5962-9761301QXA [NSC]

Dual Micropower Rail-to-Rail Output Single Supply Operational Amplifier; 双路微功耗轨至轨输出单电源运算放大器
5962-9761301QXA
型号: 5962-9761301QXA
厂家: National Semiconductor    National Semiconductor
描述:

Dual Micropower Rail-to-Rail Output Single Supply Operational Amplifier
双路微功耗轨至轨输出单电源运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:1002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
August 2000  
LMC6442  
Dual Micropower Rail-to-Rail Output Single Supply  
Operational Amplifier  
General Description  
Features  
The LMC6442 is ideal for battery powered systems, where  
very low supply current (less than one microamp per ampli-  
fier) and Rail-to-Rail output swing is required. It is character-  
ized for 2.2V to 10V operation, and at 2.2V supply, the  
LMC6442 is ideal for single (Li-Ion) or two cell (NiCad or  
alkaline) battery systems.  
(Typical, VS = 2.2V)  
n Output Swing to within 30 mV of supply rail  
n High voltage gain  
n Gain Bandwidth Product  
n Guaranteed for:  
n Low Supply Current  
n Input Voltage Range  
n 2.1 µW/Amplifier  
103 dB  
9.5 KHz  
2.2V, 5V, 10V  
0.95 µA/Amplifier  
−0.3V to V+ -0.9V  
Power consumption  
The LMC6442 is designed for battery powered systems that  
require long service life through low supply current, such as  
smoke and gas detectors, and pager or personal communi-  
cations systems.  
n Stable for AV +2 or AV −1  
Operation from single supply is enhanced by the wide com-  
mon mode input voltage range which includes the ground (or  
negative supply) for ground sensing applications. Very low  
(5fA, typical) input bias current and near constant supply  
current over supply voltage enhance the LMC6442’s perfor-  
mance near the end-of-life battery voltage.  
Applications  
n Portable instruments  
n Smoke/gas/CO/fire detectors  
n Pagers/cell phones  
n Instrumentation  
Designed for closed loop gains of greater than plus two (or  
minus one), the amplifier has typically 9.5 KHz GBWP (Gain  
Bandwidth Product). Unity gain can be used with a simple  
compensation circuit, which also allows capacitive loads of  
up to 300 pF to be driven, as described in the Application  
Notes section.  
n Thermostats  
n Occupancy sensors  
n Cameras  
n Active badges  
For compact assembly the LMC6442 is available in the  
MSOP 8 pin package, about one half the size required by the  
SOIC 8 pin package. 8 pin DIP and 8 pin SOIC are also  
available.  
Connection Diagram  
10006440  
Top View  
© 2004 National Semiconductor Corporation  
DS100064  
www.national.com  
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Junction Temp. (Note 4)  
150˚C  
Operating Ratings(Note 1)  
Supply Voltage  
1.8V VS 11V  
ESD Tolerance (Note 2)  
2 kV  
<
<
Junction Temperature  
−40˚C TJ +85˚C  
Differential Input Voltage  
Supply Voltages  
Range: LMC6442AI, LMC6442I  
Voltage at Input/Output Pin  
Supply Voltage (V+ − V):  
Current at Input Pin (Note 10)  
Current at Output Pin(Notes 3, 7)  
Lead Temp. (soldering 10 sec)  
Storage Temp. Range:  
(V+) + 0.3V, (V) − 0.3V  
Thermal Resistance (θJA  
)
16V  
5 mA  
M Package, 8-pin Surface  
Mount  
193˚C/W  
30 mA  
MSOP Package  
235˚C/W  
115˚C/W  
260˚C  
N Package, 8-pin Molded DIP  
−65˚C to +150˚C  
2.2V Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 2.2V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
Parameter  
Conditions  
