LM2852XMXAX-0.8 [NSC]

2A 500/1500kHz Synchronous SIMPLE SWITCHER㈢ Buck Regulator; 2A 500 ​​/ 1500kHz同步SIMPLE SWITCHER㈢降压稳压器
LM2852XMXAX-0.8
型号: LM2852XMXAX-0.8
厂家: National Semiconductor    National Semiconductor
描述:

2A 500/1500kHz Synchronous SIMPLE SWITCHER㈢ Buck Regulator
2A 500 ​​/ 1500kHz同步SIMPLE SWITCHER㈢降压稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总14页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
October 2006  
LM2852  
2A 500/1500kHz Synchronous SIMPLE SWITCHER® Buck  
Regulator  
General Description  
Features  
The LM2852 SIMPLE SWITCHER® synchronous buck regu-  
lator is a high frequency step-down switching voltage regu-  
lator capable of driving up to a 2A load with excellent line and  
load regulation. The LM2852 can accept an input voltage  
between 2.85V and 5.5V and deliver an output voltage that is  
factory programmable from 0.8V to 3.3V in 100mV incre-  
ments. The LM2852 is available with a choice of two switch-  
ing frequencies - 500kHz (LM2852Y) or 1.5MHz (LM2852X).  
It also features internal, type-three compensation to deliver a  
low component count solution. The exposed-pad TSSOP-14  
package enhances the thermal performance of the LM2852.  
n Input voltage range of 2.85 to 5.5V  
n Factory EEPROM set output voltages from 0.8V to 3.3V  
in 100mV increments  
n Maximum load current of 2A  
n Voltage Mode Control  
n Internal type-three compensation  
n Switching frequency of 500kHz or 1.5MHz  
n Low standby current of 10µA  
n Internal 60 mMOSFET switches  
n Standard voltage options 0.8/1.0/1.2/1.5/1.8/2.5/3.3 volts  
Applications  
n Low voltage point of load regulation  
n Local solution for FPGA/DSP/ASIC core power  
n Broadband networking and communications  
infrastructure  
n Portable computing  
Typical Application Circuit  
20127001  
20127002  
SIMPLE SWITCHER®  
SIMPLE SWITCHERreg; is a registered trademark of National Semiconductor Corporation  
© 2006 National Semiconductor Corporation  
DS201270  
www.national.com  
Connection Diagram  
TOP VIEW  
20127003  
MXA14A  
ETSSOP-14  
NC (Pins 5, 12 and 13): No connect. These pins must be  
tied to ground or left floating in the application.  
Pin Descriptions  
AVIN (Pin 1): Chip bias input pin. This provides power to the  
logic of the chip. Connect to the input voltage or a separate  
rail.  
PVIN (Pins 6, 7): Input supply pin. PVIN is connected to the  
input voltage. This rail connects to the source of the internal  
power PFET.  
EN (Pin 2): Enable. Connect this pin to ground to disable the  
chip; connect to AVIN or leave floating to enable the chip;  
enable is internally pulled up.  
SW (Pins 8, 9): Switch pin. Connect to the output inductor.  
PGND (Pins 10, 11): Power ground. Connect this to an  
internal ground plane or other large ground plane.  
SGND (Pin 3): Signal ground.  
SNS (Pin 14): Output voltage sense pin. Connect this pin to  
the output voltage as close to the load as possible.  
SS (Pin 4): Soft-start pin. Connect this pin to a small capaci-  
tor to control startup. The soft-start capacitance range is  
restricted to values 1 nF to 50 nF.  
Exposed Pad: Connect to ground.  
www.national.com  
2
Ordering Information  
Voltage  
Option  
0.8  
Package  
Drawing  
Order Number  
LM2852YMXA-0.8  
LM2852YMXAX-0.8  
LM2852YMXA-1.0  
LM2852YMXAX-1.0  
LM2852YMXA-1.2  
LM2852YMXAX-1.2  
LM2852YMXA-1.5  
LM2852YMXAX-1.5  
LM2852YMXA-1.8  
LM2852YMXAX-1.8  
LM2852YMXA-2.5  
LM2852YMXAX-2.5  
LM2852YMXA-3.0  
LM2852YMXAX-3.0  
LM2852YMXA-3.3  
LM2852YMXAX-3.3  
LM2852XMXA-0.8  
LM2852XMXAX-0.8  
LM2852XMXA-1.0  
LM2852XMXAX-1.0  
LM2852XMXA-1.2  
LM2852XMXAX-1.2  
LM2852XMXA-1.5  
LM2852XMXAX-1.5  
LM2852XMXA-1.8  
LM2852XMXAX-1.8  
LM2852XMXA-2.5  
LM2852XMXAX-2.5  
LM2852XMXA-3.0  
LM2852XMXAX-3.0  
LM2852XMXA-3.3  
LM2852XMXAX-3.3  
Frequency  
Package Type  
Supplied As  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
1.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
0.8  
1.0  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
500kHz  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
TSSOP-14 exposed  
pad  
MXA14A  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
1500kHz  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
94 Units, Rail  
2500 Units, Tape and Reel  
Note: Contact factory for other voltage options.  
3
www.national.com  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
PVIN to GND  
AVIN to GND  
Junction Temperature  
