74LVC1T45GS [NEXPERIA]

Dual supply translating transceiver; 3-stateProduction;
74LVC1T45GS
型号: 74LVC1T45GS
厂家: Nexperia    Nexperia
描述:

Dual supply translating transceiver; 3-stateProduction

文件: 总30页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Rev. 9 — 10 February 2022  
Product data sheet  
1. General description  
The 74LVC1T45; 74LVCH1T45 are single bit, dual supply transceivers with 3-state outputs  
that enable bidirectional level translation. They feature two 1-bit input-output ports (A and B), a  
direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)). Both VCC(A) and VCC(B) can  
be supplied at any voltage between 1.2 V and 5.5 V making the device suitable for translating  
between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins A and DIR  
are referenced to VCC(A) and pin B is referenced to VCC(B). A HIGH on DIR allows transmission  
from A to B and a LOW on DIR allows transmission from B to A.  
The devices are fully specified for partial power-down applications using IOFF. The IOFF  
circuitry disables the output, preventing any damaging backflow current through the device  
when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at GND level,  
both A port and B port are in the high-impedance OFF-state.  
Active bus hold circuitry in the 74LVCH1T45 holds unused or floating data inputs at a valid logic  
level.  
2. Features and benefits  
Wide supply voltage range:  
VCC(A): 1.2 V to 5.5 V  
VCC(B): 1.2 V to 5.5 V  
High noise immunity  
Maximum data rates:  
420 Mbps (3.3 V to 5.0 V translation)  
210 Mbps (translate to 3.3 V))  
140 Mbps (translate to 2.5 V)  
75 Mbps (translate to 1.8 V)  
60 Mbps (translate to 1.5 V)  
Suspend mode  
Latch-up performance exceeds 100 mA per JESD 78 Class II  
±24 mA output drive (VCC = 3.0 V)  
Inputs accept voltages up to 5.5 V  
Low power consumption: 16 μA maximum ICC  
IOFF circuitry provides partial Power-down mode operation  
Complies with JEDEC standards:  
JESD8-7 (1.2 V to 1.95 V)  
JESD8-5 (1.8 V to 2.7 V)  
JESD8C (2.7 V to 3.6 V)  
JESD36 (4.5 V to 5.5 V)  
ESD protection:  
HBM JESD22-A114F Class 3A exceeds 4000 V  
CDM JESD22-C101E exceeds 1000 V  
Multiple package options  
Specified from -40 °C to +85 °C and -40 °C to +125 °C  
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
3. Ordering information  
Table 1. Ordering information  
Type number  
Package  
Temperature range Name  
Description  
Version  
74LVC1T45GW  
74LVCH1T45GW  
-40 °C to +125 °C  
-40 °C to +125 °C  
-40 °C to +125 °C  
-40 °C to +125 °C  
TSSOP6  
plastic thin shrink small outline package; 6 leads; SOT363-2  
body width 1.25 mm  
74LVC1T45GM  
74LVCH1T45GM  
XSON6  
XSON6  
XSON6  
plastic extremely thin small outline package;  
no leads; 6 terminals; body 1 × 1.45 × 0.5 mm  
SOT886  
SOT1115  
SOT1202  
74LVC1T45GN  
74LVCH1T45GN  
extremely thin small outline package; no leads;  
6 terminals; body 0.9 × 1.0 × 0.35 mm  
74LVC1T45GS  
74LVCH1T45GS  
extremely thin small outline package; no leads;  
6 terminals; body 1.0 × 1.0 × 0.35 mm  
4. Marking  
Table 2. Marking  
Type number  
Marking code[1]  
74LVC1T45GW  
74LVCH1T45GW  
74LVC1T45GM  
74LVCH1T45GM  
74LVC1T45GN  
74LVCH1T45GN  
74LVC1T45GS  
74LVCH1T45GS  
V5  
X5  
V5  
X5  
V5  
X5  
V5  
X5  
[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.  
5. Functional diagram  
5
DIR  
DIR  
3
A
A
4
B
B
V
V
CC(B)  
CC(A)  
V
V
CC(A)  
CC(B)  
001aag886  
001aag885  
Fig. 1. Logic symbol  
Fig. 2. Logic diagram  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
2 / 30  
 
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
6. Pinning information  
6.1. Pinning  
74LVC1T45  
74LVCH1T45  
74LVC1T45  
74LVCH1T45  
74LVC1T45  
74LVCH1T45  
V
1
2
3
6
5
4
V
CC(A)  
GND  
CC(B)  
1
2
3
6
5
4
V
V
CC(B)  
V
1
2
3
6
5
4
V
CC(B)  
CC(A)  
GND  
CC(A)  
GND  
DIR  
B
DIR  
B
DIR  
B
A
A
A
001aaj992  
001aaj993  
Transparent top view  
Transparent top view  
001aaj991  
Fig. 3. Pin configuration SOT363-2 Fig. 4. Pin configuration SOT886  
Fig. 5. Pin configuration SOT1115  
and SOT1202 (XSON6)  
(TSSOP6)  
(XSON6)  
6.2. Pin description  
Table 3. Pin description  
Symbol  
Pin  
1
Description  
VCC(A)  
GND  
A
supply voltage port A and DIR  
ground (0 V)  
2
3
data input or output  
data input or output  
direction control  
B
4
DIR  
VCC(B)  
5
6
supply voltage port B  
7. Functional description  
Table 4. Function table  
H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state.  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 5.5 V  
1.2 V to 5.5 V  
GND [2]  
Input  
DIR  
L
Input/output [1]  
A
B
A = B  
input  
Z
input  
B = A  
Z
H
X
[1] The input circuit of the data I/O is always active.  
[2] When either VCC(A) or VCC(B) is at GND level, the device goes into suspend mode.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
3 / 30  
 
