function  
Interface (EFI) Command Set compatible  
— Common Flash Interface capable  
— 1.8 V buffered programming at 1.5MByte/s  
(Typ) using 512-word buffer  
„ Architecture  
— Multi-Level Cell Technology: Highest Density  
at Lowest Cost  
— Asymmetrically-blocked architecture  
— Four 32-KByte parameter blocks: top or  
bottom configuration  
„ Density and Packaging  
— 56-Lead TSOP package (256-Mbit only)  
— 64-Ball Easy BGA package (256, 512-Mbit)  
— Numonyx™ QUAD+ SCSP (256, 512-Mbit)  
— 16-bit wide data bus  
— 128-KByte main blocks  
— Blank Check to verify an erased block  
„ Voltage and Power  
„ Quality and Reliability  
— V (core) voltage: 1.7 V – 2.0 V  
CC  
CCQ  
— Operating temperature: –40 °C to +85 °C  
— Minimum 100,000 erase cycles per block  
— ETOX™ X process technology  
— V  
(I/O) voltage: 1.7 V – 3.6 V  
— Standby current: 65 µA (Typ) for 256-Mbit;  
— 52 MHz continuos synchronous read current:  
21mA (Typ)/24mA(Max)  
Datasheet  
1
Apr 2009  
Order Number: 320002-08  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND  
CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A  
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx  
products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Numonyx B.V. may make changes to specifications and product descriptions at any time, without notice.  
Numonyx B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented  
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or  
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Numonyx reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting  
Numonyx's website at http://www.numonyx.com.  
Numonyx, the Numonyx logo, and StrataFlash are trademarks or registered trademarks of Numonyx B.V. or its subsidiaries in other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2009, Numonyx, B.V., All Rights Reserved.  
Datasheet  
2
Apr 2009  
Order Number: 320002-08  
P30 - 65 nm  
Contents  
1.0 Functional Description...............................................................................................5  
1.1  
1.2  
1.3  
1.4  
Introduction .......................................................................................................5  
Overview ...........................................................................................................5  
Virtual Chip Enable Description..............................................................................6  
Memory Maps .....................................................................................................7  
2.0 Package Information.................................................................................................8  
2.1  
2.2  
2.3  
56-Lead TSOP.....................................................................................................8  
64-Ball Easy BGA Package.................................................................................. 10  
QUAD+ SCSP Packages...................................................................................... 11  
3.0 Ballouts................................................................................................................... 13  
4.0 Signals .................................................................................................................... 16  
4.1  
Dual-Die Configurations ..................................................................................... 18  
5.0 Bus Operations........................................................................................................ 19  
5.1  
5.2  
5.3  
5.4  
5.5  
Reads.............................................................................................................. 19  
Writes.............................................................................................................. 19  
Output Disable.................................................................................................. 19  
Standby........................................................................................................... 20  
Reset............................................................................................................... 20  
6.0 Command Set .......................................................................................................... 21  
6.1  
6.2  
Device Command Codes..................................................................................... 21  
Device Command Bus Cycles .............................................................................. 22  
7.0 Read Operation........................................................................................................ 25  
7.1  
7.2  
7.3  
7.4  
Asynchronous Page-Mode Read........................................................................... 25  
Synchronous Burst-Mode Read............................................................................ 25  
Read Device Identifier........................................................................................ 26  
Read CFI.......................................................................................................... 26  
8.0 Program Operation.................................................................................................. 27  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Word Programming ........................................................................................... 27  
Buffered Programming....................................................................................... 27  
Buffered Enhanced Factory Programming.............................................................. 28  
Program Suspend.............................................................................................. 30  
Program Resume............................................................................................... 31  
Program Protection............................................................................................ 31  
9.0 Erase Operations ..................................................................................................... 32  
9.1  
9.2  
9.3  
9.4  
9.5  
Block Erase ...................................................................................................... 32  
Blank Check ..................................................................................................... 32  
Erase Suspend.................................................................................................. 33  
Erase Resume................................................................................................... 33  
Erase Protection................................................................................................ 33  
10.0 Security Modes........................................................................................................ 34  
10.1 Block Locking.................................................................................................... 34  
10.2 Selectable One-Time Programmable Blocks........................................................... 36  
10.3 Password Access ............................................................................................... 36  
11.0 Registers................................................................................................................. 37  
11.1 Read Status Register ......................................................................................... 37  
11.2 Read Configuration Register................................................................................ 38  
Datasheet  
3
Apr 2009  
Order Number: 320002-08  
P30 - 65 nm  
11.3 One-Time-Programmable (OTP) Registers .............................................................44  
12.0 Power and Reset Specifications ...............................................................................47  
12.1 Power-Up and Power-Down.................................................................................47  
12.2 Reset Specifications ...........................................................................................47  
12.3 Power Supply Decoupling....................................................................................48  
13.0 Maximum Ratings and Operating Conditions ............................................................49  
13.1 Absolute Maximum Ratings .................................................................................49  
13.2 Operating Conditions..........................................................................................49  
14.0 Electrical Specifications ...........................................................................................50  
14.1 DC Current Characteristics..................................................................................50  
14.2 DC Voltage Characteristics ..................................................................................51  
15.0 AC Characteristics....................................................................................................52  
15.1 AC Test Conditions.............................................................................................52  
15.2 Capacitance ......................................................................................................53  
15.3 AC Read Specifications .......................................................................................53  
15.4 AC Write Specifications.......................................................................................58  
16.0 Program and Erase Characteristics...........................................................................62  
17.0 Ordering Information...............................................................................................63  
17.1 Discrete Products...............................................................................................63  
17.2 SCSP Products...................................................................................................64  
A
B
C
Supplemental Reference Information.......................................................................65  
A.1  
A.2  
A.3  
Common Flash Interface Tables...........................................................................65  
Flowcharts........................................................................................................77  
Write State Machine...........................................................................................85  
Conventions - Additional Information ......................................................................89  
B.1  
B.2  
B.3  
Conventions......................................................................................................89  
Acronyms .........................................................................................................89  
Nomenclature....................................................................................................90  
Revision History.......................................................................................................91  
Datasheet  
4
Apr 2009  
Order Number: 320002-08  
P30-65nm  
1.0  
Functional Description  
1.1  
Introduction  
This document provides information about the NumonyxTM StrataFlash® Embedded  
Memory (P30-65nm) product and describes its features, operations, and specifications.  
The NumonyxTM StrataFlash® Embedded Memory (P30-65nm) is the latest generation  
of Numonyx™ StrataFlash® memory devices. P30-65nm device will be offered in 64-  
Mbit up through 2-Gbit densities. This document covers specifically 256-Mbit and 512-  
Mbit (256M/256M) product information. Benefits include more density in less space,  
high-speed interface device, and support for code and data storage. Features include  
high-performance synchronous-burst read mode, fast asynchronous access times, low  
power, flexible security options, and three industry-standard package choices. The P30-  
65nm product family is manufactured using Numonyx™ 65nm ETOX™ X process  
technology.  
1.2  
Overview  
This section provides an overview of the features and capabilities of the P30-65nm.  
The P30-65nm family devices provides high performance at low voltage on a 16-bit  
data bus. Individually erasable memory blocks are sized for optimum code and data  
storage.  
Upon initial power up or return from reset, the device defaults to asynchronous page-  
mode read. Configuring the Read Configuration Register enables synchronous burst-  
mode reads. In synchronous burst mode, output data is synchronized with a user-  
supplied clock signal. A WAIT signal provides easy CPU-to-flash memory  
synchronization.  
In addition to the enhanced architecture and interface, the device incorporates  
technology that enables fast factory program and erase operations. Designed for low-  
voltage systems, the P30-65nm supports read operations with VCC at 1.8 V, and erase  
and program operations with VPP at 1.8 V or 9.0 V. Buffered Enhanced Factory  
Programming (BEFP) provides the fastest flash array programming performance with  
VPP at 9.0 V, which increases factory throughput. With VPP at 1.8 V, VCC and VPP can be  
tied together for a simple, ultra low power design. In addition to voltage flexibility, a  
dedicated VPP connection provides complete data protection when VPP VPPLK  
.
A Command User Interface (CUI) is the interface between the system processor and all  
internal operations of the device. An internal Write State Machine (WSM) automatically  
executes the algorithms and timings necessary for block erase and program. A Status  
Register indicates erase or program completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation. Each  
erase operation erases one block. The Erase Suspend feature allows system software to  
pause an erase cycle to read or program data in another block. Program Suspend  
allows system software to pause programming to read other locations. Data is  
programmed in word increments (16 bits).  
The P30-65nm protection register allows unique flash device identification that can be  
used to increase system security. The individual Block Lock feature provides zero-  
latency block locking and unlocking. The P30-65nm device adds enhanced protection  
via Password Access; this new feature allows write and/or read access protection of  
user-defined blocks. In addition, the P30-65nm device also provides backward  
compatible One-Time Programmable (OTP) security feature.  
Datasheet  
5
Apr 2009  
Order Number: 320002-08  
P30-65nm  
1.3  
Virtual Chip Enable Description  
The P30-65nm 512Mbit devices employ a Virtual Chip Enable which combines two 256-  
Mbit die with a common chip enable, F1-CE# for QUAD+ packages or CE# for Easy BGA  
packages. (Refer to Figure 9 on page 18 and Figure 10 on page 18). The maximum  
address bit is then used to select between the die pair with F1-CE# / CE# asserted  
depending upon the package option used. When chip enable is asserted and The  
maximum address bit is low (VIL), The lower parameter die is selected; when chip  
enable is asserted and the maximum address bit is high (VIH), the upper parameter die  
is selected. Refer to Table 1 and Table 2 for additional details.  
Table 1:  
Virtual Chip Enable Truth Table for 512 Mb (QUAD+ Package)  
Die Selected  
F1-CE#  
A24  
Lower Param Die  
Upper Param Die  
L
L
L
H
Table 2:  
Virtual Chip Enable Truth Table for 512 Mb (Easy BGA Packages)  
Die Selected  
CE#  
A25  
Lower Param Die  
Upper Param Die  
L
L
L
H
Datasheet  
6
Apr 2009  
Order Number: 320002-08  
P30-65nm  
1.4  
Memory Maps  
Figure 1: P30-65nm Memory Map  
A<24:1 > 256 Mbit  
:
A<24:1 > 256 Mbit  
16- Kword Block 258  
FFC 000– FFFFFF  
FF 8000 FFBFFF  
FF 4000– FF7FFF  
FF 0000– FF3FFF  
FF0000- FFFFFF  
64- Kword Block  
258  
16- Kword Block 257  
256  
16- Kword Block  
16- Kword Block 255  
FE0000– FEFFFF  
64- Kword Block 254  
64- Kword Block 130  
7F 0000- 7FFFFF  
3 F0000- 3FFFFF  
64- Kword Block 66  
02000002 FFFF  
64- Kword Block  
64- Kword Block  
5
010000 – 01 FFFF  
00C00000 FFFF  
4
3
16- Kword Block  
16- Kword Block  
16- Kword Block  
16- Kword Block  
00800000 BFFF  
004000007FFF  
2
1
64- Kword Block  
64- Kword Block  
1
0
01000001 FFFF  
00000000 FFFF  
0
000000003FFF  
Bottom Boot  
Top Boot 256 Mbit  
Word Wide (x16) Mode  
Word Wide (x16) Mode  
A<25:1> 512 Mbit (256/256)  
1FFC000 - 1FFFFFF  
1FF8000 - 1FFBFFF  
1FF4000 - 1FF7FFF  
1FF0000 - 1FF3FFF  
16- Kword Block 517  
16- Kword Block 516  
16- Kword Block 515  
16- Kword Block 514  
1FE0000 - 1FEFFFF  
1FD0000 - 1FDFFFF  
64- Kword Block 513  
512  
64- Kword Block  
0020000 - 002FFFF  
0010000 - 001FFFF  
64- Kword Block  
64- Kword Block  
5
4
000C000 - 000FFFF  
0008000 - 000BFFF  
0004000 - 0007FFF  
0000000 - 0003FFF  
16- Kword Block  
16- Kword Block  
16- Kword Block  
16- Kword Block  
3
2
1
0
512 Mbit (256/256)  
Word Wide (x16) Mode  
Datasheet  
7
Apr 2009  
Order Number: 320002-08  
P30-65nm  
2.0  
Package Information  
2.1  
56-Lead TSOP  
Figure 2: TSOP Mechanical Specifications(256-Mbit)  
Z
A
2
See Note 2  
See Notes 1 and 3  
Pin 1  
e
See Detail B  
E
Y
D
1
A
1
D
Seating  
Plane  
See Detail A  
A
Detail A  
Detail B  
C
0
b
L
Table 3:  
TSOP Package Dimensions (Sheet 1 of 2)  
Millimeters  
Inches  
Nom  
Product Information  
Symbol  
Min  
Nom  
Max  
Min  
Max  
Package Height  
Standoff  
A
-
-
1.200  
-
-
-
0.047  
-
A
0.050  
0.965  
0.100  
0.100  
18.200  
13.800  
-
-
0.002  
0.038  
0.004  
0.004  
0.717  
0.543  
-
-
1
2
Package Body Thickness  
Lead Width  
A
0.995  
0.150  
0.150  
18.400  
14.000  
0.500  
20.00  
1.025  
0.200  
0.200  
18.600  
14.200  
-
0.039  
0.006  
0.006  
0.724  
0.551  
0.0197  
0.787  
0.040  
0.008  
0.008  
0.732  
0.559  
-
b
Lead Thickness  
Package Body Length  
Package Body Width  
Lead Pitch  
C
D
1
E
e
Terminal Dimension  
D
19.800  
20.200  
0.780  
0.795  
Datasheet  
8
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 3:  
TSOP Package Dimensions (Sheet 2 of 2)  
Millimeters  
Inches  
Nom  
Product Information  
Symbol  
Min  
Nom  
Max  
Min  
Max  
Lead Tip Length  
Lead Count  
L
N
θ
0.500  
0.600  
56  
0.700  
-
0.020  
0.024  
56  
0.028  
-
-
0°  
-
0°  
Lead Tip Angle  
3°  
5°  
3°  
5°  
Seating Plane Coplanarity  
Lead to Package Offset  
Notes:  
Y
Z
-
-
0.100  
0.350  
-
-
0.004  
0.014  
0.150  
0.250  
0.006  
0.010  
1.  
2.  
3.  
4.  
One dimple on package denotes Pin 1.  
If two dimples, then the larger dimple denotes Pin 1.  
Pin 1 will always be in the upper left corner of the package, in reference to the product mark.  
Daisy Chain Evaluation Unit information is at Numonyx™ Flash Memory Packaging Technology  
http://developer.Numonyx.com/design/flash/packtech.  
Datasheet  
9
Apr 2009  
Order Number: 320002-08  
P30-65nm  
2.2  
64-Ball Easy BGA Package  
Figure 3: Easy BGA Mechanical Specifications (256/512-Mbit)  
Ball A1  
Ball A1  
Corner  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
b
e
E
G
H
G
H
Top View - Ball side down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Note: Drawing not to scale  
Table 4:  
Easy BGA Package Dimensions  
Millimeters  
Nom  
Inches  
Product Information  
Symbol  
Min  
Max  
Min  
Nom  
Max  
Package Height  
A
A1  
A2  
b
-
0.250  
-
-
1.200  
-
-
-
0.0472  
-
Ball Height  
-
0.0098  
-
-
Package Body Thickness  
Ball (Lead) Width  
0.780  
0.430  
10.000  
13.000  
1.000  
64  
-
0.0307  
0.0169  
0.3937  
0.5118  
0.0394  
64  
-
0.330  
9.900  
12.900  
-
0.530  
10.100  
13.100  
-
0.0130  
0.3898  
0.5079  
-
0.0209  
0.3976  
0.5157  
-
Package Body Width  
Package Body Length  
Pitch  
D
E
e
Ball (Lead) Count  
N
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
Y
-
-
0.100  
1.600  
3.100  
-
-
0.0039  
0.0630  
0.1220  
S1  
S2  
1.400  
2.900  
1.500  
3.000  
0.0551  
0.1142  
0.0591  
0.1181  
Note: Daisy Chain Evaluation Unit information is at Numonyx™ Flash Memory Packaging Technology  
http://developer.Numonyx.com/design/flash/packtech.  
Datasheet  
10  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
2.3  
QUAD+ SCSP Packages  
Figure 4: 256-Mbit, 88-ball (80 active) QUAD+ SCSP Specifications (8x11x1.0 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Note: Dimensions A1, A2, and b are preliminary  
Millimeters  
Inches  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Nom  
-
-
0.740  
0.350  
11.00  
8.00  
0.80  
88  
Max  
1.000  
-
Min  
-
Nom  
-
-
0.0291  
0.0138  
0.4331  
0.3150  
0.0315  
88  
Max  
0.0394  
-
A
A1  
A2  
b
D
E
-
0.117  
-
0.300  
10.900  
7.900  
-
0.0046  
-
0.0118  
0.4291  
0.3110  
-
-
-
0.400  
11.100  
8.100  
-
0.0157  
0.4370  
0.3189  
-
e
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
-
-
0.100  
1.300  
1.200  
-
-
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
Datasheet  
11  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 5: 512-Mbit, 88-ball (80 active) QUAD+ SCSP Specifications (8x11x1.2 mm)  
S1  
A1 Index  
Mark  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
F
A
B
C
D
E
F
D
e
G
G
H
J
H
J
K
K
L
L
M
M
b
E
Bottom View - Ball Up  
A
Top View - Ball Down  
A2  
A1  
Y
Drawing not to scale.  
Millimeters  
Nom  
-
Inches  
Nom  
-
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length  
Package Body Width  
Pitch  
Symbol  
Min  
Max  
1.200  
-
Min  
-
Max  
0.0472  
-
A
A1  
A2  
b
D
E
-
0.200  
-
0.325  
10.900  
7.900  
-
-
0.0079  
-
0.0128  
0.4291  
0.3110  
-
-
0.860  
0.375  
11.000  
8.000  
0.800  
88  
-
0.0339  
0.0148  
0.4331  
0.3150  
0.0315  
88  
-
0.425  
11.100  
8.100  
-
0.0167  
0.4370  
0.3189  
-
e
N
Ball (Lead) Count  
-
-
-
-
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along E  
Corner to Ball A1 Distance Along D  
Y
S1  
S2  
-
-
0.100  
1.300  
1.200  
-
-
0.0039  
0.0512  
0.0472  
1.100  
1.000  
1.200  
1.100  
0.0433  
0.0394  
0.0472  
0.0433  
Datasheet  
12  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
3.0  
Ballouts  
Figure 6: 56-Lead TSOP Pinout (256-Mbit)  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
WAIT  
A17  
1
2
3
4
5
6
7
8
A16  
A15  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
ADV#  
CLK  
A14  
A13  
A12  
A11  
A10  
A9  
A23  
A22  
A21  
VSS  
RFU  
WE#  
WP#  
A20  
A19  
A18  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A24  
RFU  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Numonyx  
StrataFlash Embedded Memory(P30)  
®
RST#  
VPP  
56-Lead TSOP Pinout  
14 mm x 20 mm  
DQ11  
DQ3  
DQ10  
DQ2  
VCCQ  
DQ9  
DQ1  
DQ8  
DQ0  
VCC  
OE#  
VSS  
Top View  
CE#  
A1  
Notes:  
1.  
2.  
3.  
A1 is the least significant address bit.  
A24 is valid for 256-Mbit densities; otherwise, it is a no connect (NC).  
No Internal Connection on Pin 13; it may be driven or floated. For legacy designs, it is VCC pin and can be tied to Vcc.  
Datasheet  
13  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 7: 64-Ball Easy BGA Ballout (256/512-Mbit)  
5
8
8
5
1
2
3
4
6
7
7
6
4
3
2
1
A
B
C
D
A
A1  
A2  
A3  
A4  
A6  
A8  
VPP A13 VCC A18 A22  
A22 A18 VCC A13 VPP A8  
RFU A19 A25 A14 CE# A9  
A21 A20 WP# A15 A12 A10  
A17 A16 VCCQ VCCQ RST# A11  
A6  
A1  
B
C
VSS A9 CE# A14 A25 A19 RFU  
VSS A2  
A7  
A10 A12 A15 WP# A20 A21  
A7  
A5  
A3  
A4  
D
E
A5 A11 RST# VCCQ VCCQ A16 A17  
E
F
DQ8 DQ1 DQ9 DQ3 DQ4 CLK DQ15 RFU  
RFU DQ0 DQ10 DQ11 DQ12 ADV# WAIT OE#  
A23 RFU DQ2 VCCQ DQ5 DQ6 DQ14 WE#  
RFU DQ15 CLK DQ4 DQ3 DQ9 DQ1 DQ8  
OE# WAIT ADV# DQ12 DQ11 DQ10 DQ0 RFU  
WE# DQ14 DQ6 DQ5 VCCQ DQ2 RFU A23  
F
G
H
G
H
RFU VSS VCC VSS DQ13 VSS DQ7 A24  
A24 DQ7 VSS DQ13 VSS VCC VSS RFU  
Easy BGA  
Easy BGA  
Top View- Ball side down  
Bottom View- Ball side up  
Notes:  
1.  
2.  
3.  
A1 is the least significant address bit.  
A24 is valid for 256-Mbit densities and above; otherwise, it is a no connect (NC).  
A25 is valid for 512-Mbit densities; otherwise, it is a no connect (NC).  
Datasheet  
14  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 8: QUAD+ SCSP Ballout and Signals  
Pin 1  
1
DU  
2
3
4
5
6
7
8
DU  
Depop  
A19  
Depop  
VSS  
Depop  
VCC  
RFU  
RFU  
ADV#  
WE#  
DQ5  
DQ12  
DQ4  
RFU  
VSS  
Depop  
VCC  
CLK  
RFU  
A20  
DU  
DU  
A
B
C
D
E
F
A
B
C
D
E
F
A4  
A18  
RFU  
A17  
A7  
A21  
A22  
A9  
A11  
A5  
A23  
VSS  
A12  
A3  
A24  
VPP  
A13  
A2  
RFU  
RFU  
DQ2  
DQ1  
DQ9  
RFU  
VCCQ  
WP#  
RST#  
DQ10  
DQ3  
DQ11  
RFU  
VCC  
A10  
A14  
WAIT  
DQ7  
DQ15  
VCCQ  
VSS  
A15  
A1  
A6  
A8  
A16  
G
H
J
A0  
DQ8  
DQ0  
OE#  
RFU  
VSS  
DQ13  
DQ14  
DQ6  
VCC  
VSS  
F2-CE#  
F2-OE#  
VCCQ  
RFU  