θJA  
1.5V to 5.5V  
2.85V to 5.5V  
−40˚C to +125˚C  
38˚C/W  
PVIN, AVIN, EN, SNS  
ESD Susceptibility (Note 2)  
Power Dissipation  
−0.3V to 6.5V  
2kV  
Internally Limited  
−65˚C to +150˚C  
150˚C  
Storage Temperature Range  
Maximum Junction Temp.  
14-Pin Exposed Pad TSSOP  
Package  
220˚C  
215˚C  
260˚C  
Infrared (15 sec)  
Vapor Phase (60 sec)  
Soldering (10 sec)  
Electrical Characteristics AVIN = PVIN = 5V unless otherwise indicated under the Conditions column.  
Limits in standard type are for TJ = 25˚C only; limits in boldface type apply over the junction temperature (TJ) range of -40˚C  
to +125˚C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values repre-  
sent the most likely parametric norm at TJ = 25˚C, and are provided for reference purposes only.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SYSTEM PARAMETERS  
VOUT  
Voltage Tolerance3 VOUT = 0.8V option  
VOUT = 1.0V option  
0.782  
0.9775  
1.1730  
1.4663  
1.7595  
2.4437  
2.9325  
3.2257  
0.818  
1.0225  
1.2270  
1.5337  
1.8405  
2.5563  
3.0675  
3.3743  
0.6  
V
VOUT = 1.2V option  
VOUT = 1.5V option  
VOUT = 1.8V option  
VOUT = 2.5V option  
VOUT = 3.0V option  
VOUT = 3.3V option  
Line Regulation3 VOUT = 0.8V, 1.0V, 1.2V, 1.5V, 1.8V or  
VOUT/AVIN  
0.2  
0.2  
%
%
2.5V  
2.85V AVIN 5.5V  
VOUT = 3.3V  
0.6  
3.5V AVIN 5.5V  
VOUT/IO  
Load Regulation Normal operation  
UVLO Threshold Rising  
8
mV/A  
V
VON  
2.47  
150  
75  
2.85  
210  
140  
(AVIN)  
Falling Hysteresis  
Isw = 2A  
85  
mV  
mΩ  
rDSON-P  
rDSON-N  
RSS  
PFET On  
Resistance  
NFET On  
Resistance  
Soft-start  
Isw = 2A  
55  
120  
mΩ  
kΩ  
A
400  
resistance  
ICL  
Peak Current Limit LM2852X  
Threshold  
Operating Current Non-switching  
2.75  
2.25  
4
3
4.95  
3.65  
2
LM2852Y  
IQ  
0.85  
10  
mA  
µA  
ISD  
Shutdown  
Quiescent Current  
Sense pin  
EN = 0V  
25  
RSNS  
400  
kΩ  
resistance  
PWM  
fosc  
LM2852X  
LM2852Y  
1500kHz option.  
500kHz option.  
1050  
325  
1500  
500  
1825  
625  
kHz  
kHz  
www.national.com  
4
Electrical Characteristics AVIN = PVIN = 5V unless otherwise indicated under the Conditions column.  
Limits in standard type are for TJ = 25˚C only; limits in boldface type apply over the junction temperature (TJ) range of -40˚C  
to +125˚C. Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values  
represent the most likely parametric norm at TJ = 25˚C, and are provided for reference purposes only. (Continued)  
Symbol  
Parameter  
Conditions  
Min  
0
Typ  
Max  
100  
Units  
Drange  
Duty Cycle Range  
%
ENABLE CONTROL4  
VIH  
VIL  
IEN  
EN Pin Minimum  
75  
% of  
AVIN  
% of  
AVIN  
µA  
High Input  
EN Pin Maximum  
Low Input  
25  
EN Pin Pullup  
Current  
EN = 0V  
1.2  
THERMAL CONTROLS  
TSD  
TJ for Thermal  
165  
10  
˚C  
˚C  
Shutdown  
Hysteresis for  
TSD-HYS  
Thermal Shutdown  
Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Range indicates conditions for which the device is  
intended to be functional, but does not guarantee specfic performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.  
Note 2: Human body model: 1.5kin series with 100pF. SW and PVIN pins are derated to 1.5kV  
Note 3: V  
measured in a non-switching, closed-loop configuration at the SNS pin.  
OUT  
Note 4: The enable pin is internally pulled up, so the LM2852 is automatically enabled unless an external enable voltage is applied.  
5
www.national.com  
LM2852Y Typical Performance Characteristics (500kHz)  
Efficiency vs ILoad  
VOUT = 1.5V  
Efficiency vs ILoad  
VOUT = 2.5V  
20127024  
20127004  
Efficiency vs ILoad  
VOUT = 3.3V  
Frequency vs Temperature  
20127009  
20127006  
www.national.com  
6
LM2852X Typical Performance Characteristics (1500kHz)  
Efficiency vs ILoad  
VOUT = 1.5V  
Efficiency vs ILoad  
VOUT = 2.5V  
20127026  
20127025  
Efficiency vs ILoad  
VOUT = 3.3V  
Frequency vs Temperature  
20127028  
20127027  
7
www.national.com  
LM2852 Typical Performance Characteristics (Both Y and X Versions)  
Shutdown Current vs VIN  
Quiescent Current (Non-Switching) vs VIN  
20127008  
20127007  
NMOS Switch RDSON vs Temperature  
PMOS Switch RDSON vs Temperature  
20127010  
20127011  
www.national.com  
8
Block Diagram  
20127012  
Applications Information  
The LM2852 is a DC-DC synchronous buck regulator be-  
longing to National Semiconductor’s SIMPLE SWITCHER®  
family. Integration of the PWM controller, power switches  
