SM72480 [NSC]

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor; 的SolarMagic 1.6V , LLP- 6出厂预设温度开关和温度传感器
SM72480
型号: SM72480
厂家: National Semiconductor    National Semiconductor
描述:

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
的SolarMagic 1.6V , LLP- 6出厂预设温度开关和温度传感器

开关 传感器 温度传感器
文件: 总18页 (文件大小:462K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 11, 2011  
SM72480  
SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch  
and Temperature Sensor  
General Description  
Features  
The SM72480 is a low-voltage, precision, dual-output, low-  
power temperature switch and temperature sensor. The tem-  
perature trip point (TTRIP) is set at the factory to be 120°C.  
Built-in temperature hysteresis (THYST) keeps the output sta-  
ble in an environment of temperature instability.  
Renewable Energy Grade  
Low 1.6V operation  
Latching function: device can latch the Over Temperature  
condition  
Push-pull and open-drain temperature switch outputs  
In normal operation the SM72480 temperature switch outputs  
assert when the die temperature exceeds TTRIP. The temper-  
ature switch outputs will reset when the temperature falls  
Very linear analog VTEMP temperature sensor output  
VTEMP output short-circuit protected  
below  
a temperature equal to (TTRIP − THYST). The  
2.2 mm by 2.5 mm (typ) LLP-6 package  
OVERTEMP digital output, is active-high with a push-pull  
structure, while the OVERTEMP digital output, is active-low  
with an open-drain structure.  
Excellent power supply noise rejection  
Key Specifications  
The analog output, VTEMP, delivers an analog output voltage  
with Negative Temperature Coefficient — NTC.  
1.6V to 5.5V  
Supply Voltage  
Supply Current  
Accuracy, Trip Point  
Temperature  
Driving the TRIP TEST input high: (1) causes the digital out-  
puts to be asserted for in-situ verification and, (2) causes the  
threshold voltage to appear at the VTEMP output pin, which  
could be used to verify the temperature trip point.  
8 μA (typ)  
0°C to 150°C  
0°C to 150°C  
±2.2°C  
The SM72480's low minimum supply voltage makes it ideal  
for 1.8 volt system designs. Its wide operating range, low  
supply current , and excellent accuracy provide a temperature  
switch solution for a wide range of commercial and industrial  
applications.  
±2.3°C  
Accuracy, VTEMP  
VTEMP Output Drive  
Operating Temperature  
Hysteresis Temperature  
±100 μA  
−50°C to 150°C  
4.5°C to 5.5°C  
Applications  
PV Power Optimizers  
Wireless Transceivers  
Battery Management  
Automotive  
Disk Drives  
Connection Diagram  
Typical Transfer Characteristic  
LLP-6  
VTEMP Analog Voltage vs Die Temperature  
30142001  
Top View  
See NS Package Number SDB06A  
30142024  
© 2011 National Semiconductor Corporation  
301420  
www.national.com  
Block Diagram  
30142003  
Pin Descriptions  
Pin  
No.  
Name  
Type  
Equivalent Circuit  
Description  
TRIP TEST pin. Active High input.  
If TRIP TEST = 0 (Default) then:  
VTEMP = VTS, Temperature Sensor Output Voltage  
If TRIP TEST = 1 then:  
OVERTEMP and OVERTEMP outputs are asserted and  
VTEMP = VTRIP, Temperature Trip Voltage.  
This pin may be left open if not used.  
TRIP  
TEST  
Digital  
Input  
1
Over Temperature Switch output  
Active High, Push-Pull  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
Digital  
Output  
5
3
OVERTEMP  
OVERTEMP  
This pin may be left open if not used.  
Over Temperature Switch output  
Active Low, Open-drain (See Section 2.1 regarding required pull-up  
resistor.)  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
Digital  
Output  
This pin may be left open if not used.  
www.national.com  
2
Pin  
No.  
Name  
Type  
Equivalent Circuit  
Description  
VTEMP Analog Voltage Output  