VSS  
G
H
J
RFU  
RFU  
F1-CE#  
VSS  
K
L
K
L
M
DU  
DU  
Depop  
Depop  
Depop  
Depop  
DU  
DU  
M
1
2
3
4
5
6
7
8
Top View - Ball Side Down  
Control Signals  
De-Populated Ball  
Reserved for Future Use  
Do Not Use  
Address  
Data  
Power/Ground  
Legends:  
Notes:  
1.  
2.  
3.  
4.  
A23 is valid for 256-Mbit densities and above; otherwise, it is a no connect (NC).  
A24 is valid for 512-Mbit densities; otherwise, it is a no connect (NC).  
F2-CE# and F2-OE# are no connect (NC) for all densities.  
A0 is LSB for Address.  
Datasheet  
15  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
4.0  
Signals  
This section has signal descriptions for the various P30-65nm packages.  
Table 5:  
TSOP and Easy BGA Signal Descriptions (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Device address inputs. 256-Mbit: A[24:1]; 512-Mbit: A[25:1]. Note: The  
A[MAX:1]  
DQ[15:0]  
Input  
virtual selection of the 256-Mbit “Top parameter” die in the dual-die 512-Mbit configuration is  
accomplished by setting A[25] high (V ).  
IH  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
memory, Status Register, Protection Register, and Read Configuration Register reads. Data balls float  
when the CE# or OE# are deasserted. Data is internally latched during writes.  
Input/  
Output  
ADDRESS VALID: Active low input. During synchronous read operations, addresses are latched on  
the rising edge of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
Input  
In asynchronous mode, the address is latched when ADV# going high or continuously flows through  
if ADV# is held low.  
WARNING: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
CHIP ENABLE: Active low input. CE# low selects the associated flash memory die. When asserted,  
flash internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby levels, data and  
WAIT outputs are placed in high-Z state.  
CE#  
CLK  
Input  
Input  
WARNING: Chip enable must be driven high when device is not in use.  
CLOCK: Synchronizes the device with the system’s bus frequency in synchronous-read mode.  
During synchronous read operations, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# low, whichever occurs first.  
WARNING: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OUTPUT ENABLE: Active low input. OE# low enables the device’s output data buffers during read  
OE#  
Input  
Input  
cycles. OE# high places the data outputs and WAIT in High-Z.  
RESET: Active low input. RST# resets internal automation and inhibits write operations. This  
provides data protection during power transitions. RST# high enables normal operation. Exit from  
reset places the device in asynchronous read array mode.  
RST#  
WAIT: Indicates data valid in synchronous array or non-array burst reads. Read Configuration  
Register bit 10 (RCR.10, WT) determines its polarity when asserted. WAIT’s active output is V or  
OL  
V
when CE# and OE# are V . WAIT is high-Z if CE# or OE# is V .  
OH  
I
L
I
H
WAIT  
Output  
In synchronous array or non-array read modes, WAIT indicates invalid data when asserted and  
valid data when deasserted.  
In asynchronous page mode, and all write modes, WAIT is deasserted.  
WRITE ENABLE: Active low input. WE# controls writes to the device. Address and data are latched  
WE#  
WP#  
Input  
Input  
on the rising edge of WE#.  
WRITE PROTECT: Active low input. WP# low enables the lock-down mechanism. Blocks in lock-  
down cannot be unlocked with the Unlock command. WP# high overrides the lock-down function  
enabling blocks to be erased or programmed using software commands.  
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when V V  
. Block erase and program at invalid V  
PP  
PPLK  
PP  
voltages should not be attempted.  
Set V = V  
for in-system program and erase operations. To accommodate resistor or diode drops  
PP  
PPL  
Power/  
Input  
VPP  
VCC  
from the system supply, the V level of V can be as low as V  
min. V must remain above V  
IH  
PP  
PPL PP PPL  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
V
can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500  
PPH  
cycles. VPP can be connected to 9 V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9 V may reduce block cycling capability.  
DEVICE CORE POWER SUPPLY: Core (logic) source voltage. Writes to the flash array are inhibited  
Power  
when V V  
. Operations at invalid V voltages should not be attempted.  
CC  
LKO  
CC  
VCCQ  
VSS  
Power  
Power  
OUTPUT POWER SUPPLY: Output-driver source voltage.  
GROUND: Connect to system ground. Do not float any VSS connection.  
Datasheet  
16  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 5:  
TSOP and Easy BGA Signal Descriptions (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
RESERVED FOR FUTURE USE: Reserved by Numonyx for future device functionality and  
enhancement. These should be treated in the same way as a Do Not Use (DU) signal.  
RFU  
DU  
NC  
DO NOT USE: Do not connect to any other signal, or power supply; must be left floating.  
NO CONNECT: No internal connection; can be driven or floated.  
Table 6:  
QUAD+ SCSP Signal Descriptions (Sheet 1 of 2)  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Device address inputs. 256-Mbit: A[23:0]; 512-Mbit: A[24:0]. Note: The  
A[MAX:0]  
DQ[15:0]  
Input  
virtual selection of the 256-Mbit “Top parameter” die in the dual-die 512-Mbit configuration is  
accomplished by setting A[24] high (V ).  
IH  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles; outputs data during  
memory, Status Register, Protection Register, and Read Configuration Register reads. Data balls float  
when the CE# or OE# are deasserted. Data is internally latched during writes.  
Input/  
Output  
ADDRESS VALID: Active low input. During synchronous read operations, addresses are latched on  
the rising edge of ADV#, or on the next valid CLK edge with ADV# low, whichever occurs first.  
ADV#  
Input  
In asynchronous mode, the address is latched when ADV# going high or continuously flows through  
if ADV# is held low.  
WARNING: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
Flash CHIP ENABLE: Active low input. CE# low selects the associated flash memory die. When  
asserted, flash internal control logic, input buffers, decoders, and sense amplifiers are active. When  
deasserted, the associated flash die is deselected, power is reduced to standby levels, data and  
WAIT outputs are placed in high-Z state.  
F1-CE#  
CLK  
Input  
Input  
WARNING: Chip enable must be driven high when device is not in use.  
CLOCK: Synchronizes the device with the system’s bus frequency in synchronous-read mode.  
During synchronous read operations, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# low, whichever occurs first.  
WARNING: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OUTPUT ENABLE: Active low input. OE# low enables the device’s output data buffers during read  
cycles. OE# high places the data outputs and WAIT in High-Z.  
F1-OE#  
RST#  
Input  
Input  
RESET: Active low input. RST# resets internal automation and inhibits write operations. This  
provides data protection during power transitions. RST# high enables normal operation. Exit from  
reset places the device in asynchronous read array mode.  
WAIT: Indicates data valid in synchronous array or non-array burst reads. Read Configuration  
Register bit 10 (RCR.10, WT) determines its polarity when asserted. WAIT’s active output is V or  
OL  
V
when CE# and OE# are V . WAIT is high-Z if CE# or OE# is V .  
OH  
IL IH  
WAIT  
Output  
In synchronous array or non-array read modes, WAIT indicates invalid data when asserted and  
valid data when deasserted.  
In asynchronous page mode, and all write modes, WAIT is deasserted.  
WRITE ENABLE: Active low input. WE# controls writes to the device. Address and data are latched  
WE#  
WP#  
Input  
Input  
on the rising edge of WE#.  
WRITE PROTECT: Active low input. WP# low enables the lock-down mechanism. Blocks in lock-  
down cannot be unlocked with the Unlock command. WP# high overrides the lock-down function  
enabling blocks to be erased or programmed using software commands.  
ERASE AND PROGRAM POWER: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when V V  
. Block erase and program at invalid V  
PP  
PPLK  
PP  
voltages should not be attempted.  
Set V = V  
for in-system program and erase operations. To accommodate resistor or diode drops  
PPL  
PP  
Power/  
lnput  
VPP  
from the system supply, the V level of V can be as low as V  
min. V must remain above V  
IH  
PP  
PPL PP PPL  
min to perform in-system flash modification. VPP may be 0 V during read operations.  
V
can be applied to main blocks for 1000 cycles maximum and to parameter blocks for 2500  
PPH  
cycles. VPP can be connected to 9 V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9 V may reduce block cycling capability.  
Datasheet  
17  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 6:  
QUAD+ SCSP Signal Descriptions (Sheet 2 of 2)  
Symbol  
Type  
Name and Function  
DEVICE CORE POWER SUPPLY: Core (logic) source voltage. Writes to the flash array are inhibited  
VCC  
Power  
when V V  
. Operations at invalid V voltages should not be attempted.  
CC  
LKO  
CC  
VCCQ  
VSS  
Power  
Power  
OUTPUT POWER SUPPLY: Output-driver source voltage.  
GROUND: Connect to system ground. Do not float any VSS connection.  
RESERVED FOR FUTURE USE: Reserved by Numonyx for future device functionality and  
enhancement. These should be treated in the same way as a Do Not Use (DU) signal.  
RFU  
DU  
NC  
DO NOT USE: Do not connect to any other signal, or power supply; must be left floating.  
NO CONNECT: No internal connection; can be driven or floated.  
4.1  
Dual-Die Configurations  
Figure 9: 512-Mbit Easy BGA Block Diagram  
Easy BGA 512-Mbit (Dual-Die) Top or Bottom Parameter  
Configuration  
CE#  
Top Param Die  
(256-Mbit)  
RST#  
VCC  
VPP  
WP#  
OE#  
WE#  
VCCQ  
VSS  
CLK  
ADV#  
Bottom Param Die  
(256-Mbit)  
DQ[15:0]  
WAIT  
A[MAX:1]  
Figure 10: 512-Mbit QUAD+ SCSP Block Diagram  
QUAD+ 512-Mbit (Dual-Die) Top or Bottom Parameter  
Configuration  
F1-CE#  
Top Param Die  
(256-Mbit)  
RST#  
VCC  
VPP  
WP#  
OE#  
WE#  
VCCQ  
VSS  
CLK  
ADV#  
Bottom Param Die  
(256-Mbit)  
DQ[15:0]  
WAIT  
A[MAX:0]  
Note: Amax = VIH selects the Top parameter Die; Amax = VIL selects the Bottom Parameter Die.  
Datasheet  
18  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
5.0  
Bus Operations  
CE# low and RST# high enable device read operations. The device internally decodes  
upper address inputs to determine the accessed block. ADV# low opens the internal  
address latches. OE# low activates the outputs and gates selected data onto the I/O  
bus.  
In asynchronous mode, the address is latched when ADV# goes high or continuously  
flows through if ADV# is held low. In synchronous mode, the address is latched by the  
first of either the rising ADV# edge or the next valid CLK edge with ADV# low (WE#  
and RST# must be VIH; CE# must be VIL).  
Bus cycles to/from the P30-65nm device conform to standard microprocessor bus  
operations. Table 7 summarizes the bus operations and the logic levels that must be  
applied to the device control signal inputs.  
Table 7:  
Bus Operations Summary  
Bus Operation  
RST#  
CLK  
ADV#  
CE#  
OE#  
WE#  
WAIT  
DQ[15:0] Notes  
Asynchronous  
Synchronous  
V
V
V
V
V
X
L
L
L
L
L
L
H
H
L
Output  
Output  
IH  
Deasserted  
Driven  
Read  
Write  
Running  
IH  
IH  
IH  
IH  
X
X
X
X
L
L
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Input  
High-Z  
High-Z  
High-Z  
1
2
Output Disable  
Standby  
Reset  
X
X
X
L
H
X
X
H
X
2
V
2,3  
IL  
Notes:  
1.  
Refer to the Table 9, “Command Bus Cycles” on page 23 for valid DQ[15:0] during a write  
operation.  
2.  
3.  
X = Don’t Care (H or L).  
RST# must be at V ± 0.2 V to meet the maximum specified power-down current.  
SS  
5.1  
5.2  
Reads  
To perform a read operation, RST# and WE# must be deasserted while CE# and OE#  
are asserted. CE# is the device-select control. When asserted, it enables the flash  
memory device. OE# is the data-output control. When asserted, the addressed flash  
memory data is driven onto the I/O bus.  
Writes  
To perform a write operation, both CE# and WE# are asserted while RST# and OE# are  
deasserted. During a write operation, address and data are latched on the rising edge  
of WE# or CE#, whichever occurs first. Table 9, “Command Bus Cycles” on page 23  
shows the bus cycle sequence for each of the supported device commands, while  
Table 8, “Command Codes and Definitions” on page 21 describes each command. See  
Section 15.0, “AC Characteristics” on page 52 for signal-timing details.  
Note: Write operations with invalid VCC and/or VPP voltages can produce spurious results and should  
not be attempted.  
5.3  
Output Disable  
When OE# is deasserted, device outputs DQ[15:0] are disabled and placed in a high-  
impedance (High-Z) state, WAIT is also placed in High-Z.  
Datasheet  
19  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
5.4  
5.5  
Standby  
When CE# is deasserted the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z,  
independent of the level placed on OE#. Standby current, ICCS, is the average current  
measured over any 5 ms time interval, 5 μs after CE# is deasserted. During standby,  
average current is measured over the same time interval 5 μs after CE# is deasserted.  
When the device is deselected (while CE# is deasserted) during a program or erase  
operation, it continues to consume active power until the program or erase operation is  
completed.  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
flash memory if it is the system boot device. If a CPU reset occurs with no flash  
memory reset, improper CPU initialization may occur because the flash memory may  
be providing status information rather than array data. Flash memory devices from  
Numonyx allow proper CPU initialization following a system reset through the use of the  
RST# input. RST# should be controlled by the same low-true reset signal that resets  
the system CPU.  
After initial power-up or reset, the device defaults to asynchronous Read Array mode,  
and the Status Register is set to 0x80. Asserting RST# de-energizes all internal  
circuits, and places the output drivers in High-Z. When RST# is asserted, the device  
shuts down the operation in progress, a process which takes a minimum amount of  
time to complete. When RST# has been deasserted, the device is reset to  
asynchronous Read Array state.  
Note: If RST# is asserted during a program or erase operation, the operation is terminated and the  
memory contents at the aborted location (for a program) or block (for an erase) are no longer  
valid, because the data may have been only partially written or erased.  
When returning from a reset (RST# deasserted), a minimum wait is required before the  
initial read access outputs valid data. Also, a minimum delay is required after a reset  
before a write cycle can be initiated. After this wake-up interval passes, normal  
operation is restored. See Section 15.0, “AC Characteristics” on page 52 for details  
about signal-timing.  
Datasheet  
20  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
6.0  
Command Set  
6.1  
Device Command Codes  
The system CPU provides control of all in-system read, write, and erase operations of  
the device via the system bus. The on-chip Write State Machine (WSM) manages all  
block-erase and word-program algorithms.  
Device commands are written to the Command User Interface (CUI) to control all flash  
memory device operations. The CUI does not occupy an addressable memory location;  
it is the mechanism through which the flash device is controlled.  
Table 8:  
Command Codes and Definitions (Sheet 1 of 2)  
Mode  
Code  
Device Mode  
Read Array  
Description  
0xFF  
Places the device in Read Array mode. Array data is output on DQ[15:0].  
Places the device in Read Status Register mode. The device enters this mode  
after a program or erase command is issued. Status Register data is output  
on DQ[7:0].  
Read Status  
Register  
0x70  
0x90  
Read Device ID  
or Read  
Configuration  
Register(RCR)  
Places device in Read Device Identifier mode. Subsequent reads output  
manufacturer/device codes, Configuration Register data, Block Lock status,  
or Protection Register data on DQ[15:0].  
Read  
Places the device in Read CFI mode. Subsequent reads output Common Flash  
Interface information on DQ[7:0].  
0x98  
0x50  
Read CFI  
Clear Status  
Register  
The WSM can only set Status Register error bits. The Clear Status Register  
command is used to clear the SR error bits.  
First cycle of a 2-cycle programming command; prepares the CUI for a write  
operation. On the next write cycle, the address and data are latched and the  
WSM executes the programming algorithm at the addressed location. During  
program operations, the device responds only to Read Status Register and  
Program Suspend commands. CE# or OE# must be toggled to update the  
Status Register in asynchronous read. CE# or ADV# must be toggled to  
update the Status Register Data for synchronous Non-array reads. The Read  
Array command must be issued to read array data after programming has  
finished.  
Word Program  
Setup  
0x40  
This command loads a variable number of words up to the buffer size of 512  
words onto the program buffer.  
0xE8  
0xD0  
Buffered Program  
Write  
The confirm command is issued after the data streaming for writing into the  
buffer is done. This instructs the WSM to perform the Buffered Program  
algorithm, writing the data from the buffer to the flash memory array.  
Buffered Program  
Confirm  
First cycle of a 2-cycle command; initiates Buffered Enhanced Factory  
Program mode (BEFP). The CUI then waits for the BEFP Confirm command,  
0xD0, that initiates the BEFP algorithm. All other commands are ignored  
when BEFP mode begins.  
0x80  
0xD0  
BEFP Setup  
If the previous command was BEFP Setup (0x80), the CUI latches the  
address and data, and prepares the device for BEFP mode.  
BEFP Confirm  
First cycle of a 2-cycle command; prepares the CUI for a block-erase  
operation. The WSM performs the erase algorithm on the block addressed by  
the Erase Confirm command. If the next command is not the Erase Confirm  
(0xD0) command, the CUI sets Status Register bits SR.4 and SR.5, and  
places the device in read status register mode.  
0x20  
0xD0  
Block Erase Setup  
Erase  
If the first command was Block Erase Setup (0x20), the CUI latches the  
address and data, and the WSM erases the addressed block. During block-  
erase operations, the device responds only to Read Status Register and Erase  
Suspend commands. CE# or OE# must be toggled to update the Status  
Register in asynchronous read. CE# or ADV# must be toggled to update the  
Status Register Data for synchronous Non-array reads  
Block Erase Confirm  
Datasheet  
21  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 8:  
Command Codes and Definitions (Sheet 2 of 2)  
Mode  
Code  
Device Mode  
Description  
This command issued to any device address initiates a suspend of the  
currently-executing program or block erase operation. The Status Register  
indicates successful suspend operation by setting either SR.2 (program  
suspended) or SR.6 (erase suspended), along with SR.7 (ready). The Write  
State Machine remains in the suspend mode regardless of control signal  
states (except for RST# asserted).  
Program or Erase  
Suspend  
0xB0  
Suspend  
This command issued to any device address resumes the suspended program  
or block-erase operation.  
0xD0  
0x60  
Suspend Resume  
Block lock Setup  
First cycle of a 2-cycle command; prepares the CUI for block lock  
configuration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets Status Register bits  
SR.5 and SR.4, indicating a command sequence error.  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked.  
0x01  
0xD0  
0x2F  
Block lock  
Block Locking/  
Unlocking  
If the previous command was Block Lock Setup (0x60), the addressed block  
is unlocked. If the addressed block is in a lock-down state, the operation has  
no effect.  
Block Unlock  
Block Lock-Down  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked down.  
First cycle of a 2-cycle command; prepares the CUI for block lock  
configuration changes. If the next command is not Block Lock (0x01), Block  
Unlock (0xD0), or Block Lock-Down (0x2F), the CUI sets Status Register bits  
SR.5 and SR.4, indicating a command sequence error.  
0x60  
Block lock Setup  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked.  
0x01  
0xD0  
0x2F  
Block lock  
If the previous command was Block Lock Setup (0x60), the addressed block  
is unlocked. If the addressed block is in a lock-down state, the operation has  
no effect.  
Protection  
Block Unlock  
Block Lock-Down  
If the previous command was Block Lock Setup (0x60), the addressed block  
is locked down.  
First cycle of a 2-cycle command; prepares the device for a OTP register or  
Lock Register program operation. The second cycle latches the register  
address and data, and starts the programming algorithm to program data the  
the OTP array.  
OTP Register or  
Lock Register  
program setup  
0xC0  
0x60  
0x03  
First cycle of a 2-cycle command; prepares the CUI for device read  
configuration. If the Set Read Configuration Register command (0x03) is not  
the next command, the CUI sets Status Register bits SR.4 and SR.5,  
indicating a command sequence error.  
Read Configuration  
Register Setup  
Configuration  
If the previous command was Read Configuration Register Setup (0x60), the  
CUI latches the address and writes A[16:1] to the Read Configuration  
Register. Following a Configure Read Configuration Register command,  
subsequent read operations access array data.  
Read Configuration  
Register  
First cycle of a 2-cycle command; initiates the Blank Check operation on a  
main block.  
0xBC  
0xD0  
Block Blank Check  
Blank Check  
Block Blank Check  
Confirm  
Second cycle of blank check command sequence; it latches the block address  
and executes blank check on the main array block.  
First cycle of a multiple-cycle command; initiate operation using extended  
function interface. The second cycle is a Sub-Op-Code, the data written on  
third cycle is one less than the word count; the allowable value on this cycle  
are 0 through 511. The subsequent cycles load data words into the program  
buffer at a specified address until word count is achieved.  
Extended Function  
Interface command  
EFI  
0xEB  
6.2  
Device Command Bus Cycles  
Device operations are initiated by writing specific device commands to the Command  
User Interface (CUI). Several commands are used to modify array data including Word  
Program and Block Erase commands. Writing either command to the CUI initiates a  
Datasheet  
22  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
sequence of internally-timed functions that culminate in the completion of the  
requested task. However, the operation can be aborted by either asserting RST# or by  
issuing an appropriate suspend command.  
Table 9:  
Command Bus Cycles (Sheet 1 of 2)  
First Bus Cycle  
(1)  
Second Bus Cycle  
(1)  
Bus  
Cycles  
Mode  
Command  
(2)  
(2)  
Oper  
Addr  
Data  
Oper  
Addr  
Data  
Read Array  
1
Write  
Write  
DnA  
DnA  
0xFF  
-
-
-
Read Device Identifier  
Read CFI  
2  
0x90  
0x98  
Read  
DBA + IA  
ID  
DBA + CFI-  
A
Read  
2  
Write  
DnA  
Read  
CFI-D  
Read Status Register  
Clear Status Register  
Word Program  
2
1
Write  
Write  
Write  
Write  
DnA  
DnA  
WA  
0x70  
0x50  
0x40  
0xE8  
Read  
-
DnA  
-
SRD  
-
2
Write  
Write  
WA  
WA  
WD  
N - 1  
(3)  
Buffered Program  
> 2  
WA  
Program  
Buffered Enhanced Factory  
Program (BEFP)  
> 2  
Write  
Write  
WA  
BA  
0x80  
0x20  
Write  
Write  
WA  
BA  
0xD0  
0xD0  
(4)  
Erase  
Block Erase  
2
Program/Erase Suspend  
Program/Erase Resume  
Block Lock  
1
1
2
2
2
2
2
2
2
2
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
DnA  
DnA  
BA  
0xB0  
0xD0  
0x60  
0x60  
0x60  
0x60  
0x60  
0x60  
0xC0  
0xC0  
-
-
-
-
Suspend  
-
-
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
BA  
0x01  
0xD0  
0x2F  
0x01  
0xD0  
0x2F  
OTP-D  
LRD  
Block  
Locking/  
Unlocking  
Block Unlock  
BA  
BA  
Block Lock-down  
Block Lock  
BA  
BA  
BA  
BA  
Block Unlock  
BA  
BA  
Protection  
Block Lock-down  
Program OTP register  