 
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
8. Limiting values  
Table 5. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).  
Symbol Parameter  
Conditions  
Min  
-0.5  
-0.5  
-50  
-0.5  
-50  
-0.5  
-0.5  
-
Max  
+6.5  
+6.5  
-
Unit  
V
VCC(A) supply voltage A  
VCC(B) supply voltage B  
V
IIK  
input clamping current  
VI < 0 V  
mA  
V
VI  
input voltage  
[1]  
+6.5  
-
IOK  
VO  
output clamping current  
output voltage  
VO < 0 V  
mA  
Active mode  
[1] [2] [3]  
[1]  
VCCO + 0.5 V  
Suspend or 3-state mode  
VO = 0 V to VCCO  
ICC(A) or ICC(B)  
+6.5  
±50  
100  
-
V
IO  
output current  
[2]  
mA  
mA  
mA  
°C  
ICC  
IGND  
Tstg  
Ptot  
supply current  
-
ground current  
-100  
-65  
-
storage temperature  
total power dissipation  
+150  
250  
Tamb = -40 °C to +125 °C  
[4]  
mW  
[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[2] VCCO is the supply voltage associated with the output port.  
[3] VCCO + 0.5 V should not exceed 6.5 V.  
[4] For SOT363-2 (TSSOP6) package: Ptot derates linearly with 3.7 mW/K above 83 °C.  
For SOT886 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.  
For SOT1115 (XSON6) package: Ptot derates linearly with 3.2 mW/K above 71 °C.  
For SOT1202 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.  
9. Recommended operating conditions  
Table 6. Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
Max  
5.5  
5.5  
5.5  
VCCO  
5.5  
+125  
20  
Unit  
V
VCC(A) supply voltage A  
VCC(B) supply voltage B  
1.2  
1.2  
V
VI  
input voltage  
0
0
0
-40  
-
V
VO  
output voltage  
Active mode  
[1]  
[2]  
V
Suspend or 3-state mode  
V
Tamb  
ambient temperature  
°C  
Δt/ΔV  
input transition rise and fall rate  
VCCI = 1.2 V  
ns/V  
ns/V  
ns/V  
ns/V  
ns/V  
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
-
20  
-
20  
-
10  
-
5
[1] VCCO is the supply voltage associated with the output port.  
[2] VCCI is the supply voltage associated with the input port.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
4 / 30  
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
10. Static characteristics  
Table 7. Typical static characteristics at Tamb = 25 °C  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V). [1] [2]  
Symbol Parameter  
Conditions  
Min  
Typ  
1.09  
0.07  
-
Max Unit  
VOH  
VOL  
II  
HIGH-level output voltage VI = VIH or VIL; IO = -3 mA; VCCO = 1.2 V  
LOW-level output voltage VI = VIH or VIL; IO = 3 mA; VCCO = 1.2 V  
-
-
-
-
-
V
V
input leakage current  
DIR input; VI = 0 V to 5.5 V;  
VCCI = 1.2 V to 5.5 V  
±1  
μA  
IBHL  
bus hold LOW current  
bus hold HIGH current  
A or B port; VI = 0.42 V; VCCI = 1.2 V  
A or B port; VI = 0.78 V; VCCI = 1.2 V  
A or B port; VCCI = 1.2 V  
-
-
-
19  
-19  
19  
-
-
-
μA  
μA  
μA  
IBHH  
IBHLO  
bus hold LOW overdrive  
current  
[3]  
[3]  
IBHHO  
IOZ  
bus hold HIGH overdrive  
current  
A or B port; VCCI = 1.2 V  
-
-
-
-
-
-
-19  
-
-
±1  
±1  
±1  
-
μA  
μA  
μA  
μA  
pF  
pF  
OFF-state output current  
A or B port; VO = 0 V or VCCO  
;
VCCO = 1.2 V to 5.5 V  
IOFF  
power-off leakage current A port; VI or VO = 0 V to 5.5 V; VCC(A) = 0 V;  
VCC(B) = 1.2 V to 5.5 V  
-
B port; VI or VO = 0 V to 5.5 V; VCC(B) = 0 V;  
VCC(A) = 1.2 V to 5.5 V  
-
CI  
input capacitance  
DIR input; VI = 0 V or 3.3 V;  
VCC(A) = VCC(B) = 3.3 V  
2.2  
6.0  
CI/O  
input/output capacitance  
A and B port; suspend mode;  
-
VO = 3.3 V or 0 V; VCC(A) = VCC(B) = 3.3 V  
[1] VCCI is the supply voltage associated with the data input port.  
[2] VCCO is the supply voltage associated with the output port.  
[3] To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.  
Table 8. Static characteristics  
At recommended operating conditions; voltages are referenced to GND (ground = 0 V). [1] [2]  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
-40 °C to +125 °C Unit  
Min  
Max  
Min  
Max  
VIH  
HIGH-level  
data input  
input voltage  
VCCI = 1.2 V  
0.8VCCI  
0.65VCCI  
1.7  
-
-
-
-
-
0.8VCCI  
0.65VCCI  
1.7  
-
-
-
-
-
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
2.0  
2.0  
0.7VCCI  
0.7VCCI  
DIR input  
VCCI = 1.2 V  
0.8VCC(A)  
0.65VCC(A)  
1.7  
-
-
-
-
-
0.8VCC(A)  
0.65VCC(A)  
1.7  
-
-
-
-
-
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
2.0  
2.0  
0.7VCC(A)  
0.7VCC(A)  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
5 / 30  
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
-40 °C to +125 °C Unit  
Min  
Max  
Min  
Max  
VIL  
LOW-level  
data input  
input voltage  
VCCI = 1.2 V  
-
-
-
-
-
0.2VCCI  
0.35VCCI  
0.7  
-
-
-
-
-
0.2VCCI  
0.35VCCI  
0.7  
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
0.8  
0.8  
0.3VCCI  
0.3VCCI  
DIR input  
VCCI = 1.2 V  
-
-
-
-
-
0.2VCC(A)  
0.35VCC(A)  
0.7  
-
-
-
-
-
0.2VCC(A)  
0.35VCC(A)  
0.7  
V
V
V
V
V
VCCI = 1.4 V to 1.95 V  
VCCI = 2.3 V to 2.7 V  
VCCI = 3.0 V to 3.6 V  
VCCI = 4.5 V to 5.5 V  
0.8  
0.8  
0.3VCC(A)  
0.3VCC(A)  
VOH  
HIGH-level  
VI = VIH  
output voltage  
IO = -100 μA; VCCO = 1.2 V to 4.5 V  
IO = -6 mA; VCCO = 1.4 V  
VCCO - 0.1  
1.0  
-
-
-
-
-
-
VCCO - 0.1  
1.0  
-
-
-
-
-
-
V
V
V
V
V
V
IO = -8 mA; VCCO = 1.65 V  
IO = -12 mA; VCCO = 2.3 V  
IO = -24 mA; VCCO = 3.0 V  
IO = -32 mA; VCCO = 4.5 V  
1.2  
1.2  
1.9  
1.9  
2.4  
2.4  
3.8  
3.8  
VOL  
LOW-level  
VI = VIL  
output voltage  
IO = 100 μA; VCCO = 1.2 V to 4.5 V  
IO = 6 mA; VCCO = 1.4 V  
-
-
-
-
-
-
-
0.1  
0.3  
-
-
-
-
-
-
-
0.1  
0.3  
V
V
IO = 8 mA; VCCO = 1.65 V  
IO = 12 mA; VCCO = 2.3 V  
IO = 24 mA; VCCO = 3.0 V  
IO = 32 mA; VCCO = 4.5 V  
0.45  
0.3  
0.45  
0.3  
V
V
0.55  
0.55  
±2  
0.55  
0.55  
±10  
V
V
II  
input leakage DIR input; VI = 0 V to 5.5 V;  
current VCCI = 1.2 V to 5.5 V  
μA  
IBHL  
bus hold LOW A or B port  
current  
VI = 0.49 V; VCCI = 1.4 V  
15  
25  
-
-
-
-
-
10  
20  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
VI = 0.58 V; VCCI = 1.65 V  
VI = 0.70 V; VCCI = 2.3 V  
VI = 0.80 V; VCCI = 3.0 V  
VI = 1.35 V; VCCI = 4.5 V  
45  
45  
100  
100  
80  
100  
IBHH  
bus hold HIGH A or B port  
current  
VI = 0.91 V; VCCI = 1.4 V  
VI = 1.07 V; VCCI = 1.65 V  
VI = 1.60 V; VCCI = 2.3 V  
VI = 2.00 V; VCCI = 3.0 V  
VI = 3.15 V; VCCI = 4.5 V  
-15  
-25  
-
-
-
-
-
-10  
-20  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
-45  
-45  
-100  
-100  
-80  
-100  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
6 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
-40 °C to +85 °C  
-40 °C to +125 °C Unit  
Min  
Max  
Min  
Max  
IBHLO  
bus hold LOW A or B port  
overdrive  
current  
[3]  
VCCI = 1.6 V  
125  
200  
300  
500  
900  
-
-
-
-
-
125  
200  
300  
500  
900  
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
VCCI = 1.95 V  
VCCI = 2.7 V  
VCCI = 3.6 V  
VCCI = 5.5 V  
IBHHO  
bus hold HIGH A or B port  
overdrive  
current  
[3]  
VCCI = 1.6 V  
-125  
-200  
-300  
-500  
-900  
-
-
-
-125  
-200  
-300  
-500  
-900  
-
-
μA  
μA  
μA  
μA  
μA  
μA  
VCCI = 1.95 V  
VCCI = 2.7 V  
-
-
-
VCCI = 3.6 V  
-
-
-
VCCI = 5.5 V  
-
IOZ  
OFF-state  
A or B port; VO = 0 V or VCCO  
;
±2  
±10  
output current VCCO = 1.2 V to 5.5 V  
IOFF  
power-off  
leakage  
current  
A port; VI or VO = 0 V to 5.5 V;  
VCC(A) = 0 V; VCC(B) = 1.2 V to 5.5 V  
-
-
±2  
±2  
-
-
±10  
±10  
μA  
μA  
B port; VI or VO = 0 V to 5.5 V;  
VCC(B) = 0 V; VCC(A) = 1.2 V to 5.5 V  
ICC  
supply current A port; VI = 0 V or VCCI; IO = 0 A  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
VCC(A) = 5.5 V; VCC(B) = 0 V  
-
-
8
3
2
-
-
-
8
3
2
-
μA  
μA  
μA  
μA  
-
-
VCC(A) = 0 V; VCC(B) = 5.5 V  
-2  
-2  
B port; VI = 0 V or VCCI; IO = 0 A  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
VCC(B) = 5.5 V; VCC(A) = 0 V  
-
-
8
3
2
-
-
-
8
3
2
-
μA  
μA  
μA  
μA  
-
-
VCC(B) = 0 V; VCC(A) = 5.5 V  
-2  
-2  
A plus B port (ICC(A) + ICC(B)); IO = 0 A;  
VI = 0 V or VCCI  
VCC(A), VCC(B) = 1.2 V to 5.5 V  
VCC(A), VCC(B) = 1.65 V to 5.5 V  
-
-
16  
4
-
-
16  
4
μA  
μA  
ΔICC  
additional  
VCC(A), VCC(B) = 3.0 V to 5.5 V  
supply current  
A port; A port at VCC(A) - 0.6 V;  
DIR at VCC(A); B port = open  
[4]  
[4]  
-
-
50  
50  
-
-
75  
75  
μA  
μA  
DIR input; DIR at VCC(A) - 0.6 V;  
A port at VCC(A) or GND;  
B port = open  
B port; B port at VCC(B) - 0.6 V;  
DIR at GND; A port = open  
-
50  
-
75  
μA  
[1] VCCI is the supply voltage associated with the data input port.  
[2] VCCO is the supply voltage associated with the output port.  
[3] To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.  
[4] For non bus hold parts only (74LVC1T45).  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
7 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
11. Dynamic characteristics  
Table 9. Typical dynamic characteristics at VCC(A) = 1.2 V and Tamb = 25 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for waveforms see Fig. 6 and Fig. 7.  
Symbol Parameter  
Conditions  
VCC(B)  
1.8 V  
Unit  
1.2 V  
10.6  
1.5 V  
8.1  
2.5 V  
5.8  
3.3 V  
5.3  
5.0 V  
5.1  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
7.0  
9.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B to A  
10.6  
9.5  
8.5  
8.3  
8.2  
HIGH to LOW  
propagation delay  
A to B  
10.1  
7.1  
6.0  
5.3  
5.2  
5.4  
B to A  
10.1  
8.6  
8.1  
7.8  
7.6  
7.6  
HIGH to OFF-state  
propagation delay  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
9.4  
9.4  
9.4  
9.4  
9.4  
9.4  
12.0  
9.4  
9.0  
7.8  
8.4  
7.9  
LOW to OFF-state  
propagation delay  
7.1  
7.1  
7.1  
7.1  
7.1  
7.1  
9.5  
7.8  
7.7  
6.9  
7.6  
7.0  
OFF-state to HIGH  
propagation delay  
[1] 20.1  
[1] 17.7  
[1] 22.1  
[1] 19.5  
17.3  
15.2  
18.0  
16.5  
16.7  
14.1  
17.1  
15.4  
15.4  
12.9  
15.6  
14.7  
15.9  
12.4  
16.0  
14.6  
15.2  
12.2  
15.5  
14.8  
OFF-state to LOW  
propagation delay  
[1] tPZH and tPZL are calculated values using the formula shown in Section 13.4  
Table 10. Typical dynamic characteristics at VCC(B) = 1.2 V and Tamb = 25 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for waveforms see Fig. 6 and Fig. 7.  
Symbol Parameter  
Conditions  
VCC(A)  
1.8 V  
Unit  
1.2 V  
10.6  
1.5 V  
9.5  
2.5 V  
8.5  
3.3 V  
8.3  
5.0 V  
8.2  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
9.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B to A  
10.6  
8.1  
5.8  
5.3  
5.1  
HIGH to LOW  
propagation delay  
A to B  
10.1  
8.6  
8.1  
7.8  
7.6  
7.6  
B to A  
10.1  
7.1  
6.0  
5.3  
5.2  
5.4  
HIGH to OFF-state  
propagation delay  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
DIR to A  
DIR to B  
9.4  
6.5  
5.7  
4.1  
4.1  
3.0  
12.0  
6.1  
5.4  
4.6  
4.3  
4.0  
LOW to OFF-state  
propagation delay  
7.1  
4.9  
4.5  
3.2  
3.4  
2.5  
9.5  
7.3  
6.6  
5.9  
5.7  
5.6  
OFF-state to HIGH  
propagation delay  
[1] 20.1  
[1] 17.7  
[1] 22.1  
[1] 19.5  
15.4  
14.4  
13.2  
15.1  
13.6  
13.5  
11.4  
13.8  
11.7  
11.7  
9.9  
11.0  
11.7  
9.5  
10.7  
10.7  
9.4  
OFF-state to LOW  
propagation delay  
11.9  
11.7  
10.6  
[1] tPZH and tPZL are calculated values using the formula shown in Section 13.4  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
8 / 30  
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Table 11. Typical power dissipation capacitance at VCC(A) = VCC(B) and Tamb = 25 °C  
Voltages are referenced to GND (ground = 0 V). [1][2]  
Symbol Parameter  
Conditions  
VCC(A) and VCC(B)  
Unit  
1.8 V  
2.5 V  
3.3 V  
5.5 V  
CPD  
power dissipation  
capacitance  
A port: (direction A to B);  
B port: (direction B to A)  
2
3
3
4
pF  
pF  
A port: (direction B to A);  
B port: (direction A to B)  
15  
16  
16  
18  
[1] CPD is used to determine the dynamic power dissipation (PD in μW).  
PD = CPD × VCC 2 × fi × N + Σ(CL × VCC 2 × fo) where:  
fi = input frequency in MHz;  
fo = output frequency in MHz;  
CL = load capacitance in pF;  
VCC = supply voltage in V;  
N = number of inputs switching;  
Σ(CL × VCC 2 × fo) = sum of the outputs.  
[2] fi = 10 MHz; VI = GND to VCC; tr = tf = 1 ns; CL = 0 pF; RL = ∞ Ω.  
Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for wave forms see Fig. 6 and Fig. 7.  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 1.4 V to 1.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.8 21.3 2.4 17.6 2.0 13.5 1.7 11.8 1.6 10.5 ns  
2.8 21.3 2.6 19.1 2.3 14.9 2.3 12.4 2.2 12.0 ns  
2.6 19.3 2.2 15.3 1.8 11.8 1.7 10.9 1.7 10.8 ns  
2.6 19.3 2.4 17.3 2.3 13.2 2.2 11.3 2.3 11.0 ns  
3.0 18.7 3.0 18.7 3.0 18.7 3.0 18.7 3.0 18.7 ns  
3.5 24.8 3.5 23.6 3.0 11.0 3.3 11.3 2.8 10.3 ns  
2.4 11.4 2.4 11.4 2.4 11.4 2.4 11.4 2.4 11.4 ns  
HIGH to LOW  
propagation delay  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
2.8 18.3 3.0 17.2 2.5  
9.4  
3.0 10.1 2.5  
9.4 ns  
21.4 ns  
21.9 ns  
21.3 ns  
29.5 ns  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
39.6  
32.7  
44.1  
38.0  
-
-
-
-
36.3  
29.0  
40.9  
34.0  
-
-
-
-
24.3  
24.9  
24.2  
30.5  
-
-
-
-
22.5  
23.2  
22.6  
29.6  
-
-
-
-
DIR to B  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
9 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 1.65 V to 1.95 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.6 19.1 2.2 17.7 2.2  
2.4 17.6 2.2 17.7 2.3 16.0 2.1 15.5 1.9 15.1 ns  
2.4 17.3 2.0 14.3 1.6 8.5 1.8 7.1 1.7 7.0 ns  
9.3  
1.7  
7.2  
1.4  
6.8 ns  
HIGH to LOW  
propagation delay  
2.2 15.3 2.0 14.3 2.1 12.9 2.0 12.6 1.8 12.2 ns  
2.9 17.1 2.9 17.1 2.9 17.1 2.9 17.1 2.9 17.1 ns  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
3.2 24.1 3.2 21.9 2.7 11.5 3.0 10.3 2.5  
8.2 ns  
LOW to OFF-state DIR to A  
propagation delay  
2.4 10.5 2.4 10.5 2.4 10.5 2.4 10.5 2.4 10.5 ns  
DIR to B  
2.5 17.6 2.6 16.0 2.2  
9.2  
2.7  
8.4  
2.4  
6.4 ns  
21.8 ns  
17.3 ns  
20.4 ns  
24.1 ns  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
35.2  
29.6  
39.4  
34.4  
-
-
-
-
33.7  
28.2  
36.2  
31.4  
-
-
-
-
25.2  
19.8  
24.4  
25.6  
-
-
-
-
23.9  
17.7  
22.9  
24.2  
-
-
-
-
DIR to B  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
VCC(A) = 2.3 V to 2.7 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3 17.9 2.3 16.0 1.5  
2.0 13.5 2.2 9.3 1.5  
2.3 15.8 2.1 12.9 1.4  
8.5  
8.5  
7.5  
7.5  
8.1  
1.3  
1.4  
1.3  
1.3  
2.1  
6.2  
8.0  
1.1  
1.0  
0.9  
0.9  
2.1  
2.3  
1.7  
1.8  
-
4.8 ns  
7.5 ns  
4.6 ns  
6.2 ns  
8.1 ns  
6.9 ns  
5.8 ns  
5.3 ns  
12.8 ns  
10.6 ns  
13.1 ns  
12.7 ns  
HIGH to LOW  
propagation delay  
5.4  
1.8 11.8 1.9  
2.1 8.1 2.1  
8.5  
8.1  
1.4  
2.1  
7.0  
HIGH to OFF-state DIR to A  
propagation delay  
8.1  
DIR to B  
3.0 22.5 3.0 21.4 2.5 11.0 2.8  
9.3  
LOW to OFF-state DIR to A  
propagation delay  
1.7  
5.8  
1.7  
5.8  
1.7  
5.8  
9.0  
1.7  
5.8  
DIR to B  
2.3 14.6 2.5 13.2 2.0  
2.5  
8.4  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
28.1  
23.7  
34.3  
23.9  
-
-
-
-
22.5  
21.8  
29.9  
21.0  
-
-
-
-
17.5  
14.3  
18.5  
15.6  
-
-
-
-
16.4  
12.0  
16.3  
13.5  
DIR to B  
-
OFF-state to LOW DIR to A  
propagation delay  
-
DIR to B  
-
VCC(A) = 3.0 V to 3.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3 17.1 2.1 15.5 1.4  
1.7 11.8 1.7 7.2 1.3  
2.2 15.6 2.0 12.6 1.3  