If TRIP TEST = 0 then  
VTEMP = VTS, Temperature Sensor Output Voltage  
If TRIP TEST = 1 then  
Analog  
Output  
VTEMP  
6
VTEMP = VTRIP, Temperature Trip Voltage  
This pin may be left open if not used.  
VDD  
Positive Supply Voltage  
Power Supply Ground  
4
2
Power  
GND  
Ground  
The best thermal conductivity between the device and the PCB is  
achieved by soldering the DAP of the package to the thermal pad on the  
PCB. The thermal pad can be a floating node. However, for improved  
noise immunity the thermal pad should be connected to the circuit GND  
node, preferably directly to pin 2 (GND) of the device.  
DAP Die Attach Pad  
Typical Application  
30142002  
3
www.national.com  
Ordering Information  
Temperature  
Trip Point, °C  
NS Package  
Number  
Package  
Marking  
Order Number  
Description  
Transport Media  
SM72480SD-125  
125°C  
6–pin LLP  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
SDB06A  
299  
299  
299  
S80  
S80  
S80  
701  
701  
701  
1000 Units on Tape and  
Reel  
SM72480SDE-125  
SM72480SDX-125  
SM72480SD-120  
SM72480SDE-120  
SM72480SDX-120  
SM72480SD-105  
SM72480SDE-105  
SM72480SDX-105  
125°C  
125°C  
120°C  
120°C  
120°C  
105°C  
105°C  
105°C  
6–pin LLP  
6–pin LLP  
6–pin LLP  
6–pin LLP  
6–pin LLP  
6–pin LLP  
6–pin LLP  
6–pin LLP  
250 Units on Tape and  
Reel  
4500 Units on Tape and  
Reel  
1000 Units on Tape and  
Reel  
250 Units on Tape and  
Reel  
4500 Units on Tape and  
Reel  
1000 Units on Tape and  
Reel  
250 Units on Tape and  
Reel  
4500 Units on Tape and  
Reel  
www.national.com  
4
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 1)  
Specified Temperature Range:  
SM72480  
TMIN TA TMAX  
−50°C TA +150°C  
Supply Voltage  
Voltage at OVERTEMP pin  
−0.3V to +6.0V  
−0.3V to +6.0V  
Voltage at OVERTEMP and  
VTEMP pins  
Supply Voltage Range (VDD  
)
+1.6 V to +5.5 V  
−0.3V to (VDD + 0.5V)  
−0.3V to (VDD + 0.5V)  
±7 mA  
Thermal Resistance (θJA) (Note 4)  
TRIP TEST Input Voltage  
Output Current, any output pin  
Input Current at any pin (Note 2)  
Storage Temperature  
LLP-6 (Package SDB06A)  
152 °C/W  
5 mA  
−65°C to +150°C  
Maximum Junction Temperature  
TJ(MAX)  
+155°C  
ESD Susceptibility (Note 3) :  
Human Body Model  
Machine Model  
4500V  
300V  
Charged Device Model  
1000V  
For soldering specifications: see product folder at  
www.national.com and www.national.com/ms/MS/MS-  
SOLDERING.pdf  
Accuracy Characteristics  
Trip Point Accuracy  
Parameter  
Limits  
(Note 6)  
Units  
(Limit)  
Conditions  
VDD = 5.0 V  
Trip Point Accuracy (Note 7)  
0°C − 150°C  
±2.2  
°C (max)  
VTEMP Analog Temperature Sensor Output Accuracy  
The limits do not include DC load regulation. The stated accuracy limits are with reference to the values in the SM72480 Conversion  
Table.  
Limits  
(Note 6)  
Units  
(Limit)  
Parameter  
Conditions  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = –50°C to 0°C  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = −50°C to 0°C  
VDD = 2.3 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 2.3 to 5.5 V  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
VTEMP Temperature  
Accuracy  
(Note 7)  
Trip Point  
125°C or 120°C  
°C (max)  
(Note 7)  
VTEMP Temperature  
Accuracy  
Trip Point  
105°C  
°C (max)  
5
www.national.com  
Electrical Characteristics  
Unless otherwise noted, these specifications apply for +VDD = +1.6V to +5.5V. Boldface limits apply for TA = TJ = TMIN to  
T
MAX ; all other limits TA = TJ = 25°C.  
Symbol Parameter  
GENERAL SPECIFICATIONS  
Typical  
(Note 5)  
Limits  
(Note 6)  
Units  
(Limit)  
Conditions  
IS  
Quiescent Power Supply  
Current  
8
5
16  
μA (max)  
5.5  
4.5  
°C (max)  
°C (Min)  
Hysteresis  
OVERTEMP DIGITAL OUTPUT  