Program Lock Register  
BA  
BA  
PRA  
LRA  
OTP-RA  
LRA  
Configure Read Configuration  
Register  
Configuration  
2
Write  
RCD  
0x60  
Write  
RCD  
0x03  
Datasheet  
23  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 9:  
Command Bus Cycles (Sheet 2 of 2)  
First Bus Cycle  
(1)  
Second Bus Cycle  
Bus  
Command  
Mode  
Cycles  
(2)  
(1)  
(2)  
Oper  
Addr  
Data  
0xBC  
0xEB  
Oper  
Addr  
Data  
Blank Check Block Blank Check  
Extended Function Interface  
2
Write  
BA  
Write  
BA  
D0  
Sub-Op  
code  
EFI  
>2  
Write  
WA  
Write  
WA  
(5)  
command  
Notes:  
1.  
First command cycle address should be the same as the operation’s target address.  
DBA = Device Base Address (NOTE: needed for dual-die 512 Mb device)  
DnA = Address within the device.  
IA = Identification code address offset.  
CFI-A = Read CFI address offset.  
WA = Word address of memory location to be written.  
BA = Address within the block.  
OTP-RA = Protection Register address.  
LRA = Lock Register address.  
RCD = Read Configuration Register data on A[16:1].  
ID = Identifier data.  
2.  
3.  
CFI-D = CFI data on DQ[15:0].  
SRD = Status Register data.  
WD = Word data.  
N = Word count of data to be loaded into the write buffer.  
OTP-D = Protection Register data.  
LRD = Lock Register data.  
The second cycle of the Buffered Program Command is the word count of the data to be loaded into the write buffer. This  
is followed by up to 512 words of data. Then the confirm command (0xD0) is issued, triggering the array programming  
operation.  
4.  
5.  
The confirm command (0xD0) is followed by the buffer data.  
The second cycle is a Sub-Op-Code, the data written on third cycle is N-1; 1N 512. The subsequent cycles load data  
words into the program buffer at a specified address until word count is achieved, after the data words are loaded, the  
final cycle is the confirm cycle 0xD0).  
Datasheet  
24  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
7.0  
Read Operation  
The device supports two read modes: asynchronous page mode and synchronous burst  
mode. Asynchronous page mode is the default read mode after device power-up or a  
reset. The Read Configuration Register must be configured to enable synchronous burst  
reads of the flash memory array (see Section 11.2, “Read Configuration Register” on  
page 38).  
The device can be in any of four read states: Read Array, Read Identifier, Read Status  
or Read CFI. Upon power-up, or after a reset, the device defaults to Read Array. To  
change the read state, the appropriate read command must be written to the device  
(see Section 6.0, “Command Set” on page 21).  
7.1  
Asynchronous Page-Mode Read  
Following a device power-up or reset, asynchronous page mode is the default read  
mode and the device is set to Read Array. However, to perform array reads after any  
other device operation (e.g. write operation), the Read Array command must be issued  
in order to read from the flash memory array.  
Asynchronous page-mode reads can only be performed when Read Configuration  
Register bit RCR.15 is set (see Section 11.2, “Read Configuration Register” on page 38).  
To perform an asynchronous page-mode read, an address is driven onto the Address  
bus, and CE# and ADV# are asserted. WE# and RST# must already have been  
deasserted. WAIT is deasserted during asynchronous page mode. ADV# can be driven  
high to latch the address, or it must be held low throughout the read cycle. CLK is not  
used for asynchronous page-mode reads, and is ignored. If only asynchronous reads  
are to be performed, CLK should be tied to a valid VIH level, WAIT signal can be floated  
and ADV# must be tied to ground. Array data is driven onto DQ[15:0] after an initial  
access time tAVQV delay. (see Section 15.0, “AC Characteristics” on page 52).  
In asynchronous page mode, sixteen data words are “sensed” simultaneously from the  
flash memory array and loaded into an internal page buffer. The buffer word  
corresponding to the initial address on the Address bus is driven onto DQ[15:0] after  
the initial access delay. The lowest four address bits determine which word of the 16-  
word page is output from the data buffer at any given time.  
7.2  
Synchronous Burst-Mode Read  
To perform a synchronous burst-read, an initial address is driven onto the Address bus,  
and CE# and ADV# are asserted. WE# and RST# must already have been deasserted.  
ADV# is asserted, and then deasserted to latch the address. Alternately, ADV# can  
remain asserted throughout the burst access, in which case the address is latched on  
the next valid CLK edge while ADV# is asserted.  
During synchronous array and non-array read modes, the first word is output from the  
data buffer on the next valid CLK edge after the initial access latency delay (see Section  
11.2.2, “Latency Count” on page 39). Subsequent data is output on valid CLK edges  
following a minimum delay. However, for a synchronous non-array read, the same word  
of data will be output on successive clock edges until the burst length requirements are  
satisfied. Refer to the following waveforms for more detailed information:  
Figure 24, “Synchronous Single-Word Array or Non-array Read Timing” on page 56  
Figure 25, “Continuous Burst Read, Showing An Output Delay Timing” on page 57  
Figure 26, “Synchronous Burst-Mode Four-Word Read Timing” on page 57  
Datasheet  
25  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
7.3  
Read Device Identifier  
The Read Device Identifier command instructs the device to output manufacturer code,  
device identifier code, block-lock status, protection register data, or configuration  
register data.  
Table 10: Device Identifier Information  
(1)  
Item  
Address  
Data  
Manufacturer Code  
0x00  
0x89h  
ID (see Table 11, “Device ID  
codes”)  
Device ID Code  
0x01  
Block Lock Configuration:  
Block Is Unlocked  
Lock Bit:  
DQ = 0b0  
0
(1)  
Block Is Locked  
BBA  
DBA  
+ 0x02  
DQ = 0b1  
0
Block Is not Locked-Down  
Block Is Locked-Down  
Read Configuration Register  
DQ = 0b0  
1
DQ = 0b1  
1
0x05  
RCR Contents  
GPR Data  
(3)  
(2)  
General Purpose Register  
+ 0x07  
0x80  
Lock Register 0  
PR-LK0 data  
64-bit Factory-Programmed OTP Register  
64-bit User-Programmable OTP Register  
Lock Register 1  
0x81–0x84  
0x85–0x88  
0x89  
Factory OTP Register Data  
User OTP Register Data  
PR-LK1 OTP register lock data  
OTP Register Data  
128-bit User-Programmable Protection Registers  
0x8A–0x109  
Notes:  
1.  
2.  
3.  
BBA = Block Base Address.  
DBA = Device base Address, Numonyx reserves other configuration address locations.  
The GPR is used as read out register for Extended Function interface command.  
Table 11: Device ID codes  
Device Identifier Codes  
ID Code Type  
Device Density  
–T  
–B  
(Top Parameter)  
(Bottom Parameter)  
Device Code  
256-Mbit  
8919  
891C  
Note: The 512-Mbit devices do not have a Device ID associated with them. Each die within the stack can be identified by either  
of the 256-Mbit Device ID codes depending on its parameter option.  
7.4  
Read CFI  
The Read CFI command instructs the device to output Common Flash Interface (CFI)  
data when read. See Section 6.0, “Command Set” on page 21 for details on issuing the  
Read CFI command. Appendix A, “Common Flash Interface Tables” on page 65 shows  
CFI information and address offsets within the CFI database.  
Datasheet  
26  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
8.0  
Program Operation  
The device supports three programming methods: Word Programming (40h), Buffered  
Programming (E8h, D0h), and Buffered Enhanced Factory Programming (80h, D0h).  
See Section 5.0, “Bus Operations” on page 19 for details on the various programming  
commands issued to the device. The following sections describe device programming in  
detail.  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be deasserted and the block must be unlocked before  
attempting to program the block. Attempting to program a locked block causes a  
program error (SR.4 and SR.1 set) and termination of the operation. See Section 10.0,  
“Security Modes” on page 34 for details on locking and unlocking blocks.  
8.1  
Word Programming  
Word programming operations are initiated by writing the Word Program Setup  
command to the device (see Section 5.0, “Bus Operations” on page 19). This is  
followed by a second write to the device with the address and data to be programmed.  
The device outputs Status Register data when read. See Figure 35, “Word Program  
Flowchart” on page 77. VPP must be above VPPLK, and within the specified VPPL min/  
max values.  
During programming, the Write State Machine (WSM) executes a sequence of  
internally-timed events that program the desired data bits at the addressed location,  
and verifies that the bits are sufficiently programmed. Programming the flash memory  
array changes “ones” to “zeros. Memory array bits that are zeros can be changed to  
ones only by erasing the block (see Section 9.0, “Erase Operations” on page 32).  
The Status Register can be examined for programming progress and errors by reading  
at any address. The device remains in the Read Status Register state until another  
command is written to the device.  
Status Register bit SR.7 indicates the programming status while the sequence  
executes. Commands that can be issued to the device during programming are  
Program Suspend, Read Status Register, Read Device Identifier, Read CFI, and Read  
Array (this returns unknown data).  
When programming has finished, Status Register bit SR.4 (when set) indicates a  
programming failure. If SR.3 is set, the WSM could not perform the word programming  
operation because VPP was outside of its acceptable limits. If SR.1 is set, the word  
programming operation attempted to program a locked block, causing the operation to  
abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow,  
when word programming has completed.  
8.2  
Buffered Programming  
The device features a 512-word buffer to enable optimum programming performance.  
For Buffered Programming, data is first written to an on-chip write buffer. Then the  
buffer data is programmed into the flash memory array in buffer-size increments. This  
can improve system programming performance significantly over non-buffered  
programming.  
When the Buffered Programming Setup command is issued (see Section 6.0,  
“Command Set” on page 21), Status Register information is updated and reflects the  
availability of the buffer. SR.7 indicates buffer availability: if set, the buffer is available;  
Datasheet  
27  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
if cleared, the buffer is not available. To retry, issue the Buffered Programming Setup  
command again, and re-check SR.7. When SR.7 is set, the buffer is ready for loading.  
(see Figure 37, “Buffer Program Flowchart” on page 79).  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written  
to the flash memory array. Subsequent writes provide additional device addresses and  
data. All data addresses must lie within the start address plus the word count.  
Optimum programming performance and lower power usage are obtained by aligning  
the starting address at the beginning of a 512-word boundary (A[9:1] = 0x00). The  
maximum buffer size would be 256-word if the misaligned address range is crossing a  
512-word boundary during programming.  
After the last data is written to the buffer, the Buffered Programming Confirm command  
must be issued to the original block address. The WSM begins to program buffer  
contents to the flash memory array. If a command other than the Buffered  
Programming Confirm command is written to the device, a command sequence error  
occurs and Status Register bits SR[7,5,4] are set. If an error occurs while writing to the  
array, the device stops programming, and Status Register bits SR[7,4] are set,  
indicating a programming failure.  
When Buffered Programming has completed, additional buffer writes can be initiated by  
issuing another Buffered Programming Setup command and repeating the buffered  
program sequence. Buffered programming may be performed with VPP = VPPL or VPPH  
(see Section 13.2, “Operating Conditions” on page 49 for limitations when operating  
the device with VPP = VPPH).  
If an attempt is made to program past an erase-block boundary using the Buffered  
Program command, the device aborts the operation. This generates a command  
sequence error, and Status Register bits SR[5,4] are set.  
If Buffered programming is attempted while VPP is at or below VPPLK, Status Register  
bits SR[4,3] are set. If any errors are detected that have set Status Register bits, the  
Status Register should be cleared using the Clear Status Register command.  
8.3  
Buffered Enhanced Factory Programming  
Buffered Enhanced Factory Programing (BEFP) speeds up Multi-Level Cell (MLC) flash  
programming. The enhanced programming algorithm used in BEFP eliminates  
traditional programming elements that drive up overhead in device programmer  
systems.  
BEFP consists of three phases: Setup, Program/Verify, and Exit (see Figure 38, “BEFP  
Flowchart” on page 80). It uses a write buffer to spread MLC program performance  
across 512 data words. Verification occurs in the same phase as programming to  
accurately program the flash memory cell to the correct bit state.  
A single two-cycle command sequence programs the entire block of data. This  
enhancement eliminates three write cycles per buffer: two commands and the word  
count for each set of 512 data words. Host programmer bus cycles fill the device’s write  
buffer followed by a status check. SR.0 indicates when data from the buffer has been  
programmed into sequential flash memory array locations.  
Following the buffer-to-flash array programming sequence, the Write State Machine  
(WSM) increments internal addressing to automatically select the next 512-word array  
boundary. This aspect of BEFP saves host programming equipment the address-bus  
setup overhead.  
Datasheet  
28  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
With adequate continuity testing, programming equipment can rely on the WSM’s  
internal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
8.3.1  
BEFP Requirements and Considerations  
Table 12: BEFP Requirements  
Parameter/Issue  
Requirement  
Notes  
Case Temperature  
T = 30°C ± 10 °C  
C
V
Nominal Vcc  
Driven to V  
CC  
VPP  
PPH  
Setup and Confirm  
Target block must be unlocked before issuing the BEFP Setup and Confirm commands  
The first-word address (WA0) of the block to be programmed must be held constant  
from the setup phase through all data streaming into the target block, until transition  
to the exit phase is desired  
Programming  
Buffer Alignment  
WA0 must align with the start of an array buffer boundary  
1
Note: Word buffer boundaries in the array are determined by A[9:1] (0x000 through 0x1FF). The alignment start point is A[9:1]  
= 0x000.  
Table 13: BEFP Considerations  
Parameter/Issue  
Cycling  
Requirement  
Notes  
For optimum performance, cycling must be limited below 50 erase cycles per block.  
BEFP programs one block at a time; all buffer data must fall within a single block  
BEFP cannot be suspended  
1
2
Programming blocks  
Suspend  
Programming the flash  
memory array  
Programming to the flash memory array can occur only when the buffer is full.  
3
Note:  
1.  
2.  
3.  
Some degradation in performance may occur if this limit is exceeded, but the internal algorithm continues to work  
properly.  
If the internal address counter increments beyond the block's maximum address, addressing wraps around to the  
beginning of the block.  
If the number of words is less than 512, remaining locations must be filled with 0xFFFF.  
8.3.2  
BEFP Setup Phase  
After receiving the BEFP Setup and Confirm command sequence, Status Register bit  
SR.7 (Ready) is cleared, indicating that the WSM is busy with BEFP algorithm startup. A  
delay before checking SR.7 is required to allow the WSM enough time to perform all of  
its setups and checks (Block-Lock status, VPP level, etc.). If an error is detected, SR.4 is  
set and BEFP operation terminates. If the block was found to be locked, SR.1 is also  
set. SR.3 is set if the error occurred due to an incorrect VPP level.  
Note: Reading from the device after the BEFP Setup and Confirm command sequence outputs  
Status Register data. Do not issue the Read Status Register command; it will be interpreted  
as data to be loaded into the buffer.  
Datasheet  
29  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
8.3.3  
BEFP Program/Verify Phase  
After the BEFP Setup Phase has completed, the host programming system must check  
SR[7,0] to determine the availability of the write buffer for data streaming. SR.7  
cleared indicates the device is busy and the BEFP program/verify phase is activated.  
SR[0] indicates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For BEFP, the count value for buffer loading is always  
the maximum buffer size of 512 words. During the buffer-loading sequence, data is  
stored to sequential buffer locations starting at address 0x00. Programming of the  
buffer contents to the flash memory array starts as soon as the buffer is full. If the  
number of words is less than 512, the remaining buffer locations must be filled with  
0xFFFF.  
Caution:  
The buffer must be completely filled for programming to occur. Supplying an  
address outside of the current block's range during a buffer-fill sequence  
causes the algorithm to exit immediately. Any data previously loaded into the  
buffer during the fill cycle is not programmed into the array.  
The starting address for data entry must be buffer size aligned, if not the BEFP  
algorithm will be aborted and the program fails and (SR.4) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the  
flash memory array; programming continues from where the previous buffer sequence  
ended. The host programming system must poll SR.0 to determine when the buffer  
program sequence completes. SR.0 cleared indicates that all buffer data has been  
transferred to the flash array; SR.0 set indicates that the buffer is not available yet for  
the next fill cycle. The host system may check full status for errors at any time, but it is  
only necessary on a block basis after BEFP exit. After the buffer fill cycle, no write  
cycles should be issued to the device until SR.0 = 0 and the device is ready for the next  
buffer fill.  
Note: Any spurious writes are ignored after a buffer fill operation and when internal program is  
proceeding.  
The host programming system continues the BEFP algorithm by providing the next  
group of data words to be written to the buffer. Alternatively, it can terminate this  
phase by changing the block address to one outside of the current block’s range.  
The Program/Verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon Program/Verify phase completion, the  
device enters the BEFP Exit phase.  
8.3.4  
8.4  
BEFP Exit Phase  
When SR.7 is set, the device has returned to normal operating conditions. A full status  
check should be performed at this time to ensure the entire block programmed  
successfully. When exiting the BEFP algorithm with a block address change, the read  
mode will not change. After BEFP exit, any valid command can be issued to the device.  
Program Suspend  
Issuing the Program Suspend command while programming suspends the  
programming operation. This allows data to be accessed from the device other than the  
one being programmed. The Program Suspend command can be issued to any device  
address. A program operation can be suspended to perform reads only. Additionally, a  
Datasheet  
30  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
program operation that is running during an erase suspend can be suspended to  
perform a read operation (see Figure 36, “Program/Erase Suspend/Resume Flowchart”  
on page 78).  
When a programming operation is executing, issuing the Program Suspend command  
requests the WSM to suspend the programming algorithm at predetermined points. The  
device continues to output Status Register data after the Program Suspend command is  
issued. Programming is suspended when Status Register bits SR[7,2] are set. Suspend  
latency is specified in Section 16.0, “Program and Erase Characteristics” on page 62.  
To read data from the device, the Read Array command must be issued. Read Array,  
Read Status Register, Read Device Identifier, Read CFI, and Program Resume are valid  
commands during a program suspend.  
During a program suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at its programming level, and WP# must remain  
unchanged while in program suspend. If RST# is asserted, the device is reset.  
8.5  
8.6  
Program Resume  
The Resume command instructs the device to continue programming, and  
automatically clears Status Register bits SR[7,2]. This command can be written to any  
address. If error bits are set, the Status Register should be cleared before issuing the  
next instruction. RST# must remain deasserted (see Figure 36, “Program/Erase  
Suspend/Resume Flowchart” on page 78).  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
V
PP is at or below VPPLK, programming operations halt and SR.3 is set indicating a VPP-  
level error. Block lock registers are not affected by the voltage level on VPP; they may  
still be programmed and read, even if VPP is less than VPPLK  
.
Figure 11: Example VPP Supply Connections  
VCC  
VCC  
VPP  
VCC  
VPP  
VCC  
VPP  
PROT #  
10K Ω  
Low-voltage Programming only  
Logic Control of Device Protection  
Factory Programming with VPP = VPPH  
Complete write/Erase Protection when VPP VPPLK  
VCC  
VCC  
VCC  
VCC  
VPP  
VPP=VPPH  
VPP  
Low Voltage Programming Only  
Full Device Protection Unavailable  
Low Voltage and Factory Programming  
Datasheet  
31  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
9.0  
Erase Operations  
Flash erasing is performed on a block basis. An entire block is erased each time an  
erase command sequence is issued, and only one block is erased at a time. When a  
block is erased, all bits within that block read as logical ones. The following sections  
describe block erase operations in detail.  
9.1  
Block Erase  
Block erase operations are initiated by writing the Block Erase Setup command to the  
address of the block to be erased (see Section 6.0, “Command Set” on page 21). Next,  
the Block Erase Confirm command is written to the address of the block to be erased. If  
the device is placed in standby (CE# deasserted) during an erase operation, the device  
completes the erase operation before entering standby.VPP must be above VPPLK and  
the block must be unlocked (see Figure 39, “Block Erase Flowchart” on page 81).  
During a block erase, the Write State Machine (WSM) executes a sequence of  
internally-timed events that conditions, erases, and verifies all bits within the block.  
Erasing the flash memory array changes “zeros” to “ones. Memory block array that are  
ones can be changed to zeros only by programming the block (see Section 8.0,  
“Program Operation” on page 27).  
The Status Register can be examined for block erase progress and errors by reading  
any address. The device remains in the Read Status Register state until another  
command is written. SR.0 indicates whether the addressed block is erasing. Status  
Register bit SR.7 is set upon erase completion.  
Status Register bit SR.7 indicates block erase status while the sequence executes.  
When the erase operation has finished, Status Register bit SR.5 indicates an erase  
failure if set. SR.3 set would indicate that the WSM could not perform the erase  
operation because VPP was outside of its acceptable limits. SR.1 set indicates that the  
erase operation attempted to erase a locked block, causing the operation to abort.  
Before issuing a new command, the Status Register contents should be examined and  
then cleared using the Clear Status Register command. Any valid command can follow  
once the block erase operation has completed.  
9.2  
Blank Check  
The Blank Check operation determines whether a specified main block is blank (i.e.  
completely erased). Without Blank Check, Block Erase would be the only other way to  
ensure a block is completely erased. Blank Check is especially useful in the case of  
erase operation interrupted by a power loss event.  
