LM2940_07 [NSC]

1A Low Dropout Regulator; 1A低压降稳压器
LM2940_07
型号: LM2940_07
厂家: National Semiconductor    National Semiconductor
描述:

1A Low Dropout Regulator
1A低压降稳压器

稳压器
文件: 总20页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2007  
LM2940/LM2940C  
1A Low Dropout Regulator  
General Description  
age, the regulator will automatically shut down to protect both  
the internal circuits and the load. The LM2940/LM2940C can-  
not be harmed by temporary mirror-image insertion. Familiar  
regulator features such as short circuit and thermal overload  
protection are also provided.  
The LM2940/LM2940C positive voltage regulator features the  
ability to source 1A of output current with a dropout voltage of  
typically 0.5V and a maximum of 1V over the entire temper-  
ature range. Furthermore, a quiescent current reduction cir-  
cuit has been included which reduces the ground current  
when the differential between the input voltage and the output  
voltage exceeds approximately 3V. The quiescent current  
with 1A of output current and an input-output differential of 5V  
is therefore only 30 mA. Higher quiescent currents only exist  
when the regulator is in the dropout mode (VIN − VOUT 3V).  
Designed also for vehicular applications, the LM2940/  
LM2940C and all regulated circuitry are protected from re-  
verse battery installations or 2-battery jumps. During line  
transients, such as load dump when the input voltage can  
momentarily exceed the specified maximum operating volt-  
Features  
Dropout voltage typically 0.5V @IO = 1A  
Output current in excess of 1A  
Output voltage trimmed before assembly  
Reverse battery protection  
Internal short circuit current limit  
Mirror image insertion protection  
P+ Product Enhancement tested  
Typical Application  
882203  
*Required if regulator is located far from power supply filter.  
**COUT must be at least 22 μF to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to  
the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.  
Ordering Information  
Temp  
Range  
Output Voltage  
Package  
5.0  
8.0  
9.0  
10  
12  
15  
LM2940CT-5.0  
LM2940CS-5.0  
LM2940CT-9.0  
LM2940CS-9.0  
LM2940CT-12 LM2940CT-15 TO-220  
LM2940CS-12 LM2940CS-15  
0°C  
TJ ≤  
125°C  
TO-263  
LM2940CSX  
-5.0  
LM2940CSX  
-9.0  
LM2940CSX  
-12  
LM2940CSX  
-15  
LLP  
1k Units  
Tape and  
Reel  
LM2940LD-5.0 LM2940LD-8.0 LM2940LD-9.0 LM2940LD-10 LM2940LD-12 LM2940LD-15  
−40°C  
TJ ≤  
125°C  
LLP  
4.5k  
Units  
Tape and  
Reel  
LM2940LDX  
-5.0  
LM2940LDX  
-8.0  
LM2940LDX  
-9.0  
LM2940LDX  
-10  
LM2940LDX  
-12  
LM2940LDX  
-15  
LM2940T-5.0  
LM2940S-5.0  
LM2940T-8.0  
LM2940S-8.0  
LM2940T-9.0  
LM2940S-9.0  
LM2940T-10  
LM2940S-10  
LM2940T-12  
LM2940S-12  
TO-220  
−40°C  
TJ ≤  
125°C  
TO-263  
LM2940SX-5.0 LM2940SX-8.0 LM2940SX-9.0 LM2940SX-10 LM2940SX-12  
© 2007 National Semiconductor Corporation  
8822  
www.national.com  
Temp  
Range  
Output Voltage  
9.0 10  
Package  
5.0  
8.0  
12  
15  
LM2940IMP-5.0 LM2940IMP-8.0 LM2940IMP-9.0 LM2940IMP-10 LM2940IMP-12 LM2940IMP-15 SOT-223  
SOT-223  
−40°C  
TA ≤  
85°C  
LM2940IMPX  
-5.0  
LM2940IMPX  
-8.0  
LM2940IMPX  
-9.0  
LM2940IMPX  
-10  
LM2940IMPX  
-12  
LM2940IMPX  
-15  
in Tape  
and Reel  
Marking  
L53B  
L54B  
L0EB  
L55B  
L56B  
L70B  
The physical size of the SOT-223 is too small to contain the full device part number. The package markings indicated are what will appear on the actual device.  