ACTIVE HIGH, PUSH-PULL  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
Source 340 μA  
VDD − 0.2V  
V (min)  
V (min)  
Source 498 μA  
Source 780 μA  
Source 600 μA  
Source 980 μA  
Source 1.6 mA  
VOH  
Logic "1" Output Voltage  
VDD − 0.45V  
BOTH OVERTEMP and OVERTEMP DIGITAL OUTPUTS  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
Sink 385 μA  
Sink 500 μA  
Sink 730 μA  
Sink 690 μA  
Sink 1.05 mA  
Sink 1.62 mA  
0.2  
VOL  
Logic "0" Output Voltage  
V (max)  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
0.45  
OVERTEMP DIGITAL OUTPUT  
ACTIVE LOW, OPEN DRAIN  
TA = 30 °C  
0.001  
0.025  
Logic "1" Output Leakage  
IOH  
1
μA (max)  
Current (Note 10)  
TA = 150 °C  
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT  
VTEMP Sensor Gain  
Trip Point = 105°C  
-7.7  
mV/°C  
mV/°C  
Trip Point = 125°C or 120°C  
−10.3  
Source 90 μA  
(VDD − VTEMP) 200 mV  
−0.1  
0.1  
−1  
1
mV (max)  
mV (max)  
mV (max)  
mV (max)  
1.6V VDD < 1.8V  
Sink 100 μA  
VTEMP 260 mV  
VTEMP Load Regulation  
Source 120 μA  
(VDD − VTEMP) 200 mV  
(Note 9)  
−0.1  
0.1  
−1  
1
VDD 1.8V  
Sink 200 μA  
VTEMP 260 mV  
1
Ohm  
mV  
Source or Sink = 100 μA  
0.29  
74  
VDD Supply- to-VTEMP  
DC Line Regulation  
(Note 11)  
VDD = +1.6V to +5.5V  
μV/V  
dB  
−82  
VTEMP Output Load  
Capacitance  
CL  
Without series resistor. See Section 4.2  
1100  
pF (max)  
www.national.com  
6
Electrical Characteristics  
Unless otherwise noted, these specifications apply for +VDD = +1.6V to +5.5V. Boldface limits apply for TA = TJ = TMIN to  
T
MAX ; all other limits TA = TJ = 25°C.  
Symbol Parameter  
TRIP TEST DIGITAL INPUT  
Typical  
(Note 5)  
Limits  
(Note 6)  
Units  
(Limit)  
Conditions  
VIH  
VIL  
IIH  
VDD− 0.5  
0.5  
Logic "1" Threshold Voltage  
Logic "0" Threshold Voltage  
Logic "1" Input Current  
V (min)  
V (max)  
μA (max)  
1.5  
2.5  
Logic "0" Input Current  
(Note 10)  
IIL  
0.001  
1
μA (max)  
TIMING  
Time from Power On to Digital  
Output Enabled. See  
definition below.  
tEN  
1.1  
1.0  
2.3  
2.9  
ms (max)  
ms (max)  
Time from Power On to  
Analog Temperature Valid.  
See definition below.  
VTEMP CL = 0 pF to 1100 pF  
t
VTEMP  
Definitions of tEN and tV  
TEMP  
30142051  
30142050  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed  
specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test  
conditions.  
Note 2: When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > VDD), the current at that pin should be limited to 5 mA.  
Note 3: The Human Body Model (HBM) is a 100 pF capacitor charged to the specified voltage then discharged through a 1.5 kΩ resistor into each pin. The  
Machine Model (MM) is a 200 pF capacitor charged to the specified voltage then discharged directly into each pin. The Charged Device Model (CDM) is a specified  
circuit characterizing an ESD event that occurs when a device acquires charge through some triboelectric (frictional) or electrostatic induction processes and then  
abruptly touches a grounded object or surface.  
Note 4: The junction to ambient temperature resistance (θJA) is specified without a heat sink in still air.  
Note 5: Typicals are at TJ = TA = 25°C and represent most likely parametric norm.  
Note 6: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).  
Note 7: Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the specified conditions of  
supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified conditions. Accuracy limits do not  
include load regulation; they assume no DC load.  
Note 8: Changes in output due to self heating can be computed by multiplying the internal dissipation by the temperature resistance.  
Note 9: Source currents are flowing out of the SM72480. Sink currents are flowing into the SM72480.  