8.0  
6.2  
7.0  
5.4  
7.3  
0.8  
0.7  
0.8  
0.8  
2.3  
5.6  
5.6  
0.7  
0.6  
0.7  
0.7  
2.7  
2.2  
2.0  
1.7  
-
4.4 ns  
5.4 ns  
4.0 ns  
4.5 ns  
7.3 ns  
6.3 ns  
5.6 ns  
4.9 ns  
10.3 ns  
10.0 ns  
10.8 ns  
11.3 ns  
HIGH to LOW  
propagation delay  
5.0  
1.7 10.9 1.8  
2.3 7.3 2.3  
7.1  
7.3  
1.3  
2.3  
5.0  
HIGH to OFF-state DIR to A  
propagation delay  
7.3  
DIR to B  
2.9 18.0 2.9 16.5 2.3 10.1 2.7  
8.6  
LOW to OFF-state DIR to A  
propagation delay  
2.0  
5.6  
2.0  
5.6  
2.0  
5.6  
7.8  
2.0  
5.6  
DIR to B  
2.3 13.6 2.4 12.5 1.9  
2.3  
7.1  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
25.4  
22.7  
28.9  
22.9  
-
-
-
-
19.7  
21.1  
23.6  
19.9  
-
-
-
-
14.0  
13.6  
15.5  
14.3  
-
-
-
-
12.7  
11.2  
13.6  
12.3  
DIR to B  
-
OFF-state to LOW DIR to A  
propagation delay  
-
DIR to B  
-
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
10 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 4.5 V to 5.5 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.2 16.6 1.9 15.1 1.0  
1.6 10.5 1.4 6.8 1.0  
2.3 15.3 1.8 12.2 1.0  
7.5  
4.8  
0.7  
0.7  
0.7  
0.7  
1.7  
2.7  
1.0  
2.3  
-
5.4  
4.4  
4.5  
4.0  
5.4  
8.0  
3.7  
7.0  
11.4  
9.1  
12.0  
9.9  
0.5  
0.5  
0.5  
0.5  
1.7  
2.5  
0.9  
1.8  
-
3.9 ns  
3.9 ns  
3.5 ns  
3.5 ns  
5.4 ns  
5.7 ns  
3.7 ns  
4.5 ns  
8.4 ns  
7.6 ns  
9.2 ns  
8.9 ns  
HIGH to LOW  
propagation delay  
6.2  
1.7 10.8 1.7  
1.7 5.4 1.7  
7.0  
5.4  
0.9  
1.7  
4.6  
HIGH to OFF-state DIR to A  
propagation delay  
5.4  
DIR to B  
2.9 17.3 2.9 16.1 2.3  
1.4 3.7 1.4 3.7 1.3  
2.3 13.1 2.4 12.1 1.9  
9.7  
LOW to OFF-state DIR to A  
propagation delay  
3.7  
DIR to B  
7.4  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
23.6  
20.3  
28.1  
20.7  
-
-
-
-
18.9  
18.8  
23.1  
17.6  
-
-
-
-
12.2  
11.2  
14.3  
11.6  
DIR to B  
-
-
OFF-state to LOW DIR to A  
propagation delay  
-
-
DIR to B  
-
-
[1] tPZH and tPZL are calculated values using the formula shown in Section 13.4  
Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C  
Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 8; for wave forms see Fig. 6 and Fig. 7.  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
± 0.1 V  
1.8 V  
± 0.15 V  
2.5 V  
± 0.2 V  
3.3 V  
± 0.3 V  
5.0 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 1.4 V to 1.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.5 23.5 2.1 19.4 1.8 14.9 1.5 13.0 1.4 11.6 ns  
2.5 23.5 2.3 21.1 2.0 16.4 2.0 13.7 1.9 13.2 ns  
2.3 21.3 1.9 16.9 1.6 13.0 1.5 12.0 1.5 11.9 ns  
2.3 21.3 2.1 19.1 2.0 14.6 1.9 12.5 2.0 12.1 ns  
2.7 20.6 2.7 20.6 2.7 20.6 2.7 20.6 2.7 20.6 ns  
3.1 27.3 3.1 26.0 2.7 12.1 2.9 12.5 2.5 11.4 ns  
2.1 12.6 2.1 12.6 2.1 12.6 2.1 12.6 2.1 12.6 ns  
2.5 20.2 2.7 19.0 2.2 10.4 2.7 11.2 2.2 10.4 ns  
HIGH to LOW  
propagation delay  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
LOW to OFF-state DIR to A  
propagation delay  
DIR to B  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
43.7  
36.1  
48.6  
41.9  
-
-
-
-
40.1  
32.0  
45.1  
37.5  
-
-
-
-
26.8  
27.5  
26.7  
33.6  
-
-
-
-
24.9  
25.6  
25.0  
32.6  
-
-
-
-
23.6 ns  
24.2 ns  
23.5 ns  
32.5 ns  
DIR to B  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
11 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 1.65 V to 1.95 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.3 21.1 1.9 19.5 1.9 10.3 1.5  
2.1 19.4 1.9 19.5 2.0 17.6 1.8 17.1 1.7 16.7 ns  
2.1 19.1 1.8 15.8 1.4 9.4 1.6 7.9 1.5 7.7 ns  
8.0  
1.2  
7.5 ns  
HIGH to LOW  
propagation delay  
1.9 16.9 1.8 15.8 1.8 14.2 1.8 13.9 1.6 13.5 ns  
2.6 18.9 2.6 18.9 2.6 18.9 2.6 18.9 2.6 18.9 ns  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
2.8 26.6 2.8 24.1 2.4 12.7 2.7 11.4 2.2  
9.1 ns  
LOW to OFF-state DIR to A  
propagation delay  
2.1 11.6 2.1 11.6 2.1 11.6 2.1 11.6 2.1 11.6 ns  
DIR to B  
2.2 19.4 2.3 17.6 1.9 10.2 2.4  
9.3  
2.1  
7.4 ns  
24.1 ns  
19.1 ns  
22.6 ns  
26.6 ns  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
38.8  
32.7  
43.5  
38.0  
-
-
-
-
37.1  
31.1  
39.9  
34.7  
-
-
-
-
27.8  
21.9  
26.9  
28.3  
-
-
-
-
26.4  
19.6  
25.3  
26.8  
-
-
-
-
DIR to B  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
VCC(A) = 2.3 V to 2.7 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.0 19.7 2.0 17.6 1.3  
1.8 14.9 1.9 10.3 1.3  
2.0 17.4 1.8 14.2 1.2  
9.4  
9.4  
8.3  
8.3  
9.0  
1.1  
1.2  
1.1  
1.1  
1.8  
6.9  
8.8  
6.0  
7.7  
9.0  
0.9  
0.9  
0.8  
0.8  
1.8  
5.3 ns  
8.3 ns  
5.1 ns  
6.9 ns  
9.0 ns  
7.6 ns  
6.4 ns  
5.9 ns  
14.2 ns  
11.7 ns  
14.5 ns  
14.1 ns  
HIGH to LOW  
propagation delay  
1.6 13.0 1.7  
1.8 9.0 1.8  
9.4  
9.0  
1.2  
1.8  
HIGH to OFF-state DIR to A  
propagation delay  
DIR to B  
2.7 24.8 2.7 23.6 2.2 12.1 2.5 10.3 2.0  
LOW to OFF-state DIR to A  
propagation delay  
1.5  
6.4  
1.5  
6.4  
1.5  
6.4  
9.9  
1.5  
6.4  
9.3  
1.5  
DIR to B  
2.0 16.1 2.2 14.6 1.8  
2.2  
1.6  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
31.0  
26.1  
37.8  
26.4  
-
-
-
-
24.9  
24.0  
33.0  
23.2  
-
-
-
-
19.3  
15.8  
20.4  
17.3  
-
-
-
-
18.1  
13.3  
18.0  
15.0  
-
-
-
-
DIR to B  
OFF-state to LOW DIR to A  
propagation delay  
DIR to B  
VCC(A) = 3.0 V to 3.6 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
2.0 18.9 1.8 17.1 1.2  
1.5 13.0 1.5 8.0 1.1  
1.9 17.2 1.8 13.9 1.1  
8.8  
6.9  
7.7  
6.0  
8.1  
0.7  
0.6  
0.7  
0.7  
2.0  
6.2  
6.2  
0.6  
0.5  
0.6  
0.6  
2.4  
1.9  
1.8  
1.5  
-
4.9 ns  
6.0 ns  
4.4 ns  
5.0 ns  
8.1 ns  
7.0 ns  
6.2 ns  
5.4 ns  
11.4 ns  
11.1 ns  
12.0 ns  
12.5 ns  
HIGH to LOW  
propagation delay  
5.5  
1.5 12.0 1.6  
2.0 8.1 2.0  
7.9  
8.1  
1.1  
2.0  
5.5  
HIGH to OFF-state DIR to A  
propagation delay  
8.1  
DIR to B  
2.6 19.8 2.6 18.2 2.0 11.2 2.4  
9.5  
LOW to OFF-state DIR to A  
propagation delay  
1.8  
6.2  
1.8  
6.2  
1.8  
6.2  
8.6  
1.8  
6.2  
DIR to B  
2.0 15.0 2.1 13.8 1.7  
2.0  
7.9  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
28.0  
25.1  
31.8  
25.3  
-
-
-
-
21.8  
23.3  
26.1  
22.0  
-
-
-
-
15.5  
15.0  
17.2  
15.8  
-
-
-
-
14.1  
12.4  
15.0  
13.6  
DIR to B  
-
OFF-state to LOW DIR to A  
propagation delay  
-
DIR to B  
-
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
12 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Symbol Parameter  
Conditions  
VCC(B)  
Unit  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
± 0.5 V  
Min Max Min Max Min Max Min Max Min Max  
VCC(A) = 4.5 V to 5.5 V  
tPLH  
tPHL  
tPHZ  
tPLZ  
tPZH  
tPZL  
LOW to HIGH  
propagation delay  
A to B  
B to A  
A to B  
B to A  
1.9 18.3 1.7 16.7 0.9  
1.4 11.6 1.2 7.5 0.9  
2.0 16.9 1.6 13.5 0.9  
8.3  
5.3  
6.9  
5.1  
6.0  
0.6  
0.6  
0.6  
0.6  
1.5  
6.0  
4.9  
0.4  
0.4  
0.4  
0.4  
1.5  
2.2  
0.8  
1.6  
-
4.3 ns  
4.3 ns  
3.9 ns  
3.9 ns  
6.0 ns  
6.3 ns  
4.1 ns  
5.0 ns  
9.3 ns  
8.4 ns  
10.2 ns  
9.9 ns  
HIGH to LOW  
propagation delay  
5.0  
1.5 11.9 1.5  
1.5 6.0 1.5  
7.7  
6.0  
0.8  
1.5  
4.4  
HIGH to OFF-state DIR to A  
propagation delay  
6.0  
DIR to B  
2.6 19.1 2.6 17.8 2.0 10.7 2.4  
8.8  
LOW to OFF-state DIR to A  
propagation delay  
1.2  
4.1  
1.2  
4.1  
1.1  
4.1  
8.2  
0.9  
4.1  
DIR to B  
2.0 14.5 2.1 13.4 1.7  
2.0  
7.7  
OFF-state to HIGH DIR to A  
propagation delay  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
26.1  
22.4  
31.0  
22.9  
-
-
-
-
20.9  
20.8  
25.5  
19.5  
-
-
-
-
13.5  
12.4  
15.8  
12.9  
-
-
-
-
12.6  
10.1  
13.2  
11.0  
DIR to B  
-
OFF-state to LOW DIR to A  
propagation delay  
-
DIR to B  
-
[1] tPZH and tPZL are calculated values using the formula shown in Section 13.4  
11.1. Waveforms and test circuit  
V
I
V
A, B input  
M
GND  
t
t
PLH  
PHL  
V
OH  
B, A output  
V
M
001aae967  
V
OL  
Measurement points are given in Table 14.  
VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 6. The data input (A, B) to output (B, A) propagation delay times  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
13 / 30  
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
V
I
DIR input  
V
M
t
GND  
t
PLZ  
PZL  
V
CCO  
output  
V
LOW-to-OFF  
OFF-to-LOW  
M
V
X
V
OL  
t
t
PZH  
PHZ  
V
OH  
V
Y
output  
HIGH-to-OFF  
V
M
OFF-to-HIGH  
GND  
outputs  
enabled  
outputs  
disabled  
outputs  
enabled  
001aae968  
Measurement points are given in Table 14.  
VOL and VOH are typical output voltage levels that occur with the output load.  
Fig. 7. Enable and disable times  
Table 14. Measurement points  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 1.6 V  
1.65 V to 2.7 V  
3.0 V to 5.5 V  
Input [1]  
Output [2]  
VM  
VM  
VX  
VY  
0.5VCCI  
0.5VCCI  
0.5VCCI  
0.5VCCO  
0.5VCCO  
0.5VCCO  
VOL + 0.1 V  
VOH - 0.1 V  
VOH - 0.15 V  
VOH - 0.3 V  
VOL + 0.15 V  
VOL + 0.3 V  
[1] VCCI is the supply voltage associated with the data input port.  
[2] VCCO is the supply voltage associated with the output port.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
14 / 30  
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
t
W
V
I
90 %  
negative  
pulse  
V
V
V
M
M
10 %  
0 V  
t
t
r
f
t
t
f
r
V
I
90 %  
positive  
pulse  
V
M
M
10 %  
0 V  
t
W
V
EXT  
R
V
CC  
L
V
V
O
I
G
DUT  
R
T
C
L
R
L
001aae331  
Test data is given in Table 15.  
RL = Load resistance;  
CL = Load capacitance including jig and probe capacitance;  
RT = Termination resistance;  
VEXT = External voltage for measuring switching times.  
Fig. 8. Test circuit for measuring switching times  
Table 15. Test data  
Supply voltage  
VCC(A), VCC(B)  
1.2 V to 5.5 V  
Input  
VI [1]  
VCCI  
Load  
CL  
VEXT  
Δt/ΔV [2]  
RL  
2 kΩ  
tPLH, tPHL  
open  
tPZH, tPHZ  
tPZL, tPLZ [3]  
≤ 1.0 ns/V  
15 pF  
GND  
2VCCO  
[1] VCCI is the supply voltage associated with the data input port.  
[2] dV/dt ≥ 1.0 V/ns  
[3] VCCO is the supply voltage associated with the output port.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
15 / 30  
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
12. Typical propagation delay characteristics  
001aai907  
001aai908  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
(1)  
(1)  
10  
8
10  
8
(2)  
(3)  
(2)  
(3)  
(4)  
(4)  
(5)  
(6)  
6
6
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai909  
001aai910  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
(1)  
(1)  
(2)  
(3)  
(4)  
(2)  
(3)  
10  
10  
(5)  
(6)  
(4)  
(5)  
(6)  
8
6
4
2
0
8
6
4
2
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 9. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.2 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
16 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
001aai911  
001aai912  
14  
14  
PLH  
(ns)  
12  
t
t
PHL  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(2)  
(3)  
6
6
(3)  
(4)  
(4)  
(5)  
(6)  
4
4
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai913  
001aai914  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(4)  
(2)  
(3)  
(4)  
6
6
(5)  
(6)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 10. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.5 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
17 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
001aai915  
001aai916  
14  
14  
PLH  
(ns)  
12  
t
t
PHL  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai917  
001aai918  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
6
6
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 11. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 1.8 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
18 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
001aai919  
001aai920  
14  
14  
PLH  
(ns)  
12  
t
t
PHL  
(ns)  
12  
(1)  
10  
8
10  
8
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai921  
001aai922  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
10  
8
10  
8
(1)  
6
6
(1)  
(2)  
(3)  
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 12. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 2.5 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
19 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
001aai923  
001aai924  
14  
14  
PLH  
(ns)  
12  
t
t
PHL  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai925  
001aai926  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
10  
8
10  
8
6
6
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
(4)  
(5)  
(6)  
4
4
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 13. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 3.3 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
20 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
001aai927  
001aai928  
14  
14  
PLH  
(ns)  
12  
t
t
PHL  
(ns)  
12  
10  
8
10  
8
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
6
6
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
a. HIGH to LOW propagation delay (A to B)  
b. LOW to HIGH propagation delay (A to B)  
001aai929  
001aai930  
14  
PHL  
(ns)  
12  
14  
PLH  
(ns)  
12  
t
t
10  
8
10  
8
6
6
(1)  
(1)  
(2)  
(3)  
(2)  
(3)  
4
4
(4)  
(5)  
(6)  
(4)  
(5)  
(6)  
2
2
0
0
0
5
10  
15  
20  
25  
30  
(pF)  
35  
0
5
10  
15  
20  
25  
30  
C (pF)  
L
35  
C
L
c. HIGH to LOW propagation delay (B to A)  
d. LOW to HIGH propagation delay (B to A)  
(1) VCC(B) = 1.2 V.  
(2) VCC(B) = 1.5 V.  
(3) VCC(B) = 1.8 V.  
(4) VCC(B) = 2.5 V.  
(5) VCC(B) = 3.3 V.  
(6) VCC(B) = 5.0 V.  
Fig. 14. Typical propagation delay vs load capacitance; Tamb = 25 °C; VCC(A) = 5.0 V  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
21 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
13. Application information  
13.1. Unidirectional logic level-shifting application  
The circuit given in Fig. 15 is an example of the 74LVC1T45; 74LVCH1T45 being used in a  
unidirectional logic level-shifting application.  
74LVC1T45  
74LVCH1T45  
V
V
V
V
CC1  
CC1  
CC2  
CC2  
V
V
CC(B)  
CC(A)  
1
2
3
6
5
4
GND  
A
DIR  
B
system-1  
system-2  
001aaj994  
Fig. 15. Unidirectional logic level-shifting application  
Table 16. Description unidirectional logic level-shifting application  
Pin  
1
Name  
VCC(A)  
GND  
A
Function Description  
VCC1  
GND  
OUT  
IN  
supply voltage of system-1 (1.2 V to 5.5 V)  
2
device GND  
3
output level depends on VCC1 voltage  
input threshold value depends on VCC2 voltage  
the GND (LOW level) determines B port to A port direction  
supply voltage of system-2 (1.2 V to 5.5 V)  
4
B
5
DIR  
DIR  
6
VCC(B)  
VCC2  
13.2. Bidirectional logic level-shifting application  
Fig. 16 shows the 74LVC1T45; 74LVCH1T45 being used in a bidirectional logic level-shifting  
application. Since the device does not have an output enable pin, the system designer should take  
precautions to avoid bus contention between system-1 and system-2 when changing directions.  
74LVC1T45  
74LVCH1T45  
V
V
V
V
CC1  
CC1  
CC2  
CC2  
V
V
CC(B)  
CC(A)  
GND  
A
1
2
3
6
5
4
I/O-1  
I/O-2  
DIR  
B
PULL-UP/DOWN  
PULL-UP/DOWN  
DIR CTRL  
system-1  
system-2  
001aaj995  
Pull-up or pull-down only needed for 74LVC1T45.  
Fig. 16. Bidirectional logic level-shifting application  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
22 / 30  
 
