LM111WGRLQMLV [NSC]

Voltage Comparator; 电压比较器
LM111WGRLQMLV
型号: LM111WGRLQMLV
厂家: National Semiconductor    National Semiconductor
描述:

Voltage Comparator
电压比较器

比较器
文件: 总34页 (文件大小:1006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 30, 2008  
LM111QML  
Voltage Comparator  
General Description  
The LM111 is a voltage comparator that has input currents  
nearly a thousand times lower than devices such as the  
LM106 or LM710. It is also designed to operate over a wider  
range of supply voltages: from standard ±15V op amp sup-  
plies down to the single 5V supply used for IC logic. The  
output is compatible with RTL, DTL and TTL as well as MOS  
circuits. Further, it can drive lamps or relays, switching volt-  
ages up to 50V at currents as high as 50 mA.  
Features  
Available with radiation guaranteed  
High Dose Rate  
Low Dose and ELDRS Free  
50 krad(Si)  
100 krad(Si)  
Operates from single 5V supply  
Input current: 200 nA max. over temperature  
Offset current: 20 nA max. over temperature  
Differential input voltage range: ±30V  
Power consumption: 135 mW at ±15V  
Power supply voltage, single 5V to ±15V  
Offset voltage null capability  
Both the inputs and the output of the LM111 can be isolated  
from system ground, and the output can drive loads referred  
to ground, the positive supply or the negative supply. Offset  
balancing and strobe capability are provided and outputs can  
be wire OR'ed. Although slower than the LM106 and LM710  
(200 ns response time vs 40 ns) the device is also much less  
prone to spurious oscillations. The LM111 has the same pin  
configuration as the LM106 and LM710.  
Strobe capability  
Ordering Information  
NS PART NUMBER  
LM111E-SMD  
LM111H-SMD  
LM111J-8-SMD  
LM111WG-SMD  
LM111E/883  
SMD PART NUMBER  
5962-8687701Q2A  
5962-8687701QGA  
5962-8687701QPA  
5962-8687701QZA  
NS PACKAGE NUMBER  
PACKAGE DESCRIPTION  
20LD Leadless Chip Carrier  
8LD TO-99 Metal Can  
8LD CERDIP  
E20A  
H08C  
J08A  
WG10A  
E20A  
10LD Ceramic SOIC  
20LD Leadless Chip Carrier  
8LD TO-99 Metal Can  
8LD CERDIP  
LM111H/883  
H08C  
J08A  
LM111J-8/883  
LM111J/883  
J14A  
14LD CERDIP  
LM111W/883  
W10A  
WG10A  
H08C  
10LD CERPACK  
LM111WG/883  
10LD Ceramic SOIC  
8LD TO-99 Metal Can  
LM111HLQMLV (Note 12)  
High Dose Rate ONLY  
5962L0052401VGA  
50k rd(Si)  
LM111J-8LQMLV (Note 12)  
High Dose Rate ONLY  
5962L0052401VPA  
50k rd(Si)  
J08A  
WG10A  
W10A  
H08C  
8LD CERDIP  
LM111WGLQMLV (Note 12)  
High Dose Rate ONLY  
5962L0052401VZA  
50k rd(Si)  
10LD Ceramic SOIC  
10LD CERPACK  
8LD TO-99 Metal Can  
8LD CERDIP  
LM111WLQMLV (Note 12)  
High Dose Rate ONLY  
5962L0052401VHA  
50k rd(Si)  
LM111HRLQMLV (Note 14)  
ELDRS Free ONLY  
5962R0052402VGA  
100k rd(Si)  
LM111J-8RLQMLV (Note 14)  
ELDRS Free ONLY  
5962R0052402VPA  
100k rd(Si)  
J08A  
LM111WGRLQMLV (Note 14)  
ELDRS Free ONLY  
5962R0052402VZA  
100k rd(Si)  
WG10A  
W10A  
10LD Ceramic SOIC  
10LD CERPACK  
LM111WRLQMLV (Note 14)  
ELDRS Free ONLY  
5962R0052402VHA  
100k rd(Si)  
© 2008 National Semiconductor Corporation  
201285  
www.national.com  
Connection Diagrams  
Metal Can Package  
20128506  
Note: Pin 4 connected to case  
Top View  
See NS Package Number H08C  
Dual-In-Line Package  
Dual-In-Line Package  
20128534  
Top View  
See NS Package Number J08A  
20128535  
Top View  
See NS Package Number J14A  
20128533  
See NS Package Number W10A, WG10A  
20128573  
See NS Package NumberE20A  
www.national.com  
2
Schematic Diagram  
(Note Pin connections shown on schematic diagram are for H08 package. )  
20128505  
Note 1: Pin connections shown on schematic diagram are for H08 package.  
3
www.national.com  
Absolute Maximum Ratings (Note 2)  
Positive Supply Voltage  
Negative Supply Voltage  
Total Supply Voltage  
+30.0V  
-30.0V  
36V  
Output to Negative Supply Voltage  
GND to Negative Supply Voltage  
Differential Input Voltage  
Sink Current  
50V  
30V  
±30V  
50mA  
±15V  
Input Voltage  
(Note 3)  
(Note 4)  
Power Dissipation  
8 LD CERDIP  
400mW @ 25°C  
330mW @ 25°C  
330mW @ 25°C  
330mW @ 25°C  
500mW @ 25°C  
10 seconds  
8 LD Metal Can  
10 LD CERPACK  
10 LD Ceramic SOIC  
20 LD LCC  
Output Short Circuit Duration  
Maximum Strobe Current  
Operating Temperature Range  
Thermal Resistance  
10mA  
-55°C TA 125°C  
ꢀꢀθJA  
8 LD CERDIP (Still Air @ 0.5W)  
8 LD CERDIP (500LF/Min Air flow @ 0.5W)  
8 LD Metal Can (Still Air @ 0.5W)  
8 LD Metal Can (500LF/Min Air flow @ 0.5W)  
10 Ceramic SOIC (Still Air @ 0.5W)  
10 Ceramic SOIC (500LF/Min Air flow @ 0.5W)  
10 CERPACK (Still Air @ 0.5W)  
10 CERPACK (500LF/Min Air flow @ 0.5W)  
14 LD CERDIP (Still Air @ 0.5W)  
14 LD CERDIP (500LF/Min Air flow @ 0.5W)  
20 LD LCC (Still Air @ 0.5W)  
20 LD LCC (500LF/Min Air flow @ 0.5W)  
ꢀꢀθJC  
134°C/W  
76°C/W  
162°C/W  
92°C/W  
231°C/W  