and compensation network greatly reduces the component  
count required to implement a switching power supply. A  
typical application requires only four components: an input  
capacitor, a soft-start capacitor, an output filter capacitor and  
an output filter inductor.  
also connected to the soft-start pin, SS. Adding a soft-start  
capacitor externally increases the time it takes for the output  
voltage to reach its final level.  
The charging time required for the reference voltage can be  
estimated using the RC time constant of the DAC resistor  
and the capacitance connected to the SS pin. Three RC time  
constant periods are needed for the reference voltage to  
reach 95% of its final value. The actual start-up time will vary  
with differences in the DAC resistance and higher-order  
effects.  
INPUT CAPACITOR (CIN  
)
Fast switching of large currents in the buck converter places  
a heavy demand on the voltage source supplying PVIN. The  
input capacitor, CIN, supplies extra charge when the switcher  
needs to draw a burst of current from the supply. The RMS  
current rating and the voltage rating of the CIN capacitor are  
therefore important in the selection of CIN. The RMS current  
specification can be approximated by:  
If little or no soft-start capacitance is connected, then the  
start-up time may be determined by the time required for the  
current limit current to charge the output filter capacitance.  
The capacitor charging equation I = C V/t can be used to  
estimate the start-up time in this case. For example, a part  
with a 3V output, a 100 µF output capacitance and a 3A  
current limit threshold would require a time of 100 µs:  
where D is the duty cycle, VOUT/VIN. CIN also provides  
filtering of the supply. Trace resistance and inductance de-  
grade the benefits of the input capacitor, so CIN should be  
placed very close to PVIN in the layout. A 22 µF or 47 µF  
ceramic capacitor is typically sufficient for CIN. In parallel  
with the large input capacitance a smaller capacitor may be  
added such as a 1µF ceramic for higher frequency filtering.  
Since it is undesirable for the power supply to start up in  
current limit, a soft-start capacitor must be chosen to force  
the LM2852 to start up in a more controlled fashion based on  
the charging of the soft-start capacitance. In this example,  
suppose a 3 ms start time is desired. Three time constants  
are required for charging the soft-start capacitor to 95% of  
the final reference voltage. So in this case RC=1ms. The  
DAC resistor, R, is 400 kso C can be calculated to be  
2.5nF. A 2.7nF ceramic capacitor can be chosen to yield  
approximately a 3ms start-up time.  
SOFT-START CAPACITOR (CSS  
)
The DAC that sets the reference voltage of the error amp  
sources a current through a resistor to set the reference  
voltage. The reference voltage is one half of the output  
voltage of the switcher due to the 200kdivider connected  
to the SNS pin. Upon start-up, the output voltage of the  
switcher tracks the reference voltage with a two to one ratio  
as the DAC current charges the capacitance connected to  
the reference voltage node. Internal capacitance of 20pF is  
permanently attached to the reference voltage node which is  
SOFT-START CAPACITOR (CSS) AND FAULT  
CONDITIONS  
Various fault conditions such as short circuit and UVLO of  
the LM2852 activate internal circuitry designed to control the  
voltage on the soft-start capacitor. For example, during a  
short circuit current limit event, the output voltage typically  
9
www.national.com  
type-three, is included on-chip. The benefit to integrated  
compensation is straightforward, simple power supply de-  
sign. Since the output filter capacitor and inductor values  
impact the compensation of the control loop, the range of L,  
C and CESR values is restricted in order to ensure stability.  
Applications Information (Continued)  
falls to a low voltage. During this time, the soft-start voltage  
is forced to track the output so that once the short is re-  
moved, the LM2852 can restart gracefully from whatever  
voltage the output reached during the short circuit event. The  
range of soft-start capacitors is therefore restricted to values  
1nF to 50nF.  
OUTPUT FILTER VALUES  
Table 1 details the recommended inductor and capacitor  
ranges for the LM2852 that are suggested for various typical  
output voltages. Values slightly different than those recom-  