 
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Table 17 provides a sequence that illustrates data transmission from system-1 to system-2 and  
then from system-2 to system-1.  
Table 17. Description bidirectional logic level-shifting application  
H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.  
State  
DIR CTRL I/O-1  
I/O-2  
input  
Z
Description  
1
2
H
H
output  
Z
system-1 data to system-2  
system-2 is getting ready to send data to  
system-1. I/O-1 and I/O-2 are disabled. The  
bus-line state depends on bus hold.  
3
4
L
L
Z
Z
DIR bit is set LOW. I/O-1 and I/O-2 are still  
disabled. The bus-line state depends on bus  
hold.  
input  
output  
system-2 data to system-1  
13.3. Power-up considerations  
The device is designed such that no special power-up sequence is required other than GND being  
applied first.  
Table 18. Typical total supply current (ICC(A) + ICC(B)  
)
VCC(A)  
VCC(B)  
0 V  
0
Unit  
1.8 V  
< 1  
< 2  
< 2  
< 2  
2
2.5 V  
< 1  
3.3 V  
< 1  
5.0 V  
< 1  
2
0 V  
μA  
μA  
μA  
μA  
μA  
1.8 V  
2.5 V  
3.3 V  
5.0 V  
< 1  
< 1  
< 1  
< 1  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
< 2  
13.4. Enable times  
Calculate the enable times for the 74LVC1T45; 74LVCH1T45 using the following formulas:  
tPZH (DIR to A) = tPLZ (DIR to B) + tPLH (B to A)  
tPZL (DIR to A) = tPHZ (DIR to B) + tPHL (B to A)  
tPZH (DIR to B) = tPLZ (DIR to A) + tPLH (A to B)  
tPZL (DIR to B) = tPHZ (DIR to A) + tPHL (A to B)  
In a bidirectional application, these enable times provide the maximum delay from the time the DIR  
bit is switched until an output is expected. For example, if the 74LVC1T45; 74LVCH1T45 initially  
is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled  
before presenting it with an input. After the B port has been disabled, an input signal applied to it  
appears on the corresponding A port after the specified propagation delay.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
23 / 30  
 