Mil-Aero Ordering Information  
Temperature  
Range  
Output Voltage  
Package  
5.0  
8.0  
12  
15  
LM2940J-5.0/883  
5962-8958701EA  
LM2940J-12/883  
5962-9088401QEA  
LM2940J-15/883  
5962-9088501QEA  
−55°C  
TJ ≤  
125°C  
J16A  
LM2940WG5.0/883  
5962-8958701XA  
LM2940WG5-12/883 LM2940WG5-15/883 WG16A  
For information on military temperature range products, please go to the Mil/Aero Web Site at http://www.national.com/appinfo/milaero/index.html.  
Connection Diagrams  
TO-220 (T) Plastic Package  
SOT-223 (MP) 3-Lead  
882202  
882242  
Front View  
See NS Package Number TO3B  
Front View  
See NS Package Number MP04A  
16-Lead Dual-in-Line Package (J)  
16-Lead Ceramic Surface-Mount Package (WG)  
882243  
882244  
Top View  
See NS Package Number J16A  
Top View  
See NS Package Number WG16A  
TO-263 (S) Surface-Mount Package  
LLP (LD) 8-Lead  
882211  
Top View  
882246  
882212  
Pin 2 and pin 7 are fused to center DAP  
Side View  
See NS Package Number TS3B  
Pin 5 and 6 need to be tied together on PCB board  
Top View  
See NS Package Number LDC08A  
www.national.com  
2
SOT-223 (MP)  
LLP-8 (LD)  
ESD Susceptibility (Note 4)  
260°C, 30s  
235°C, 30s  
2 kV  
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Operating Conditions (Note 1)  
Input Voltage  
LM2940S, J, WG, T, MP 100  
60V  
26V  
ms  
Temperature Range  
LM2940T, LM2940S  
45V  
LM2940CS, T 1 ms  
−40°C TJ 125°C  
0°C TJ 125°C  
−40°C TA 85°C  
−55°C TJ 125°C  
−40°C TJ 125°C  
Internal Power Dissipation  
Internally Limited  
LM2940CT, LM2940CS  
LM2940IMP  
(Note 2)  
Maximum Junction Temperature  
Storage Temperature Range  
Soldering Temperature (Note 3)  
TO-220 (T), Wave  
150°C  
−65°C TJ +150°C  
LM2940J, LM2940WG  
LM2940LD  
260°C, 10s  
235°C, 30s  
TO-263 (S)  
Electrical Characteristics  
VIN = VO + 5V, IO = 1A, CO = 22 μF, unless otherwise specified. Boldface limits apply over the entire operating temperature  
range of the indicated device. All other specifications apply for TA = TJ = 25°C.  
Output Voltage (VO)  
5V  
LM2940  
8V  
LM2940  
LM2940/883  
Limit  
LM2940/883  
Limit  
Units  
Parameter Conditions  
Typ  
Limit  
Typ  
Limit  
(Note 5)  
(Note 6)  
(Note 5)  
(Note 6)  
6.25V VIN 26V  
9.4V VIN 26V  
Output Voltage  
Line Regulation  
Load Regulation  
VMIN  
VMAX  
5.00  
20  
4.85/4.75  
5.15/5.25  
50  
4.85/4.75  
8.00  
20  
7.76/7.60  
8.24/8.40  
80  
7.76/7.60  
5 mA IO 1A  
5.15/5.25  
40/50  
8.24/8.40  
50/80  
mVMAX  
VO + 2V VIN 26V,  
IO = 5 mA  
50 mA IO 1A  
LM2940, LM2940/883  
LM2940C  
35  
35  
50/80  
50/100  
55  
55  
80/130  
80/130  
mVMAX  
50  
80  
Output  
100 mADC and  
20 mArms,  
Impedance  
35  
1000/1000  
55  
1000/1000  
mΩ  
fO = 120 Hz  
Quiescent  
Current  
VO +2V VIN 26V,  
IO = 5 mA  
LM2940, LM2940/883  
LM2940C  
10  
10  
30  
15/20  
15  
15/20  
50/60  
10  
30  
15/20  
45/60  
15/20  
50/60  
mAMAX  
mAMAX  
VIN = VO + 5V,  
IO = 1A  
45/60  
Output Noise  
Voltage  
10 Hz − 100 kHz,  
IO = 5 mA  
150  
700/700  
240  
1000/1000  
μVrms  
Ripple Rejection  
fO = 120 Hz, 1 Vrms  
IO = 100 mA  
LM2940  
,
72  
72  
60/54  
66  
66  
54/48  
dBMIN  
dBMIN  
LM2940C  
60  
54  
fO = 1 kHz, 1 Vrms  
IO = 5 mA  
,
60/50  
54/48  
Long Term  
Stability  
20  
32  
mV/  
1000 Hr  
VMAX  
Dropout Voltage  
IO = 1A  
0.5  
0.8/1.0  
0.7/1.0  
0.5  
0.8/1.0  
0.7/1.0  
IO = 100 mA  
110  
150/200  
150/200  
110  
150/200  
150/200  
mVMAX  
3