153°C/W  
231°C/W  
153°C/W  
97°C/W  
65°C/W  
90°C/W  
65°C/W  
8 LD CERDIP  
21°C/W  
50°C/W  
24°C/W  
24°C/W  
20°C/W  
21°C/W  
8 LD Metal Can Pkg  
10 LD Ceramic SOIC  
10 LD CERPACK  
14 LD CERDIP  
20 LD LCC  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Temperature (Soldering, 60 seconds)  
Voltage at Strobe Pin  
-65°C TA 150°C  
175°C  
300°C  
V+ = -5V  
Package Weight (Typical)  
8 LD Metal Can  
965mg  
1100mg  
250mg  
225mg  
TBD  
8 LD CERDIP  
10 LD CERPACK  
10 LD Ceramic SOIC  
14 LD CERDIP  
20 LD LCC  
TBD  
ESD Rating  
(Note 5)  
300V  
www.national.com  
4
Recommended Operating Conditions  
Supply Voltage  
VCC = ±15VDC  
Operating Temperature Range  
-55°C TA 125°C  
Quality Conformance Inspection  
Mil-Std-883, Method 5005 - Group A  
Subgroup  
Description  
Static tests at  
Static tests at  
Static tests at  
Temperature (°C)  
1
2
3
+25  
+125  
-55  
4
5
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
+25  
+125  
-55  
6
7
+25  
+125  
-55  
8A  
8B  
9
+25  
+125  
-55  
10  
11  
5
www.national.com  
LM111/883 Electrical Characteristics  
DC Parameters  
The following conditions apply, unless otherwise specified. V56 = 0, RS = 0 Ω, VCC = ±15V, VCM = 0, VO = 1.4V WRT −VCC  
The pin assignments are based on the 8 pin package configuration. (Note 7)  
Sub-  
groups  
Symbol  
Parameter  
Conditions  
Notes  
Min Max Unit  
IIO  
Input Offset Current  
-10  
-20  
10  
20  
nA  
nA  
1
VCM = 13.5V, RS = 50KΩ  
2, 3  
VCM = 13.5V, V85 = V86 = 0V, RS =  
50KΩ  
(Note 7)  
-30  
30  
nA  
1
-10  
-20  
10  
20  
nA  
nA  
1
VCM = -14.5V, RS= 50KΩ  
2, 3  
VCM = -14.5V, V85 = V86 = 0V,  
(Note 7)  
(Note 7)  
-30  
30  
nA  
1
RS= 50KΩ  
-10  
-20  
-30  
10  
20  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
V
1
2, 3  
1
RS = 50KΩ  
V85 = V86 = 0V, RS = 50KΩ  
VCM = 13.5V, RS = 50KΩ  
30  
IIB  
Input Bias Current  
100  
150  
100  
150  
100  
150  
10  
1
2, 3  
1
VCM = -14.5V, RS = 50KΩ  
RS = 50KΩ  
2, 3  
1
2, 3  
1
IOL  
Output Leakage Current  
Ground Leakage Current  
Saturation Voltage  
VCC = ± 18V, I5 + I6 = 5mA,  
VO = 35V WRT -VCC  
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
500  
25  
2, 3  
1
IGL  
VCC = ± 18V, I5 + I6 = 5mA,  
VO = 50V WRT -VCC  
500  
1.5  
0.4  
5.0  
15  
2
VSat  
VI = -5mV, I7 = 50mA  
VI = -6mV, I7 = 8mA  
1, 2, 3  
1, 2, 3  
1, 2  
3
V
-ICC  
+ICC  
IL1  
Negative Supply Current  
Positive Supply Current  
Input Leakage Current  
mA  
mA  
mA  
mA  
nA  
6.0  
15  
1, 2  
3
VCC = ± 18V, V28 = 1V,  
V38 = 30V, I5 + I6 = 5mA  
VO = 50V WRT -VCC  
(Note 7)  
(Note 7)  
(Note 7)  
(Note 7)  
10  
1
30  
10  
30  
nA  
nA  
nA  
2
1
2
IL2  
Input Leakage Current  
VCC = ± 18V, V38 = 1V,  
V28 = 30V, I5 + I6 = 5mA  
VO = 50V WRT -VCC  
VOSt  
Collector Output Voltage (Strobe)  
14  
14  
V
V
1
1
ISt = 3mA  
www.national.com  
6
Sub-  
groups  
Symbol  
Parameter  
Conditions  
Notes  
Min Max Unit  
VIO  
Input Offset Voltage  
VCM = 13.5V  
-3.0  
-4.0  
-3.0  
-3.0  
-4.0  
-3.0  
-3.0  
-4.0  
-3.0  
-5.0  
-6.0  
-3.0  
-4.0  
-5.0  
-6.0  
-3.0  
-4.0  
40  
3.0  
4.0  
3.0  
3.0  
4.0  
3.0  
3.0  
4.0  
3.0  
5.0  
6.0  
3.0  
4.0  
5.0  
6.0  
3.0  
4.0  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V/mV  
V/mV  
1
2, 3  
1
VCM = 13.5V, V85 = V86= 0V  
VCM = -14.5V  
(Note 7)  
(Note 7)  
(Note 7)  
1
2, 3  
1
VCM = -14.5V, V85 = V86 = 0V  
1
2, 3  
1
V85 = V86 = 0V  
VO = 0.4V, +VCC = 4.5V,  
-VCC = 0V, VCM = 3V  
1
2, 3  
1
VO = 4.5V, +VCC = 4.5V,  
-VCC = 0V, VCM = 3V  
2, 3  
1
VO = 0.4V, +VCC = 4.5V,  
-VCC = 0V, VCM = 0.5V  
2, 3  
1
VO = 4.5V, +VCC = 4.5V,  
-VCC = 0V, VCM = 0.5V  
2, 3  
4
AVS  
Large Signal Gain  
(Note 6)  
(Note 6)  
-12V VO 35V, RL = 1KΩ  
30  
5, 6  
AC Parameters  
The following conditions apply, unless otherwise specified. V56 = 0, RS = 0 Ω, VCC = ±15V, VCM = 0, VO = 1.4V WRT −VCC  
The pin assignments are based on the 8 pin package configuration. (Note 7)  
Notes  
Min Max Unit  
400 nS  
Sub-  
groups  
Symbol  
tR  
Parameter  
Response Time  
Conditions  
7
7
www.national.com  
LM111-SMD Electrical Characteristics  
DC Parameters  
SMD 5962-8687701  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
VIO  
Parameter  
Conditions  
VI = 0V, RS = 50Ω  
Notes  
Min Max Unit  
Input Offset Voltage  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
1
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
2, 3  
1
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
2, 3  
1
+VCC = +2.5V, -VCC = -2.5V,  
VI = 0V,  
2, 3  
RS = 50Ω  
VIO  
R
Raised Input Offset Voltage  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
1
VI = 0V, RS = 50Ω  
(Note 15)  
(Note 15)  
(Note 15)  
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-3  
+3  
mV  
-4.5 +4.5 mV  
2, 3  
+VCC = 2V, -VCC = -28V,  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