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
14. Package outline  
TSSOP6: plastic thin shrink small outline package; 6 leads; body width 1.25 mm  
SOT363-2  
D
B
E
A
X
c
(6x)  
y
H
E
v
M
A
e
1
6
5
4
pin 1 index  
A
A
2
A
1
1
2
3
A
3
θ
L
w
M B  
p
b
p
(6x)  
detail X  
e
e
0
3 mm  
scale  
Dimensions (mm are the original dimensions)  
Unit  
(1)  
(1)  
A
A
A
A
b
c
D
E
e
e
1
H
E
L
p
v
w
y
θ
1
2
3
p
max 1.1 0.1 1.0  
0.8 0.8  
0.30 0.25 2.2 1.35  
0.15 0.08 1.8 1.15  
2.4 0.46  
1.8 0.26  
8°  
0°  
mm  
0.15  
0.65 1.3  
0.3 0.1 0.1  
0
min  
Note  
1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.  
sot363-2_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
21-12-15  
21-12-16  
SOT363-2  
SC-88A  
MO-203  
Fig. 17. Package outline SOT363-2 (TSSOP6)  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
24 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm  
SOT886  
b
1
2
3
4x  
(2)  
L
L
1
e
6
5
4
e
e
1
1
6x  
(2)  
A
A
1
D
E
terminal 1  
index area  
0
1
2 mm  
scale  
Dimensions (mm are the original dimensions)  
(1)  
Unit  
A
A
b
D
E
e
e
L
L
1
1
1
max 0.5 0.04 0.25 1.50 1.05  
0.35 0.40  
0.30 0.35  
0.27 0.32  
nom  
min  
0.20 1.45 1.00 0.6  
0.17 1.40 0.95  
mm  
0.5  
Notes  
1. Including plating thickness.  
2. Can be visible in some manufacturing processes.  
sot886_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
MO-252  
JEITA  
04-07-22  
12-01-05  
SOT886  
Fig. 18. Package outline SOT886 (XSON6)  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
25 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
XSON6: extremely thin small outline package; no leads;  
6 terminals; body 0.9 x 1.0 x 0.35 mm  
SOT1115  
b
3
(2)  
(4×)  
1
2
L
L
1
e
6
5
4
e
e
1
1
(2)  
(6×)  
A
1
A
D
E
terminal 1  
index area  
0
L
0.5  
scale  
1 mm  
Dimensions  
Unit  
(1)  
A
A
b
D
E
e
e
1
L
1
1
max 0.35 0.04 0.20 0.95 1.05  
0.35 0.40  
0.15 0.90 1.00 0.55 0.3 0.30 0.35  
0.12 0.85 0.95 0.27 0.32  
mm nom  
min  
Note  
1. Including plating thickness.  
2. Visible depending upon used manufacturing technology.  
sot1115_po  
References  
Outline  
version  
European  
Issue date  
projection  
IEC  
JEDEC  
JEITA  
10-04-02  
10-04-07  
SOT1115  
Fig. 19. Package outline SOT1115 (XSON6)  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
26 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
XSON6: extremely thin small outline package; no leads;  
6 terminals; body 1.0 x 1.0 x 0.35 mm  
SOT1202  
b
3
(2)  
1
2
(4×)  
L
L
1
e
6
5
4
e
e
1
1
(2)  
(6×)  
A
1
A
D
E
terminal 1  
index area  
0
L
0.5  
1 mm  
scale  
Dimensions  
Unit  
(1)  
A
A
b
D
E
e
e
1
L
1
1
max 0.35 0.04 0.20 1.05 1.05  
0.35 0.40  
0.15 1.00 1.00 0.55 0.35 0.30 0.35  
0.12 0.95 0.95 0.27 0.32  
mm nom  
min  
Note  
1. Including plating thickness.  
2. Visible depending upon used manufacturing technology.  
sot1202_po  
References  
Outline  
version  
European  
Issue date  
projection  
IEC  
JEDEC  
JEITA  
10-04-02  
10-04-06  
SOT1202  
Fig. 20. Package outline SOT1202 (XSON6)  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
27 / 30  
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
15. Abbreviations  
Table 19. Abbreviations  
Acronym  
Description  
CDM  
DUT  
ESD  
HBM  
Charged Device Model  
Device Under Test  
ElectroStatic Discharge  
Human Body Model  
16. Revision history  
Table 20. Revision history  
Document ID  
Release date  
20220210  
Data sheet status  
Change notice Supersedes  
74LVC_LVCH1T45 v.9  
Modifications:  
Product data sheet  
-
74LVC_LVCH1T45 v.8  
Package SOT363 (SC-88) changed to SOT363-2 (TSSOP6).  
74LVC_LVCH1T45 v.8  
Modifications:  
20210610 Product data sheet 74LVC_LVCH1T45 v.7  
-
Type numbers 74LVC1T45GF and 74LVCH1T45GF (SOT891 / XSON6) removed.  
Section 8: Derating values for Ptot total power dissipation updated.  
74LVC_LVCH1T45 v.7  
Modifications:  
20190319  
Product data sheet  
-
74LVC_LVCH1T45 v.6  
The format of this data sheet has been redesigned to comply with the identity guidelines  
of Nexperia.  
Legal texts have been adapted to the new company name where appropriate.  
74LVC_LVCH1T45 v.6  
Modifications:  
20120806  
Product data sheet  
-
74LVC_LVCH1T45 v.5  
74LVC_LVCH1T45 v.4  
Package outline drawing of SOT886 (Fig. 18) modified.  
74LVC_LVCH1T45 v.5  
Modifications:  
20111219  
Product data sheet  
-
Legal pages updated.  
74LVC_LVCH1T45 v.4  
74LVC_LVCH1T45 v.3  
74LVC_LVCH1T45 v.2  
74LVC_LVCH1T45 v.1  
20110927  
20100819  
20100119  
20090511  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
74LVC_LVCH1T45 v.3  
74LVC_LVCH1T45 v.2  
74LVC_LVCH1T45 v.1  
-
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
28 / 30  
 