Blank check can apply to only one block at a time, and no operations other than Status  
Register Reads are allowed during Blank Check (e.g. reading array data, program,  
erase etc). Suspend and resume operations are not supported during Blank Check, nor  
is Blank Check supported during any suspended operations.  
Blank Check operations are initiated by writing the Blank Check Setup command to the  
block address. Next, the Check Confirm command is issued along with the same block  
address. When a successful command sequence is entered, the device automatically  
enters the Read Status State. The WSM then reads the entire specified block, and  
determines whether any bit in the block is programmed or over-erased.  
Datasheet  
32  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
The status register can be examined for Blank Check progress and errors by reading  
any address within the block being accessed. During a blank check operation, the  
Status Register indicates a busy status (SR7 = 0). Upon completion, the Status  
Register indicates a ready status (SR7 = 1). The Status Register should be checked for  
any errors, and then cleared. If the Blank Check operation fails, which means the block  
is not completely erased, the Status Register bit SR.5 will be set (“1”). CE# or  
OE# toggle (during polling) updates the Status Register.  
After examining the Status Register, it should be cleared by the Clear Status Register  
command before issuing a new command. The device remains in Status Register Mode  
until another command is written to the device. Any command can follow once the  
Blank Check command is complete.  
9.3  
Erase Suspend  
Issuing the Erase Suspend command while erasing suspends the block erase operation.  
This allows data to be accessed from memory locations other than the one being  
erased. The Erase Suspend command can be issued to any device address. A block  
erase operation can be suspended to perform a word or buffer program operation, or a  
read operation within any block except the block that is erase suspended (see  
Figure 36, “Program/Erase Suspend/Resume Flowchart” on page 78).  
When a block erase operation is executing, issuing the Erase Suspend command  
requests the WSM to suspend the erase algorithm at predetermined points. The device  
continues to output Status Register data after the Erase Suspend command is issued.  
Block erase is suspended when Status Register bits SR[7,6] are set. Suspend latency is  
specified in Section 16.0, “Program and Erase Characteristics” on page 62.  
To read data from the device (other than an erase-suspended block), the Read Array  
command must be issued. During Erase Suspend, a Program command can be issued  
to any block other than the erase-suspended block. Block erase cannot resume until  
program operations initiated during erase suspend complete. Read Array, Read Status  
Register, Read Device Identifier, Read CFI, and Erase Resume are valid commands  
during Erase Suspend. Additionally, Clear Status Register, Program, Program Suspend,  
Block Lock, Block Unlock, and Block Lock-Down are valid commands during Erase  
Suspend.  
During an erase suspend, deasserting CE# places the device in standby, reducing  
active current. VPP must remain at a valid level, and WP# must remain unchanged  
while in erase suspend. If RST# is asserted, the device is reset.  
9.4  
9.5  
Erase Resume  
The Erase Resume command instructs the device to continue erasing, and  
automatically clears status register bits SR[7,6]. This command can be written to any  
address. If status register error bits are set, the Status Register should be cleared  
before issuing the next instruction. RST# must remain deasserted (see Figure 36,  
“Program/Erase Suspend/Resume Flowchart” on page 78).  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is at or below VPPLK, erase operations halt and SR.3 is set indicating a VPP-level  
error.  
Datasheet  
33  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
10.0  
Security Modes  
The device features security modes used to protect the information stored in the flash  
memory array. The following sections describe each security mode in detail.  
10.1  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the flash  
memory array. All blocks power-up in a locked state to protect array data from being  
altered during power transitions. Any block can be locked or unlocked with no latency.  
Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the Block Lock and Block Unlock  
commands. Hardware-controlled security can be implemented using the Block Lock-  
Down command along with asserting WP#. Also, VPP data security can be used to  
inhibit program and erase operations (see Section 8.6, “Program Protection” on  
page 31 and Section 9.5, “Erase Protection” on page 33).  
10.1.1  
Lock Block  
To lock a block, issue the Block Lock Setup command, followed by the Block Lock  
command issued to the desired block’s address. If the Set Read Configuration Register  
command is issued after the Block Lock Setup command, the device configures the RCR  
instead.  
Block lock and unlock operations are not affected by the voltage level on VPP. The block  
lock bits may be modified and/or read even if VPP is at or below VPPLK  
.
10.1.2  
10.1.3  
Unlock Block  
The Block Unlock command is used to unlock blocks (see Section 6.0, “Command Set”  
on page 21). Unlocked blocks can be read, programmed, and erased. Unlocked blocks  
return to a locked state when the device is reset or powered down. If a block is in a  
lock-down state, WP# must be deasserted before it can be unlocked (see Figure 12,  
“Block Locking State Diagram” on page 35).  
Lock-Down Block  
A locked or unlocked block can be locked-down by writing the Block Lock-Down  
command sequence (see Section 6.0, “Command Set” on page 21). Blocks in a lock-  
down state cannot be programmed or erased; they can only be read. However, unlike  
locked blocks, their locked state cannot be changed by software commands alone. A  
locked-down block can only be unlocked by issuing the Block Unlock command with  
WP# deasserted. To return an unlocked block to locked-down state, a Block Lock-Down  
command must be issued prior to changing WP# to VIL. Locked-down blocks revert to  
the locked state upon reset or power up the device (see Figure 12, “Block Locking State  
Diagram” on page 35).  
10.1.4  
Block Lock Status  
The Read Device Identifier command is used to determine a block’s lock status (see  
Section 12.0, “Power and Reset Specifications” on page 47). Data bits DQ[1:0] display  
the addressed block’s lock status; DQ0 is the addressed block’s lock bit, while DQ1 is  
the addressed block’s lock-down bit.  
Datasheet  
34  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 12: Block Locking State Diagram  
P G M /E R A S E  
A L L O W E D  
P G M /E R A S E  
P R E V E N T E D  
L K /  
D 0 h  
L K /  
0 1 h  
[0 0 0 ]  
[0 0 1 ]  
P o w e r-U p /  
R e s e t D e fa u lt  
L K /  
2 F h  
W P # = V IL = 0  
[0 1 1 ]  
V irtu a l lo c k -  
d o w n  
[0 1 0 ]  
L o c k e d -d o w n  
A n y L o c k  
c o m m a n d s  
W P # to g g le  
L K /  
D 0 h  
L K /  
0 1 h o r 2 F h  
L o c k e d -d o w n  
is d is a b le d b y  
W P # = V IH  
[1 1 0 ]  
[1 1 1 ]  
W P # = V IH = 1  
L K /  
2 F h  
L K /  
2 F h  
P o w e r-U p /  
R e s e t D e fa u lt  
L K /  
D 0 h  
L K /  
0 1 h  
[1 0 0 ]  
[1 0 1 ]  
Note: LK: Lock Setup Command, 60h; LK/D0h: Unlock Command; LK/01h: Lock Command; LK/2Fh: Lock-Down Command.  
10.1.5  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an erase operation, first issue the Erase Suspend command.  
Monitor the Status Register until SR.7 and SR.6 are set, indicating the device is  
suspended and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing block lock or unlock operations, resume the erase  
operation using the Erase Resume command.  
Note: A Lock Block Setup command followed by any command other than Lock Block, Unlock Block,  
or Lock-Down Block produces a command sequence error and set Status Register bits SR.4  
and SR.5. If a command sequence error occurs during an erase suspend, SR.4 and SR.5  
remains set, even after the erase operation is resumed. Unless the Status Register is cleared  
using the Clear Status Register command before resuming the erase operation, possible erase  
errors may be masked by the command sequence error.  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the erase operation completes when it is  
resumed. Block lock operations cannot occur during a program suspend. See Appendix  
A, “Write State Machine” on page 85, which shows valid commands during an erase  
suspend.  
Datasheet  
35  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
10.2  
10.3  
Selectable One-Time Programmable Blocks  
The P30-65nm family devices provide backward compatible OTP security feature as  
legacy P30-130nm. Please see your local Numonyx representative for details about its  
implementation.  
Password Access  
The Password Access is a security enhancement offered on the P30-65nm device.This  
feature protects information stored in array blocks by preventing content alteration or  
reads until a valid 64-bit password is received. The Password Access may be combined  
with Non-Volatile Protection and/or Volatile Protection to create a multi-tiered solution.  
Please contact your Numonyx Sales for further details concerning Password Access.  
Datasheet  
36  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
11.0  
Registers  
When non-array reads are performed in asynchronous page mode only the first data is  
valid and all subsequent data are undefined. When a non-array read operation occurs  
as synchronous burst mode, the same word of data requested will be output on  
successive clock edges until the burst length requirements are satisfied.  
11.1  
Read Status Register  
To read the Status Register, issue the Read Status Register command at any address.  
Status Register information is available to which the Read Status Register, Word  
Program, or Block Erase command was issued. Status Register data is automatically  
made available following a Word Program, Block Erase, or Block Lock command  
sequence. Reads from the device after any of these command sequences outputs the  
device’s status until another valid command is written (e.g. Read Array command).  
The Status Register is read using single asynchronous-mode or synchronous burst  
mode reads. Status Register data is output on DQ[7:0], while 0x00 is output on  
DQ[15:8]. In asynchronous mode the falling edge of OE#, or CE# (whichever occurs  
first) updates and latches the Status Register contents. However, reading the Status  
Register in synchronous burst mode, CE# or ADV# must be toggled to update status  
data.  
The Device Write Status bit (SR.7) provides overall status of the device. Status register  
bits SR[6:1] present status and error information about the program, erase, suspend,  
VPP, and block-locked operations.  
Table 14: Status Register Description (Sheet 1 of 2)  
Status Register (SR)  
Default Value = 0x80  
Erase  
Suspend  
Status  
Program  
Suspend  
Status  
Device Write  
Status  
Program  
Status  
Block-Locked  
BEFP  
Status  
Erase Status  
V
Status  
PP  
Status  
DWS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
PSS  
2
BLS  
1
BWS  
0
3
Bit  
Name  
Description  
0 = Device is busy; program or erase cycle in progress; SR[0] valid.  
1 = Device is ready; SR[6:1] are valid.  
7
6
5
4
3
Device Write Status (DWS)  
Erase Suspend Status (ESS)  
Erase Status (ES)  
0 = Erase suspend not in effect.  
1 = Erase suspend in effect.  
0 = Erase successful.  
1 = Erase fail or program sequence error when set with SR[4,7].  
0 = Program successful.  
1 = Program fail or program sequence error when set with SR[5,7]  
Program Status (PS)  
0 = VPP within acceptable limits during program or erase operation.  
1 = VPP VPPLK during program or erase operation.  
V
Status (VPPS)  
PP  
Datasheet  
37  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 14: Status Register Description (Sheet 2 of 2)  
Status Register (SR)  
Default Value = 0x80  
0 = Program suspend not in effect.  
1 = Program suspend in effect.  
Program Suspend Status  
(PSS)  
2
1
0 = Block not locked during program or erase.  
1 = Block locked during program or erase; operation aborted.  
Block-Locked Status (BLS)  
After Buffered Enhanced Factory Programming (BEFP) data is loaded into the  
buffer:  
0 = BEFP complete.  
0
BEFP Status (BWS)  
1 = BEFP in-progress.  
Note: Always clear the Status Register prior to resuming erase operations. It avoids Status Register  
ambiguity when issuing commands during Erase Suspend. If a command sequence error  
occurs during an erase-suspend state, the Status Register contains the command sequence  
error status (SR[7,5,4] set). When the erase operation resumes and finishes, possible errors  
during the erase operation cannot be detected via the Status Register because it contains the  
previous error status.  
11.1.1  
Clear Status Register  
The Clear Status Register command clears the status register. It functions independent  
of VPP. The Write State Machine (WSM) sets and clears SR[7,6,2], but it sets bits  
SR[5:3,1] without clearing them. The Status Register should be cleared before starting  
a command sequence to avoid any ambiguity. A device reset also clears the Status  
Register.  
11.2  
Read Configuration Register  
The RCR is a 16-bit read/write register used to select bus-read mode (synchronous or  
asynchronous), and to configure synchronous burst read characteristics of the device.  
To modify RCR settings, use the Configure Read Configuration Register command (see  
Section 6.0, “Command Set” on page 21).  
RCR contents can be examined using the Read Device Identifier command, and then  
reading from offset 0x05 (see Section 12.0, “Power and Reset Specifications” on  
page 47).  
Upon power-up or exit from reset, the RCR defaults to asynchronous mode.  
The following sections describe each RCR bit.  
Table 15: Read Configuration Register Description (Sheet 1 of 2)  
Read Configuration Register (RCR)  
WAIT  
Delay  
Burst  
Wrap  
Read  
Mode  
WAIT  
Polarity  
Burst  
Seq  
CLK  
Edge  
Latency Count  
LC[3:0]  
RES  
RES  
RES  
Burst Length  
RM  
15  
Bit  
WP  
10  
R
9
WD  
8
BS  
7
CE  
6
R
5
R
4
BW  
3
BL[2:0]  
1
14  
13  
12  
11  
2
0
Name  
Description  
0 = Synchronous burst-mode read  
1 = Asynchronous page-mode read (default)  
15  
Read Mode (RM)  
Datasheet  
38  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 15: Read Configuration Register Description (Sheet 2 of 2)  
0010 =Code 2  
0011 =Code 3  
0100 =Code 4  
0101 =Code 5  
0110 =Code 6  
0111 =Code 7  
1000 =Code 8  
14:11  
Latency Count (LC[3:0])  
1001 =Code 9  
1010 =Code 10  
1011 =Code 11  
1100 =Code 12  
1101 =Code 13  
1110 =Code 14  
1111 =Code 15 (default)  
(Other bit settings are reserved)  
0 =WAIT signal is active low (default)  
1 =WAIT signal is active high  
WAIT Polarity (WP)  
10  
9
Reserved (R)  
Default “0, Non-changeable  
0 =WAIT deasserted with valid data  
8
WAIT Delay (WD)  
Burst Sequence (BS)  
1 =WAIT deasserted one data cycle before valid data (default)  
7
Default “0, Non-changeable  
Clock Edge (CE)  
0 = Falling edge  
1 = Rising edge (default)  
6
5:4  
3
Reserved (R)  
Default “0, Non-changeable  
Burst Wrap (BW)  
0 =Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 =No Wrap; Burst accesses do not wrap within burst length (default)  
001 =4-word burst  
010 =8-word burst  
011 =16-word burst  
111 =Continuous-word burst (default)  
2:0  
Burst Length (BL[2:0])  
(Other bit settings are reserved)  
11.2.1  
Read Mode  
The Read Mode (RM) bit selects synchronous burst-mode or asynchronous page-mode  
operation for the device. When the RM bit is set, asynchronous page mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
11.2.2  
Latency Count  
The Latency Count (LC) bits tell the device how many clock cycles must elapse from the  
rising edge of ADV# (or from the first valid clock edge after ADV# is asserted) until the  
first valid data word is to be driven onto DQ[15:0]. The input clock frequency is used to  
determine this value and Figure 13 shows the data output latency for the different  
settings of LC. The maximum Latency Count for P30-65nm would be Code 4 based on  
the Max Clock frequency specification of 52 mhz, and there will be zero WAIT States  
when bursting within the word line. Please also refer to Section 11.2.3, “End of Word  
Line (EOWL) Considerations” on page 41 for more information on EOWL.  
Refer to Table 16, “LC and Frequency Support” on page 41 for Latency Code Settings.  
Datasheet  
39  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 13: First-Access Latency Count  
CLK [C]  
Valid  
Address  
Address [A]  
ADV# [V]  
Code 0 (Reserved)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
DQ15-0 [D/Q]  
Code 1  
(Reserved  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 2  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Code 3  
Code 4  
Code 5  
Code 6  
Code 7  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Datasheet  
40  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 16: LC and Frequency Support  
Latency Count Settings  
Frequency Support (MHz)  
3
4
40  
52  
Figure 14: Example Latency Count Setting using Code 3  
tData  
0
1
2
3
4
CLK  
CE#  
ADV#  
Address  
A[MAX:1]  
Code 3  
High-Z  
Data  
D[15:0]  
R103  
11.2.3  
End of Word Line (EOWL) Considerations  
End of Wordline (EOWL) WAIT states can result when the starting address of the burst  
operation is not aligned to a 16-word boundary; that is, A[3:0] of start address does  
not equal 0x0. Figure 15, “End of Wordline Timing Diagram” on page 41 illustrates the  
end of wordline WAIT state(s), which occur after the first 16-word boundary is reached.  
The number of data words and the number of WAIT states is summarized in Table 17,  
“End of Wordline Data and WAIT state Comparison” on page 42for both P30-130nm  
and P30-65nm devics.  
Figure 15: End of Wordline Timing Diagram  
Latency Count  
CLK  
A[Max:1]  
DQ[15:0]  
Address  
Data  
Data  
Data  
ADV#  
OE#  
WAIT  
EOWL  
Datasheet  
41  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 17: End of Wordline Data and WAIT state Comparison  
P30-130nm  
P30-65nm  
Latency Count  
Data States  
WAIT States  
Data States  
WAIT States  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Not Supported  
Not Supported  
0 to 1  
Not Supported  
Not Supported  
Not Supported  
Not Supported  
0 to 2  
4
4
4
4
4
4
0 to 2  
0 to 3  
0 to 4  
0 to 5  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
0 to 3  
0 to 4  
0 to 5  
0 to 6  
0 to 7  
0 to 8  
0 to 9  
0 to 10  
0 to 11  
0 to 12  
0 to 13  
0 to 14  
0 to 6  
Not Supported  
Not Supported  
11.2.4  
WAIT Polarity  
The WAIT Polarity bit (WP), RCR.10 determines the asserted level (VOH or VOL) of WAIT.  
When WP is set, WAIT is asserted high (default). When WP is cleared, WAIT is asserted  
low. WAIT changes state on valid clock edges during active bus cycles (CE# asserted,  
OE# asserted, RST# deasserted).  
11.2.4.1  
WAIT Signal Function  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(RCR.15 =0). The WAIT signal is only “deasserted” when data is valid on the bus.  
When the device is operating in synchronous non-array read mode, such as read  
status, read ID, or read CFI. The WAIT signal is also “deasserted” when data is valid on  
the bus.  
WAIT behavior during synchronous non-array reads at the end of word line works  
correctly only on the first data access.  
When the device is operating in asynchronous page mode, asynchronous single word  
read mode, and all write operations, WAIT is set to a deasserted state as determined  
by RCR.10. See Figure 22, “Asynchronous Single-Word Read (ADV# Latch)” on  
page 55, and Figure 23, “Asynchronous Page-Mode Read Timing” on page 56.  
Datasheet  
42  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 18: WAIT Functionality Table  
Condition  
WAIT  
Notes  
CE# = ‘1, OE# = ‘X’ or CE# = ‘0, OE# = ‘1’  
CE# =’0, OE# = ‘0’  
High-Z  
Active  
1
1
Synchronous Array Reads  
Synchronous Non-Array Reads  
All Asynchronous Reads  
All Writes  
Active  
1
Active  
1
Deasserted  
High-Z  
1
1,2  
Notes:  
1.  
2.  
Active: WAIT is asserted until data becomes valid, then desserts  
When OE# = V during writes, WAIT = High-Z  
IH  
11.2.5  
11.2.6  
WAIT Delay  
The WAIT Delay (WD) bit controls the WAIT assertion-delay behavior during  
synchronous burst reads. WAIT can be asserted either during or one data cycle before  
valid data is output on DQ[15:0]. When WD is set, WAIT is deasserted one data cycle  
before valid data (default). When WD is cleared, WAIT is deasserted during valid data.  
Burst Sequence  
The Burst Sequence (BS) bit selects linear-burst sequence (default). Only linear-burst  
sequence is supported. Table 19 shows the synchronous burst sequence for all burst  
lengths, as well as the effect of the Burst Wrap (BW) setting.  
Table 19: Burst Sequence Word Ordering (Sheet 1 of 2)  
Burst Addressing Sequence (DEC)  
Start  
Addr.  
(DEC)  
Burst  
Wrap  
(RCR.3)  
4-Word Burst  
(BL[2:0] = 0b001)  
8-Word Burst  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
(BL[2:0] = 0b010)  
0
1
2
3
4
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-  
4
5
6
7
0
0
0
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
6-7-8-9-10…15-0-1-2-  
3-4-5  
7-8-9-10…15-0-1-2-3-  
4-5-6  
14  
15  
0
0
14-15-16-17-18-19-20-  
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
15-16-17-18-19-20-21-  
0
1
0-1-2-3  
0-1-2-3-4-5-6-7  
0-1-2-3-4…14-15  
0-1-2-3-4-5-6-…  
Datasheet  
43  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 19: Burst Sequence Word Ordering (Sheet 2 of 2)  
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1-2-3-4  
2-3-4-5  
3-4-5-6  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
7-8-9-10-11…21-22  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
3-4-5-6-7-8-9-10  
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
14-15-16-17-18-19-20-  
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
15-16-17-18-19-20-21-  
11.2.7  
11.2.8  
Clock Edge  
The Clock Edge (CE) bit selects either a rising (default) or falling clock edge for CLK.  
This clock edge is used at the start of a burst cycle, to output synchronous data, and to  
assert/deassert WAIT.  
Burst Wrap  
The Burst Wrap (BW) bit determines whether 4-word, 8-word, or 16-word burst length  
accesses wrap within the selected word-length boundaries or cross word-length  
boundaries. When BW is set, burst wrapping does not occur (default). When BW is  
cleared, burst wrapping occurs.  
When performing synchronous burst reads with BW set (no wrap), an output delay may  
occur when the burst sequence crosses its first device-row (16-word) boundary. If the  
burst sequence’s start address is 4-word aligned, then no delay occurs. If the start  
address is at the end of a 4-word boundary, the worst case output delay is one clock  
cycle less than the first access Latency Count. This delay can take place only once, and  
doesn’t occur if the burst sequence does not cross a device-row boundary. WAIT  
informs the system of this delay when it occurs.  
11.2.9  
Burst Length  
The Burst Length bits (BL[2:0]) select the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word or  
continuous.  
Continuous-burst accesses are linear only, and do not wrap within any word length  
boundaries (see Table 19, “Burst Sequence Word Ordering” on page 43). When a burst  
cycle begins, the device outputs synchronous burst data until it reaches the end of the  
“burstable” address space.  
11.3  
One-Time-Programmable (OTP) Registers  
The device contains 17 one-time programmable (OTP) registers that can be used to  
implement system security measures and/or device identification. Each OTP register  
can be individually locked.  
The first 128-bit OTP Register is comprised of two 64-bit (8-word) segments. The lower  
64-bit segment is pre-programmed at the Numonyx factory with a unique 64-bit  
number. The upper 64-bit segment, as well as the other sixteen 128-bit OTP Registers,  
Datasheet  
44  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
are blank. Users can program these registers as needed. Once programmed, users can  
then lock the OTP Register(s) to prevent additional bit programming (see Figure 16,  
“OTP Register Map” on page 45).  