www.national.com  
Output Voltage (VO)  
Parameter Conditions  
5V  
LM2940  
8V  
LM2940  
LM2940/883  
Limit  
LM2940/883  
Limit  
Units  
Typ  
Limit  
Typ  
Limit  
(Note 5)  
(Note 6)  
(Note 5)  
(Note 6)  
Short Circuit  
Current  
(Note 7)  
AMIN  
1.9  
1.6  
1.5/1.3  
1.9  
1.6  
1.6/1.3  
Maximum Line  
Transient  
RO = 100Ω  
75  
55  
60/60  
75  
55  
60/60  
LM2940, T 100 ms  
LM2940/883, T 20 ms  
LM2940C, T 1 ms  
RO = 100Ω  
LM2940, LM2940/883  
LM2940C  
VMIN  
40/40  
40/40  
45  
45  
Reverse Polarity  
DC Input Voltage  
−30  
−30  
−15/−15  
−15/−15  
−30  
−30  
−15/−15  
−15/−15  
VMIN  
−15  
−15  
Reverse Polarity  
Transient Input  
Voltage  
RO = 100Ω  
−75  
−55  
−50/−50  
−45/−45  
−75  
−50/−50  
VMIN  
LM2940, T 100 ms  
LM2940/883, T 20 ms  
LM2940C, T 1 ms  
−45/−45  
−45/−45  
Electrical Characteristics  
VIN = VO + 5V, IO = 1A, CO = 22 μF, unless otherwise specified. Boldface limits apply over the entire operating temperature  
range of the indicated device. All other specifications apply for TA = TJ = 25°C.  
Output Voltage (VO)  
9V  
10V  
LM2940  
Limit  
LM2940  
Limit  
Units  
Parameter  
Conditions  
Typ  
Typ  
(Note 5)  
(Note 5)  
10.5V VIN 26V  
11.5V VIN 26V  
Output Voltage  
Line Regulation  
Load Regulation  
VMIN  
VMAX  
9.00  
8.73/8.55  
9.27/9.45  
90  
10.00  
9.70/9.50  
10.30/10.50  
100  
5 mA IO 1A  
mVMAX  
20  
20  
VO + 2V VIN 26V,  
IO = 5 mA  
50 mA IO 1A  
LM2940  
60  
60  
90/150  
65  
65  
100/165  
mVMAX  
LM2940C  
90  
Output Impedance  
100 mADC and  
20 mArms,  
60  
mΩ  
fO = 120 Hz  
Quiescent  
Current  
VO +2V VIN < 26V,  
IO = 5 mA  
LM2940  
10  
10  
30  
15/20  
15  
10  
15/20  
45/60  
mAMAX  
LM2940C  
VIN = VO + 5V, IO = 1A  
10 Hz − 100 kHz,  
IO = 5 mA  
45/60  
30  
mAMAX  
Output Noise  
Voltage  
270  
300  
μVrms  
Ripple Rejection  
fO = 120 Hz, 1 Vrms  
IO = 100 mA  
LM2940  
,
64  
64  
34  
52/46  
63  
36  
51/45  
dBMIN  
LM2940C  
52  
Long Term  
Stability  
mV/  
1000 Hr  
www.national.com  
4
Output Voltage (VO)  
Conditions  
9V  
10V  
LM2940  
Limit  
LM2940  
Limit  
Units  
Parameter  
Typ  
Typ  
(Note 5)  
0.8/1.0  
(Note 5)  
0.8/1.0  
Dropout Voltage  
IO = 1A  
0.5  
110  
1.9  
0.5  
110  
1.9  
VMAX  
mVMAX  
AMIN  
IO = 100 mA  
(Note 7)  
150/200  
150/200  
Short Circuit  
Current  
1.6  
1.6  
Maximum Line  
Transient  
RO = 100Ω  
T 100 ms  
LM2940  
75  
55  
60/60  
75  
60/60  
VMIN  
LM2940C  
45  
Reverse Polarity  
DC Input Voltage  
RO = 100Ω  
LM2940  
−30  
−30  
−15/−15  
−30  
−15/−15  
VMIN  
LM2940C  
RO = 100Ω  
−15  
Reverse Polarity  
Transient Input  
Voltage  
T 100 ms  
LM2940  
−75  
−55  
−50/−50  
−45/−45  
−75  
−50/−50  
VMIN  
LM2940C  
Electrical Characteristics  
VIN = VO + 5V, IO = 1A, CO = 22 μF, unless otherwise specified. Boldface limits apply over the entire operating temperature  
range of the indicated device. All other specifications apply for TA = TJ = 25°C.  
Output Voltage (VO)  
12V  
LM2940  
15V  
LM2940  
LM2940/833  
Limit  
LM2940/833  
Limit  
Units  
Parameter Conditions  
Typ  
Limit  
Typ  
Limit  
(Note 5)  
(Note 6)  
(Note 5)  
(Note 6)  
13.6V VIN 26V  
12.00 11.64/11.40 11.64/11.40 15.00 14.55/14.25 14.55/14.25  
12.36/12.60 12.36/12.60 15.45/15.75 15.45/15.75  
16.75V VIN 26V  
Output Voltage  
Line Regulation  
Load Regulation  
VMIN  
VMAX  
5 mA IO 1A  
mVMAX  
20  
120  
75/120  
20  
150  
95/150  
VO + 2V VIN 26V,  
IO = 5 mA  