Units  
DC Electrical Characteristics  
VOS  
TCVOS  
IB  
Input Offset Voltage  
3
7
mV  
−0.75  
0.4  
4
8
max  
Temp. coefficient of  
input offset voltage  
Input Bias Current  
µV/˚C  
(Note 14)  
(Note 14)  
pA  
max  
pA  
0.005  
4
2
4
2
Input Offset Current  
IOS  
0.0025  
92  
max  
dB min  
CMRR  
Common Mode  
Rejection Ratio  
Common Mode Input  
Capacitance  
−0.1V VCM 0.5V  
67  
67  
67  
67  
CIN  
4.7  
95  
pF  
PSRR  
VCM  
Power Supply  
VS = 2.5 V to 10V  
75  
75  
75  
75  
dB  
min  
V
Rejection Ratio  
Input Common-Mode  
Voltage Range  
1.05  
0.95  
−0.2  
0
1.05  
0.95  
−0.2  
0
1.3  
min  
V
CMRR 50 dB  
−0.3  
max  
AV  
VO  
Large Signal Voltage  
Gain  
Sourcing (Note 11)  
Sinking(Note 11)  
100  
94  
dB  
min  
VO = 0.22V to 2V  
103  
80  
2.15  
2.15  
60  
80  
2.15  
2.15  
60  
Output Swing  
VID = 100 mV (Note 13)  
V
2.18  
22  
min  
mV  
max  
VID = −100 mV (Note 13)  
60  
60  
ISC  
Output Short Circuit  
Current  
Sourcing, VID = 100 mV  
(Notes 12, 13)  
50  
50  
18  
18  
17  
17  
µA  
min  
Sinking, VID = −100 mV  
(Notes 12, 13)  
20  
20  
19  
19  
IS  
Supply Current (2  
amplifiers)  
RL = open  
1.90  
2.10  
2.2  
2.4  
3.0  
2.6  
3.2  
µA  
max  
V+ = 1.8V, RL = open  
AC Electrical Characteristics  
SR  
Slew Rate (Note 8)  
V/ms  
www.national.com  
2
2.2V Electrical Characteristics (Continued)  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 2.2V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
GBWP  
φm  
Parameter  
Conditions  
Units  
KHz  
Gain-Bandwidth  
Product  
9.5  
63  
Phase Margin  
(Note 15)  
Degree  
5V Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 5V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
Parameter  
Conditions  
Units  
DC Electrical Characteristics  
VOS  
TCVOS  
IB  
Input Offset Voltage  
3
7
mV  
max  
−0.75  
0.4  
4
8
Temp. coefficient of  
input offset voltage  
Input Bias Current  
µV/˚C  
(Note 14)  
(Note 14)  
pA  
max  
pA  
0.005  
4
2
4
2
Input Offset Current  
IOS  
0.0025  
102  
max  
dB  
CMRR  
Common Mode  
Rejection Ratio  
Common Mode Input  
Capacitance  
−0.1V VCM 3.5V  
70  
70  
70  
70  
min  
pF  
CIN  
4.1  
95  
PSRR  
VCM  
Power Supply  
VS = 2.5 V to 10V  
75  
75  
75  
75  
dB  
min  
V
Rejection Ratio  
Input Common-Mode  
Voltage Range  
3.85  
3.75  
−0.2  
0
3.85  
3.75  
−0.2  
0
4.1  
min  
V
CMRR 50 dB  
−0.4  
max  
AV  
VO  
Large Signal Voltage  
Gain  
Sourcing (Note 11)  
Sinking (Note 11)  
VO = 0.5V to 4.5V  
VID = 100 mV  
100  
94  
dB  
min  
103  
4.99  
80  
4.95  
4.95  
50  
80  
4.95  
4.95  
50  
Output Swing  
V
(Note 13)  
min  
mV  
max  
VID = −100 mV  
(Note 13)  
20  
50  
50  
ISC  
Output Short Circuit  
Current  
Sourcing, VID = 100 mV  
(Notes 12, 13)  
Sinking, VID = −100 mV  
(Notes 12, 13)  
RL = open  
500  
350  
1.90  
300  
200  
200  
150  
2.4  
300  
200  
200  
150  
2.6  
µA  
min  
IS  
Supply Current (2  
amplifiers)  
µA  
3.0  
3.2  
max  
AC Electrical Characteristics  
SR  
Slew Rate (Note 8)  
Gain-Bandwidth  
Product  
4.1  
10  
2.5  
2.5  
V/ms  
KHz  
GBWP  
φm  
Phase Margin  
(Note 15)  
64  
Degree  
3
www.national.com  
5V Electrical Characteristics (Continued)  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 5V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
Parameter  
Conditions  
Units  
THD  
Total Harmonic  