1
VI = 0V, VCM = +13V, RS = 50Ω  
2, 3  
1, 2  
3
IIO  
Input Offset Current  
-10  
-20  
-10  
+10 nA  
+20 nA  
+10 nA  
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-20  
-10  
-20  
+20 nA  
+10 nA  
+20 nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
IIOR  
±IIB  
Raised Input Offset Current  
Input Bias Current  
-25  
-50  
+25 nA  
+50 nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
(Note 15)  
-100 0.1  
-150 0.1  
-150 0.1  
nA  
nA  
nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-200 0.1  
-150 0.1  
-200 0.1  
nA  
nA  
nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
VOSt  
Collector Output Voltage (Strobe) +VI = Gnd, -VI = 15V,  
ISt = -3mA, RS = 50Ω  
(Notes 8,  
13)  
14  
80  
V
1, 2, 3  
1, 2, 3  
CMRR  
Common Mode Rejection Ratio  
-28V -VCC -0.5V, RS = 50Ω,  
dB  
2V +VCC 29.5V, RS = 50Ω,  
-14.5V VCM 13V, RS = 50Ω  
www.national.com  
8
Sub-  
groups  
Symbol  
VOL  
Parameter  
Conditions  
Notes  
Min Max Unit  
Low Level Output Voltage  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = 0.71V,  
VID = -6mV  
0.4  
0.4  
V
V
1, 2, 3  
1, 2, 3  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = −1.75V,  
VID = -6mV  
IO = 50mA, ±VI = 13V,  
VID = -5mV  
1.5  
1.5  
V
V
1, 2, 3  
1, 2, 3  
IO = 50mA, ±Vl= -14V,  
VID = -5mV  
ICEX  
IL  
Output Leakage Current  
Input Leakage Current  
+VCC = 18V, -VCC = -18V,  
VO = 32V  
-1.0 10  
nA  
nA  
1
2
-1.0 500  
+VCC = 18V, -VCC = -18V,  
+VI = +12V, -VI = -17V  
(Note 11) -5.0 500  
(Note 11) -5.0 500  
nA  
nA  
1, 2, 3  
1, 2, 3  
+VCC = 18V, -VCC = -18V,  
+VI = -17V, -VI = +12V  
+ICC  
Power Supply Current  
Power Supply Current  
6.0  
mA  
mA  
mA  
mA  
1, 2  
3
7.0  
-ICC  
-5.0  
-6.0  
1, 2  
3
Temperature Coefficient Input  
Offset Voltage  
(Notes 11,  
13)  
Δ VIO / ΔT  
25°C T 125°C  
-55°C T 25°C  
25°C T 125°C  
-55°C T 25°C  
-25  
-25  
25  
25  
µV/°C  
µV/°C  
pA/°C  
pA/°C  
2
3
2
3
(Notes 11,  
13)  
Temperature Coefficient Input  
Offset Current  
(Notes 11,  
13)  
Δ IIO / ΔT  
-100 100  
-200 200  
(Notes 11,  
13)  
IOS  
Short Circuit Current  
(Note 10)  
(Note 10)  
(Note 10)  
200  
150  
mA  
mA  
mA  
mV  
1
2
3
1
VO = 5V, t 10mS, -VI = 0.1V,  
+VI = 0V  
250  
+VIO adj.  
-VIO adj.  
±AVE  
Input Offset Voltage (Adjustment)  
Input Offset Voltage (Adjustment)  
Voltage Gain (Emitter)  
VO = 0V, VI = 0V, RS = 50Ω  
VO = 0V, VI = 0V, RS = 50Ω  
RL = 600Ω  
5.0  
-5.0 mV  
1
(Note 6)  
(Note 6)  
10  
V/mV  
V/mV  
4
8.0  
5, 6  
AC Parameters SMD 5962-8687701  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
tRLHC  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Response Time (Collector  
Output)  
VOD(Overdrive) = -5mV,  
CL = 50pF, VI = -100mV  
(Note 13)  
(Note 13)  
(Note 13)  
(Note 13)  
300  
640  
300  
500  
nS  
nS  
nS  
nS  
7, 8B  
8A  
tRHLC  
Response Time (Collector  
Output)  
VOD(Overdrive) = 5mV,  
CL = 50pF, VI = 100mV  
7, 8B  
8A  
9
www.national.com  
LM111 RADIATION Electrical Characteristics SMD 5962L0052401  
DC Parameters  
(Note 12)  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
VIO  
Parameter  
Conditions  
VI = 0V, RS = 50Ω  
Notes  
Min Max Unit  
Input Offset Voltage  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
1
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
2, 3  
1
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
2, 3  
+VCC = +2.5V, -VCC = -2.5V,  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
-3.0 +3.0 mV  
1
VI = 0V, RS = 50Ω  
2, 3  
1
VIO  
R
Raised Input Offset Voltage  
VI = 0V, RS = 50Ω  
(Note 15)  
(Note 15)  
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-4.5 +4.5 mV  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
2, 3  
1
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
(Note 15)  
2, 3  
IIO  
Input Offset Current  
-10  
-20  
-10  
+10 nA  
+20 nA  
+10 nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-20  
-10  
-20  
+20 nA  
+10 nA  
+20 nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
IIOR  
±IIB  
Raised Input Offset Current  
Input Bias Current  
-25  
-50  
+25 nA  
+50 nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
(Note 15)  
-100 0.1  
-150 0.1  
-150 0.1  
nA  
nA  
nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-200 0.1  
-150 0.1  
-200 0.1  
nA  
nA  
nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
VOSt  
Collector Output Voltage (Strobe) +VI = Gnd, -VI = 15V,  
ISt = -3mA, RS = 50Ω  
(Notes 8,  
13)  
14  
80  
V
1, 2, 3  
1, 2, 3  
CMRR  
Common Mode Rejection Ratio  
-28V -VCC -0.5V, RS = 50Ω,  
dB  
2V +VCC 29.5V, RS = 50Ω,  
-14.5V VCM 13V, RS = 50Ω  
www.national.com  
10  
Sub-  
groups  
Symbol  
VOL  
Parameter  
Conditions  
Notes  
Min Max Unit  
Low Level Output Voltage  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = 0.5V,  
VID = -6mV  