mended may be used, however the phase margin of the  
power supply may be degraded.  
COMPENSATION  
The LM2852 provides a highly integrated solution to power  
supply design. The compensation of the LM2852, which is  
TABLE 1. Output Filter Values  
L (µH)  
C (µF)  
CESR (m)  
Max  
Frequency  
Option  
VOUT (V)  
0.8  
0.8  
1.0  
1.0  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
3.3  
0.8  
0.8  
1.0  
1.0  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
3.3  
PVIN (V)  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
3.3  
5.0  
5.0  
Min  
10  
10  
10  
10  
10  
15  
10  
22  
10  
22  
6.8  
15  
15  
Max  
15  
15  
15  
15  
15  
22  
15  
22  
15  
33  
10  
22  
22  
Min  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
68  
Max  
220  
120  
180  
180  
180  
120  
120  
120  
120  
120  
120  
120  
100  
Min  
70  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
275  
275  
275  
70  
70  
70  
70  
70  
LM2852Y  
(500kHz)  
70  
70  
100  
100  
95  
68  
95  
68  
100  
The 1500kHz version is  
designed for ceramic output  
capacitors which typically  
<
have very low ESR ( 10m.)  
LM2852X  
(1500kHz)  
1
10  
www.national.com  
10  
Applications Information (Continued)  
CHOOSING AN INDUCTANCE VALUE  
The current ripple present in the output filter inductor is  
determined by the input voltage, output voltage, switching  
frequency and inductance according to the following equa-  
tion:  
The maximum inductor current for a 2A load would therefore  
be 2A plus 60.8 mA, 2.0608A. As shown in the ripple equa-  
tion, the current ripple is inversely proportional to induc-  
tance.  
OUTPUT FILTER INDUCTORS  
where IL is the peak-to-peak current ripple, D is the duty  
cycle VOUT/VIN, VIN is the input voltage applied to the PVIN  
pin, VOUT is the output voltage of the switcher, f is the  
switching frequency and L is the inductance of the output  
filter inductor. Knowing the current ripple is important for  
inductor selection since the peak current through the induc-  
tor is the load current plus one half the ripple current. Care  
must be taken to ensure the peak inductor current does not  
reach a level high enough to trip the current limit circuitry of  
the LM2852.  
Once the inductance value is chosen, the key parameter for  
selecting the output filter inductor is its saturation current  
(Isat) specification. Typically Isat is given by the manufacturer  
as the current at which the inductance of the coil falls to a  
certain percentage of the nominal inductance. The Isat of an  
inductor used in an application should be greater than the  
maximum expected inductor current to avoid saturation. Be-  
low is a table of inductors that may be suitable in LM2852  
applications.  
As an example, consider a 5V to 1.2V conversion and a  
500kHz switching frequency. According to Table 1, a 15µH  
inductor may be used. Calculating the expected peak-to-  
peak ripple,  
TABLE 2. LM2852 Output Filter Inductors  
Inductance (µH)  
Part Number  
DO1608C-102  
Vendor  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
1
1
DO1813P-102HC  
DO3316P-682  
6.8  
7
MSS1038-702NBC  
DO3316P-103  
10  
10  
12  
15  
15  
18  
22  
22  
22  
27  
33  
33  
MSS1038-103NBC  
MSS1038-123NBC  
D03316P-153  
MSS1038-153NBC  
MSS1038-183NBC  
DO3316P-223  
MSS1038-223NBC  
DO3340P-223  
MSS1038-273NBC  
MSS1038-333NBC  
DO3340P-333  
11  
www.national.com  
Table 1. Below are some examples of capacitors that can  
typically be used in an LM2852 application.  
Applications Information (Continued)  
OUTPUT FILTER CAPACITORS  
The capacitors that may be used in the output filter with the  
LM2852 are limited in value and ESR range according to  
TABLE 3. LM2852 Output Filter Capacitors  
Part Number Chemistry  
Capacitance (µF)  
Vendor  
Murata  
10  
GRM31MR61A106KE19  
GRM32DR61E106K  
595D686X_010C2T  
595D686X_016D2T  
595D107X_6R3C2T  
595D107X_016D2T  
NOSC107M004R0150  
NOSD107M006R0100  
595D127X_004C2T  
595D127X_010D2T  
595D157X_004C2T  
595D157X_016D2T  
NOSC157M004R0150  
NOSD157M006R0100  
595D227X_004D2T  
NOSD227M004R0100  
NOSE227M006R0100  
Ceramic  
Ceramic  
10  
Murata  
68  
Tantalum  
Vishay - Sprague  
Vishay - Sprague  
Vishay - Sprague  
Vishay - Sprague  
AVX  
68  
Tantalum  
100  
100  
100  
100  
120  
120  
150  
150  
150  
150  
220  
220  
220  
Tantalum  
Tantalum  
Niobium Oxide  
Niobium Oxide  
Tantalum  
AVX  
Vishay - Sprague  