Distortion  
AV = +2, f = 100 Hz,  
0.08  
%
RL = 10M, VOUT = 1 Vpp  
10V Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 10V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
Parameter  
Conditions  
Units  
DC Electrical Characteristics  
VOS  
TCVOS  
IB  
Input Offset Voltage  
3
7
mV  
max  
−1.5  
0.4  
4
8
Temp. coefficient of  
input offset voltage  
Input Bias Current  
µV/˚C  
(Note 14)  
(Note 14)  
pA  
max  
pA  
0.005  
4
2
4
2
Input Offset Current  
IOS  
0.0025  
105  
max  
dB  
CMRR  
Common Mode  
Rejection Ratio  
Common Mode Input  
Capacitance  
−0.1V VCM 8.5V  
70  
70  
70  
70  
min  
pF  
CIN  
3.5  
95  
PSRR  
VCM  
Power Supply  
VS = 2.5 V to 10V  
75  
75  
75  
75  
dB  
min  
V
Rejection Ratio  
Input Common-Mode  
Voltage Range  
8.85  
8.75  
−0.2  
0
8.85  
8.75  
−0.2  
0
9.1  
min  
V
CMRR 50 dB  
−0.4  
max  
AV  
VO  
Large Signal Voltage  
Gain  
Sourcing (Note 11)  
Sinking (Note 11)  
VO = 0.5V to 9.5V  
VID = 100 mV  
120  
100  
104  
9.99  
dB  
min  
80  
9.97  
9.97  
50  
80  
9.97  
9.97  
50  
Output Swing  
V
(Note 13)  
min  
mV  
max  
VID = −100 mV(Note 13)  
22  
50  
50  
ISC  
Output Short Circuit  
Current  
Sourcing, VID = 100 mV  
(Notes 12, 13)  
2100  
900  
1200  
1000  
600  
500  
2.4  
1200  
1000  
600  
500  
2.6  
µA  
min  
Sinking, VID = −100 mV  
(Notes 12, 13)  
IS  
Supply Current (2  
amplifiers)  
RL = open  
1.90  
µA  
3.0  
3.2  
max  
AC Electrical Characteristics  
SR  
Slew Rate(Note 8)  
Gain-Bandwidth  
Product  
4.1  
2.5  
2.5  
V/ms  
KHz  
GBWP  
10.5  
φm  
Phase Margin  
Input-Referred  
Voltage Noise  
(Note 15)  
RL = open  
f = 10 Hz  
68  
Degree  
nV/ Hz  
en  
170  
www.national.com  
4
10V Electrical Characteristics (Continued)  
Unless otherwise specified, all limits guaranteed for TJ = 25˚C, V+ = 10V, V= 0V, VCM = VO = V +/2, and RL = 1 Mto V+/2.  
Boldface limits apply at the temperature extremes.  
LMC6442AI  
Limit  
(Note 6)  
LMC6442I  
Limit  
(Note 6)  
Typ  
(Note 5)  
Symbol  
Parameter  
Conditions  
Units  
in  
Input-Referred  
RL = open  
f = 10 Hz  
(Note 9)  
0.0002  
85  
pA/ Hz  
Current Noise  
Crosstalk Rejection  
dB  
Electrical Characteristics (continued)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is  
intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.  
Note 2: Human body model, 1.5 kin series with 100 pF.  
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the  
maximum allowed junction temperature of 150˚C. Output currents in excess of 30 mA over long term may adversely affect reliability.  
Note 4: The maximum power dissipation is a function of T  
, θ , and T . The maximum allowable power dissipation at any ambient temperature is P = (T  
A D J(max)  
J(max) JA  
- T )/ θ . All numbers apply for packages soldered directly into a PC board.  
A
JA  
Note 5: Typical Values represent the most likely parametric norm.  
Note 6: All limits are guaranteed by testing or statistical analysis unless otherwise specified.  
+
+
Note 7: Do not short circuit output to V ,when V is greater than 13V or reliability will be adversely affected.  
Note 8: Slew rate is the slower of the rising and falling slew rates.  
+
Note 9: Input referred, V = 10V and R = 10 Mconnected to 5V. Each amp excited in turn with 1 KHz to produce about 10 Vpp output.  
L
Note 10: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.  