0.4  
0.4  
V
V
1, 2, 3  
1, 2, 3  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = 3V,  
VID = -6mV  
IO = 50mA, ±VI = 13V,  
VID = -5mV  
1.5  
1.5  
V
V
1, 2, 3  
1, 2, 3  
IO = 50mA, ±VI = -14V,  
VID = -5mV  
ICEX  
IL  
Output Leakage Current  
Input Leakage Current  
+VCC = 18V, -VCC = -18V,  
VO = 32V  
-1.0 10  
nA  
nA  
1
2
-1.0 500  
+VCC = 18V, -VCC = -18V,  
+VI = +12V, -VI = -17V  
(Note 11) -5.0 500  
(Note 11) -5.0 500  
nA  
nA  
1, 2, 3  
1, 2, 3  
+VCC = 18V, -VCC = -18V,  
+VI = -17V, -VI = +12V  
+ICC  
Power Supply Current  
Power Supply Current  
6.0  
7.0  
mA  
1, 2  
3
mA  
-ICC  
-5.0  
mA  
1, 2  
3
-6.0  
mA  
Temperature Coefficient Input  
Offset Voltage  
-25  
-25  
25  
25  
µV/°C  
2
ΔVIO / ΔT  
25°C T 125°C  
-55°C T 25°C  
25°C T 125°C  
-55°C T 25°C  
µV/°C  
pA/°C  
3
2
Temperature Coefficient Input  
Offset Current  
-100 100  
Δ IIO / ΔT  
-200 200  
200  
pA/°C  
mA  
3
1
2
3
1
IOS  
Short Circuit Current  
(Note 10)  
(Note 10)  
(Note 10)  
VO = 5V, t 10mS, -VI = 0.1V,  
+VI = 0V  
150  
mA  
250  
mA  
+VIO adj.  
-VIO adj.  
±AVE  
Input Offset Voltage (Adjustment)  
Input Offset Voltage (Adjustment)  
Voltage Gain (Emitter)  
VO = 0V, VI = 0V, RS = 50Ω  
VO = 0V, VI = 0V, RS = 50Ω  
RL = 600Ω  
5.0  
mV  
-5.0 mV  
1
(Note 6)  
(Note 6)  
10  
V/mV  
V/mV  
4
8.0  
5, 6  
AC Parameters SMD 5962L0052401  
(Note 12)  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
tRLHC  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Response Time (Collector  
Output)  
VOD(Overdrive) = -5mV,  
CL = 50pF, VI = -100mV  
300  
640  
300  
500  
nS  
nS  
nS  
nS  
7, 8B  
8A  
(Note 13)  
(Note 13)  
tRHLC  
Response Time (Collector  
Output)  
VOD(Overdrive) = 5mV,  
CL = 50pF, VI = 100mV  
7, 8B  
8A  
11  
www.national.com  
DC DELTA Parameters SMD 5962L0052401  
(Note 12)  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Delta calculations performed on QMLV devices at group B , subgroup 5.  
Sub-  
groups  
Symbol  
VIO  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Input Offset Voltage  
VI = 0V, RS = 50Ω  
-0.5  
-0.5  
0.5  
0.5  
mV  
1
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
mV  
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
-0.5  
0.5  
mV  
nA  
nA  
1
1
1
±IIB  
Input Bias Current  
VI = 0V, RS = 50KΩ  
-12.5 12.5  
-12.5 12.5  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
-12.5 12.5  
nA  
nA  
1
1
ICEX  
Output Leakage Current  
+VCC = 18V, -VCC = -18V,  
VO = 32V  
-5.0  
5.0  
Post Radiation Parameters SMD 5962L0052401  
(Note 12)  
The following conditions apply, unless otherwise specified  
Sub-  
groups  
Symbol  
IIO  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Input Offset Current  
+VCC = 29.5V, −VCC = −0.5V, VI =  
0V, VCM = −14.5V,  
−50 +50  
nA  
1
RS = 50KΩ  
+VCC = 2V, −VCC = −28V,  
−50 +50  
nA  
1
VI = 0V, VCM = +13V, RS = 50KΩ  
±IIB  
Input Bias Current  
−150 0.1  
−175 0.1  
nA  
nA  
1
1
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, −VCC = −0.5V, VI =  
0V, VCM = −14.5V,  
RS = 50KΩ  
ICEX  
Output Leakage Current  
+VCC = 18V, −VCC = −18V,  
VO = 32V  
−25 +25  
nA  
1
www.national.com  
12  
LM111 RADIATION Electrical Characteristics SMD 5962R0052402  
DC Parameters  
(Note 14)  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
VIO  
Parameter  
Conditions  
VI = 0V, RS = 50Ω  
Notes  
Min Max Unit  
Input Offset Voltage  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
1
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
2, 3  
1
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
2, 3  
+VCC = +2.5V, -VCC = -2.5V,  
-3.0 +3.0 mV  
-4.0 +4.0 mV  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
-3.0 +3.0 mV  
1
VI = 0V, RS = 50Ω  
2, 3  
1
VIO  
R
Raised Input Offset Voltage  
VI = 0V, RS = 50Ω  
(Note 15)  
(Note 15)  
2, 3  
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
-4.5 +4.5 mV  
-3.0 +3.0 mV  
-4.5 +4.5 mV  
2, 3  
1
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
(Note 15)  
2, 3  
IIO  
Input Offset Current  
-10  
-20  
-10  
+10 nA  
+20 nA  
+10 nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-20  
-10  
-20  
+20 nA  
+10 nA  
+20 nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
IIOR  
±IIB  
Raised Input Offset Current  
Input Bias Current  
-25  
-50  
+25 nA  
+50 nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
(Note 15)  
-100 0.1  
-150 0.1  
-150 0.1  
nA  
nA  
nA  
1, 2  
3
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
1, 2  
-200 0.1  
-150 0.1  
-200 0.1  
nA  
nA  
nA  
3
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
1, 2  
3
VOSt  
Collector Output Voltage (Strobe) +VI = Gnd, -VI = 15V,  
ISt = -3mA, RS = 50Ω  
(Notes 8,  
13)  
14  
80  
V
1, 2, 3  
1, 2, 3  
CMRR  
Common Mode Rejection Ratio  
-28V -VCC -0.5V, RS = 50Ω,  
dB  