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
injury, death or severe property or environmental damage. Nexperia and its  
suppliers accept no liability for inclusion and/or use of Nexperia products in  
such equipment or applications and therefore such inclusion and/or use is at  
the customer’s own risk.  
17. Legal information  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Data sheet status  
Document status Product  
Definition  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Nexperia makes no representation  
or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
[1][2]  
status [3]  
Objective [short]  
data sheet  
Development  
This document contains data from  
the objective specification for  
product development.  
Customers are responsible for the design and operation of their applications  
and products using Nexperia products, and Nexperia accepts no liability for  
any assistance with applications or customer product design. It is customer’s  
sole responsibility to determine whether the Nexperia product is suitable  
and fit for the customer’s applications and products planned, as well as  
for the planned application and use of customer’s third party customer(s).  
Customers should provide appropriate design and operating safeguards to  
minimize the risks associated with their applications and products.  
Preliminary [short]  
data sheet  
Qualification  
Production  
This document contains data from  
the preliminary specification.  
Product [short]  
data sheet  
This document contains the product  
specification.  
[1] Please consult the most recently issued document before initiating or  
completing a design.  
Nexperia does not accept any liability related to any default, damage, costs  
or problem which is based on any weakness or default in the customer’s  
applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the  
customer’s applications and products using Nexperia products in order to  
avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). Nexperia does not accept any  
liability in this respect.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have  
changed since this document was published and may differ in case of  
multiple devices. The latest product status information is available on  
the internet at https://www.nexperia.com.  
Definitions  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Nexperia does not give any representations or  
warranties as to the accuracy or completeness of information included herein  
and shall have no liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the relevant  
full data sheet, which is available on request via the local Nexperia sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of commercial sale — Nexperia products are  
sold subject to the general terms and conditions of commercial sale, as  
published at http://www.nexperia.com/profile/terms, unless otherwise agreed  
in a valid written individual agreement. In case an individual agreement is  
concluded only the terms and conditions of the respective agreement shall  
apply. Nexperia hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of Nexperia products by  
customer.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
Nexperia and its customer, unless Nexperia and customer have explicitly  
agreed otherwise in writing. In no event however, shall an agreement be  
valid in which the Nexperia product is deemed to offer functions and qualities  
beyond those described in the Product data sheet.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, Nexperia does not give any  
representations or warranties, expressed or implied, as to the accuracy  
or completeness of such information and shall have no liability for the  
consequences of use of such information. Nexperia takes no responsibility  
for the content in this document if provided by an information source outside  
of Nexperia.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific Nexperia product is automotive qualified, the  
product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. Nexperia  
accepts no liability for inclusion and/or use of non-automotive qualified  
products in automotive equipment or applications.  
In no event shall Nexperia be liable for any indirect, incidental, punitive,  
special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal  
or replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards,  
customer (a) shall use the product without Nexperia’s warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Nexperia’s specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies Nexperia for any liability, damages or failed  
product claims resulting from customer design and use of the product for  
automotive applications beyond Nexperia’s standard warranty and Nexperia’s  
product specifications.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, Nexperia’s aggregate and cumulative liability towards customer  
for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of Nexperia.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Right to make changes — Nexperia reserves the right to make changes  
to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
Trademarks  
Suitability for use — Nexperia products are not designed, authorized or  
warranted to be suitable for use in life support, life-critical or safety-critical  
systems or equipment, nor in applications where failure or malfunction  
of an Nexperia product can reasonably be expected to result in personal  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
29 / 30  
 