The OTP Registers contain one-time programmable (OTP) bits; when programmed, PR  
bits cannot be erased. Each OTP Register can be accessed multiple times to program  
individual bits, as long as the register remains unlocked.  
Each OTP Register has an associated Lock Register bit. When a Lock Register bit is  
programmed, the associated OTP Register can only be read; it can no longer be  
programmed. Additionally, because the Lock Register bits themselves are OTP, when  
programmed, Lock Register bits cannot be erased. Therefore, when a OTP Register is  
locked, it cannot be unlocked.  
.
Figure 16: OTP Register Map  
0x109  
128-bit Protection Register 16  
(User-Programmable)  
0x102  
0x91  
128-bit Protection Register 1  
(User-Programmable)  
0x8A  
0x89  
Lock Register 1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit Protection Register 0  
64-bit Segment  
(Factory-Programmed)  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
11.3.1  
Reading the OTP Registers  
The OTP Registers can be read from OTP-RA address. To read the OTP Register, first  
issue the Read Device Identifier command at OTP-RA address to place the device in the  
Read Device Identifier state (see Section 6.0, “Command Set” on page 21). Next,  
Datasheet  
45  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
perform a read operation using the address offset corresponding to the register to be  
read. Table 10, “Device Identifier Information” on page 26 shows the address offsets of  
the OTP Registers and Lock Registers. PR data is read 16 bits at a time.  
11.3.2  
Programming the OTP Registers  
To program an OTP Register, first issue the Program OTP Register command at the  
parameter’s base address plus the offset of the desired OTP Register location(see  
Section 6.0, “Command Set” on page 21). Next, write the desired OTP Register data to  
the same OTP Register address (see Figure 16, “OTP Register Map” on page 45).  
The device programs the 64-bit and 128-bit user-programmable OTP Register data 16  
bits at a time (see Figure 41, “Protection Register Programming Flowchart” on  
page 83). Issuing the Program OTP Register command outside of the OTP Register’s  
address space causes a program error (SR.4 set). Attempting to program a locked OTP  
Register causes a program error (SR.4 set) and a lock error (SR.1 set).  
Note:  
When programming the OTP bits in the OTP registers for a Top Parameter Device,  
the following upper address bits must also be driven properly: A[Max:17] driven high  
(VIH) for TSOP and Easy BGA packages, and A[Max:16] driven high (VIH) for QUAD+  
SCSP.  
11.3.3  
Locking the OTP Registers  
Each OTP Register can be locked by programming its respective lock bit in the Lock  
Register. To lock a OTP Register, program the corresponding bit in the Lock Register by  
issuing the Program Lock Register command, followed by the desired Lock Register  
data (see Section 6.0, “Command Set” on page 21). The physical addresses of the Lock  
Registers are 0x80 for register 0 and 0x89 for register 1. These addresses are used  
when programming the lock registers (see Table 10, “Device Identifier Information” on  
page 26).  
Bit 0 of Lock Register 0 is already programmed during the manufacturing process by  
Numonyx factory, locking the lower half segment of the first 128-bit OTP Register. Bit 1  
of Lock Register 0 can be programmed by user to the upper half segment of the first  
128-bit OTP Register. When programming Bit 1 of Lock Register 0, all other bits need to  
be left as ‘1’ such that the data programmed is 0xFFFD.  
Lock Register 1 controls the locking of the upper sixteen 128-bit OTP Registers. Each  
bit of Lock Register 1 corresponds to a specific 128-bit OTP Register. Programming a bit  
in Lock Register 1 locks the corresponding 128-bit OTP Register; e.g., programming  
LR1.0 locks the corresponding OTP Register 1.  
Caution:  
After being locked, the OTP Registers cannot be unlocked.  
Datasheet  
46  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
12.0  
Power and Reset Specifications  
12.1  
Power-Up and Power-Down  
Power supply sequencing is not required if VPP is connected to VCC or VCCQ. Otherwise  
V
CC and VCCQ should attain their minimum operating voltage before applying VPP.  
Power supply transitions should only occur when RST# is low. This protects the device  
from accidental programming or erasure during power transitions.  
12.2  
Reset Specifications  
Asserting RST# during a system reset is important with automated program/erase  
devices because systems typically expect to read from flash memory when coming out  
of reset. If a CPU reset occurs without a flash memory reset, proper CPU initialization  
may not occur. This is because the flash memory may be providing status information,  
instead of array data as expected. Connect RST# to the same active low reset signal  
used for CPU initialization.  
Also, because the device is disabled when RST# is asserted, it ignores its control inputs  
during power-up/down. Invalid bus conditions are masked, providing a level of memory  
protection.  
Table 20: Power and Reset  
Num  
Symbol  
Parameter  
RST# pulse width low  
Min  
Max  
Unit  
Notes  
P1  
t
100  
-
-
ns  
1,2,3,4  
1,3,4,7  
1,3,4,7  
1,4,5,6  
PLPH  
RST# low to device reset during erase  
RST# low to device reset during program  
25  
25  
-
P2  
P3  
t
t
PLRH  
VCCPH  
-
us  
V
Power valid to RST# de-assertion (high)  
300  
CC  
Notes:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
These specifications are valid for all device versions (packages and speeds).  
The device may reset if t is < t , but this is not guaranteed.  
PLPH  
PLPH MIN  
Not applicable if RST# is tied to Vcc.  
Sampled, but not 100% tested.  
When RST# is tied to the V supply, device will not be ready until t  
after V V  
VCCPH  
.
CC  
CCQ  
VCCPH  
CC  
CC  
CCMIN  
When RST# is tied to the V  
supply, device will not be ready until t  
after V V  
.
CCMIN  
Reset completes within t  
if RST# is asserted while no erase or program operation is executing.  
PLPH  
Datasheet  
47  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 17: Reset Operation Waveforms  
P1  
P2  
P2  
P3  
R5  
VIH  
VIL  
(
A) Reset during  
read mode  
RST# [P]  
RST# [P]  
RST# [P]  
VCC  
Abort  
Complete  
R5  
(B) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
Abort  
Complete  
R5  
(C) Reset during  
VIH  
VIL  
program or block erase  
P1  
P2  
VCC  
0V  
(D) VCC Power-up to  
RST# high  
12.3  
Power Supply Decoupling  
Flash memory devices require careful power supply de-coupling. Three basic power  
supply current considerations are 1) standby current levels, 2) active current levels,  
and 3) transient peaks produced when CE# and OE# are asserted and deasserted.  
When the device is accessed, many internal conditions change. Circuits within the  
device enable charge-pumps, and internal logic states change at high speed. All of  
these internal activities produce transient signals. Transient current magnitudes depend  
on the device outputs’ capacitive and inductive loading. Two-line control and correct  
de-coupling capacitor selection suppress transient voltage peaks.  
Because flash memory devices draw their power from VCC, VPP, and VCCQ, each power  
connection should have a 0.1 µF ceramic capacitor to ground. High-frequency,  
inherently low-inductance capacitors should be placed as close as possible to package  
leads.  
Additionally, for every eight devices used in the system, a 4.7 µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
Datasheet  
48  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
13.0  
Maximum Ratings and Operating Conditions  
13.1  
Absolute Maximum Ratings  
Warning:  
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent  
damage. These are stress ratings only.  
Table 21:  
Parameter  
Maximum Rating  
Notes  
Temperature under bias  
Storage temperature  
–40 °C to +85 °C  
–65 °C to +125 °C  
–0.5 V to +4.1 V  
–0.2 V to +10 V  
–0.2 V to +2.5 V  
–0.2 V to +4.1 V  
100 mA  
Voltage on any signal (except V , V and V )  
CCQ  
1
1,2,3  
1
CC  
PP  
V
V
V
voltage  
voltage  
PP  
CC  
voltage  
1
CCQ  
Output short circuit current  
4
Notes:  
1.  
Voltages shown are specified with respect to V . Minimum DC voltage is –0.5 V on input/output signals and –0.2 V on  
SS  
V
, V  
, and V . During transitions, this level may undershoot to –2.0 V for periods less than 20 ns. Maximum DC  
CC  
CCQ PP  
voltage on V is V + 0.5 V, which, during transitions, may overshoot to V + 2.0 V for periods less than 20 ns.  
CC  
CC  
CC  
Maximum DC voltage on input/output signals and V  
CCQ  
is V  
+ 0.5 V, which, during transitions, may overshoot to  
CCQ  
CCQ  
V
+ 2.0 V for periods less than 20 ns.  
Maximum DC voltage on V may overshoot to +11.5 V for periods less than 20 ns.  
2.  
3.  
PP  
Program/erase voltage is typically 1.7 V – 2.0 V. 9.0 V can be applied for 80 hours maximum total, to any blocks for  
1000 cycles maximum. 9.0 V program/erase voltage may reduce block cycling capability.  
4.  
Output shorted for no more than one second. No more than one output shorted at a time.  
13.2  
Operating Conditions  
Note: Operation beyond the “Operating Conditions” is not recommended and extended exposure  
beyond the “Operating Conditions” may affect device reliability.  
Table 22: Operating Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
T
Operating Temperature  
V Supply Voltage  
CC  
–40  
1.7  
+85  
2.0  
3.6  
3.6  
3.6  
9.5  
80  
-
°C  
1
3
C
V
CC  
CMOS inputs  
TTL inputs  
1.7  
V
I/O Supply Voltage  
Voltage Supply (Logic Level)  
CCQ  
2.4  
V
V
V
0.9  
PPL  
PPH  
PPH  
PP  
V
Buffered Enhanced Factory Programming V  
8.5  
PP  
PP  
PP  
PP  
PP  
t
Maximum V Hours  
PP  
V
V
V
V
= V  
-
Hours  
Cycles  
PPH  
2
Main and Parameter Blocks  
Main Blocks  
= V  
100,000  
100,000  
100,000  
PPL  
Block  
Erase  
Cycles  
= V  
= V  
-
PPH  
PPH  
Parameter Blocks  
-
Notes:  
1.  
2.  
T
= Case Temperature.  
C
In typical operation VPP program voltage is V  
.
PPL  
Datasheet  
49  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
14.0  
Electrical Specifications  
14.1  
DC Current Characteristics  
Table 23: DC Current Characteristics (Sheet 1 of 2)  
CMOS  
TTL Inputs  
(V  
2.4 V - 3.6  
V)  
Inputs  
=
CCQ  
(V  
=
CCQ  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
1.7V - 3.6 V)  
Typ  
-
Max  
±1  
Typ  
-
Max  
±2  
V
V
V
= V Max  
CC  
CC  
I
Input Load Current  
µA  
µA  
= V  
Max  
LI  
CCQ  
= V  
CCQ  
CCQ  
or V  
SS  
IN  
1,6  
1.2  
Output  
Leakage  
Current  
V
V
V
= V Max  
CC CC  
I
DQ[15:0], WAIT  
-
±1  
-
±10  
210  
= V  
CCQ  
Max  
LO  
CCQ  
CCQ  
= V  
or V  
SS  
IN  
256-Mbit  
512-Mbit  
65  
210  
65  
V
V
= V Max  
CC CC  
= V  
Max  
CCQ  
CCQ  
I
I
,
V
Standby,  
CC  
CE# = V  
RST# = V  
RST# = V (for I  
WP# = V  
CCS  
CCQ  
CCQ  
µA  
(for I  
)
CCS  
CCD  
Power-Down  
CCD  
130  
26  
420  
31  
130  
26  
420  
31  
)
SS  
IH  
Asynchronous Single-  
Word f = 5 MHz (1 CLK)  
16-Word  
Read  
mA  
mA  
Page-Mode Read  
16-Word  
Read  
V
= V Max  
CC  
12  
19  
16  
16  
22  
18  
12  
19  
16  
16  
22  
18  
CC  
f = 13 MHz (17 CLK)  
Average  
CE# = V  
OE# = V  
Inputs: V or  
V
IL  
V
CC  
Read  
Current  
I
mA 8-Word Read  
1
CCR  
IH  
IL  
16-Word  
Read  
Synchronous Burst  
f = 52 MHz, LC=4  
mA  
IH  
Continuous  
Read  
21  
24  
21  
24  
mA  
35  
35  
65  
50  
50  
35  
35  
65  
50  
50  
V
V
= V , Pgm/Ers in progress  
1,3,5  
PP  
PP  
PPL  
I
I
V
V
Program Current,  
Erase Current  
CCW,  
CC  
CC  
mA  
µA  
CCE  
= V  
, Pgm/Ers in progress  
1,3,5  
PPH  
V
Program Suspend  
256-Mbit  
512-Mbit  
210  
210  
CC  
I
Current,  
V
Suspend Current  
CE# = V  
progress  
; suspend in  
CCWS,  
CCQ  
I
Erase  
1,3,4  
CCES  
CC  
70  
225  
5
70  
225  
5
I
V
V
V
Standby Current,  
Program Suspend Current,  
Erase Suspend Current  
PPS,  
PP  
PP  
PP  
I
0.2  
0.2  
µA  
V
= V , suspend in progress  
1,3,7  
PPWS,  
PP  
PPL  
IPPES  
I
V
Read  
2
15  
2
15  
µA  
V
V
V
V
V
= V  
= V  
= V  
= V  
= V  
1,3  
-3  
PPR  
PP  
PP  
PP  
PP  
PP  
PP  
PP  
PPL  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
0.05  
0.05  
0.05  
0.05  
0.10  
0.10  
0.10  
0.10  
program in progress  
program in progress  
erase in progress  
erase in progress  
PPL,  
PPH,  
PPL,  
PPH,  
I
V
Program Current  
mA  
PPW  
I
V
Erase Current  
mA  
3
PPE  
PP  
Datasheet  
50  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 23: DC Current Characteristics (Sheet 2 of 2)  
CMOS  
TTL Inputs  
(V  
2.4 V - 3.6  
V)  
Inputs  
=
CCQ  
(V  
=
CCQ  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
1.7V - 3.6 V)  
Typ  
Max  
Typ  
Max  
0.05  
0.05  
0.10  
0.10  
0.05  
0.05  
0.10  
0.10  
V
V
= V  
= V  
erase in progress  
erase in progress  
PP  
PPL,  
PPH,  
I
V
Blank Check  
mA  
3
PPBC  
PP  
PP  
Notes:  
1.  
2.  
3.  
4.  
5.  
All currents are RMS unless noted. Typical values at typical V , T = +25 °C.  
CC C  
I
is the average current measured over any 5 ms time interval 5 µs after CE# is deasserted.  
CCS  
Sampled, not 100% tested.  
I
I
is specified with the device deselected. If device is read while in erase suspend, current is I  
CCW CCE  
plus I  
.
CCR  
CCES  
, I  
measured over typical or max times specified in Section 16.0, “Program and ECraCEsSe  
Characteristics” on page 62.  
6.  
7.  
if V > V the input load current increases to 10uA max.  
IN CC  
the I  
I
I
Will increase to 200uA when Vpp/WP# is at V  
PPS, PPWS, PPES PPH.  
14.2  
DC Voltage Characteristics  
Table 24: DC Voltage Characteristics  
(1)  
CMOS Inputs  
TTL Inputs  
(V  
= 1.7 V – 3.6 V)  
(V  
= 2.4 V – 3.6 V)  
CCQ  
CCQ  
Sym  
Parameter  
Unit  
Test Conditions  
Notes  
Min  
Max  
Min  
Max  
V
Input Low Voltage  
Input High Voltage  
-0.5  
– 0.4  
0.4  
+ 0.5  
-0.5  
2.0  
0.6  
+ 0.5  
V
V
IL  
2
-
V
V
V
V
CCQ  
IH  
CCQ  
CCQ  
V
= V Min  
CC  
CCQ  
= 100 µA  
CC  
V
Output Low Voltage  
Output High Voltage  
-
0.2  
-
-
0.2  
-
V
V
V
= V  
Min  
OL  
CCQ  
I
OL  
V
= V Min  
CC  
CC  
V
V
– 0.2  
V
– 0.2  
V
I
= V Min  
-
OH  
CCQ  
CCQ  
CCQ  
OH  
CCQ  
= –100 µA  
V
V
Lock-Out Voltage  
-
0.4  
-
0.4  
V
V
V
3
-
PPLK  
PP  
V
V
Lock Voltage  
Lock Voltage  
1.0  
0.9  
-
-
1.0  
0.9  
-
-
LKO  
CC  
V
V
-
LKOQ  
CCQ  
V
Voltage Supply  
PP  
V
1.5  
8.5  
3.6  
9.5  
1.5  
8.5  
3.6  
9.5  
V
V
PPL  
(Logic Level)  
Buffered Enhanced  
V
Factory Programming  
PPH  
V
PP  
Notes:  
1.  
2.  
3.  
Synchronous read mode is not supported with TTL inputs.  
V
V
can undershoot to –0.4 V and V can overshoot to V  
+ 0.4 V for durations of 20 ns or less.  
IL  
PP  
IH  
CCQ  
V  
inhibits erase and program operations. Do not use V  
and V  
PPLK  
PPL PPH  
.
outside their valid ranges  
Datasheet  
51  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
15.0  
AC Characteristics  
15.1  
AC Test Conditions  
Figure 18: AC Input/Output Reference Waveform  
VCCQ  
Input VCCQ/2  
Test Points  
VCCQ/2 Output  
0V  
IO_REF.WMF  
Note: AC test inputs are driven at V  
for Logic "1" and 0 V for Logic "0." Input/output timing begins/ends at V  
/2. Input rise  
CCQ  
CCQ  
and fall times (10% to 90%) < 5 ns. Worst case speed occurs at V = V  
.
CC  
CCMin  
Figure 19: Transient Equivalent Testing Load Circuit  
Device  
Under Test  
Out  
CL  
Notes:  
1.  
2.  
See the following table for component values.  
Test configuration component value for worst-case speed conditions.  
3.  
C includes jig capacitance.  
L
.
Table 25: Test Configuration Component Value For Worst Case Speed Conditions  
Test Configuration  
Min Standard Test  
C
(pF)  
L
V
30  
CCQ  
Figure 20: Clock Input AC Waveform  
R201  
VIH  
CLK [C]  
VIL  
R202  
R203  
Datasheet  
52  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
15.2  
Capacitance  
Table 26: Capacitance  
Parameter  
Signals  
Min  
Typ  
Max  
Unit  
Condition  
Notes  
Address, Data,  
CE#, WE#, OE#,  
RST#, CLK, ADV#,  
WP#  
Typ temp = 25 °C,  
Max temp = 85 °C,  
Input Capacitance  
Output Capacitance  
2
2
6
4
7
5
pF  
pF  
V
= (0 V - 2.0 V),  
= (0 V - 3.6 V),  
1,2,3  
CC  
CCQ  
V
Discrete silicon die  
Data, WAIT  
Notes:  
1.  
Capacitance values are for a single die; for 2-die and 4-die stacks, multiply the capacitance values by the number of  
dies in the stack.  
2.  
3.  
Sampled, but not 100% tested.  
Silicon die capacitance only; add 1 pF for discrete packages.  
15.3  
AC Read Specifications  
Table 27: AC Read Specifications (Sheet 1 of 2)  
Num  
Symbol  
Parameter  
Min  
Max  
Unit  
Note  
Asynchronous Specifications  
Easy BGA  
TSOP  
100  
110  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
R1  
R2  
R3  
t
t
t
Read cycle time  
AVAV  
AVQV  
ELQV  
-
Easy BGA  
TSOP  
100  
110  
100  
110  
25  
-
-
Address to output valid  
CE# low to output valid  
Easy BGA  
TSOP  
-
-
-
R4  
R5  
R6  
R7  
R8  
R9  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
OE# low to output valid  
RST# high to output valid  
-
-
1,2  
1
150  
-
CE# low to output in low-Z  
OE# low to output in low-Z  
CE# high to output in high-Z  
OE# high to output in high-Z  
0
0
-
1,3  
1,2,3  
-
20  
-
15  
1,3  
Output hold from first occurring address, CE#, or  
OE# change  
R10  
tOH  
0
-
ns  
R11  
R12  
R13  
R15  
R16  
R17  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
CE# pulse width high  
17  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
1
CE# low to WAIT valid  
CE# high to WAIT high-Z  
OE# low to WAIT valid  
OE# low to WAIT in low-Z  
OE# high to WAIT in high-Z  
17  
20  
17  
-
-
1,3  
1
-
t
t
0
-
GLTX  
1,3  
20  
GHTZ  
Latching Specifications  
Datasheet  
53  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 27: AC Read Specifications (Sheet 2 of 2)  
Num  
Symbol  
Parameter  
Address setup to ADV# high  
Min  
Max  
Unit  
Note  
R101  
R102  
tAVVH  
tELVH  
10  
10  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CE# low to ADV# high  
Easy BGA  
TSOP  
100  
110  
-
R103  
t
ADV# low to output valid  
1
VLQV  
R104  
R105  
R106  
R108  
R111  
tVLVH  
tVHVL  
tVHAX  
ADV# pulse width low  
ADV# pulse width high  
Address hold from ADV# high  
Page address access  
10  
10  
9
-
-
1,4  
1
t
t
-
25  
-
APA  
RST# high to ADV# high  
30  
phvh  
Clock Specifications  
R200  
R201  
R202  
R203  
fCLK  
CLK frequency  
CLK period  
-
19.2  
5
52  
-
MHz  
MHz  
ns  
tCLK  
1,3,5  
tCH/CL  
tFCLK/RCLK  
CLK high/low time  
CLK fall/rise time  
(5)  
-
0.3  
3
ns  
Synchronous Specifications  
R301  
R302  
R303  
R304  
R305  
R306  
R307  
R311  
R312  
tAVCH/L  
tVLCH/L  
tELCH/L  
tCHQV / tCLQV  
tCHQX  
Address setup to CLK  
ADV# low setup to CLK  
CE# low setup to CLK  
CLK to output valid  
9
9
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,6  
9
-
-
17  
-
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
3
1,6  
1,4,6  
1,6  
1
tCHAX  
10  
-
-
tCHTV  
17  
-
tCHVL  
CLK Valid to ADV# Setup  
WAIT Hold from CLK  
3
tCHTX  
3
-
1,6  
Notes:  
1.  
See Figure 18, “AC Input/Output Reference Waveform” on page 52 for timing measurements and max  
allowable input slew rate.  
2.  
3.  
4.  
5.  
6.  
OE# may be delayed by up to t  
Sampled, not 100% tested.  
– t  
after CE#’s falling edge without impact to t  
ELQV  
GLQV ELQV.  
Address hold in synchronous burst mode is t  
or t  
, whichever timing specification is satisfied first.  
VHAX  
CHAX  
Synchronous read mode is not supported with TTL level inputs.  
Applies only to subsequent synchronous reads.  
Datasheet  
54  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 21: Asynchronous Single-Word Read (ADV# Low)  
R1  
R2  
Address [A]  
ADV#  
R3  
R8  
CE# [E}  
R4  
R9  
OE# [G]  
R15  
R17  
WAIT [T]  
R7  
R6  
Data [D/Q]  
R5  
RST# [P]  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Figure 22: Asynchronous Single-Word Read (ADV# Latch)  
R1  
R2  
Address [A]  
A[1:0][A]  
R101  
R105  
R106  
ADV#  
CE# [E}  
OE# [G]  
WAIT [T]  
R3  
R8  
R4  
R9  
R15  
R17  
R7  
R6  
R10  
Data [D/Q]  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Datasheet  
55  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 23: Asynchronous Page-Mode Read Timing  
R2  
A[Max:4] [A]  
A[3:0]  
Valid Address  
R10  
R10  
R10  
R10  
0
1
2
F
R101  
R105  
R106  
ADV#  
R3  
R8  
CE# [E]  
R4  
R9  
OE# [G]  
WAIT [T]  
R6  
R13  
R108  
Q2  
R108  
Q3  
R108  
Q16  
DATA [D/Q]  
Q1  
Note: WAIT shown deasserted during asynchronous read mode (RCR.10=0, WAIT asserted low).  
Figure 24: Synchronous Single-Word Array or Non-array Read Timing  
R301  
R306  
CLK [C]  
R2  
Address [A]  
R101  
R104  
R106  
R105  
ADV# [V]  
R303  
R102  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R7  
R9  
R15  
R307  
R304  
R17  
R312  
R4  
R305  
Data [D/Q]  
1.  
2.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
This diagram illustrates the case in which an n-word burst is initiated to the flash memory array and it is terminated by  
CE# deassertion after the first word in the burst.  
Datasheet  
56  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 25: Continuous Burst Read, Showing An Output Delay Timing  
R301  
R302  
R306  
R304  
R304  
R304  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
R106  
R105  
R303  
R102  
R3  
CE# [E]  
OE# [G]  
R15  
R307  
R304  
R312  
WAIT [T]  
R4  
R7  
R305  
R305  
R305  
R305  
Data [D/Q]  
Notes:  
1.  
WAIT is driven per OE# assertion during synchronous array or non-array read, and can be configured to assert either  
during or one data cycle before valid data.  
At the end of Word Line; the delay incurred when a burst access crosses a 16-word boundary and the starting address is  
not 4-word boundary aligned.  
2.  
Figure 26: Synchronous Burst-Mode Four-Word Read Timing  
R302  
R301  
R306  
CLK [C]  
Address [A]  
ADV# [V]  
R2  
R101  
A
R105  
R102  
R106  
R303  
R3  
R8  
CE# [E]  
OE# [G]  
WAIT [T]  
R9  
R15  
R17  
R307  
R4  
R304  
R305  
Q0  
R7  
R304  
R10  
Data [D/Q]  
Q1  
Q2  
Q3  
Note: WAIT is driven per OE# assertion during synchronous array or non-array read. WAIT asserted during initial latency and  
deasserted during valid data (RCR.10 = 0, WAIT asserted low).  
Datasheet  
57  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
15.4  
AC Write Specifications  
Table 28: AC Write Specifications  
Num  
W1  
Symbol  
tPHWL  
Parameter  
Min  
Max  
Unit  
Notes  
RST# high recovery to WE# low  
CE# setup to WE# low  
150  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,2,3  
1,2,3  
1,2,4  
W2  
tELWL  
W3  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
WE# write pulse width low  
Data setup to WE# high  
Address setup to WE# high  
CE# hold from WE# high  
Data hold from WE# high  
Address hold from WE# high  
WE# pulse width high  
50  
50  
50  
0
W4  
W5  
W6  
1,2  
W7  
0
W8  
0
W9  
20  
200  
0
1,2,5  
W10  
W11  
W12  
W13  
W14  
W16  
V
V
setup to WE# high  
PP  
PP  
1,2,3,7  
hold from Status read  
tQVBL  
WP# hold from Status read  
WP# setup to WE# high  
WE# high to OE# low  
0
1,2,3,7  
tBHWH  
tWHGL  
tWHQV  
200  
0
1,2,9  
WE# high to read valid  
t
+ 35  
1,2,3,6,10  
AVQV  
Write to Asynchronous Read Specifications  
W18 tWHAV WE# high to Address valid  
Write to Synchronous Read Specifications  
0
-
ns  
1,2,3,6,8  
W19  
W20  
W28  
tWHCH/L  
tWHVH  
tWHVL  
WE# high to Clock valid  
WE# high to ADV# high  
WE# high to ADV# low  
19  
19  
7
-
-
-
ns  
ns  
ns  
1,2,3,6,10  
Write Specifications with Clock Active  
W21  
W22  
tVHWL  
tCHWL  
ADV# high to WE# low  
Clock high to WE# low  
-
-
20  
20  
ns  
ns  
1,2,3,11  
Notes:  
1.  
2.  
3.  
4.  
Write timing characteristics during erase suspend are the same as write-only operations.  
A write operation can be terminated with either CE# or WE#.  
Sampled, not 100% tested.  
Write pulse width low (t  
or t  
) is defined from CE# or WE# low (whichever occurs last) to CE# or WE# high  
WLWH  
ELEH  
WLWH  
(whichever occurs first). Hence, t  
= t  
= t  
= t  
.
ELWH  
ELEH  
WLEH  
5.  
Write pulse width high (t  
or t  
) is defined from CE# or WE# high (whichever occurs first) to CE# or WE# low  
WHWL  
EHEL  
(whichever occurs last). Hence, t  
= t  
= t  
= t  
).  
EHWL  
WHWL  
EHEL  
WHEL  
6.  
7.  
8.  
tWHVH or tWHCH/L must be met when transiting from a write cycle to a synchronous burst read.  
V
and WP# should be at a valid level until erase or program success is determined.  
PP  
This specification is only applicable when transiting from a write cycle to an asynchronous read. See spec W19 and W20  