+
+
+
>
<
V /2. For Sinking tests, V  
O
Note 11: R connected to V /2. For Sourcing Test, V  
V /2.  
L
O
Note 12: Output shorted to ground for sourcing, and shorted to V+ for sinking short circuit current test.  
Note 13: V is differential input voltage referenced to inverting input.  
ID  
Note 14: Limits guaranteed by design.  
Note 15: See the Typical Performance Characteristics and Application Notes sections for more details.  
Typical Performance Characteristics  
VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified  
Total Supply Current  
vs Supply Voltage  
(Negative Input Overdrive)  
Total Supply Current  
vs Supply Voltage  
10006408  
10006409  
5
www.national.com  
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
Total Supply Current  
vs Supply Voltage  
(Positive Input Overdrive)  
Input Bias Current  
vs Temperature  
10006410  
10006441  
Offset Voltage vs  
Common Mode Voltage  
(VS = 2.2V)  
Offset Voltage vs  
Common Mode Voltage  
(VS = 5V)  
10006406  
10006407  
Offset Voltage vs  
Common Mode Voltage  
(VS = 10V)  
Swing Towards Vvs  
Supply Voltage  
10006403  
10006442  
www.national.com  
6
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
Swing Towards V+ vs  
Supply Voltage  
Swing From Rail(s)  
vs Temperature  
10006402  
10006401  
Output Source Current  
vs Output Voltage  
Output Sink Current  
vs Output Voltage  
10006449  
10006448  
Maximum Output Voltage  
vs Load Resistance  
Large Signal Voltage  
Gain vs Supply Voltage  
10006452  
10006424  
7
www.national.com  
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
Open Loop  
Open Loop  
Gain/Phase vs  
Frequency  
Gain/Phase vs  
Frequency For Various CL  
(ZL = 1 MII CL)  
10006426  
10006419  
Open Loop  
Gain/Phase vs  
Frequency For Various CL  
(ZL = 100 KII CL)  
Gain Bandwidth Product  
vs Supply Voltage  
10006421  
10006425  
Phase Margin  
(Worst Case)  
vs Supply Voltage  
CMRR vs Frequency  
10006423  
10006434  
www.national.com  
8
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
Positive Slew Rate vs  
PSRR vs Frequency  
Supply Voltage  
10006412  
10006418  
10006433  
10006415  
Negative Slew Rate vs  
Supply Voltage  
Cross-Talk Rejection  
vs Frequency  
10006411  
Input Voltage Noise  
vs Frequency  
Output Impedance  
vs Frequency  
10006416  
9
www.national.com  
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
THD+N vs Frequency  
THD+N vs Amplitude  
10006428  
10006427  
Small Signal Step  
Response  
Maximum Output  
Swing vs Frequency  
(AV=+2) (CL=12 pF, 100 pF)  
10006429  
10006453  
Large Signal Step  
Response  
Small Signal Step  
Response  
(AV=+2) (CL=100 pF)  
(AV = − 1) (CL=1MII 100 pF, 200 pF)  
10006430  
10006451  
www.national.com  
10  
Typical Performance Characteristics VS = 5V, Single Supply, TA = 25˚C unless otherwise  
specified (Continued)  
Small Signal Step  
Response  
Large Signal Step  
Response  
(AV = + 1) For Various CL  
(AV = +1) (CL= 200pF)  
10006431  
10006432  
Closed loop gain, AV is given by:  
Applications Information  
USING LMC6442 IN UNITY GAIN APPLICATIONS  
LMC6442 is optimized for maximum bandwidth and minimal  
external components when operating at a minimum closed  
loop gain of +2 (or −1). However, it is also possible to  
operate the device in a unity gain configuration by adding  
external compensation as shown in Figure 1:  
10006436  