50 mA IO 1A  
LM2940, LM2940/883  
LM2940C  
55  
55  
120/200  
120/190  
150/240  
mVMAX  
120  
70  
150  
Output  
100 mADC and  
20 mArms,  
Impedance  
80  
1000/1000  
100  
1000/1000  
mΩ  
fO = 120 Hz  
Quiescent  
Current  
VO +2V VIN 26V,  
IO = 5 mA  
LM2940, LM2940/883  
LM2940C  
10  
10  
30  
15/20  
15  
15/20  
15/20  
mAMAX  
10  
30  
15  
VIN = VO + 5V, IO = 1A  
10 Hz − 100 kHz,  
IO = 5 mA  
45/60  
50/60  
45/60  
50/60  
mAMAX  
Output Noise  
Voltage  
360  
1000/1000  
450  
1000/1000  
μVrms  
5
www.national.com  
Output Voltage (VO)  
Parameter Conditions  
12V  
LM2940  
15V  
LM2940  
LM2940/833  
Limit  
LM2940/833  
Limit  
Units  
Typ  
Limit  
Typ  
Limit  
(Note 5)  
(Note 6)  
(Note 5)  
(Note 6)  
Ripple Rejection  
fO = 120 Hz, 1 Vrms  
IO = 100 mA  
LM2940  
,
66  
66  
54/48  
dBMIN  
dBMIN  
LM2940C  
54  
64  
60  
52  
fO = 1 kHz, 1 Vrms  
IO = 5 mA  
,
52/46  
48/42  
Long Term  
Stability  
mV/  
1000 Hr  
VMAX  
48  
Dropout Voltage  
IO = 1A  
0.5  
0.8/1.0  
0.7/1.0  
0.5  
0.8/1.0  
0.7/1.0  
IO = 100 mA  
(Note 7)  
110  
150/200  
150/200  
110  
150/200  
150/200  
mVMAX  
Short Circuit  
Current  
AMIN  
1.9  
1.6  
1.6/1.3  
1.9  
1.6  
1.6/1.3  
Maximum Line  
RO = 100Ω  
Transient  
75  
55  
60/60  
LM2940, T 100 ms  
LM2940/883, T 20 ms  
LM2940C, T 1 ms  
RO = 100Ω  
LM2940, LM2940/883  
LM2940C  
40/40  
40/40  
VMIN  
45  
55  
45  
Reverse Polarity  
DC Input  
−30  
−30  
−15/−15  
−15/−15  
−15/−15  
VMIN  
Voltage  
−15  
−30  
−15  
Reverse Polarity  
Transient Input  
Voltage  
RO = 100Ω  
−75  
−55  
−50/−50  
−45/−45  
LM2940, T 100 ms  
LM2940/883, T 20 ms  
LM2940C, T 1 ms  
−45/−45  
−45/−45  
VMIN  
−55  
−45/−45  
Thermal Performance  
Thermal Resistance  
3-Lead TO-220  
3-Lead TO-263  
4
4
°C/W  
Junction-to-Case, θ(JC)  
3-Lead TO-220 (Note 2)  
3-Lead TO-263 (Note 2)  
SOT-223(Note 2)  
60  
Thermal Resistance  
80  
174  
35  
°C/W  
Junction-to-Ambient, θ(JA)  
8-Lead LLP (Note 2)  
Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Conditions are conditions under which the device  
functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions see the Electrical Characteristics.  
Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ, the junction-to-ambient thermal resistance, θJA, and  
the ambient temperature, TA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal  
shutdown. The value of θJA (for devices in still air with no heatsink) is 60°C/W for the TO-220 package, 80°C/W for the TO-263 package, and 174°C/W for the  
SOT-223 package. The effective value of θJA can be reduced by using a heatsink (see Application Hints for specific information on heatsinking). The value of  
θ
JA for the LLP package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance  
and power dissipation for the LLP package, refer to Application Note AN-1187. It is recommended that 6 vias be placed under the center pad to improve thermal  
performance.  
Note 3: Refer to JEDEC J-STD-020C for surface mount device (SMD) package reflow profiles and conditions. Unless otherwise stated, the temperature and time  
are for Sn-Pb (STD) only.  
Note 4: ESD rating is based on the human body model, 100 pF discharged through 1.5 kΩ.  
Note 5: All limits are guaranteed at TA = TJ = 25°C only (standard typeface) or over the entire operating temperature range of the indicated device (boldface type).  
All limits at TA = TJ = 25°C are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control  