for synchronous read.  
9.  
10.  
When doing a Read Status operation following any command that alters the Status Register, W14 is 20 ns.  
Add 10 ns if the write operation results in a RCR or block lock status change, for the subsequent read operation to  
reflect this change.  
11.  
These specs are required only when the device is in a synchronous mode and clock is active during address setup phase.  
Datasheet  
58  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 27: Write-to-Write Timing  
W5  
W8  
W5  
W8  
Address [A]  
W2  
W6  
W2  
W6  
CE# [E}  
W3  
W9  
W3  
WE# [W]  
OE# [G]  
W4  
W7  
W4  
W7  
Data [D/Q]  
W1  
RST# [P]  
Figure 28: Asynchronous Read-to-Write Timing  
R1  
R2  
W5  
W8  
Address [A]  
R3  
R8  
R9  
CE# [E}  
R4  
OE# [G]  
W2  
W3  
W6  
WE# [W]  
R15  
R17  
WAIT [T]  
R7  
R6  
W7  
R10  
W4  
Data [D/Q]  
RST# [P]  
Q
D
R5  
Note: WAIT deasserted during asynchronous read and during write. WAIT High-Z during write per OE# deasserted.  
Datasheet  
59  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 29: Write-to-Asynchronous Read Timing  
W5  
W8  
R1  
Address [A]  
ADV# [V]  
W2  
W6  
R10  
CE# [E}  
WE# [W]  
OE# [G]  
WAIT [T]  
W3  
W18  
W14  
R15  
R17  
R4  
R2  
R3  
R8  
R9  
W4  
W7  
Data [D/Q]  
RST# [P]  
D
Q
W1  
Figure 30: Synchronous Read-to-Write Timing  
Latency Count  
R301  
R302  
R306  
CLK [C]  
R2  
W5  
R101  
W18  
Address [A]  
R105  
R102  
R106  
R104  
ADV# [V]  
R303  
R11  
R13  
R3  
W6  
CE# [E]  
OE# [G]  
R4  
R8  
W21  
W22  
W21  
W22  
W2  
W8  
W15  
W3  
W9  
WE#  
R16  
R307  
R304  
R312  
WAIT [T]  
R7  
R305  
W7  
Q
D
D
Data [D/Q]  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR.10=0, WAIT asserted low). Clock is  
ignored during write operation.  
Datasheet  
60  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 31: Write-to-Synchronous Read Timing  
R302  
R301  
R2  
CLK  
W5  
W8  
R306  
R106  
Address [A]  
R104  
R303  
ADV#  
W6  
W2  
R11  
CE# [E}  
W18  
W19  
W20  
W3  
WE# [W]  
OE# [G]  
WAIT [T]  
R4  
R15  
R3  
R307  
W7  
R304  
R305  
R304  
W4  
D
Q
Q
Data [D/Q]  
RST# [P]  
W1  
Note: WAIT shown deasserted and High-Z per OE# deassertion during write operation (RCR.10=0, WAIT asserted low).  
Datasheet  
61  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
16.0  
Program and Erase Characteristics  
Table 29: Program and Erase Specifications  
V
V
PPH  
PPL  
Note  
s
Num  
Symbol  
Parameter  
Unit  
Min  
Conventional Word Programming  
Single word 150  
Buffered Programming  
Typ  
Max  
Min  
Typ  
Max  
Program  
Time  
W200  
t
-
456  
-
150  
456  
µs  
1
PROG/W  
Aligned 32-Word, BP  
time (32 words)  
-
-
-
-
-
176  
216  
272  
396  
700  
716  
900  
-
-
-
-
-
176  
216  
272  
396  
700  
716  
900  
Aligned 64-Wd, BP time  
(64 words)  
Program  
Time  
Aligned 128-Wd, BP time  
(128 words)  
W250  
t
1140  
1690  
3016  
1140  
1690  
3016  
µs  
1
PROG  
Aligned 256-Wd, BP time  
(256 words)  
one full buffer, BP time  
(512 words)  
Buffered Enhanced Factory Programming  
W451  
W452  
t
t
Single byte  
BEFP Setup  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
-
0.5  
-
-
-
1,2  
1
BEFP/B  
Program  
µs  
5
BEFP/Setup  
Erase and Suspend  
W500  
W501  
W600  
W601  
W602  
t
t
t
t
t
32-KByte Parameter  
128-KByte Main  
Program suspend  
Erase suspend  
-
0.8  
0.8  
20  
4.0  
4.0  
25  
25  
-
-
-
-
-
-
0.8  
0.8  
20  
4.0  
4.0  
25  
25  
-
ERS/PB  
ERS/MB  
SUSP/P  
SUSP/E  
ERS/SUSP  
Erase Time  
s
-
1
-
Suspend  
Latency  
-
20  
20  
µs  
Erase to Suspend  
-
blank check  
-
500  
500  
1,3  
W702  
t
blank check Main Array Block  
3.2  
-
-
3.2  
-
ms  
BC/MB  
Notes:  
1.  
Typical values measured at T = +25 °C and nominal voltages. Performance numbers are valid for all speed versions.  
C
Excludes system overhead. Sampled, but not 100% tested.  
2.  
3.  
Averaged over entire device.  
W602 is the typical time between an initial block erase or erase resume command and the a subsequent erase suspend  
command. Violating the specification repeatedly during any particular block erase may cause erase failures.  
Datasheet  
62  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
17.0  
Ordering Information  
17.1  
Discrete Products  
Figure 32: Decoder for Discrete P30-65nm  
J S 2 8 F 2 5 6 P 3 0 B F  
Device Lithography  
65nm  
Package Designator  
TE =56 -Lead TSOP, leaded  
JS = 56 -Lead TSOP, lead-free  
RC =64-Ball Easy BGA,leaded  
PC=64- Ball Easy BGA ,lead-free  
Parameter Location  
B = Bottom Parameter  
T = Top Parameter  
Product Line Designator  
Product Family  
28F = Numonyx™ Flash Memory  
P 30 = Numonyx™ StrataFlash® Embedded Memory (P30)  
Device Density  
256 =256-Mbit  
VCC =1. 72. 0V  
VCCQ =1.7– 3. 6V  
Table 30: Valid Combinations for Discrete Products  
256-Mbit  
TE28F256P30BF  
TE28F256P30TF  
JS28F256P30BF  
JS28F256P30TF  
RC28F256P30BF  
RC28F256P30TF  
PC28F256P30BF  
PC28F256P30TF  
Datasheet  
63  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
17.2  
SCSP Products  
Figure 33: Decoder for SCSP P30-65nm  
P F 4 8 F 4 4 0 0 P 0 V B 0 E  
Package Designator  
Device Details  
E = 65nm lithography  
RD = NumonyxSCSP, leaded  
PF = NumonyxSCSP, lead-free  
RC = 64- Ball Easy BGA , leaded  
PC = 64- Ball Easy BGA, lead- free  
Ballout Descriptor  
Q = QUAD+ ballout  
0 = Discrete ballout  
Product Designator  
48F = NumonyxFlash Memory Only  
Parameter Location  
B = Bottom Parameter  
T = Top Parameter  
Device Density  
0
4
= No die  
= 256-Mbit  
I/ O Voltage, CE # Configuration  
Z = Individual Chip Enable(s)  
V = Virtual Chip Enable(s)  
VCC = 1. 7 to 2. 0 V  
Product Family  
VCCQ =1. 7 to 3.6 V  
P = NumonyxStrataFlash® Embedded Memory (P30)  
0 = No die  
Table 31: Valid Combinations for Dual-Die Products  
*
256-Mbit  
512-Mbit  
RD48F4400P0VBQE  
PF48F4400P0VBQE  
RC48F4400P0VB0E  
PC48F4400P0VB0E  
PF48F4000P0ZBQE  
PF48F4000P0ZTQE  
Note:  
The “B” parameter is used for Top(Die1)/Bot(Die2) stack option in the 512-Mbit density.  
Datasheet  
64  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Appendix A Supplemental Reference Information  
A.1  
Common Flash Interface Tables  
The Common Flash Interface (CFI) is part of an overall specification for multiple  
command-set and control-interface descriptions. This appendix describes the database  
structure containing the data returned by a read operation after issuing the Read CFI  
command (see Section 6.0, “Command Set” on page 21). System software can parse  
this database structure to obtain information about the flash device, such as block size,  
density, bus width, and electrical specifications. The system software will then know  
which command set(s) to use to properly perform flash writes, block erases, reads and  
otherwise control the flash device.  
A.1.1  
CFI Structure Output  
The CFI database allows system software to obtain information for controlling the flash  
device. This section describes the device’s CFI-compliant interface that allows access to  
CFI data.  
CFI data are presented on the lowest-order data outputs (DQ7-0) only. The numerical  
offset value is the address relative to the maximum bus width supported by the device.  
On this family of devices, the CFI table device starting address is a 10h, which is a word  
address for x16 devices.  
For a word-wide (x16) device, the first two CFI-structure bytes, ASCII “Q” and “R,”  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device  
outputs 00h data on upper bytes. The device outputs ASCII “Q” in the low byte (DQ7-0  
)
and 00h in the high byte (DQ15-8).  
At CFI addresses containing two or more bytes of information, the least significant data  
byte is presented at the lower address, and the most significant data byte is presented  
at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal  
notation, so the “h” suffix has been dropped. In addition, since the upper byte of word-  
wide devices is always “00h,the leading “00” has been dropped from the table  
notation and only the lower byte value is shown. Any x16 device outputs can be  
assumed to have 00h on the upper byte in this mode.  
Table 32: Summary of CFI Structure Output as a Function of Device and Mode  
Hex  
Hex  
Code  
51  
52  
59  
ASCII  
Value  
"Q"  
"R"  
"Y"  
Device  
Offset  
00010:  
00011:  
00012:  
Device Addresses  
Datasheet  
65  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 33: Example of CFI Structure Output of x16 Devices  
Offset  
A -A  
Hex Code  
Value  
D
-D  
0
X
1
15  
00010h  
00011h  
00012h  
00013h  
00014h  
00015h  
00016h  
00017h  
00018h  
...  
0051  
0052  
0059  
“Q”  
“R”  
“Y”  
P_ID  
LO  
PrVendor ID#  
P_ID  
HI  
P
LO  
PrVendor TblAdr  
P
HI  
A_ID  
LO  
AltVendor ID#  
...  
A_ID  
...  
HI  
A.1.2  
CFI Structure Overview  
The CFI command causes the flash component to display the Common Flash Interface  
(CFI) structure or “database.The structure sub-sections and address locations are  
summarized below.  
Table 34: CFI Structure  
00001-Fh Reserved  
Reserved for vendor-specific information  
Command set ID and vendor data offset  
Device timing & voltage information  
Flash device layout  
00010h  
0001Bh  
00027h  
CFI query identification string  
System interface information  
Device geometry definition  
Vendor-defined additional information specific  
to the Primary Vendor Algorithm  
(3)  
P
Primary Numonyx-specific Extended Query Table  
Notes:  
1.  
Refer to the CFI Structure Output section and offset 28h for the detailed definition of offset address as a function of device  
bus width and mode.  
2.  
3.  
BA = Block Address beginning location (i.e., 08000h is block 1’s beginning location when the block size is 32-KWord).  
Offset 15 defines “P” which points to the Primary Numonyx-specific Extended CFI Table.  
A.1.3  
Read CFI Identification String  
The Identification String provides verification that the component supports the  
Common Flash Interface specification. It also indicates the specification version and  
supported vendor-specified command set(s).  
Datasheet  
66  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 35: CFI Identification  
Offset Length  
Description  
Query-unique ASCII string “QRY“  
Add. Hex Code Value  
10h  
3
10:  
11:  
12:  
13:  
14:  
15:  
16:  
17:  
--51  
--52  
--59  
--01  
--00  
--0A  
--01  
--00  
--00  
--00  
--00  
"Q"  
"R"  
"Y"  
13h  
15h  
17h  
19h  
2
2
2
2
Primary vendor command set and control interface ID code.  
16-bit ID code for vendor-specified algorithms  
Extended Query Table primary algorithmaddress  
Alternate vendor command set and control interface ID code.  
0000h means no second vendor-specified algorithmexists 18:  
Secondary algorithmExtended Query Table address.  
0000h means none exists  
19:  
1A:  
Datasheet  
67  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
A.1.4  
Device Geometry Definition  
Table 36: System Interface Information  
He x  
Code  
--17  
Offset Length Description  
Add.  
1B:  
Value  
1.7V  
1Bh  
1Ch  
1Dh  
1Eh  
1
1
1
1
VCC logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
V
CC logic supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
1C:  
1D:  
1E:  
--20  
--85  
--95  
--08  
2.0V  
8.5V  
bits 4–7 BCD volts  
VPP [programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
V
PP [programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
9.5V  
bits 4–7 HEX volts  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
“n” such that typical single w ord programtime-out = 2n µ-sec  
“n” such that typical full buffer w rite time-out = 2n µ-sec  
“n” such that typical block erase time-out = 2n m-sec  
“n” such that typical full chip erase time-out = 2n m-sec  
“n” such that maximum w ord program time-out = 2n times typical  
“n” such that maximum buf f er w rite time-out = 2n times typical  
“n” such that maximumblock erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
256µs  
--0A 1024µs  
--0A  
--00  
--01  
1s  
NA  
512µs  
--02 4096µs  
--02  
--00  
4s  
NA  
Datasheet  
68  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 37: Device Geometry Definition  
He x  
Code  
Offset Length  
Description  
Add.  
Value  
See table below  
27h  
1
“n” such that device size = 2n in number of bytes  
Flash device interface code assignment:  
27:  
"n" such that n+1 specifies the bit field that represents the flash device w idth  
capabilities as described in the table:  
7
6
5
4
3
x64  
11  
2
x32  
10  
1
x16  
9
0
x8  
8
28h  
2
15  
14  
13  
12  
28:  
--01  
x16  
29:  
2A:  
2B:  
--00  
--0A  
--00  
2Ah  
2Ch  
2
1
“n” such that maximumnumber of bytes in w rite buffer = 2n  
1024  
Number of erase block regions (x) w ithin device:  
1. x = 0 means no erase blocking; the device erases in bulk  
2. x specifies the number of device regions w ith one or  
more contiguous same-size erase blocks.  
See table below  
2C:  
3. Symmetrically blocked partitions have one blocking region  
2Dh  
31h  
35h  
4
4
4
Erase Block Region 1 Information  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
See table below  
See table below  
See table below  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Reserved for future erase block region information  
Address  
256-Mbit  
–B  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
35:  
36:  
37:  
38:  
--19  
--01  
--00  
--06  
--00  
--02  
--03  
--00  
--80  
--00  
--FE  
--00  
--00  
--02  
--00  
--00  
--00  
--00  
--19  
--01  
--00  
--06  
--00  
--02  
--FE  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--00  
--00  
Datasheet  
69  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
A.1.5  
Numonyx-Specific Extended CFI Table  
Table 38: Primary Vendor-Specific Extended CFI  
Offset(1) Length  
P = 10Ah  
Description  
(Optional flash features and commands)  
Hex  
Add. Code Value  
(P+0)h  
(P+1)h  
(P+2)h  
(P+3)h  
(P+4)h  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
3
Primary extended query table  
10A  
10B:  
10C:  
10D:  
10E:  
10F:  
110:  
111:  
--50  
--52  
--49  
--31  
--34  
--E6  
--01  
--00  
"P"  
"R"  
"I"  
"1"  
"4"  
Unique ASCII string “PRI“  
1
1
4
Major version number, ASCII  
Minor version number, ASCII  
Optional feature and command support (1=yes, 0=no)  
bits 11–29 are reserved; undefined bits are “0.” If bit 31 is  
“1” then another 31 bit field of Optional features follows at  
the end of the bit–30 field.  
112: See table below  
bit 0 Chip erase supported  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 7 Pagemode read supported  
bit 8 Synchronous read supported  
bit 9 Simultaneous operations supported  
bit 10 Extended Flash Array Blocks supported  
bit 0 = 0  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 0  
bit 10 = 0  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
See  
table  
below  
bit 30 CFI Link(s) to follow  
bit 30  
bit 31  
bit 31 Another "Optional Features" field to follow  
(P+9)h  
1
2
Supported functions after suspend: read Array, Status, Query  
Other supported operations are:  
bits 1–7 reserved; undefined bits are “0”  
113:  
--01  
bit 0 Program supported after erase suspend  
Block status register mask  
bit 0 = 1  
114:  
115:  
Yes  
(P+A)h  
(P+B)h  
--03  
--00  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status register active  
bit 1 Block Lock-Dow n Bit Status active  
bit 4 EFA Block Lock-Bit Status register active  
bit 0 = 1  
Yes  
Yes  
No  
No  
1.8V  
bit 1 = 1  
bit 4 = 0  
bit 5 = 0  
Address  
Discrete  
512-Mbit  
–T –B  
–- –- die 1 (B) die 2 (T) die 1 (T) die 2 (B)  
--00 --00 --40  
–B  
–T  
(P+C)
112:  
116:  
--18  
--00  
--40  
--00  
(P+D)
PP
bits 0–3 BCD value in 100 mV  
117:  
--90  
9.0V  
bits 4–7 HEX value in volts  
Datasheet  
70  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 39: Protection Register Information  
Offset(1) Length  
Description  
Hex  
P = 10Ah  
(P+E)h  
(Optional flash features and commands)  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection fields are available  
Add. Code Value  
1
4
118:  
--02  
2
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
Protection Field 1: Protection Description  
119:  
11A:  
11B:  
11C:  
--80  
--00  
--03 8 byte  
--03 8 byte  
80h  
00h  
This field describes user-available One Time Programmable  
(OTP) Protection register bytes. Some are pre-programmed  
w ith device-unique serial numbers. Others are user  
programmable. Bits 0–15 point to the Protection register Lock  
byte, the section’s first byte. The follow ing bytes are factory  
pre-programmed and user-programmable.  
bits 0–7 = Lock/bytes Jedec-plane physical low address  
bits 8-15 = Lock/bytes Jedec-plane physical high address  
bits 16-23 = "n" such that 2n =factory pre-programmed bytes  
bits 24-31 = "n" such that 2n =user programmable bytes  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
(P+17)h  
(P+18)h  
(P+19)h  
(P+1A)h  
(P+1B)h  
(P+1C)h  
10  
Protection Field 2: Protection Description  
Bits 0–31 point to the Protection register physical Lock-w ord  
address in the Jedec-plane.  
11D:  
11E:  
11F:  
120:  
121:  
122:  
123:  
124:  
125:  
126:  
--89  
--00  
--00  
--00  
--00  
--00  
--00  
--10  
--00  
89h  
00h  
00h  
00h  
0
0
0
16  
0
16  
Follow ing bytes are factory or user-programmable.  
bits 32–39 = “n” such that n = factory pgm'd groups (low byte)  
bits 40–47 = “n” such that n = factory pgm'd groups (high byte)  
bits 48–55 = “n” \ 2n = factory programmable bytes/group  
bits 56–63 = “n” such that n = user pgm'd groups (low byte)  
bits 64–71 = “n” such that n = user pgm'd groups (high byte)  
bits 72–79 = “n” such that 2n = user programmable bytes/group  
--04  
Datasheet  
71  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 34: Burst Read Information  
Offset(1) Length  
P = 10Ah  
Description  
(Optional flash features and commands)  
Page Mode Read capability  
Hex  
Add. Code Value  
(P+1D)h  
1
127:  
--05 32 byte  
bits 0–7 = “n” such that 2n HEX value represents the number of  
read-page bytes. See offset 28h for device w ord w idth to  
determine page-mode data output w idth. 00h indicates no  
read page buffer.  
(P+1E)h  
(P+1F)h  
1
1
Number of synchronous mode read configuration fields that follow . 00h  
indicates no burst capability.  
128:  
129:  
--04  
--01  
4
4
Synchronous mode read capability configuration 1  
Bits 3–7 = Reserved  
bits 0–2 “n” such that 2n+1 HEX value represents the maximumnumber of  
continuous synchronous reads w hen the device is configured for its  
maximumw ord w idth. A value of 07h indicates that the device is capable of  
continuous linear bursts that w ill output data until the internal burst counter  
reaches the end of the device's burstable address space. This filed's 3-bit  
value can be w ritten directly to the Read Configuration Register bits 0-2 if  
the device is configured for its maximumw ord w idth. See offset 28h for w ord  
w idth to determine the burst data output w idth.  
(P+20)h  
(P+21)h  
(P+22)h  
1
1
1
Synchronous mode read capability configuration 2  
Synchronous mode read capability configuration 3  
Synchronous mode read capability configuration 4  
12A:  
12B:  
12C:  
--02  
--03  
--07  
8
16  
Cont  
Table 40: Partition and Erase Block Region Information  
Offset(1)  
P = 10Ah  
Bottom Top  
See table below  
Address  
Description  
(Optional flash features and commands)  
Bot  
Top  
Len  
Number of device hardw are-partition regions w ithin the device.  
x = 0: a single hardw are partition device (no fields follow ).  
x specifies the number of device partition regions containing  
one or more contiguous erase block regions.  
1
12D:  
12D:  
(P+23)h (P+23)h  
Datasheet  
72  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 41: Partition Region 1 Information  
Offset(1)  
P = 10Ah  
Bottom Top  
See table below  
Address  
Description  
(Optional flash features and commands)  
Bot  
Top  
12E  
12F  
130:  
131:  
132:  
Len  
(P+24)h (P+24)h Data size of this Parition Region Information field  
(P+25)h (P+25)h (# addressable locations, including this field)  
(P+26)h (P+26)h Number of identical partitions w ithin the partition region  
(P+27)h (P+27)h  
(P+28)h (P+28)h Number of program or erase operations allow ed in a partition  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
2
12E:  
12F  
130:  
131:  
132:  
2
1
(P+29)h (P+29)h Simultaneous program or erase operations allow ed in other partitions w hile a  
partition in this region is in Program mode  
1
1
1
133:  
134:  
135:  
133:  
134:  
135:  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+2A)h (P+2A)h Simultaneous program or erase operations allow ed in other partitions w hile a  
partition in this region is in Erase mode  
bits 0–3 = number of simultaneous Program operations  
bits 4–7 = number of simultaneous Erase operations  
(P+2B)h (P+2B)h Types of erase block regions in this Partition Region.  
x = 0 = no erase blocking; the Partition Region erases in bulk  
x = number of erase block regions w / contiguous same-size  
erase blocks. Symmetrically blocked partitions have one  
blocking region. Partition size = (Type 1 blocks)x(Type 1 block sizes)  
+(Type 2 blocks)x(Type 2 block sizes)+...+(Type n blocks)x(Type n block  
sizes)  
Datasheet  
73  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 42: Partition Region 1 Information (continued)  
Offset(1)  
P = 10Ah  
Bottom Top  
See table below  
Address  
Description  
(Optional flash features and commands)  
Bot  
Top  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
Len  
(P+2C)h (P+2C)h Partition Region 1 Erase Block Type 1 Information  
4
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
(P+2D)h (P+2D)h  
(P+2E)h (P+2E)h  
(P+2F)h (P+2F)h  
(P+30)h (P+30)h Partition 1 (Erase Block Type 1)  
(P+31)h (P+31)h Block erase cycles x 1000  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2
1
(P+32)h (P+32)h Partition 1 (erase block Type 1) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+33)h (P+33)h Partition 1 (erase block Type 1) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
13D:  
13D:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host w rites permitte  
Partition Region 1 (Erase Block Type 1) Programming Region Information  
(P+34)h (P+34)h  
(P+35)h (P+35)h  
(P+36)h (P+36)h  
(P+37)h (P+37)h  
(P+38)h (P+38)h  
(P+39)h (P+39)h  
bits 0–7 = x, 2^x = Programming Region aligned size (bytes)  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode valid size in bytes  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
bits 24-31 = Reserved  
bits 32-39 = z = Control Mode invalid size in bytes  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
(P+3A)h (P+3A)h Partition Region 1 Erase Block Type 2 Information  
4
(P+3B)h (P+3B)h  
(P+3C)h (P+3C)h  
(P+3D)h (P+3D)h  
(P+3E)h (P+3E)h Partition 1 (Erase Block Type 2)  
(P+3F)h (P+3F)h Block erase cycles x 1000  
bits 0–15 = y, y+1 = # identical-size erase blks in a partition  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
2
1
(P+40)h (P+40)h Partition 1 (erase block Type 2) bits per cell; internal EDAC  
bits 0–3 = bits per cell in erase region  
bit 4 = internal EDAC used (1=yes, 0=no)  
bits 5–7 = reserve for future use  
(P+41)h (P+41)h Partition 1 (erase block Type 2) page mode and synchronous mode capabilities  
defined in Table 10.  
1
6
14B:  
14B:  
bit 0 = page-mode host reads permitted (1=yes, 0=no)  
bit 1 = synchronous host reads permitted (1=yes, 0=no)  
bit 2 = synchronous host w rites permitte  
Partition Region 1 (Erase Block Type 2) Programming Region Information  
(P+42)h (P+42)h  
(P+43)h (P+43)h  
(P+44)h (P+44)h  
(P+45)h (P+45)h  
(P+46)h (P+46)h  
(P+47)h (P+47)h  
bits 0–7 = x, 2^x = Programming Region aligned size (  
)
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bytes  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
bits 8–14 = Reserved; bit 15 = Legacy flash operation (ignore 0:7)  
bits 16–23 = y = Control Mode  
bits 24-31 = Reserved  
size in bytes  
valid  
bits 32-39 = z = Control Mode  
size in bytes  
invalid  
bits 40-46 = Reserved; bit 47 = Legacy flash operation (ignore 23:16 & 39:32)  
Datasheet  
74  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 43: Partition and Erase Block Region Information  
Partition and Erase-block Region Information  
Address  
256-Mbit  
–B  
–T  
12D:  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--FE  
--00  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A  
13B:  
13C:  
13D:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