FIGURE 2. “T” Network Used to Replace High Value  
Resistor  
10006435  
It must be noted, however, that using this scheme, the  
realizable bandwidth would be less than the theoretical  
maximum. With feedback factor, β, defined as:  
FIGURE 1. AV = +1 Operation by adding Cc and Rc  
Using this compensation technique it is possible to drive  
capacitive loads of up to 300 pF without causing oscillations  
(see the Typical Performance Characteristics for step re-  
sponse plots). This compensation can also be used with  
other gain settings in order to improve stability, especially  
when driving capacitive loads (for optimum performance, Rc  
and Cc may need to be adjusted).  
BW(−3 dB) GBWP β  
In this case, assuming a GBWP of about 10 KHz, the ex-  
pected BW would be around 50 Hz (vs 100 Hz with the  
conventional inverting amplifier).  
USING “T” NETWORK  
Compromises need to be made whenever high gain invert-  
ing stages need to achieve a high input impedance as well.  
This is especially important in low current applications which  
tend to deal with high resistance values. Using a traditional  
inverting amplifier, gain is inversely proportional to the resis-  
tor value tied between the inverting terminal and input while  
the input impedance is equal to this value. For example, in  
order to build an inverting amplifier with an input impedance  
of 10Mand a gain of 100, one needs to come up with a  
feedback resistor of 1000M-an expensive task.  
Looking at the problem from a different view, with RF defined  
by AVRin, one could select a value for R in the “T” Network  
and then determine R1 based on this selection:  
An alternate solution is to use a “T” Network in the feedback  
path, as shown in Fig. 2.  
11  
www.national.com  
The LMC6442 is more tolerant to capacitive loads when the  
equivalent output load resistance is lowered or when output  
voltage is 1V or greater from the Vsupply. The capacitive  
load drive capability is also improved by adding an isolating  
resistor in series with the load and the output of the device.  
Figure 5 shows the value of this resistor for various capaci-  
tive loads (AV = −1), while limiting the output to less than 10  
% overshoot.  
Applications Information (Continued)  
Referring to the Typical Performance Characteristics plot of  
Phase Margin (Worst Case) vs Supply Voltage, note that  
Phase Margin increases as the equivalent output load resis-  
tance is lowered. This plot shows the expected Phase Mar-  
gin when the device output is very close to V, which is the  
least stable condition of operation. Comparing this Phase  
Margin value to the one read off the Open Loop Gain/Phase  
vs Frequency plot, one can predict the improvement in  
Phase Margin if the output does not swing close to V. This  
dependence of Phase Margin on output voltage is minimized  
as long as the output load, RL, is about 1Mor less.  
10006422  
FIGURE 3. “T” Network Values for Various Values of R  
For convenience, Fig. 3 shows R1 vs RF for different values  
of R.  
Output Phase Reversal: The LMC6442 is immune against  
this behavior even when the input voltages exceed the com-  
mon mode voltage range.  
DESIGN CONSIDERATIONS FOR CAPACITIVE LOADS  
Output Time Delay: Due to the ultra low power consump-  
tion of the device, there could be as long as 2.5 ms of time  