Vishay - Sprague  
Vishay - Sprague  
Vishay - Sprague  
AVX  
Tantalum  
Tantalum  
Tantalum  
Niobium Oxide  
Niobium Oxide  
Tantalum  
AVX  
Vishay - Sprague  
AVX  
Niobium Oxide  
Niobium Oxide  
AVX  
SPLIT-RAIL OPERATION  
components need to be chosen based on the value of PVIN.  
For PVIN levels lower than 3.3V, use output filter component  
values recommended for 3.3V. PVIN must always be equal  
to or less than AVIN.  
The LM2852 can be powered using two separate voltages  
for AVIN and PVIN. AVIN is the supply for the control logic;  
PVIN is the supply for the power FETs. The output filter  
20127014  
SWITCH NODE PROTECTION  
power to the LM2852 is applied with no or light load on the  
output. The output regulates to the rated voltage, but no  
switching may be observed. As soon as the output is loaded,  
the LM2852 begins normal switching operation.  
The LM2852 includes protection circuitry that monitors the  
voltage on the switch pin. Under certain conditions, switch-  
ing is disabled in order to protect the switching devices. One  
result of the protection circuitry may be observed when  
www.national.com  
12  
expected regulated value. The sense line should not run  
too close to nodes with high EMI (such as the switch  
node) to minimize interference.  
Applications Information (Continued)  
LAYOUT HINTS  
These are several guidelines to follow while designing the  
PCB layout for an LM2852 application.  
4. The switch node connections should be low resistance  
to reduce power losses. Low resistance means the trace  
between the switch pin and the inductor should be wide.  
However, the area of the switch node should not be too  
large since EMI increases with greater area. So connect  
the inductor to the switch pin with a short, but wide trace.  
Other high current connections in the application such  
as PVIN and VOUT assume the same trade off between  
low resistance and EMI.  
1. The input bulk capacitor, CIN, should be placed very  
close to the PVIN pin to keep the resistance as low as  
possible between the capacitor and the pin. High current  
levels will be present in this connection.  
2. All ground connections must be tied together. Use a  
broad ground plane, for example a completely filled back  
plane, to establish the lowest resistance possible be-  
tween all ground connections.  
5. Allow area under the chip to solder the entire exposed  
die attach pad to ground for improved thermal and elec-  
trical performance.  
3. The sense pin connection should be made as close to  
the load as possible so that the voltage at the load is the  
LM2852 Example Circuit Schematic  
20127020  
FIGURE 1.  
Bill of Materials for 500kHz (LM2852Y) 3.3VIN to 1.8 VOUT Conversion  
ID  
U1  
Part Number  
LM2852YMXA-1.8  
Type  
Size  
Parameters  
Qty  
1
Vendor  
NSC  
2A Buck  
Inductor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Resistor  
Capacitor  
ETSSOP-14  
LO  
DO3316P-153  
15 µH  
1
Coilcraft  
CO*  
CIN  
CINX  
CSS  
Rf  
595D107X_6R3C2T  
GRM32ER60J476ME20B  
GRM21BR71C105KA01B  
VJ0805Y272KXXA  
Case Code “C”  
1210  
100 µF 20%  
47µF/X5R/6.3V  
1µF/X7R/16V  
2.7nF 10%  
1010%  
1
Vishay-Sprague  
Murata  
1
0805  
1
Murata  
0805  
1
Vishay-Vitramon  
Vishay-Dale  
Murata  
CRCW060310R0F  
0603  
1
Cf  
GRM21BR71C105KA01B  
0805  
1µF/X7R/16V  
1
* If a “non-tantalum” solution is desired use an NOSC107M004R0150, 100 µF capacitor from AVX for C  
.
O
Bill of Materials for 1500kHz (LM2852X) 3.3V to 1.8V Conversion  
ID  
U1  
Part Number  
LM2852XMXA-1.8  
Type  
Size  
Parameters  
Qty  
1
Vendor  
NSC  
2A Buck  
Inductor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Resistor  
Capacitor  
ETSSOP-14  
L0  
DO1813P-102HC  
1 µH  
1
Coilcraft  
Murata  
C0  
GRM32DR61E106K  
GRM32ER60J476ME20B  
GRM21BR71C105KA01B  
VJ0805Y272KXXA  
1210  
1210  
0805  
0805  
0603  
0805  
10 µF/X5R/25V  
47µF/X5R/6.3V  
1µF/X7R/16V  
2.7nF 10%  
1010%  
1
CIN  
CINX  
CSS  
Rf  
1
Murata  
1
Murata  
1
Vishay-Vitramon  
Vishay-Dale  
Murata  
CRCW060310R0F  
1
Cf  
GRM21BR71C105KA01B  
1µF/X7R/16V  
1
13  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
14-Lead ETSSOP Package  
NS Package Number MXA14A  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances  
and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at:  
www.national.com/quality/green.  
Lead free products are RoHS compliant.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