methods.  
Note 6: All limits are guaranteed at TA = TJ = 25°C only (standard typeface) or over the entire operating temperature range of the indicated device (boldface type).  
All limits are 100% production tested and are used to calculate Outgoing Quality Levels.  
Note 7: Output current will decrease with increasing temperature but will not drop below 1A at the maximum specified temperature.  
www.national.com  
6
Typical Performance Characteristics  
Dropout Voltage  
Dropout Voltage vs. Temperature  
882213  
882214  
Output Voltage vs. Temperature  
Quiescent Current vs. Temperature  
882215  
882216  
Quiescent Current  
Quiescent Current  
882217  
882218  
7
www.national.com  
Line Transient Response  
Load Transient Response  
Low Voltage Behavior  
Low Voltage Behavior  
882220  
882219  
Ripple Rejection  
882225  
882221  
Low Voltage Behavior  
882226  
882227  
www.national.com  
8
Low Voltage Behavior  
Low Voltage Behavior  
Output at Voltage Extremes  
Output at Voltage Extremes  
882228  
882230  
882232  
882229  
882231  
882233  
Low Voltage Behavior  
Output at Voltage Extremes  
9
www.national.com  
Output at Voltage Extremes  
Output at Voltage Extremes  
Peak Output Current  
Output at Voltage Extremes  
Output Capacitor ESR  
Output Impedance  
882234  
882235  
882236  
882206  
882222  
882208  
www.national.com  
10  
Maximum Power Dissipation (TO-220)  
Maximum Power Dissipation (SOT-223)  
882224  
882223  
Maximum Power Dissipation (TO-263)  
882210  
11  
www.national.com  
Equivalent Schematic Diagram  
882201  
www.national.com  
12  
temperature must be within the range specified under Abso-  
lute Maximum Ratings.  
Application Information  
To determine if a heatsink is required, the power dissipated  
by the regulator, PD, must be calculated.  
EXTERNAL CAPACITORS  
The output capacitor is critical to maintaining regulator stabil-  
ity, and must meet the required conditions for both ESR  
(Equivalent Series Resistance) and minimum amount of ca-  
pacitance.  
The figure below shows the voltages and currents which are  
present in the circuit, as well as the formula for calculating the  
power dissipated in the regulator:  
MINIMUM CAPACITANCE:  
The minimum output capacitance required to maintain stabil-  
ity is 22 μF (this value may be increased without limit). Larger  
values of output capacitance will give improved transient re-  
sponse.  
ESR LIMITS:  
The ESR of the output capacitor will cause loop instability if it  
is too high or too low. The acceptable range of ESR plotted  
versus load current is shown in the graph below. It is essen-  
tial that the output capacitor meet these requirements, or  
oscillations can result.  
882237  
IIN = IL + IG  
PD = (VIN − VOUT) IL + (VIN) IG  
Output Capacitor ESR  
FIGURE 2. Power Dissipation Diagram  
The next parameter which must be calculated is the maximum  
allowable temperature rise, TR(MAX). This is calculated by us-  
ing the formula:  
TR(MAX) = TJ(MAX) − TA(MAX)  
where: TJ(MAX)  
is the maximum allowable junction tempera-  
ture, which is 125°C for commercial grade  
parts.  
TA(MAX)  
is the maximum ambient temperature which  
will be encountered in the application.  
Using the calculated values for TR(MAX) and PD, the maximum  
allowable value for the junction-to-ambient thermal resis-  
tance, θ(JA), can now be found:  
882206  
FIGURE 1. ESR Limits  
θ(JA) = TR(MAX) / PD  