Note 10: The 1 µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the current for every  
15°C increase in temperature. For example, the 1 nA typical current at 25°C would increase to 16 nA at 85°C.  
Note 11: Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply voltage.  
The typical DC line regulation specification does not include the output voltage shift discussed in Section 4.3.  
Note 12: The curves shown represent typical performance under worst-case conditions. Performance improves with larger overhead (VDD − VTEMP), larger VDD  
,
and lower temperatures.  
Note 13: The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD and lower  
temperatures.  
7
www.national.com  
Typical Performance Characteristics  
VTEMP Output Temperature Error vs. Temperature  
Minimum Operating Temperature vs. Supply Voltage  
30142007  
30142006  
Supply Current vs. Temperature  
Supply Current vs. Supply Voltage  
30142004  
30142005  
VTEMP Supply-Noise Rejection vs. Frequency  
Line Regulation  
VTEMP vs. Supply Voltage  
Trip Points  
120°C  
30142043  
30142036  
www.national.com  
8
VTEMP, Analog Output Voltage, mV  
1.0 SM72480 VTEMP vs Die  
Temperature Conversion Table  
Die Temp.,  
°C  
TTRIP  
=
TTRIP = 105°C  
125 or 120°C  
2252  
2242  
2232  
2222  
2212  
2202  
2192  
2182  
2171  
2161  
2151  
2141  
2131  
2121  
2111  
2101  
2090  
2080  
2070  
2060  
2050  
2040  
2029  
2019  
2009  
1999  
1989  
1978  
1968  
1958  
1948  
1938  
1927  
1917  
1907  
1897  
1886  
1876  
1866  
1856  
1845  
1835  
1825  
1815  
1804  
1794  
1784  
1774  
The SM72480 has a factory-set gain, which is dependent on  
the Temperature Trip Point. The VTEMP temperature sensor  
voltage, in millivolts, at each discrete die temperature over the  
complete operating range is shown in the conversion table  
below.  
−13  
−12  
−11  
−10  
−9  
−8  
−7  
−6  
−5  
−4  
−3  
−2  
−1  
0
1690  
1682  
1674  
1667  
1659  
1652  
1644  
1637  
1629  
1621  
1614  
1606  
1599  
1591  
1583  
1576  
1568  
1561  
1553  
1545  
1538  
1530  
1522  
1515  
1507  
1499  
1492  
1484  
1477  
1469  
1461  
1454  
1446  
1438  
1431  
1423  
1415  
1407  
1400  
1392  
1384  
1377  
1369  
1361  
1354  
1346  
1338  
1331  
VTEMP Temperature Sensor Output Voltage vs Die  
Temperature Conversion Table  
The VTEMP temperature sensor output voltage, in mV, vs Die  
Temperature, in °C for the gain corresponding to the temper-  
ature trip point. VDD = 5.0V.  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
TTRIP  
=
TTRIP = 105°C  
°C  
125 or 120°C  
2623  
2613  
2603  
2593  
2583  
2573  
2563  
2553  
2543  
2533  
2523  
2513  
2503  
2493  
2483  
2473  
2463  
2453  
2443  
2433  
2423  
2413  
2403  
2393  
2383  
2373  
2363  
2353  
2343  
2333  
2323  
2313  
2303  
2293  
2283  
2272  
2262  
−50  
−49  
−48  
−47  
−46  
−45  
−44  
−43  
−42  
−41  
−40  
−39  
−38  
−37  
−36  
−35  
−34  
−33  
−32  
−31  
−30  
−29  
−28  
−27  
−26  
−25  
−24  
−23  
−22  
−21  
−20  
−19  
−18  
−17  
−16  
−15  
−14  
1967  
1960  
1952  
1945  
1937  
1930  
1922  
1915  
1908  
1900  
1893  
1885  
1878  
1870  
1863  
1855  
1848  
1840  
1833  
1825  
1818  
1810  
1803  
1795  
1788  
1780  
1773  
1765  
1757  
1750  
1742  
1735  
1727  
1720  
1712  
1705  
1697  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
9
www.national.com  
VTEMP, Analog Output Voltage, mV  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
°C  
Die Temp.,  
°C  
TTRIP  
=
TTRIP = 105°C  
TTRIP  
=
TTRIP = 105°C  
125 or 120°C  
1763  
1753  
1743  
1732  
1722  
1712  
1701  
1691  
1681  
1670  
1660  
1650  
1639  
1629  
1619  
1608  
1598  
1588  
1577  
1567  
1557  
1546  
1536  