151:  
Datasheet  
75  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 44: CFI Link Information  
Offset(1) Len  
Description  
(Optional flash features and commands)  
CFI Link Field bit definitions  
Hex  
P = 10Ah  
(P+48)h  
(P+49)h  
(P+4A)h  
(P+4B)h  
Add. Code Value  
4
1
152:  
See  
table  
Bits 0–9 = Address offset (w ithin 32Mbit segment) of referenced CFI table  
Bits 10–27 = nth 32Mbit segment of referenced CFI table  
Bits 28–30 = Memory Type  
153:  
154:  
155:  
below  
Bit 31 = Another CFI Link field immediately follow s  
CFI Link Field Quantity Subfield definitions  
Bits 0–3 = Quantity field (n such that n+1 equals quantity)  
Bit 4 = Table & Die relative location  
(P+4C)h  
156:  
See  
table  
below  
Bit 5 = Link Field & Table relative location  
Bits 6–7 = Reserved  
Address  
Discrete  
512-Mbit  
–B  
–-  
–T  
–-  
–B  
–T  
die 1 (B)  
--10  
--20  
die 2 (T)  
die 1 (T)  
--10  
--20  
die 2 (B)  
--FF  
--FF  
152:  
153:  
154:  
155:  
156:  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--00  
--00  
--FF  
--00  
--10  
--00  
--10  
--FF  
--FF  
Datasheet  
76  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
A.2  
Flowcharts  
Figure 35: Word Program Flowchart  
Start  
Command Cycle  
- Issue Program Command  
- Address = location to program  
- Data = 0x40  
Data Cycle  
- Address = location to program  
- Data = Data to program  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal D7  
No  
No  
Program Suspend  
See Suspend/  
Resume Flowchart  
No  
D7 = '1'  
?
Suspend  
?
Errors  
?
Yes  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
Error-Handler  
User Defined Routine  
End  
Datasheet  
77  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 36: Program/Erase Suspend/Resume Flowchart  
Start  
Command Cycle  
- Issue Suspend Command  
- Address = any device address  
- Data = 0xB0  
Command Cycle  
Wait  
tSUSP  
- Issue Resume Command  
- Address = any device address  
- Data = 0xD0  
Read Status Register  
See Status Register  
Flowchart  
Erase  
Suspended ?  
(SR.6 = '1')  
Program  
Suspended ?  
(SR.2 = '1')  
Program Device  
See Program  
Flowchart  
Yes  
No  
Yes  
Program ?  
Yes  
No  
No  
Program  
Suspended ?  
(SR.2 = '1')  
Yes  
Yes  
Read ?  
Read Device  
No  
No  
Yes  
Error Handler  
User-Defined Routine  
Any Errors ?  
No  
End  
Datasheet  
78  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 37: Buffer Program Flowchart  
Bus  
Operation  
Command  
Comments  
Data = E8H  
Write to  
Buffer  
Write  
Read  
Addr = Block Address  
Start  
SR.7 = Valid  
Addr = Block Address  
Device  
Check SR.7  
1 = Device WSM is Busy  
0 = Device WSM is Ready  
Use Single Word  
Supports Buffer  
Standby  
No  
Programming  
Writes?  
Yes  
Data = N-1 = Word Count  
N = 0 corresponds to count = 1  
Addr = Block Address  
Write  
(Notes1, 2)  
Set Timeout or  
Loop Counter  
Write  
(Notes3, 4)  
Data = Write Buffer Data  
Addr = Start Address  
Get Next  
Target Address  
Write  
(Notes5, 6)  
Data = Write Buffer Data  
Addr = Block Address  
Issue Write to Buffer  
Command E8h and  
Block Address  
Program  
Confirm  
Data = D0H  
Addr = Block Address  
Write  
Read  
Status register Data  
CE# and OE# low updates SR  
Addr = Block Address  
Read Status Register  
(at Block Address)  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
No  
Standby  
Timeout  
or Count  
Expired?  
0 = No  
Is WSM Ready?  
SR.7 =  
1. Word count values on DQ0-DQ7 are loaded into the Count  
register. Count ranges for this device are N = 0000h to 0001Fh.  
2. The device outputs the status register when read.  
3. Write Buffer contents will be programmed at the device start  
address or destination flash address.  
Yes  
1 = Yes  
Write Word Count,  
Block Address  
4. Align the start address on a Write Buffer boundary for  
maximum programming performance(i.e., A4–A0 of the start  
address = 0).  
Write Buffer Data,  
Start Address  
5. The device aborts the Buffered Program command if the  
current address is outside the original block address.  
6. The Status register indicates an "improper command  
sequence" if the Buffered Program command is aborted. Follow  
this with a Clear Status Register command.  
X = X + 1  
Write Buffer Data,  
Block Address  
X = 0  
Full status check can be done after all erase and write  
sequences complete. Write FFh after the last operation to reset  
the device to read array mode.  
No  
No  
Abort Bufferred  
Program?  
X = N?  
Yes  
Yes  
Write Confirm D0h  
and Block Address  
Write to another  
Block Address  
Buffered Program  
Aborted  
Read Status Register  
No  
Suspend  
Program  
Loop  
Yes  
0
Suspend  
Program  
SR.7 =?  
Full Status  
Check if Desired  
1
Yes  
Another Buffered  
Programming?  
No  
Program Complete  
Datasheet  
79  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 38: BEFP Flowchart  
Setup Phase  
Start  
Program/Verify Phase  
Exit Phase  
Read Status  
Register  
Read Status  
Register  
A
B
Issue BEFP Setup Cmd  
(Data = 0x80)  
No (SR.0=1)  
Buffer Ready ?  
No (SR.7=0)  
BEFP Exited ?  
Issue BEFP Confirm Cmd  
(Data = 00D0h)  
Yes (SR.0=0)  
Write Data Word to Buffer  
Yes (SR.7=1)  
BEFP  
Setup  
Delay  
Full Status  
Register check for  
errors  
No  
Buffer Full ?  
Yes  
Read Status  
Register  
Finish  
Read Status  
Register  
Yes (SR.7=0)  
BEFP Setup  
Done ?  
A
No (SR.0=1)  
No (SR.7=1)  
Program  
Done ?  
SR Error Handler  
(User-Defined)  
Yes (SR.0=0)  
Exit  
Program  
Yes  
More Data ?  
No  
Write 0xFFFFh outside Block  
B
Datasheet  
80  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 39: Block Erase Flowchart  
Start  
Command Cycle  
- Issue Erase command  
- Address = Block to be erased  
- Data = 0x20  
Confirm Cycle  
- Issue Confirm command  
- Address = Block to be erased  
- Data = Erase confirm (0xD0)  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal SR.7  
No  
No  
Erase Suspend  
See Suspend/  
Resume Flowchart  
Yes  
No  
SR.7 = '1'  
?
Suspend  
?
Errors  
?
Yes  
Yes  
Error-Handler  
User Defined Routine  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
End  
Datasheet  
81  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 40: Block Lock Operations Flowchart  
Start  
No  
Check Lock  
Status ?  
Command Cycle  
- Issue Block Lock Setup Command  
- Address = block address  
- Data = 0x60  
Yes  
Command Cycle  
- Issue Read Device ID Command  
- Address = block base address + 0x2  
- Data = 0x90  
Data Cycle  
- Issue Lock/Unlock Command  
- Address = block address  
- Data = 0x01 (Lock Block) -or-  
0xD0 (Unlock Block) -or-  
Data Cycle  
- Read Block Lock Status  
0x2F (Lock Down Block)  
Block Status WP# D1  
D0  
0
1
Unlocked  
Locked  
1
1
0
0
0
1
Read Status Register  
See Status Register  
Flowchart  
Locked Down  
1
Done  
Yes  
No  
Error Handler  
User-Defined Routine  
Errors ?  
Datasheet  
82  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 41: Protection Register Programming Flowchart  
Start  
OTP Program Setup  
- Write 0xC0  
- OTP Address  
Confirm Data  
- Write OTP Address and Data  
Check Ready Status  
- Read Status Register Command not required  
- Perform read operation  
- Read Ready Status on signal SR.7  
No  
SR.7 = '1'  
?
Yes  
Read Status Register  
- Toggle CE# or OE# to update Status Register  
- See Status Register Flowchart  
End  
Datasheet  
83  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Figure 42: Status Register Flowchart  
Start  
Command Cycle  
- Issue Status Register Command  
- Address = any device address  
- Data = 0x70  
Data Cycle  
- Read Status Register SR[7:0]  
No  
SR7 = '1'  
Yes  
Yes  
- Set/Reset  
by WSM  
Erase Suspend  
See Suspend/Resume Flowchart  
SR6 = '1'  
No  
Yes  
Program Suspend  
See Suspend/Resume Flowchart  
SR2 = '1'  
No  
Error  
Command Sequence  
Yes  
Yes  
SR5 = '1'  
SR4 = '1'  
No  
No  
Error  
Erase Failure  
Yes  
Error  
Program Failure  
SR4 = '1'  
No  
- Set by WSM  
- Reset by user  
- See Clear Status  
Register Command  
Yes  
Error  
< VPENLK/PPLK  
SR3 = '1'  
VPEN/PP  
No  
Yes  
Error  
Block Locked  
SR1 = '1'  
No  
End  
Datasheet  
84  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
A.3  
Write State Machine  
The Next State Table shows the command state transitions (Next State Table) based on  
incoming commands. Only one partition can be actively programming or erasing at a  
time. Each partition stays in its last read state (Read Array, Read Device ID, Read CFI  
or Read Status Register) until a new command changes it. The next WSM state does  
not depend on the partition’s output state.  
Note: IS refers to Illegal State in the Next State Tables  
Table 45: Next State Table for P30-65nm (Sheet 1 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
N/A  
N/A  
N/A  
N/A  
Ready  
Ready  
Ready  
Ready  
Ready  
(Lock Ready  
Ready  
(Set  
Ready (Lock  
Error [Botch])  
(Lock  
Ready (Lock Error  
[Botch])  
Error (Lock  
Lock/RCR/ECR Setup  
Ready (Lock Error [Botch])  
down  
[Botc Block)  
h])  
CR)  
Block)  
Setup  
OTP Busy  
OTP Busy  
N/A  
N/A  
OTP Busy  
OTP Busy  
N/A  
Ready  
N/A  
IS in  
OTP  
Busy  
OTP  
IS in OTP  
Busy  
Illegal State in OTP  
Busy  
OTP Busy  
Pgm Busy  
OTP Busy  
OTP Busy  
OTP  
Busy  
Busy  
IS in OTP Busy  
Setup  
OTP Busy  
OTP Busy  
Word Program Busy  
N/A  
N/A  
Pgm Busy  
Pgm Busy  
IS in  
Pgm  
Busy  
Pgm  
Busy  
IS in Pgm  
Busy  
Pgm Pgm  
Busy Susp  
Busy  
Word Pgm Busy  
IS in Word Pgm Busy  
Word Pgm Busy  
Ready  
IS in Pgm Busy  
Word Pgm Busy  
Pgm  
Word  
Program  
IS in  
Susp Word  
Pgm  
Susp  
IS in Pgm  
Susp  
Pgm  
Busy  
Illegal State in Pgm  
Suspend  
Word Program  
Suspend  
Suspend  
Pgm Pgm Suspend  
Susp  
Pgm Susp  
(Er  
bits  
Pgm  
N/A  
Word Pgm Susp  
Susp  
N/A  
N/A  
clear)  
IS in Pgm  
Suspend  
EFI Setup  
Sub-function  
Setup  
Word Program Suspend  
Sub-function Setup  
Sub-op-code Load 1  
Sub-op-code  
Load 1  
Sub-function Load 2 if word count >0, else Sub-function confirm  
Sub-function  
Load 2  
Sub-function  
Confirm  
Sub-function Confirm if data load in program buffer is complete, ELSE Sub-function Load 2  
S-fn  
Ready (Error [Botch])  
Ready (Error [Botch])  
Busy  
EFI  
IS in  
S-fn  
Busy  
S-fn  
Illegal State S-fn  
S-fn  
Sub-function Busy  
S-fn Busy  
S-fn Busy  
IS in S-fn Busy  
S-fn Busy  
S-fn Busy  
S-fn Susp  
Busy  
in S-fn Busy Busy Susp  
Ready  
N/A  
IS in Sub-function  
Busy  
Sub-function Busy  
S-fn  
IS in  
Susp  
S-fn  
Susp  
Illegal State S-fn  
in S-fn Busy Busy  
S-fn  
Sub-function Susp  
IS in S-fn Susp  
S-fn Sub-function  
Susp  
S-fn Suspend (Er  
IS in S-fn Susp  
S-fn Suspend  
N/A  
Susp  
bits  
clear)  
Sub-function Suspend  
Datasheet  
85  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 45: Next State Table for P30-65nm (Sheet 2 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
Setup  
BP Load 1 (8)  
BP Load 1  
BP Load 2 if word count >0, else BP confirm  
Ready BP Confirm if data  
(Error load in program  
[Botc buffer is complete,  
N/A  
BP Load 2 (8)  
BP Confirm if data load in program buffer is complete, ELSE BP load 2  
BP  
h])  
else BP load 2  
BP Confirm  
Ready (Error [Botch])  
Ready (Error [Botch])  
Busy  
Buffer  
IS in  
BP  
Busy  
Pgm  
BP  
Busy  
Illegal State  
in BP Busy  
BP  
BP  
BP Busy  
BP Busy  
BP Busy  
BP Busy  
IS in BP Busy  
BP Busy  
BP Busy  
Busy Susp  
Ready  
N/A  
(BP)  
IS in BP Busy  
BP Susp  
BP  
Susp  
(Er  
IS in  
BP  
Susp  
BP  
Susp  
Illegal State  
in BP Busy  
BP  
Busy  
BP  
Susp  
BP Suspend  
BP Suspend  
IS in BP Susp  
BP Suspend  
N/A  
BP Susp  
bits  
clear)  
IS in BP Susp  
Setup  
BP Suspend  
Erase  
Busy  
Ready (Err  
Botch0])  
Ready (Error [Botch])  
Ready (Error [Botch])  
N/A  
N/A  
N/A  
IS in  
Erase  
Busy  
IS in Erase Erase Erase  
Busy Busy Susp  
Busy  
Erase Erase Busy  
Busy  
Erase Busy  
IS in Erase Busy  
Erase Busy  
Ers Busy  
IS in Erase Busy  
Erase Busy  
Ready  
Lock/  
RCR/  
ECR  
Erase  
Word  
Pgm  
EFI  
Setup  
in  
BP  
Setup  
in  
Erase  
Susp  
IS in  
Erase  
Susp  
Erase Setup  
IS in Erase Erase  
Erase  
Erase  
Susp  
Erase  
Susp  
Suspend  
(Er  
bits  
Setup  
in  
Erase Suspend  
N/A  
N/A  
Erase Susp  
Susp  
in  
Erase  
Susp  
Erase  
Susp  
Suspend  
Busy  
Suspend  
N/A  
N/A  
Erase  
Susp  
clear)  
Erase  
Susp  
Erase Suspend  
IS in Erase Susp  
Setup  
Word Pgm busy in Erase Suspend  
Word  
Pgm  
busy  
in  
Erase  
Susp  
Word  
Word  
Pgm  
Pgm  
IS in  
Pgm  
Word Pgm  
IS in Word  
busy  
in  
Word Pgm busy in IS in Word Pgm busy Word Pgm busy in  
Erase Susp in Ers Susp Erase Susp  
Erase  
Susp  
Busy  
busy busy in Erase Pgm busy in  
Susp  
in Ers  
Susp  
in Ers  
Susp  
Susp  
Ers Susp  
Erase  
Susp  
Illegal state(IS) in  
IS in  
Ers  
Word Pgm Busy in  
Ers Suspend  
Pgm busy in Erase  
Word Pgm busy in Erase Suspend  
Word  
Word  
Suspend  
Susp  
Pgm in  
Erase  
Word  
Pgm  
Susp  
in Ers  
Susp  
(Er  
Word iS in  
Pgm pgm  
susp susp  
in Ers in Ers  
susp Susp  
Word Word  
Pgm Pgm  
susp susp  
in Ers in Ers  
susp susp  
Word  
Pgm  
susp  
in Ers  
susp  
Pgm  
busy  
in  
Erase  
Susp  
Suspend  
Suspend  
Word Pgm  
susp in Ers  
susp  
iS in pgm  
susp in Ers  
Susp  
iS in Word Pgm susp Word Pgm susp in  
N/A  
in Ers Susp  
Ers susp  
N/A  
bits  
clear)  
Illegal State in  
Word Program  
Suspend in Erase  
Suspend  
Setup  
BP Load 1 (8)  
Word Pgm busy in Erase Suspend  
BP Load 1 in Erase Suspend  
BP Load 2 in Erase Suspend if word count >0, else BP confirm  
Ers  
Susp  
(Error  
[Botc  
h])  
BP Confirm in  
Erase Suspend  
when count=0,  
ELSE BP load 2  
N/A  
BP Load 2 (8)  
BP Confirm  
BP Confirming Erase Suspend if data load in program buffer is complete, ELSE BP load 2 in Erase Suspend  
Erase Suspend (Error [BotchBP])  
IS in  
Erase Susp (Error [Botch BP])  
IS in BP Busy in  
BP Busy in Ers Susp N/A  
BP  
BP  
BP  
Busy  
in Ers  
Susp  
BP  
Illegal State  
Busy  
in Ers  
Susp  
BP Busy in  
Erase Susp  
Susp  
in Ers  
Susp  
BP Busy in Ers  
Susp  
Erase  
Susp  
BP in  
Erase  
BP Busy  
Busy  
in Ers  
Susp  
in BP Busy in  
Ers Susp  
BP Busy in Ers Susp  
Erase Suspend  
Suspend  
IS in  
Ers  
IS in BP Busy  
BP Busy in Erase Suspend  
BP  
Susp  
IS in  
BP  
Susp  
in Ers  
Susp  
Susp  
BP  
BP  
BP  
BP Suspend Illegal State  
in Ers  
Susp  
in Ers  
Susp  
Busy  
in Ers  
Susp  
BP Susp in  
Ers Susp  
Susp  
in Ers  
Susp  
IS in BP Busy in  
Erase Suspend  
BP Susp in Ers  
Susp  
BP Susp  
in Erase  
Suspend  
in BP Busy in  
Ers Susp  
Susp  
(Er  
BP Susp in Ers Susp N/A  
N/A  
bits  
clear)  
IS in BP Suspend  
BP Suspend in Erase Suspend  
Datasheet  
86  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 45: Next State Table for P30-65nm (Sheet 3 of 3)  
(1)  
Command Input and Resulting Chip Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
EFI Setup  
Sub-function Setup in Erase Suspend  
Sub-function  
Setup  
Sub-op-code Load 1 in Erase Suspend  
Sub-op-code  
Load 1  
Sub-function Load 2 in Erase Suspend if word count >0, else Sub-function confirm in Erase Suspend  
Ers  
Sub-function  
Confirm if data  
load in program  
buffer is complete,  
ELSESub-function  
Load 2  
N/A  
Susp  
(Error  
[Botc  
h])  
Sub-function  
Load 2  
Sub-function Confirm in Erase Suspend if data load in program buffer is complete, ELSE Sub-function Load 2  
Sub-function  
Confirm  
Erase Suspend (Error [Botch])  
IS in  
Erase Suspend (Error [Botch])  
S-fn  
Busy  
in Ers  
Susp  
EFI in  
S-fn  
Busy  
in Ers  
Susp  
S-fn  
Susp  
in Ers  
Susp  
S-fn  
Busy  
in Ers  
Susp  
Illegal State  
Erase  
S-fn Busy in  
Ers Suspend  
S-fn Busy in Ers  
Susp  
IS in S-fn Busy in  
Ers Susp  
S-fn Busy in Ers  
S-fn Busy in Ers Erase  
Sub-function Busy  
in S-fn Busy  
in Ers Susp  
N/A  
N/A  
Suspend  
Susp  
Susp  
Susp  
IS in  
Ers  
Susp  
IS in Sub-function  
Busy  
Sub-function Busy in Ers Susp  
S-fn  
IS in  
S-fn  
Susp  
in Ers  
Susp  
Susp  
S-fn  
Susp  
in Ers  
Susp  
S-fn  
S-fn  
Illegal State  
in S-fn Busy  
in Ers Susp  
in Ers  
S-fnSuspend  
in Ers Susp  
Busy S-fnSuspend  
in Ers in Ers Susp  
Susp  
Susp  
in Ers  
Susp  
IS in S-fn Susp in S-fn Suspend in Ers  
S-fn Susp in Ers  
Susp  
Sub-function Susp  
Susp  
(Er  
Ers Susp  
Susp  
N/A  
bits  
clear)  
IS in Phase-1  
Susp  
Sub-Function Suspend in Erase Suspend  
Ers  
Susp  
(Un-  
lock  
Ers  
Ers  
Susp  
Blk  
Ers  
Susp  
Blk  
Ers  
Susp  
CR  
Lock/RCR/ECR/Lock  
EFA Block Setup in  
Erase Suspend  
Susp  
Ers Susp (Error  
[Botch])  
Ers Susp (Lock Error [Botch])  
(Error  
[Botc  
h])  
N/A  
N/A  
N/A  
N/A  
Erase Suspend (Lock Error [Botch])  
Ready (Error [Botch])  
Lk-  
Lock  
Set  
Block)  
Down  
BC  
Busy  
Ready (Error  
[Botch])  
Setup  
Ready (Error [Botch])  
IS in  
BC  
Blank  
Blank Check Busy  
Check  
BC  
Busy  
BC Busy  
IS in BC Busy  
Blank Check Busy  
BP Busy  
IS in BC Busy  
BC Busy  
Busy  
BC Busy  
Ready  
IS in Blank Check  
Busy  
BEFP  
Load  
Data  
Setup  
Ready (Error [Botch])  
Ready (Error [Botch])  
N/A  
BEFP  
BEFP Program and Verify Busy (if Block Address given matches address given on BEFP Setup command). Commands  
treated as data. (7)  
BEFP Busy  
Ready  
BEFP Busy  
Ready  
Datasheet  
87  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Table 46: Output Next State Table for P30-65nm  
(1)  
Command Input to Chip and Resulting Output MUX Next State  
Current Chip State  
(90h,  
98h)  
(03h,  
04h)  
(FFh) (40h) (E8h) (EBh) (20h) (80h) (D0h) (B0) (70h) (50h)  
(60h) (BCh) (C0h) (01h) (2Fh)  
other  
BEFPSetup,  
BEFP Pgm & Verify Busy,  
Erase Setup,  
OTP Setup,  
BP Setup, Load 1, Load 2  
BP Setup, Load1, Load 2 - in  
Erase Susp.  
BP Confirm  
EFI Sub-function Confirm  
WordPgmSetup,  
Word Pgm Setup in Erase  
Susp,  
Status Read  
BP Confirm in Erase Suspend,  
EFI S-fn Confirm in Ers Susp,  
Blank Check Setup,  
Blank Check Busy  
Lock/RCR/ECR Setup,  
Lock/RCR/ECR Setup in Erase  
Susp  
Status Read  
EFI S-fn Setup, Ld 1, Ld 2  
EFI S-fn Setup, Ld1, Ld 2 - in  
Erase Susp.  
Output MUX will not change  
BP Busy  
BP Busy in Erase Suspend  
EFI Sub-function Busy  
EFI Sub-fn Busy in Ers Susp  
Word Program Busy,  
Word Pgm Busy in Erase  
Suspend,  
OTP Busy  
Erase Busy  
Status  
Read  
Status  
Read  
Output MUX does  
not Change  
Status Read  
Ready,  
Word Pgm Suspend,  
BP Suspend,  
Phase-1 BP Suspend,  
Erase Suspend,  
BP Suspend in Erase Suspend  
Phase-1 BP Susp in Ers Susp  
Notes:  
1.  
2.  
3.  
4.  
IS refers to Illegal State in the Next State Table.  
“Illegal commands” include commands outside of the allowed command set.  
The device defaults to "Read Array" on powerup.  
If a “Read Array” is attempted when the device is busy, the result will be “garbage” data (we should not tell the user that  
it will actually be Status Register data). The key point is that the output mux will be pointing to the “array, but garbage  
data will be output. “Read ID” and "Read Query" commands do the exact same thing in the device. The ID and Query data  
are located at different locations in the address map.  
The Clear Status command only clears the error bits in the status register if the device is not in the following modes:1.  
WSM running (Pgm Busy, Erase Busy, Pgm Busy In Erase Suspend, OTP Busy, BEFP modes) 2. Suspend states (Erase  
Suspend, Pgm Suspend, Pgm Suspend In Erase Suspend).  
5.  
6.  
7.  
BEFP writes are only allowed when the status register bit #0 = 0 or else the data is ignored.  
Confirm commands (Lock Block, Unlock Block, Lock-Down Block, Configuration Register and Blank Check) perform the  
operation and then move to the Ready State.  
8.  
9.  
Buffered programming will botch when a different block address (as compared to the address given on the first data write  
cycle) is written during the BP Load1 and BP Load2 states.  
All two cycle commands will be considered as a contiguous whole during device suspend states. Individual commands will  
not be parsed separately. (I.e. If an erase set-up command is issued followed by a D0h command, the D0h command will  
not resume the program operation. Issuing the erase set-up places the CUI in an “illegal state. A subsequent command  
will clear the “illegal state, but the command will be otherwise ignored.  
Datasheet  
88  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Appendix B Conventions - Additional Information  
B.1  
Conventions  
VCC:  
Signal or voltage connection  
V
:
Signal or voltage level  
CC  
0x:  
h:  
Hexadecimal number prefix  
Hexadecimal number suffix  
0b:  
Binary number prefix  
SR.4:  
A[15:0]:  
A5:  
Denotes an individual register bit.  
Denotes a group of similarly named signals, such as address or data bus.  
Denotes one element of a signal group membership, such as an individual address bit.  
Bit:  
Binary unit  
Byte:  
Eight bits  
Word:  
Kbit:  
Two bytes, or sixteen bits  
1024 bits  
KByte:  
KWord:  
Mbit:  
1024 bytes  
1024 words  
1,048,576 bits  
1,048,576 bytes  
1,048,576 words  
MByte:  
MWord:  
B.2  
Acronyms  
BEFP:  
CFI:  
MLC:  
OTP:  
PLR:  
PR:  
Buffer Enhanced Factory Programming  
Common Flash Interface  
Multi-Level Cell  
One-Time Programmable  
Protection Lock Register  
Protection Register  
RCR:  
RFU:  
SR:  
Read Configuration Register  
Reserved for Future Use  
Status Register  
WSM:  
SRD  
CUI  
Write State Machine  
Status Register Data  
Command User Interface  
Extended Function Interface  
Password Access Data  
EFI  
PAD  
Datasheet  
89  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
B.3  
Nomenclature  
A group of bits, bytes, or words within the flash memory array that erase  
simultaneously. The P30-65nm has two block sizes: 32 KByte and 128 KByte.  
Block :  
An array block that is usually used to store code and/or data. Main blocks are larger  
than parameter blocks.  
Main block :  
Parameter block :  
An array block that may be used to store frequently changing data or small system  
parameters that traditionally would be stored in EEPROM.  
A device with its parameter blocks located at the highest physical address of its  
memory map.  
Top parameter device :  
A device with its parameter blocks located at the lowest physical address of its  
memory map.  
Bottom parameter device :  
Datasheet  
90  
Apr 2009  
Order Number: 320002-08  
P30-65nm  
Appendix C Revision History  
Revision Date  
Revision  
Description  
May 2008  
01  
Initial Release  
Add W28 AC specification;  
Fix Buffered Program Command error in figure 38;  
Update block locking state diagram;  
Update Address range in Memory Map figure;  
July 2008  
02  
Change LSB Address in ballout and pinout description from A0 back to A1 to match P30  
130nm.  
Update new trademark Axcell;  
Remove 64M related contents.  
Sep 2008  
Nov 2008  
03  
04  
Update Buffer program flowchart same as 130nm;  
Minor wording modifications.  
Remove 128M related contents;  
Returne to StrataFlash trademark;  
Nov 2008  
Dec 2008  
05  
06  
Update the buffer program for cross 512-Word boundary;  
Correct A24 to A25 for virtual CE description in section 1.3;  
Remove Numonyx Confidential.  
Correct page buffer address bit to Four on Section 7.1, “Asynchronous Page-  
Mode Read” on page 25.  
Correct VHH to V  
note 7.  
on Table 23, “DC Current Characteristics” on page 50  
PPH  
Update QUAD+ package ballout H8 from OE# to F2-OE#. See Figure 8, “QUAD+  
SCSP Ballout and Signals” on page 15.  
Update QUAD+ Signal Description A[MAX:1] to A[MAX:0] and its Name and Function.  
See Figure 6, “QUAD+ SCSP Signal Descriptions” on page 17.  
Update Virtual Chip Enable Description from Adress 25 to the maximum address bit. See  
Jan 2008  
07  
Section 1.3, “Virtual Chip Enable Description” on page 6.  
Update TSOP Pinout P13 from VCC to RFU. See Section 6, “56-Lead TSOP  
Pinout (256-Mbit)” on page 13.  
Complete Section 9.2, “Blank Check” on page 32.  
Minor wording modifications.  
Add 512 Mbit (256/256) memory map in Figure 1, “P30-65nm Memory Map”  
on page 7  
Update QUAD+ signal description by changing A25 into RFU in Figure 8, “QUAD+  
SCSP Ballout and Signals” on page 15  
Apr 2009  
08  
Correct RCR.4, RCR.5, RCR.7 and RCR.9 definitions in Table 15, “Read  
Configuration Register Description” on page 38  
Correct A to A signal naming and remove invalid x8 information in Table 33,  
0
1
“Example of CFI Structure Output of x16 Devices” on page 66  
Datasheet  
91  
Apr 2009  
Order Number: 320002-08  