IMPORTANT: If the maximum allowable value for θ(JA) is  
found to be 53°C/W for the TO-220 package, 80°C/W for  
the TO-263 package, or 174°C/W for the SOT-223 pack-  
age, no heatsink is needed since the package alone will  
dissipate enough heat to satisfy these requirements.  
It is important to note that for most capacitors, ESR is speci-  
fied only at room temperature. However, the designer must  
ensure that the ESR will stay inside the limits shown over the  
entire operating temperature range for the design.  
For aluminum electrolytic capacitors, ESR will increase by  
about 30X as the temperature is reduced from 25°C to −40°  
C. This type of capacitor is not well-suited for low temperature  
operation.  
If the calculated value for θ(JA)falls below these limits, a  
heatsink is required.  
HEATSINKING TO-220 PACKAGE PARTS  
Solid tantalum capacitors have a more stable ESR over tem-  
perature, but are more expensive than aluminum electrolyt-  
ics. A cost-effective approach sometimes used is to parallel  
an aluminum electrolytic with a solid Tantalum, with the total  
capacitance split about 75/25% with the Aluminum being the  
larger value.  
The TO-220 can be attached to a typical heatsink, or secured  
to a copper plane on a PC board. If a copper plane is to be  
used, the values of θ(JA) will be the same as shown in the next  
section for the TO-263.  
If a manufactured heatsink is to be selected, the value of  
heatsink-to-ambient thermal resistance, θ(H−A), must first be  
calculated:  
If two capacitors are paralleled, the effective ESR is the par-  
allel of the two individual values. The “flatter” ESR of the  
Tantalum will keep the effective ESR from rising as quickly at  
low temperatures.  
θ(H−A) = θ(JA) − θ(C−H) − θ(J−C)  
HEATSINKING  
is defined as the thermal resistance from the  
junction to the surface of the case. A value of  
3°C/W can be assumed for θ(J−C) for this cal-  
culation.  
Where: θ(J−C)  
A heatsink may be required depending on the maximum pow-  
er dissipation and maximum ambient temperature of the ap-  
plication. Under all possible operating conditions, the junction  
13  
www.national.com  
is defined as the thermal resistance between  
the case and the surface of the heatsink. The  
value of θ(C−H) will vary from about 1.5°C/W to  
about 2.5°C/W (depending on method of at-  
tachment, insulator, etc.). If the exact value is  
unknown, 2°C/W should be assumed for θ(C  
ꢀꢀꢀθ(C−H)  
.
−H)  
When a value for θ(H−A) is found using the equation shown, a  
heatsink must be selected that has a value that is less than  
or equal to this number.  
θ(H−A) is specified numerically by the heatsink manufacturer  
in the catalog, or shown in a curve that plots temperature rise  
vs power dissipation for the heatsink.  
HEATSINKING TO-263 PACKAGE PARTS  
The TO-263 (“S”) package uses a copper plane on the PCB  
and the PCB itself as a heatsink. To optimize the heat sinking  
ability of the plane and PCB, solder the tab of the package to  
the plane.  
882239  
FIGURE 4. Maximum Power Dissipation vs. TA for the  
TO-263 Package  
Figure 3 shows for the TO-263 the measured values of θ(JA)  
for different copper area sizes using a typical PCB with 1  
ounce copper and no solder mask over the copper area used  
for heatsinking.  
HEATSINKING SOT-223 PACKAGE PARTS  
The SOT-223 (“MP”) packages use a copper plane on the  
PCB and the PCB itself as a heatsink. To optimize the heat  