1525  
1515  
1505  
1494  
1484  
1473  
1463  
1453  
1442  
1432  
1421  
1411  
1400  
1390  
1380  
1369  
1359  
1348  
1338  
1327  
1317  
1306  
1296  
1285  
1275  
125 or 120°C  
1264  
1254  
1243  
1233  
1222  
1212  
1201  
1191  
1180  
1170  
1159  
1149  
1138  
1128  
1117  
1106  
1096  
1085  
1075  
1064  
1054  
1043  
1032  
1022  
1011  
1001  
990  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
1323  
1315  
1307  
1300  
1292  
1284  
1276  
1269  
1261  
1253  
1245  
1238  
1230  
1222  
1214  
1207  
1199  
1191  
1183  
1176  
1168  
1160  
1152  
1144  
1137  
1129  
1121  
1113  
1105  
1098  
1090  
1082  
1074  
1066  
1059  
1051  
1043  
1035  
1027  
1019  
1012  
1004  
996  
83  
84  
949  
941  
933  
925  
917  
909  
901  
894  
886  
878  
870  
862  
854  
846  
838  
830  
822  
814  
807  
799  
791  
783  
775  
767  
759  
751  
743  
735  
727  
719  
711  
703  
695  
687  
679  
671  
663  
655  
647  
639  
631  
623  
615  
607  
599  
591  
583  
575  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
979  
969  
958  
948  
937  
926  
916  
905  
894  
884  
873  
862  
852  
841  
831  
820  
988  
809  
980  
798  
972  
788  
964  
777  
957  
766  
www.national.com  
10  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
°C  
TTRIP  
=
TTRIP = 105°C  
125 or 120°C  
756  
1.1.2 The First-Order Approximation (Linear)  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
567  
559  
551  
543  
535  
527  
519  
511  
503  
495  
487  
479  
471  
463  
455  
447  
438  
430  
422  
414  
For a quicker approximation, although less accurate than the  
second-order, over the full operating temperature range the  
linear formula below can be used. Using this formula, with the  
constant and slope in the following set of equations, the best-  
fit VTEMP vs Die Temperature performance can be calculated  
with an approximation error less than 18 mV. VTEMP is in mV.  
745  
734  
724  
713  
702  
691  
681  
670  
659  
1.1.3 First-Order Approximation (Linear) over Small  
Temperature Range  
649  
For a linear approximation, a line can easily be calculated  
over the desired temperature range from the Conversion Ta-  
ble using the two-point equation:  
638  
627  
616  
606  
595  
584  
573  
Where V is in mV, T is in °C, T1 and V1 are the coordinates of  
the lowest temperature, T2 and V2 are the coordinates of the  
highest temperature.  
562  
552  
1.1 VTEMP vs DIE TEMPERATURE APPROXIMATIONS  
The SM72480's VTEMP analog temperature output is very lin-  
ear. The Conversion Table above and the equation in Section  
1.1.1 represent the most accurate typical performance of the  
VTEMP voltage output vs Temperature.  
Using this method of linear approximation, the transfer func-  
tion can be approximated for one or more temperature ranges  
of interest.  
1.1.1 The Second-Order Equation (Parabolic)  
The data from the Conversion Table, or the equation below,  
when plotted, has an umbrella-shaped parabolic curve.  
VTEMP is in mV.  
11  
www.national.com  
(1) We see that for VOL of 0.2 V the electrical specification for  
OVERTEMP shows a maximim isink of 385 µA.  
2.0 OVERTEMP and OVERTEMP  
Digital Outputs  
(2) Let iL= 1 µA, then iT is about 386 µA max. If we select  
35 µA as the current limit then iT for the calculation becomes  
35 µA  
The OVERTEMP Active High, Push-Pull Output and the  
OVERTEMP Active Low, Open-Drain Output both assert at  
the same time whenever the Die Temperature reaches the  
factory preset Temperature Trip Point. They also assert si-  
multaneously whenever the TRIP TEST pin is set high. Both  
outputs de-assert when the die temperature goes below the  
Temperature Trip Point - Hysteresis. These two types of dig-  