delay from when power is applied to when the device output  
reaches its final value.  
As with many other opamps, the LMC6442 is more stable at  
higher closed loop gains when driving a capacitive load.  
Figure 4 shows minimum closed loop gain versus load ca-  
pacitance, to achieve less than 10% overshoot in the output  
small signal response. In addition, the LMC6442 is more  
stable when it provides more output current to the load and  
when its output voltage does not swing close to V.  
10006447  
FIGURE 4. Minimum Operating Gain vs Capactive Load  
10006443  
FIGURE 5. Isolating Resistor Value vs Capactive Load  
www.national.com  
12  
Application Circuits  
Micropower Single Supply Voltage to Frequency Converter  
10006445  
+
<
10µA, f/V = 4.3 (Hz/V)  
C
V
= 5V: I  
S
10006446  
Gain Stage with Current Boosting  
10006454  
13  
www.national.com  
Application Circuits (Continued)  
Offset Nulling Schemes  
10006444  
Ordering Information  
Temperature Range  
NSC  
Drawing  
Supplied  
AS  
Package  
Package Marking  
Military −55˚C to  
Industrial −40˚C to +85˚C  
+125˚C  
8-pin SO-8 LMC6442AIM, LMC6442IM  
LMC6442AIMX, LMC6442IMX  
-
M08A  
M08A  
Rails  
LMC6442AIM  
2.5K  
LMC6442IM  
A08A  
-
Tape and  
Reel  
MSOP  
LMC6442AIMM,  
LMC6442AIMMX, LMC6442IMM,  
LMC6442IMMX  
-
-
MUA08A Rails  
LMC6442AIMMX,  
3K Tape  
MUA08A  
LMC6442IMMX  
and Reel  
Rails  
8-pin DIP  
8-pin CDIP  
10-pin SO  
LMC6442AIN,  
LMC6442AIN, LMC6442IN  
-
N08E  
J08A  
LMC6442IN  
5962-9761301QPA  
Rails  
LMC6442AMJ-QML  
5962-976130IQPA  
LMC6442AMWG-Q  
9761301QXA  
-
-
5962-9761301QXA  
WG10A  
Trays  
www.national.com  
14  
Physical Dimensions inches (millimeters)  
unless otherwise noted  
8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC  
Order Number LMC6442AIM or LMC6442IM or LMC6442AIMX or LMC6442IMX  
NS Package Number M08A  
8-Lead (0.300" Wide) Molded Dual-In-Line Package  
Order Number LMC6442AIN or LMC6442IN or LMC6442INX  
NS Package Number N08E  
15  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
8-Lead (0.118" Wide) Molded Mini Small Outline Package  
Order Number LMC6442AIMM or LMC6442IMM or LMC6442AIMMX or LMC6442IMMX  
NS Package Number MUA08A  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship  
Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned  
Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
Tel: 81-3-5639-7560  
www.national.com  

相关型号:

5962-9761501Q2A

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761501QCA

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761501QDA

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761501V2A

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761501VCA

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761501VCX

LVC/LCX/Z SERIES, HEX 1-INPUT INVERT GATE, CDIP14, CERAMIC, DIP-14
TI

5962-9761501VDA

HEX SCHMITT-TRIGGER INVERTERS
TI

5962-9761601Q2A

DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLEAR AND PRESET
TI

5962-9761601Q2X

LVC/LCX/Z SERIES, DUAL POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, CQCC20, CERAMIC, LCC-20
TI

5962-9761601QCA

DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLEAR AND PRESET
TI

5962-9761601QDA

DUAL POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH CLEAR AND PRESET
TI

5962-9761601QDX

LVC/LCX/Z SERIES, DUAL POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, CDFP14, CERAMIC, DFP-14
TI