sinking ability of the plane and PCB, solder the tab of the  
package to the plane.  
Figure 5 and Figure 6 show the information for the SOT-223  
package. Figure 6 assumes a θ(JA) of 74°C/W for 1 square  
inch of 1 ounce copper and 51°C/W for 1 square inch of 2  
ounce copper, with a maximum ambient temperature (TA) of  
85°C and a maximum junction temperature (TJ) of 125°C.  
For techniques for improving the thermal resistance and pow-  
er dissipation for the SOT-223 package, please refer to Ap-  
plication Note AN-1028.  
882238  
FIGURE 3. θ(JA) vs. Copper (1 ounce) Area for the TO-263  
Package  
As shown in the figure, increasing the copper area beyond 1  
square inch produces very little improvement. It should also  
be observed that the minimum value of θ(JA) for the TO-263  
package mounted to a PCB is 32°C/W.  
As a design aid, Figure 4 shows the maximum allowable pow-  
er dissipation compared to ambient temperature for the  
TO-263 device. This assumes a θ(JA) of 35°C/W for 1 square  
inch of 1 ounce copper and a maximum junction temperature  
(TJ) of 125°C.  
882240  
FIGURE 5. θ(JA) vs. Copper (2 ounce) Area for the SOT-223  
Package  
www.national.com  
14  
HEATSINKING LLP PACKAGE PARTS  
The value of θJA for the LLP package is specifically dependent  
on PCB trace area, trace material, and the number of layers  
and thermal vias. It is recommended that a minimum of 6  
thermal vias be placed under the center pad to improve ther-  
mal performance.  
For techniques for improving the thermal resistance and pow-  
er dissipation for the LLP package, please refer to Application  
Note AN-1187.  
882241  
FIGURE 6. Maximum Power Dissipation vs. TA for the  
SOT-223 Package  
15  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
3-Lead SOT-223 Package  
NS Package Number MP04A  
16 Lead Dual-in-Line Package (J)  
See NS Package Number J16A  
www.national.com  
16  
16 Lead Surface Mount Package (WG)  
See NS Package Number WG16A  
3-Lead TO-220 Plastic Package (T)  
NS Package Number TO3B  
17  
www.national.com  
3-Lead TO-263 Surface Mount Package (MP)  
NS Package Number TS3B  
8-Lead LLP  
Order Number LM2940LD-5.0, LM2940LD-8.0,  
LM2940LD-9.0, LM2940LD-10,  
LM2940LD-12 or LM2940LD-15  
NS Package Number LDC08A  
www.national.com  
18  
Notes  
19  
www.national.com  
Notes  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2007 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor Europe  
Customer Support Center  
Fax: +49 (0) 180-530-85-86  
National Semiconductor Asia  
Pacific Customer Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Customer Support Center  
Fax: 81-3-5639-7507  
Email:  
new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +49 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LM2940_10

1A LOW-DROPOUT POSITIVE VOLTAGE REGULATOR
UTC

LM2940_12

1A LOW-DROPOUT POSITIVE VOLTAGE REGULATOR
UTC

LM2940_14

1A LOW-DROPOUT POSITIVE VOLTAGE REGULATOR
UTC

LM2941

1A Low Dropout Adjustable Regulator
NSC

LM2941

LM2941/LM2941C 1A Low Dropout Adjustable Regulator
TI

LM2941 MDE

耐辐射 QMLV、6V 至 26V 输入、1A 可调输出线性稳压器 | Y | 0 | -55 to 125
TI

LM2941-ADJMDC

5 V-20 V ADJUSTABLE POSITIVE LDO REGULATOR, UUC
NSC

LM2941-ADJMWC

5 V-20V ADJUSTABLE POSITIVE LDO REGULATOR, 0.8V DROPOUT, UUC, WAFER
NSC

LM2941-MD8

1A 低压降可调节稳压器 | Y | 0
TI

LM2941C

1A Low Dropout Adjustable Regulator
NSC

LM2941C

1A Low Dropout Adjustable Regulator
TI

LM2941CS

1A Low Dropout Adjustable Regulator
NSC