Nexperia  
74LVC1T45; 74LVCH1T45  
Dual supply translating transceiver; 3-state  
Contents  
1. General description......................................................1  
2. Features and benefits.................................................. 1  
3. Ordering information....................................................2  
4. Marking..........................................................................2  
5. Functional diagram.......................................................2  
6. Pinning information......................................................3  
6.1. Pinning.........................................................................3  
6.2. Pin description.............................................................3  
7. Functional description................................................. 3  
8. Limiting values............................................................. 4  
9. Recommended operating conditions..........................4  
10. Static characteristics..................................................5  
11. Dynamic characteristics.............................................8  
11.1. Waveforms and test circuit.......................................13  
12. Typical propagation delay characteristics..............16  
13. Application information........................................... 22  
13.1. Unidirectional logic level-shifting application............22  
13.2. Bidirectional logic level-shifting application..............22  
13.3. Power-up considerations......................................... 23  
13.4. Enable times............................................................23  
14. Package outline........................................................ 24  
15. Abbreviations............................................................28  
16. Revision history........................................................28  
17. Legal information......................................................29  
© Nexperia B.V. 2022. All rights reserved  
For more information, please visit: http://www.nexperia.com  
For sales office addresses, please send an email to: salesaddresses@nexperia.com  
Date of release: 10 February 2022  
©
74LVC_LVCH1T45  
All information provided in this document is subject to legal disclaimers.  
Nexperia B.V. 2022. All rights reserved  
Product data sheet  
Rev. 9 — 10 February 2022  
30 / 30  