ital outputs enable the user the flexibility to choose the type  
of output that is most suitable for his design.  
(3) We notice that VDD(Max) is 3.3V + 0.3V = 3.6V and then  
calculate the pull-up resistor as  
RPull-up = (3.6 − 0.2)/35 µA = 97k  
(4) Based on this calculated value, we select the closest re-  
sistor value in the tolerance family we are using.  
In our example, if we are using 5% resistor values, then the  
next closest value is 100 kΩ.  
Either the OVERTEMP or the OVERTEMP Digital Output pins  
can be left open if not used.  
2.2 NOISE IMMUNITY  
The SM72480 is virtually immune from false triggers on the  
OVERTEMP and OVERTEMP digital outputs due to noise on  
the power supply. Test have been conducted showing that,  
with the die temperature within 0.5°C of the temperature trip  
point, and the severe test of a 3 Vpp square wave "noise"  
signal injected on the VDD line, over the VDD range of 2V to  
5V, there were no false triggers.  
2.1 OVERTEMP OPEN-DRAIN DIGITAL OUTPUT  
The OVERTEMP Active Low, Open-Drain Digital Output, if  
used, requires a pull-up resistor between this pin and VDD  
The following section shows how to determine the pull-up re-  
sistor value.  
.
Determining the Pull-up Resistor Value  
3.0 TRIP TEST Digital Input  
The TRIP TEST pin simply provides a means to test the  
OVERTEMP and OVERTEMP digital outputs electronically  
by causing them to assert, at any operating temperature, as  
a result of forcing the TRIP TEST pin high.  
When the TRIP TEST pin is pulled high the VTEMP pin will be  
at the VTRIP voltage.  
If not used, the TRIP TEST pin may either be left open or  
grounded.  
4.0 VTEMP Analog Temperature  
Sensor Output  
The VTEMP push-pull output provides the ability to sink and  
source significant current. This is beneficial when, for exam-  
ple, driving dynamic loads like an input stage on an analog-  
to-digital converter (ADC). In these applications the source  
current is required to quickly charge the input capacitor of the  
ADC. See the Applications Circuits section for more discus-  
sion of this topic. The SM72480 is ideal for this and other  
applications which require strong source or sink current.  
30142052  
The Pull-up resistor value is calculated at the condition of  
maximum total current, iT, through the resistor. The total cur-  
rent is:  
where,  
4.1 NOISE CONSIDERATIONS  
iT  
iT is the maximum total current through the Pull-up  
Resistor at VOL  
The SM72480's supply-noise rejection (the ratio of the AC  
signal on VTEMP to the AC signal on VDD) was measured dur-  
ing bench tests. It's typical attenuation is shown in the Typical  
Performance Characteristics section. A load capacitor on the  
output can help to filter noise.  
.
iL  
iL is the load current, which is very low for typical  
digital inputs.  
VOUT  
VOUT is the Voltage at the OVERTEMP pin. Use  
VOL for calculating the Pull-up resistor.  
For operation in very noisy environments, some bypass ca-  
pacitance should be present on the supply within approxi-  
mately 2 inches of the SM72480.  
VDD(Max) VDD(Max) is the maximum power supply voltage to be  
used in the customer's system.  
The pull-up resistor maximum value can be found by using  
the following formula:  
4.2 CAPACITIVE LOADS  
The VTEMP Output handles capacitive loading well. In an ex-  
tremely noisy environment, or when driving a switched sam-  
pling input on an ADC, it may be necessary to add some  
filtering to minimize noise coupling. Without any precautions,  
the VTEMP can drive a capacitive load less than or equal to  
1100 pF as shown in Figure 1. For capacitive loads greater  
than 1100 pF, a series resistor is required on the output, as  
shown in Figure 2, to maintain stable conditions.  