LM2852XMXAX-1.0

2A 500/1500kHz SIMPLE SYNCHRONOUS Buck Regulator
NSC

LM2852XMXAX-1.0

4.95A SWITCHING REGULATOR, 1825kHz SWITCHING FREQ-MAX, PDSO14, TSSOP-14
TI

LM2852XMXAX-1.2

2A 500/1500kHz SIMPLE SYNCHRONOUS Buck Regulator
NSC

LM2852XMXAX-1.2/NOPB

2A 500/1500kHz 同步降压稳压器 | PWP | 14 | -40 to 125
TI

LM2852XMXAX-1.5

2A 500/1500kHz SIMPLE SYNCHRONOUS Buck Regulator
NSC

LM2852XMXAX-1.5/NOPB

2A 500/1500kHz 同步降压稳压器 | PWP | 14 | -40 to 125
TI

LM2852XMXAX-1.8

2A 500/1500kHz SIMPLE SYNCHRONOUS Buck Regulator
NSC

LM2852XMXAX-1.8/NOPB

2A 500/1500kHz 同步降压稳压器 | PWP | 14 | -40 to 125
TI

LM2852XMXAX-2.5

2A 500/1500kHz SIMPLE SYNCHRONOUS Buck Regulator
NSC

LM2852XMXAX-2.5

LM2852 2A 500/1500kHz Synchronous SIMPLE SWITCHER® Buck Regulator
TI

LM2852XMXAX-2.5/NOPB

2A 500/1500kHz 同步降压稳压器 | PWP | 14 | -40 to 125
TI

LM2852XMXAX-3.0

2A 500/1500kHz Synchronous SIMPLE SWITCHER㈢ Buck Regulator
NSC