2V +VCC 29.5V, RS = 50Ω,  
-14.5V VCM 13V, RS = 50Ω  
13  
www.national.com  
Sub-  
groups  
Symbol  
VOL  
Parameter  
Conditions  
Notes  
Min Max Unit  
Low Level Output Voltage  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = 0.5V,  
VID = -6mV  
0.4  
0.4  
V
V
1, 2, 3  
1, 2, 3  
+VCC = 4.5V, -VCC = Gnd,  
IO = 8mA, ±VI = 3V,  
VID = -6mV  
IO = 50mA, ±VI = 13V,  
VID = -5mV  
1.5  
1.5  
V
V
1, 2, 3  
1, 2, 3  
IO = 50mA, ±VI = -14V,  
VID = -5mV  
ICEX  
IL  
Output Leakage Current  
Input Leakage Current  
+VCC = 18V, -VCC = -18V,  
VO = 32V  
-1.0 10  
nA  
nA  
1
2
-1.0 500  
+VCC = 18V, -VCC = -18V,  
+VI = +12V, -VI = -17V  
(Note 11) -5.0 500  
(Note 11) -5.0 500  
nA  
nA  
1, 2, 3  
1, 2, 3  
+VCC = 18V, -VCC = -18V,  
+VI = -17V, -VI = +12V  
+ICC  
Power Supply Current  
Power Supply Current  
6.0  
7.0  
mA  
1, 2  
3
mA  
-ICC  
-5.0  
mA  
1, 2  
3
-6.0  
mA  
Temperature Coefficient Input  
Offset Voltage  
-25  
-25  
25  
25  
µV/°C  
2
ΔVIO / ΔT  
25°C T 125°C  
-55°C T 25°C  
25°C T 125°C  
-55°C T 25°C  
µV/°C  
pA/°C  
3
2
Temperature Coefficient Input  
Offset Current  
-100 100  
Δ IIO / ΔT  
-200 200  
200  
pA/°C  
mA  
3
1
2
3
1
IOS  
Short Circuit Current  
(Note 10)  
(Note 11)  
(Note 11)  
VO = 5V, t 10mS, -VI = 0.1V,  
+VI = 0V  
150  
mA  
250  
mA  
+VIO adj.  
-VIO adj.  
±AVE  
Input Offset Voltage (Adjustment)  
Input Offset Voltage (Adjustment)  
Voltage Gain (Emitter)  
VO = 0V, VI = 0V, RS = 50Ω  
VO = 0V, VI = 0V, RS = 50Ω  
RL = 600Ω  
5.0  
mV  
-5.0 mV  
1
(Note 7)  
(Note 7)  
10  
V/mV  
V/mV  
4
8.0  
5, 6  
AC Parameters SMD 5962R0052402  
(Note 14)  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Sub-  
groups  
Symbol  
tRLHC  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Response Time (Collector  
Output)  
VOD(Overdrive) = -5mV,  
CL = 50pF, VI = -100mV  
300  
640  
300  
500  
nS  
nS  
nS  
nS  
7, 8B  
8A  
(Note 13)  
(Note 13)  
tRHLC  
Response Time (Collector  
Output)  
VOD(Overdrive) = 5mV,  
CL = 50pF, VI = 100mV  
7, 8B  
8A  
www.national.com  
14  
DC DELTA Parameters SMD 5962R0052402  
The following conditions apply, unless otherwise specified. VCC = ±15V, VCM = 0  
Delta calculations performed on QMLV devices at group B , subgroup 5.  
(Note 14)  
Sub-  
groups  
Symbol  
VIO  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Input Offset Voltage  
VI = 0V, RS = 50Ω  
-0.5  
-0.5  
0.5  
0.5  
mV  
1
1
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50Ω  
mV  
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50Ω  
-0.5  
0.5  
mV  
nA  
nA  
1
1
1
±IIB  
Input Bias Current  
VI = 0V, RS = 50KΩ  
-12.5 12.5  
-12.5 12.5  
+VCC = 29.5V, -VCC = -0.5V,  
VI = 0V, VCM = -14.5V,  
RS = 50KΩ  
+VCC = 2V, -VCC = -28V,  
VI = 0V, VCM = +13V,  
RS = 50KΩ  
-12.5 12.5  
nA  
nA  
1
1
ICEX  
Output Leakage Current  
+VCC = 18V, -VCC = -18V,  
VO = 32V  
-5.0  
5.0  
Post Radiation Parameters SMD 5962R0052402  
(Note 14)  
The following conditions apply, unless otherwise specified  
Sub-  
groups  
Symbol  
IIOR  
Parameter  
Conditions  
Notes  
Min Max  
Unit  
Raised Input Offset Current  
Input Bias Current  
(Note 15)  
−100 +100  
−180 0.1  
−225 0.1  
nA  
nA  
nA  
1
1
1
VI = 0V, RS = 50KΩ  
±IIB  
VI = 0V, RS = 50KΩ  
+VCC = 29.5V, −VCC = −0.5V, VI =  
0V, VCM = −14.5V, RS = 50KΩ  
ICEX  
Output Leakage Current  
+VCC = 18V, −VCC = −18V,  
VO = 32V  
−1.0 +25  
nA  
1
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed  
specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test  
conditions.  
Note 3: This rating applies for ±15V supplies. The positive input voltage limits is 30 V above the negative supply. The negative input voltage limits is equal to the  
negative supply voltage or 30V below the positive supply, whichever is less.  
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θJA (package  
junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax - TA)/  
θ
JA or the number given in the Absolute Maximum Ratings, whichever is lower.  
Note 5: Human body model, 1.5 kΩ in series with 100 pF.  
Note 6: Datalog reading in K=V/mV.  
Note 7: Pin names based on an 8 pin package configuration. When using higher pin count packages then:  
Pin 2 & 3 are Inputs, Pin 5 is Balance, Pin 6 is  
Balance / Strobe, Pin 7 is Output, and Pin 8 is V+. For example:  
V56is the Voltage between the Balance and Balance / Strobe pins  
Note 8: IST = −2mA at −55°C  
Note 9: Calculated parameter.  
Note 10: Actual min. limit used is 5mA due to test setup.  
Note 11: VID is voltage difference between inputs.  
Note 12: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table.  
These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters  
are guaranteed only for the conditions as specified in Mil-Std-883, Method 1019, Condition A.  
Note 13: Group A sample ONLY  