EXAMPLE CALCULATION  
Suppose we have, for our example, a VDD of 3.3 V ± 0.3V, a  
CMOS digital input as a load, a VOL of 0.2 V.  
www.national.com  
12  
5.0 Mounting and Temperature  
Conductivity  
The SM72480 can be applied easily in the same way as other  
integrated-circuit temperature sensors. It can be glued or ce-  
mented to a surface.  
The best thermal conductivity between the device and the  
PCB is achieved by soldering the DAP of the package to the  
thermal pad on the PCB. The temperatures of the lands and  
traces to the other leads of the SM72480 will also affect the  
temperature reading.  
30142015  
FIGURE 1. SM72480 No Decoupling Required for  
Capacitive Loads Less than 1100 pF.  
Alternatively, the SM72480 can be mounted inside a sealed-  
end metal tube, and can then be dipped into a bath or screwed  
into a threaded hole in a tank. As with any IC, the SM72480  
and accompanying wiring and circuits must be kept insulated  
and dry, to avoid leakage and corrosion. This is especially true  
if the circuit may operate at cold temperatures where con-  
densation can occur. If moisture creates a short circuit from  
the VTEMP output to ground or VDD, the VTEMP output from the  
SM72480 will not be correct. Printed-circuit coatings are often  
used to ensure that moisture cannot corrode the leads or cir-  
cuit traces.  
30142033  
CLOAD  
1.1 nF to 99 nF  
100 nF to 999 nF  
1 μF  
Minimum RS  
3 kΩ  
The thermal resistance junction-to-ambient (θJA) is the pa-  
rameter used to calculate the rise of a device junction tem-  
perature due to its power dissipation. The equation used to  
calculate the rise in the SM72480's die temperature is  
1.5 kΩ  
800 Ω  
FIGURE 2. SM72480 with series resistor for capacitive  
loading greater than 1100 pF.  
where TA is the ambient temperature, IQ is the quiescent cur-  
rent, IL is the load current on the output, and VO is the output  
voltage. For example, in an application where TA = 30 °C,  
VDD = 5 V, IDD = 9 μA, Gain 4, VTEMP = 2231 mV, and  
IL = 2 μA, the junction temperature would be 30.021 °C, show-  
ing a self-heating error of only 0.021°C. Since the SM72480's  
junction temperature is the actual temperature being mea-  
sured, care should be taken to minimize the load current that  
the VTEMP output is required to drive. If The OVERTEMP out-  
put is used with a 100 k pull-up resistor, and this output is  
asserted (low), then for this example the additional contribu-  
tion is [(152° C/W)x(5V)2/100k] = 0.038°C for a total self-  
heating error of 0.059°C. Figure 3 shows the thermal  
resistance of the SM72480.  
4.3 VOLTAGE SHIFT  
The SM72480 is very linear over temperature and supply  
voltage range. Due to the intrinsic behavior of an NMOS/  
PMOS rail-to-rail buffer, a slight shift in the output can occur  
when the supply voltage is ramped over the operating range  
of the device. The location of the shift is determined by the  
relative levels of VDD and VTEMP. The shift typically occurs  
when VDD − VTEMP = 1.0V.  
This slight shift (a few millivolts) takes place over a wide  
change (approximately 200 mV) in VDD or VTEMP. Since the  
shift takes place over a wide temperature change of 5°C to  
20°C, VTEMP is always monotonic. The accuracy specifica-  
tions in the Electrical Characteristics table already includes  
this possible shift.  
NS Package  
Number  
Thermal  
Device Number  
Resistance (θJA  
)
SM72480SD  
SDB06A  
152° C/W  
FIGURE 3. SM72480 Thermal Resistance  
13  
www.national.com  
6.0 Applications Circuits  
30142061  
FIGURE 4. Temperature Switch Using Push-Pull Output  
30142062  
FIGURE 5. Temperature Switch Using Open-Drain Output  
30142028  
Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges  