相关型号:

74LVC1T45GW

Dual supply translating transceiver; 3-state
NXP

74LVC1T45GW

Dual supply translating transceiver; 3-stateProduction
NEXPERIA

74LVC1T45GW,125

74LVC(H)1T45 - Dual supply translating transceiver; 3-state TSSOP 6-Pin
NXP

74LVC1T45GW-Q010

IC TRANSCEIVER, Bus Driver/Transceiver
NXP

74LVC1T45GW-Q100

IC,BUS TRANSCEIVER,SINGLE,1-BIT,LCX/LVC-CMOS,TSSOP,6PIN,PLASTIC
NXP

74LVC1T45GW-Q100

Dual supply translating transceiver; 3-state
NEXPERIA

74LVC1T45GW-Q100H

74LVC(H)1T45-Q100 - Dual supply translating transceiver; 3-state TSSOP 6-Pin
NXP

74LVC1T45W6

SINGLE BIT DUAL POWER SUPPLY TRANSLATING TRANSCEIVER WITH 3 STATE OUTPUTS
DIODES

74LVC1T45W6-7

SINGLE BIT DUAL POWER SUPPLY TRANSLATING TRANSCEIVER WITH 3 STATE OUTPUTS
DIODES

74LVC1T45Z6

SINGLE BIT DUAL POWER SUPPLY TRANSLATING TRANSCEIVER WITH 3 STATE OUTPUTS
DIODES

74LVC1T45Z6-7

SINGLE BIT DUAL POWER SUPPLY TRANSLATING TRANSCEIVER WITH 3 STATE OUTPUTS
DIODES

74LVC20D-T

IC LVC/LCX/Z SERIES, DUAL 4-INPUT NAND GATE, PDSO14, Gate
NXP