Note 14: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table.  
These parts may be sensitive in a high dose environment. Low dose rate testing has been performed on a wafer-by-wafer basis, per test method 1019 condition  
D of MIL-STD-883, with no enhanced low dose rate sensitivity (ELDRS) effect.  
Note 15: Subscript (R) indicates tests which are performed with input stage current raised by connecting BAL and BAL/STB terminals to +VCC  
.
15  
www.national.com  
LM111 Typical Performance Characteristics  
Input Bias Current  
Input Bias Current  
20128543  
20128544  
Input Bias Current  
Input Bias Current  
20128546  
20128545  
Input Bias Current  
Input Bias Current  
20128547  
20128548  
www.national.com  
16  
Input Bias Current  
Input Overdrives  
Input Bias Current  
Input Overdrives  
20128550  
20128549  
Input Bias Current  
Response Time for Various  
Input Overdrives  
20128551  
20128552  
Response Time for Various  
Input Overdrives  
Output Limiting Characteristics  
20128554  
20128553  
17  
www.national.com  
Supply Current  
Supply Current  
20128555  
20128556  
Leakage Currents  
20128557  
www.national.com  
18  
engineered thoughtfully. Preferably there should be a  
ground plane under the LM111 circuitry, for example, one  
side of a double-layer circuit card. Ground foil (or,  
positive supply or negative supply foil) should extend  
between the output and the inputs, to act as a guard. The  
foil connections for the inputs should be as small and  
compact as possible, and should be essentially  
surrounded by ground foil on all sides, to guard against  
capacitive coupling from any high-level signals (such as  
the output). If pins 5 and 6 are not used, they should be  
shorted together. If they are connected to a trim-pot, the  
trim-pot should be located, at most, a few inches away  
from the LM111, and the 0.01 μF capacitor should be  
installed. If this capacitor cannot be used, a shielding  
printed-circuit foil may be advisable between pins 6 and  
7. The power supply bypass capacitors should be located  
within a couple inches of the LM111. (Some other  
comparators require the power-supply bypass to be  
located immediately adjacent to the comparator.)  
Application Hints  
CIRCUIT TECHNIQUES FOR AVOIDING  
OSCILLATIONS IN COMPARATOR APPLICATIONS  
When a high-speed comparator such as the LM111 is used  
with fast input signals and low source impedances, the output  
response will normally be fast and stable, assuming that the  
power supplies have been bypassed (with 0.1 μF disc capac-  
itors), and that the output signal is routed well away from the  
inputs (pins 2 and 3) and also away from pins 5 and 6.  
However, when the input signal is a voltage ramp or a slow  
sine wave, or if the signal source impedance is high (1 kΩ to  
100 kΩ), the comparator may burst into oscillation near the  
crossing-point. This is due to the high gain and wide band-  
width of comparators like the LM111. To avoid oscillation or  
instability in such a usage, several precautions are recom-  
mended, as shown in Figure 1 below.  
1. The trim pins (pins 5 and 6) act as unwanted auxiliary  
inputs. If these pins are not connected to a trim-pot, they  
should be shorted together. If they are connected to a  
trim-pot, a 0.01 μF capacitor C1 between pins 5 and 6  
will minimize the susceptibility to AC coupling. A smaller  
capacitor is used if pin 5 is used for positive feedback as  
in Figure 1.  
6. It is a standard procedure to use hysteresis (positive  
feedback) around a comparator, to prevent oscillation,  
and to avoid excessive noise on the output because the  
comparator is a good amplifier for its own noise. In the  
circuit of Figure 2, the feedback from the output to the  
positive input will cause about 3 mV of hysteresis.  
However, if RS is larger than 100Ω, such as 50 kΩ, it  
would not be reasonable to simply increase the value of  
the positive feedback resistor above 510 kΩ. The circuit  
of Figure 3 could be used, but it is rather awkward. See  
the notes in paragraph 7 below.  
2. Certain sources will produce a cleaner comparator  
output waveform if a 100 pF to 1000 pF capacitor C2 is  
connected directly across the input pins.  
3. When the signal source is applied through a resistive  
network, RS, it is usually advantageous to choose an RS  
of substantially the same value, both for DC and for  
dynamic (AC) considerations. Carbon, tin-oxide, and  
metal-film resistors have all been used successfully in  
comparator input circuitry. Inductive wire wound resistors  
are not suitable.  
7. When both inputs of the LM111 are connected to active  
signals, or if a high-impedance signal is driving the  
positive input of the LM111 so that positive feedback  
would be disruptive, the circuit of Figure 1 is ideal. The  
positive feedback is to pin 5 (one of the offset adjustment  