the sampling cap, it requires instantaneous charge from the output of the analog source such as the SM72480 temperature sensor  
and many op amps. This requirement is easily accommodated by the addition of a capacitor (CFILTER). The size of CFILTER depends  
on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge  
requirements will vary. This general ADC application is shown as an example only.  
FIGURE 6. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
www.national.com  
14  
30142018  
FIGURE 7. Celsius Temperature Switch  
30142060  
FIGURE 8. TRIP TEST Digital Output Test Circuit  
30142065  
The TRIP TEST pin, normally used to check the operation of the OVERTEMP and OVERTEMP pins, may be used to latch the  
outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As shown in the figure,  
when OVERTEMP goes high the TRIP TEST input is also pulled high and causes OVERTEMP output to latch high and the  
OVERTEMP output to latch low. The latch can be released by either momentarily pulling the TRIP TEST pin low (GND), or by  
toggling the power supply to the device. The resistor limits the current out of the OVERTEMP output pin.  
FIGURE 9. Latch Circuit using OVERTEMP Output  
15  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
6-Lead LLP-6 Package  
NS Package Number SDB06A  
www.national.com  
16  
Notes  
17  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
www.national.com  
Products  
www.national.com/amplifiers  
Design Support  
www.national.com/webench  
Amplifiers  
WEBENCH® Tools  
App Notes  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
www.national.com/interface  
www.national.com/lvds  
www.national.com/power  
www.national.com/appnotes  
www.national.com/refdesigns  
www.national.com/samples  
www.national.com/evalboards  
www.national.com/packaging  
www.national.com/quality/green  
www.national.com/contacts  
www.national.com/quality  
www.national.com/feedback  
www.national.com/easy  
Clock and Timing  
Data Converters  
Interface  
Reference Designs  
Samples  
Eval Boards  
LVDS  
Packaging  
Power Management  
Green Compliance  
Distributors  
Switching Regulators www.national.com/switchers  
LDOs  
www.national.com/ldo  
www.national.com/led  
www.national.com/vref  
www.national.com/powerwise  
Quality and Reliability  
Feedback/Support  
Design Made Easy  
Applications & Markets  
Mil/Aero  
LED Lighting  
Voltage References  
PowerWise® Solutions  
www.national.com/solutions  
www.national.com/milaero  
www.national.com/solarmagic  
www.national.com/training  
Serial Digital Interface (SDI) www.national.com/sdi  
Temperature Sensors  
PLL/VCO  
www.national.com/tempsensors SolarMagic™  
www.national.com/wireless  
PowerWise® Design  
University  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2011 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
Email: support@nsc.com  
Tel: 1-800-272-9959  
www.national.com  

相关型号:

SM72480SD-105

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SD-105/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI

SM72480SD-120

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SD-120/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI

SM72480SD-125

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SD-125/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI

SM72480SDE-105

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SDE-105/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI

SM72480SDE-120

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SDE-120/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI

SM72480SDE-125

SolarMagic 1.6V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

SM72480SDE-125/NOPB

1.6V,LLP-6 出厂预设温度开关和温度传感器 | NGF | 6 | -50 to 150
TI