相关型号:

JS28F256P30TFA

Micron Parallel NOR Flash Embedded Memory (P30-65nm)
MICRON

JS28F256P30TFE

256Mb and 512Mb (256Mb/256Mb), P30-65nm
MICRON

JS28F256P33B95

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, LEAD FREE, TSOP-56
INTEL

JS28F256P33B95A

Flash, 16MX16, 95ns, PDSO56
NUMONYX

JS28F256P33B95B

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, LEAD FREE, TSOP-56
NUMONYX

JS28F256P33BF

NumonyxTM StrataFlash Embedded Memory
MICRON

JS28F256P33BFA

Flash, 16MX16, 105ns, PDSO56, 14 X 20 MM, LEAD FREE, TSOP-56
NUMONYX

JS28F256P33BFE

NumonyxTM StrataFlash Embedded Memory
MICRON

JS28F256P33T95

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, LEAD FREE, TSOP-56
INTEL

JS28F256P33T95B

Flash, 16MX16, 95ns, PDSO56, 14 X 20 MM, LEAD FREE, TSOP-56
NUMONYX

JS28F320B3BD70

Flash, 2MX16, 70ns, PDSO48, 12 X 20 MM, LEAD FREE, TSOP-48
INTEL

JS28F320B3TD70

Flash, 2MX16, 70ns, PDSO48, 12 X 20 MM, LEAD FREE, TSOP-48
INTEL