pins). It is sufficient to cause 1 to 2 mV hysteresis and  
sharp transitions with input triangle waves from a few Hz  
to hundreds of kHz. The positive-feedback signal across  
the 82Ω resistor swings 240 mV below the positive  
supply. This signal is centered around the nominal  
voltage at pin 5, so this feedback does not add to the  
VOS of the comparator. As much as 8 mV of VOS can be  
trimmed out, using the 5 kΩ pot and 3 kΩ resistor as  
shown.  
4. When comparator circuits use input resistors (e.g.  
summing resistors), their value and placement are  
particularly important. In all cases the body of the resistor  
should be close to the device or socket. In other words  
there should be very little lead length or printed-circuit foil  
run between comparator and resistor to radiate or pick  
up signals. The same applies to capacitors, pots, etc. For  
example, if RS=10 kΩ, as little as 5 inches of lead  
between the resistors and the input pins can result in  
oscillations that are very hard to damp. Twisting these  
input leads tightly is the only (second best) alternative to  
placing resistors close to the comparator.  
8. These application notes apply specifically to the LM111  
and are applicable to all high-speed comparators in  
general, (with the exception that not all comparators have  
trim pins).  
5. Since feedback to almost any pin of a comparator can  
result in oscillation, the printed-circuit layout should be  
19  
www.national.com  
20128529  
Pin connections shown are for LM111H in the H08 hermetic package  
FIGURE 1. Improved Positive Feedback  
20128530  
Pin connections shown are for LM111H in the H08 hermetic package  
FIGURE 2. Conventional Positive Feedback  
www.national.com  
20  
20128531  
FIGURE 3. Positive Feedback with High Source Resistance  
21  
www.national.com  
Typical Applications (Note 18)  
Offset Balancing  
Strobing  
20128536  
20128537  
Note: Do Not Ground Strobe Pin. Output is turned off when current is pulled from  
Strobe Pin.  
Detector for Magnetic Transducer  
Increasing Input Stage Current (Note Increases typical  
common mode slew from 7.0V/μs to 18V/μs. )  
20128538  
Note 16: Increases typical common mode slew from 7.0V/μs to 18V/μs.  
20128539  
Digital Transmission Isolator  
Relay Driver with Strobe  
20128540  
20128541  
*Absorbs inductive kickback of relay and protects IC from severe voltage tran-  
sients on V++ line.  
Note: Do Not Ground Strobe Pin.  
www.national.com  
22  
Strobing off Both Input and Output Stages (Note Typical input current is 50 pA with inputs strobed off. )  
20128542  
Note: Do Not Ground Strobe Pin.  
Note 17: Typical input current is 50 pA with inputs strobed off.  
Note 18: Pin connections shown on schematic diagram and typical applications are for H08 metal can package.  
Positive Peak Detector  
Zero Crossing Detector Driving MOS Logic  
20128524  
20128523  
*Solid tantalum  
Typical Applications for H08 Package  
(Pin numbers refer to H08 package)  
Zero Crossing Detector Driving MOS Switch  
100 kHz Free Running Multivibrator  
20128513  
20128514  
*TTL or DTL fanout of two  
23  
www.national.com  
10 Hz to 10 kHz Voltage Controlled Oscillator  
20128515  
*Adjust for symmetrical square wave time when VIN = 5 mV  
†Minimum capacitance 20 pF Maximum frequency 50 kHz  
Driving Ground-Referred Load  
Using Clamp Diodes to Improve Response  
20128517  
20128516  
*Input polarity is reversed when using pin 1 as output.  
TTL Interface with High Level Logic  
20128518  
*Values shown are for a 0 to 30V logic swing and a 15V threshold.  
†May be added to control speed and reduce susceptibility to noise spikes.  
www.national.com  
24  
Crystal Oscillator  
Comparator and Solenoid Driver  
20128520  
20128519  
Precision Squarer  
20128521  
*Solid tantalum  
†Adjust to set clamp level  
Low Voltage Adjustable Reference Supply  
20128522  
*Solid tantalum  
25  
www.national.com  
Positive Peak Detector  
Zero Crossing Detector Driving MOS Logic  
20128524  
20128523  
*Solid tantalum  
Negative Peak Detector  
20128525  
*Solid tantalum  
Precision Photodiode Comparator  
20128526  
*R2 sets the comparison level. At comparison, the photodiode has less than 5 mV across it, decreasing leakages by an order of magnitude.  
www.national.com  
26  
Switching Power Amplifier  
20128527  
27  
www.national.com  
Switching Power Amplifier  
20128528  
www.national.com  
28  
Revision History  
Released  
10/11/05  
Revision  
Section  
Originator  
Changes  
A
New Release, Corporate format  
L. Lytle  
3 MDS data sheets converted into one Corp.  
data sheet format. MNLM111-X Rev 0A0,  
MDLM111-X Rev. 0B0, and MRLM111-X-RH  
Rev 0E1. The drift table was eliminated from  
the 883 section since it did not apply; Note #3  
was removed from RH & QML datasheets with  
SG verification that it no longer applied. Added  
NSID's for 50k Rad and Post Radiation Table.  
MDS data sheets will be archived.  
12/14/05  
B
Ordering Information Table  
R. Malone  
Removed NSID reference LM111J-8PQMLV,  
5962P0052401VPA  
30k rd(Si). Reason: NSID on LTB, Inventory  
exhausted. Added following NSID's:  
LM111HPQMLV, LM111WPQMLV and  
LM111WGPQMLV. Reason: Still have  
Inventory. LM111QML, Revision A will be  
archived.  
06/26/08  
C
Features, Ordering Information Table, Larry McGee Added Radiation reference, ELDRS NSID's  
Electrical section Notes.  
and Note 14 and 15, Low Dose Electrical  
Table. Deleted 30k rd(Si) NSID's:  
LM111HPQMLV, LM111WPQMLV and  
LM111WGPQMLV. Reason: EOL 9/06/05.  
Revision B will be archived.  
29  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Metal Can Package (H)  
NS Package Number H08C  
Cavity Dual-In-Line Package (J)  
NS Package Number J08A  
www.national.com  
30  
Dual-In-Line Package (J)  
NS Package Number J14A  
Leadless Chip Carrier (E)  
NS Package Number E20A  
31  
www.national.com  
Cerpack Package (W)  
NS Package Number W10A  
Cerpack Gull Wing Package (WG)  
NS Package Number WG10A  
www.national.com  
32  
Notes  
33  
www.national.com  
Notes  
For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
Products  
www.national.com/amplifiers  
Design Support  
Amplifiers  
WEBENCH  
www.national.com/webench  
www.national.com/AU  
Audio  
www.national.com/audio  
www.national.com/timing  
www.national.com/adc  
Analog University  
App Notes  
Clock Conditioners  
Data Converters  
Displays  
www.national.com/appnotes  
www.national.com/contacts  
www.national.com/quality/green  
www.national.com/packaging  
Distributors  
www.national.com/displays  
www.national.com/ethernet  
www.national.com/interface  
www.national.com/lvds  
Green Compliance  
Packaging  
Ethernet  
Interface  
Quality and Reliability www.national.com/quality  
LVDS  
Reference Designs  
Feedback  
www.national.com/refdesigns  
www.national.com/feedback  
Power Management  
Switching Regulators  
LDOs  
www.national.com/power  
www.national.com/switchers  
www.national.com/ldo  
LED Lighting  
PowerWise  
www.national.com/led  
www.national.com/powerwise  
Serial Digital Interface (SDI) www.national.com/sdi  
Temperature Sensors  
Wireless (PLL/VCO)  
www.national.com/tempsensors  
www.national.com/wireless  
THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION  
(“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY  
OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO  
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,  
IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS  
DOCUMENT.  
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT  
NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL  
PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR  
APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND  
APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE  
NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.  
EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO  
LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE  
AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR  
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY  
RIGHT.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and  
whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected  
to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform  
can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other  
brand or product names may be trademarks or registered trademarks of their respective holders.  
Copyright© 2008 National Semiconductor Corporation  
For the most current product information visit us at www.national.com  
National Semiconductor  
Americas Technical  
Support Center  
Email: support@nsc.com  
Tel: 1-800-272-9959  
National Semiconductor Europe  
Technical Support Center  
Email: europe.support@nsc.com  
German Tel: +49 (0) 180 5010 771  
English Tel: +44 (0) 870 850 4288  
National Semiconductor Asia  
Pacific Technical Support Center  
Email: ap.support@nsc.com  
National Semiconductor Japan  
Technical Support Center  
Email: jpn.feedback@nsc.com  
www.national.com  

相关型号:

LM111WLQMLV

Voltage Comparator
NSC

LM111WLQMLV

电压比较器 | NAD | 10 | -55 to 125
TI

LM111WPQMLV

COMPARATOR, 4000uV OFFSET-MAX, 200ns RESPONSE TIME, CDFP10, CERPACK-10
TI

LM111WRLQMLV

Voltage Comparator
NSC

LM111WRLQMLV

电压比较器 | NAD | 10 | -55 to 125
TI

LM111_1003

DIFFERENTIAL COMPARATORS WITH STROBES
TI

LM111_14

DIFFERENTIAL COMPARATORS WITH STROBES
TI

LM111_16

LMx11 Quad Differential Comparators
TI

LM112

Operational Amplifiers
NSC

LM112

OPERATIONAL AMPLIFIERS/BUFFERS
TI

LM112-098.0M

Oscillator
CONNOR-WINFIE

LM112-100.00M

LVDS Output Clock Oscillator, 100MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE