UPD8670CY [NEC]

CCD Sensor, 7400 Horiz pixels, 7400 Vert pixels, 1.50-2V, Rectangular, Through Hole Mount, CERAMIC, DIP-22;
UPD8670CY
型号: UPD8670CY
厂家: NEC    NEC
描述:

CCD Sensor, 7400 Horiz pixels, 7400 Vert pixels, 1.50-2V, Rectangular, Through Hole Mount, CERAMIC, DIP-22

传感器 图像传感器 CD
文件: 总28页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD8670A  
7400 PIXELS CCD LINEAR IMAGE SENSOR  
The µ PD8670A is a high sensitive and high-speed CCD (Charge Coupled Device) linear image sensor which changes  
optical images to electrical signal.  
The µ PD8670A is a 2-output type CCD sensor with 2 rows of high-speed charge transfer register, which transfers the  
photo signal electrons of 7400 pixels separately in odd and even pixels. And it has reset feed-through level clamp circuits  
and voltage amplifiers. Therefore, it is suitable for 600 dpi/A3 high-speed digital copiers, multi-function products and so on.  
FEATURES  
Valid photocell  
: 7400 pixels  
Photocell pitch : 4.7 µ m  
Photocell size  
Resolution  
Data rate  
: 4.7 × 4.7 µ m2  
: 24 dot/mm (600 dpi) A3 (297 × 420 mm) size (shorter side)  
: 44 MHz MAX. (22 MHz/1 output)  
Output type  
: 2 outputs in-phase operation, and out of phase also supported  
High sensitivity : 17.0 V/lxs TYP. (Light source: Daylight color fluorescent lamp)  
Peak response wavelength : 550 nm (green)  
Low image lag : 1 % MAX.  
Drive clock level : CMOS output under +5 V operation  
Power supply  
On-chip circuits : Reset feed-through level clamp circuits  
Voltage amplifiers  
: +12 V  
:
ORDERING INFORMATION  
Part Number  
Package  
µ PD8670ACY  
CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S17147EJ1V0DS00 (1st edition)  
Date Published August 2004 NS CP (K)  
Printed in Japan  
2004  
µPD8670A  
DIFFERENCE BETWEEN µPD8670ACY AND µPD3747D  
Part  
Item  
µ PD8670ACY  
µ PD3747D  
Referential  
Page  
Features  
Output type  
2 outputs out of phase or in phase  
2 outputs in phase only  
1
Sensitivity (Daylight  
TYP. 17 V/lxs  
TYP. 19 V/lxs  
color fluorescent lamp)  
Ordering information Package  
32-pin plastic DIP  
22-pin ceramic DIP (CERDIP)  
Pin configuration  
Block diagram  
Input clock  
φCP1, φCP2 separated,  
φR1, φR2 separated,  
φ2L1, φ2L2 separated  
(Output: in/out of phase)  
φCP common,  
φR common,  
4
3
φ2L common  
Application circuit  
21  
(Output: in phase)  
example  
Equivalent circuit Tr.  
2SA1206, 2SC1842  
0 to +60°C  
2SA1005, 2SC945  
–25 to +55°C  
Absolute maximum  
ratings  
Operating ambient  
temperature  
5
6
Storage temperature  
Each clock amplitude  
–40 to +70°C  
–40 to +100°C  
Recommended  
Addition of specifications  
(from 4.5 V to 5.8 V)  
operating condition  
Electrical  
ADS, DSNU, DR1,  
DR2  
Change of specifications  
characteristics  
RF  
TYP. 17 V/lxs  
TYP. 19 V/lxs  
RFTN  
Addition of PRFTN, RFTN1,  
RFTN2  
Only RFTN  
td  
TYP. 13 ns  
TYP. 14 ns  
Addition of min. max.  
σ bit, σ line, σ shot  
Addition of condition (t6)  
Input pin capacitance Capacitance  
Change of specification  
Addition of note  
7
Timing chart  
Operation  
Addition of out-of-phase  
timing chart  
8, 9  
t6  
MIN. 5 ns  
MIN. 0 ns  
MIN. 0 ns  
12, 14  
t10  
MIN. t3  
t13, t16, t17  
MAX. 10000 ns  
14  
15  
19  
24  
Close point  
Definitions  
Change of specifications  
Additional item  
VOS, RFTN  
Partial heating method  
Recommended  
350°C or blow, 3 seconds or less  
300°C or blow, 3 seconds or less  
soldering condition  
Package drawing  
Package  
Cap  
32-pin plastic DIP  
Plastic cap 0.7t  
2.45 0.3 mm  
22-pin ceramic DIP (CERDIP)  
Glass cap 0.7t  
23  
From CCD to bottom  
of package  
2.38 0.3 mm  
From CCD to top of  
cap  
(2.0) mm  
(1.95) mm  
Remark TA = +25°C, VOD = 12 V  
2
Data Sheet S17147EJ1V0DS  
µPD8670A  
BLOCK DIAGRAM  
GND  
31  
φ
CP2  
30  
φ
R2  
29  
φ
2L2  
28  
φ
22  
φ
12  
23  
24  
V
OUT  
2
32  
CCD analog shift register  
Transfer gate  
(Even)  
22  
· · ·  
· · ·  
· · ·  
· · ·  
φ
TG  
Transfer gate  
CCD analog shift register  
V
(Odd)  
OUT  
1
1
2
3
4
5
9
10  
11  
VOD  
φ
CP1  
φ
R1  
φ
2L1  
φ
11  
φ
21  
GND  
3
Data Sheet S17147EJ1V0DS  
µPD8670A  
PIN CONFIGURATION (Top View)  
CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
µ PD8670ACY  
Output signal 1 (Odd)  
Output drain voltage  
Reset feed-through level clamp clock 1  
Reset gate clock 1  
V
OUT  
1
1
2
3
4
5
6
7
8
9
32  
V
OUT  
2
Output signal 2 (Even)  
Ground  
V
OD  
31 GND  
φ
CP1  
R1  
30  
29  
28  
φ
φ
φ
CP2 Reset feed-through level clamp clock 2  
φ
R2  
Reset gate clock 2  
Last stage shift register clock 2  
Internal connection  
Internal connection  
No connection  
Last stage shift register clock 1  
Internal connection  
Internal connection  
No connection  
φ
2L1  
IC  
2L2  
27 IC  
26 IC  
25 NC  
IC  
NC  
Shift register clock 1-1  
Shift register clock 2-1  
Ground  
φ
11  
24  
23  
22  
φ
φ
φ
22  
12  
TG  
Shift register clock 2-2  
Shift register clock 1-2  
Transfer gate clock  
Internal connection  
Internal connection  
No connection  
φ
21 10  
GND 11  
IC 12  
Internal connection  
Internal connection  
No connection  
21 IC  
20 IC  
19 NC  
18 NC  
17 NC  
IC 13  
NC  
14  
No connection  
NC 15  
NC 16  
No connection  
No connection  
No connection  
Cautions 1. Leave pins 6, 7, 12, 13, 20, 21, 26 and 27 (IC) unconnected.  
2. Connect the No connection pins (NC) to GND.  
PHOTOCELL STRUCTURE DIAGRAM  
3.2  
µ
µ
1.5 m  
m
µ
Channel stopper  
Aluminum  
shield  
4
Data Sheet S17147EJ1V0DS  
µPD8670A  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C)  
Parameter  
Symbol  
Ratings  
0.3 to +14.0  
0.3 to +8.0  
0.3 to +8.0  
0.3 to +8.0  
0.3 to +8.0  
0.3 to +8.0  
0 to +60  
Unit  
V
Output drain voltage  
VOD  
Shift register clock voltage  
Vφ 1, Vφ 2  
Vφ 2L  
Vφ R  
V
Last stage shift register clock voltage  
Reset gate clock voltage  
V
V
Transfer gate clock voltage  
Reset feed-through level clamp clock voltage  
Operating ambient temperatureNote  
Storage temperature  
Vφ TG  
Vφ CP  
TA  
V
V
°C  
°C  
Tstg  
40 to +70  
Note Use at the condition without dew condensation.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
RECOMMENDED OPERATING CONDITIONS (TA = +25°C)  
Parameter  
Output drain voltage  
Symbol  
Conditions  
MIN.  
11.4  
4.5  
TYP.  
12.0  
5.0  
0
MAX.  
12.6  
5.5  
Unit  
V
VOD  
Shift register clock high level  
Vφ 1H, Vφ 2H  
Vφ 1L, Vφ 2L  
Vφ 2LH  
V
Shift register clock low level  
0.3  
4.5  
+0.5  
5.5  
V
Last stage shift register clock high level  
Last stage shift register clock low level  
Reset gate clock high level  
5.0  
0
V
Vφ 2LL  
0.3  
4.5  
+0.5  
5.5  
V
Vφ RH  
5.0  
0
V
Reset gate clock low level  
Vφ RL  
0.3  
4.5  
+0.5  
5.5  
V
Reset feed-through level clamp clock high level  
Reset feed-through level clamp clock low level  
Transfer gate clock high level  
Vφ CPH  
Vφ CPL  
5.0  
0
V
0.3  
4.5  
+0.5  
5.5  
V
Vφ TGH  
Vφ TGL  
5.0  
0
V
Transfer gate clock low level  
0.3  
4.0  
+0.5  
5.8  
V
Shift register clock amplitude  
Vφ 1_pp,  
Vφ 2_pp  
Vφ 2L_pp  
Vφ R_pp  
Vφ CP_pp  
Vφ TG_pp  
2fφ R  
f < 10 MHz/ch  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
2
V
f 10 MHz/ch  
4.5  
5.8  
V
Last stage shift register clock amplitude  
Reset gate clock amplitude  
4.5  
5.8  
V
4.5  
5.8  
V
Reset feed-through level clamp clock amplitude  
Transfer gate clock amplitude  
Data rate  
4.5  
5.8  
V
4.5  
5.8  
V
1
44  
MHz  
5
Data Sheet S17147EJ1V0DS  
µPD8670A  
ELECTRICAL CHARACTERISTICS  
TA = +25°C, VOD = 12 V, fφ R = 1 MHz, data rate = 2 MHz, storage time = 10 ms, input signal clock = 5 Vp-p,  
light source : 3200 K halogen lamp + C-500S (infrared cut filter, t = 1 mm) + HA-50 (heat absorbing filter, t = 3 mm)  
Parameter  
Saturation voltage  
Saturation exposure  
Symbol  
Vsat  
Test Conditions  
MIN.  
1.5  
TYP.  
2.0  
MAX.  
Unit  
V
SE  
Daylight color fluorescent lamp  
VOUT = 500 mV  
0.10  
5.0  
lxs  
%
Photo response non-uniformity PRNU  
10.0  
6.0  
28.0  
420  
0.3  
20.4  
1.0  
5.7  
15.0  
Average dark signal  
Dark signal non-uniformity  
Power consumption  
Output impedance  
Response  
ADS  
DSNU  
PW  
Light shielding  
1.0  
mV  
mV  
mW  
kΩ  
V/lxs  
%
Light shielding  
16.0  
350  
0.2  
ZO  
RF  
Daylight color fluorescent lamp  
VOUT = 500 mV  
13.6  
17.0  
0.5  
Image lag  
Offset level Note 1  
Output fall delay time Note 2  
Total transfer efficiency  
Register imbalance  
Response peak  
IL  
VOS  
td  
3.7  
11.0  
94  
0
4.7  
V
VOUT = 500 mV  
13.0  
98  
ns  
TTE  
RI  
VOUT = 1 V, data rate = 44 MHz  
VOUT = 500 mV  
%
1.0  
4.0  
%
550  
125  
1000  
+0.4  
0.4  
+0.2  
2.6  
nm  
times  
times  
V
Dynamic range  
DR1  
DR2  
Vsat/DSNU  
Vsat/σ bit, t6 20 ns  
Reset feed-through noise Note 1 PRFTN Light shielding, t4 = 5 ns  
RFTN1  
RFTN2  
1.0  
0.3  
+0.2  
+0.7  
V
V
Random noise  
Shot noise  
σ bit  
Light shielding,  
bit clamp mode  
Light shielding,  
line clamp mode  
t6 = 5 ns  
t6 20 ns  
t6 5 ns  
mV  
mV  
mV  
2.0  
σ line  
σ shot  
8.0  
VOUT = 500 mV,  
bit clamp mode  
t6 5 ns  
10.0  
mV  
Notes 1. Refer to 13 and 14 of DEFINITION OF CHARACTERISTIC ITEMS.  
2. When the fall time of φ 2L (t2’) is the TYP. value (refer to TIMING CHART 5, 6). Note that VOUT1 and VOUT2 are  
the outputs of the two steps of emitter-follower shown in APPLICATION CIRCUIT EXAMPLE.  
6
Data Sheet S17147EJ1V0DS  
µPD8670A  
INPUT PIN CAPACITANCE (TA = +25°C, VOD = 12 V)  
Parameter  
Symbol  
Pin name  
φ 11  
Pin No.  
9
MIN.  
225  
200  
200  
225  
4
TYP.  
250  
220  
220  
250  
5
MAX.  
275  
240  
240  
275  
6
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Note  
Shift register clock pin capacitance 1  
Cφ 1  
φ 12  
23  
10  
24  
5
Note  
Shift register clock pin capacitance 2  
Cφ 2  
Cφ L  
φ 21  
φ 22  
Last stage shift register clock pin capacitance  
Reset gate clock pin capacitance  
φ 2L1  
φ 2L2  
φ R1  
28  
4
4
5
6
Cφ R  
4
5
6
φ R2  
29  
3
4
5
6
Reset feed-through level clamp clock pin capacitance  
Cφ CP  
φ CP1  
φ CP2  
φ TG  
7
8
9
30  
22  
7
8
9
Transfer gate clock pin capacitance  
Cφ TG  
240  
270  
300  
Note Cφ 1, Cφ 2 are equivalent capacitance with driving device, including the co-capacitance between φ1 and φ2.  
Remark Pins 9 and 23 (φ11 and φ12), Pins 10 and 24 (φ21 and φ22) aren't each connected inside of the device.  
7
Data Sheet S17147EJ1V0DS  
TIMING CHART 1 (Bit clamp mode, Out of phase operation)  
φ
TG  
φ
11  
21  
φ
φ
2L1  
R1  
CP1  
φ
φ
VOUT  
1
φ
φ
12  
22  
φ
2L2  
R2  
CP2  
φ
φ
VOUT  
2
µ
Dummy cell  
(32 pixels)  
Optical black  
(96 pixels)  
Valid photocells  
(7400 pixels)  
Note  
Invalid photocell  
(6 pixels)  
Invalid photocell  
(6 pixels)  
Note Set the  
φ φ φ φ CP2 to low level during this period.  
R1, R2, CP1 and  
TIMING CHART 2 (Line clamp mode, Out of phase operation)  
φ
TG  
φ
11  
21  
φ
φ
2L1  
R1  
CP1  
φ
φ
VOUT  
1
φ
φ
12  
22  
φ
2L2  
R2  
CP2  
φ
φ
VOUT  
2
µ
Dummy cell  
(32 pixels)  
Optical black  
(96 pixels)  
Valid photocells  
(7400 pixels)  
Note  
Invalid photocell  
(6 pixels)  
Invalid photocell  
(6 pixels)  
Note Set the  
φ φ φ φ CP2 to low level during this period.  
R1, R2, CP1 and  
TIMING CHART 3 (Bit clamp mode, In phase operation)  
φ
TG  
φ
φ
11,  
φ
12  
22  
21,  
φ
φ
2L1, φ 2L2  
φ
R1, φR2  
φ
CP1, φ CP2  
VOUT  
1
VOUT2  
Dummy cell  
(32 pixels)  
Optical black  
(96 pixels)  
Valid photocells  
(7400 pixels)  
Note  
µ
Invalid photocell  
(6 pixels)  
Invalid photocell  
(6 pixels)  
Note Set the  
φ φ φ φ CP2 to low level during this period.  
R1, R2, CP1 and  
TIMING CHART 4 (Line clamp mode, In phase operation)  
φ
TG  
φ
φ
11,  
φ
12  
22  
21,  
φ
φ
2L1, φ 2L2  
φ
R1, φR2  
φ
CP1, φ CP2  
VOUT  
1
VOUT2  
Dummy cell  
(32 pixels)  
Optical black  
(96 pixels)  
Valid photocells  
(7400 pixels)  
Note  
µ
Invalid photocell  
(6 pixels)  
Invalid photocell  
(6 pixels)  
Note Set the  
φ φ φ φ CP2 to low level during this period.  
R1, R2, CP1 and  
µPD8670A  
TIMING CHART 5 (Bit clamp mode)  
t1  
t2  
90%  
φ
φ
11  
21  
10%  
90%  
10%  
t1'  
t4  
t2'  
90%  
10%  
φ
2L1  
t5  
t8  
t3  
t6  
t7  
90%  
10%  
φ
R1  
t9  
t10  
t11  
90%  
φ
CP1  
10%  
td  
V
OUT  
1
V
OS  
10%  
Symbol  
t1, t2  
MIN.  
0
TYP.  
50  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1’, t2’  
t3  
0
5
10  
0
125  
5
t4, t5  
t6  
5
125  
125  
5
t7  
5
t8, t9  
t10  
0
0
125  
250  
t11  
0
Caution This shows timing chart of VOUT1 side (φ11, φ21, φ2L1, φR1, φCP1, VOUT1). The timing chart of VOUT2  
side (φ12, φ22, φ2L2, φR2, φCP2, VOUT2) is equal.  
12  
Data Sheet S17147EJ1V0DS  
µPD8670A  
TIMING CHART 6 (Line clamp mode)  
t1  
t2  
90%  
φ
φ
11  
21  
10%  
90%  
10%  
t1'  
t4  
t2'  
90%  
10%  
φ
2L1  
t5  
t3  
t12  
90%  
10%  
φ
R1  
φ
CP1  
"L"  
td  
V
OUT  
1
V
OS  
10%  
Symbol  
MIN.  
0
TYP.  
50  
MAX.  
Unit  
ns  
t1, t2  
t1’, t2’  
t3  
0
5
ns  
10  
0
125  
5
ns  
t4, t5  
t12  
ns  
5
250  
ns  
Caution This shows timing chart of VOUT1 side (φ11, φ21, φ2L1, φR1, φCP1, VOUT1). The timing chart of VOUT2  
side (φ12, φ22, φ2L2, φR2, φCP2, VOUT2) is equal.  
13  
Data Sheet S17147EJ1V0DS  
µPD8670A  
TIMING CHART 7 (Bit clamp mode, Line clamp mode)  
t14  
t15  
t13  
90%  
10%  
φ
φ
TG  
t16  
90%  
90%  
11  
φ
21,  
φ
2L1  
t4  
t5  
t17  
90%  
10%  
t3  
t6  
φ
R1  
t8  
t9  
t10  
t7  
t11  
90%  
10%  
φ
CP1  
Note  
Note Set the φ R and φ CP to low level during this period.  
Symbol  
MIN.  
10  
0
TYP.  
125  
5
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t3  
t4, t5  
t6  
5
125  
125  
5
t7  
5
t8, t9  
t10  
0
0
125  
250  
1500  
50  
t11  
0
t13  
1000  
0
10000  
t14, t15  
t16, t17  
200  
300  
10000  
Caution This shows timing chart of VOUT1 side (φ11, φ21, φ2L1, φR1, φCP1, VOUT1). The timing chart of VOUT2  
side (φ12, φ22, φ2L2, φR2, φCP2, VOUT2) is equal.  
14  
Data Sheet S17147EJ1V0DS  
µPD8670A  
φ 11, φ 21 cross points  
φ 11, φ 2L1 cross points  
φ
φ
11  
11  
1.5 V or more  
1.5 V or more  
1.5 V or more  
0 V or more  
φ
φ
21  
2L1  
φ 12, φ 22 cross points  
φ 12, φ 2L2 cross points  
φ
φ
12  
12  
1.5 V or more  
1.5 V or more  
1.5 V or more  
0 V or more  
φ
φ
22  
2L2  
Remark Adjust cross points of (φ 11, φ 21), (φ 11, φ 2L1), (φ 12, φ 22) and (φ 12, φ 2L2) with input resistance of each pin.  
φ 11, φ 12, φ 21, φ 22, φ 2L1, φ 2L2 clock width  
0 ns or more  
4.5 V  
φ
φ
11,  
21,  
φ
φ
12,  
22,  
φ
2L1,  
φ 2L2  
0.5 V  
0 ns or more  
15  
Data Sheet S17147EJ1V0DS  
µPD8670A  
DEFINITIONS OF CHARACTERISTIC ITEMS  
1. Saturation voltage : Vsat  
Output signal voltage at which the response linearity is lost.  
2. Saturation exposure : SE  
Product of intensity of illumination (lx) and storage time (s) when saturation of output voltage occurs.  
3. Photo response non-uniformity : PRNU  
The output signal non-uniformity of all the valid pixels when the photosensitive surface is applied with the light of  
uniform illumination. This is calculated by the following formula.  
x  
x
PRNU (%) =  
× 100  
x: maximum of x  
7400  
j
x   
x
j
Σ
j = 1  
x =  
7400  
: Output voltage of valid pixel number j  
xj  
V
OUT  
x
Register dark  
DC level  
x  
4. Average dark signal : ADS  
Average output signal voltage of all the valid pixels at light shielding. This is calculated by the following formula.  
7400  
d
j
Σ
j = 1  
7400  
ADS (mV) =  
dj: Dark signal of valid pixel number j  
16  
Data Sheet S17147EJ1V0DS  
µPD8670A  
5. Dark signal non-uniformity : DSNU  
Absolute maximum of the difference between ADS and voltage of the highest or lowest output pixel of all the valid  
pixels at light shielding. This is calculated by the following formula.  
DSNU (mV): maximum of d  
j
ADS j = 1 to 7400  
d
j: Dark signal of valid pixel number j  
V
OUT  
ADS  
Register dark  
DC level  
DSNU  
6. Output impedance : Z  
O
Impedance of the output pins viewed from outside.  
7. Response : R  
Output voltage divided by exposure (lxs).  
Note that the response varies with a light source (spectral characteristic).  
8. Image lag : IL  
The rate between the last output voltage and the next one after read out the data of a line.  
φ
TG  
Light  
ON  
OFF  
V
OUT  
V
1
VOUT  
V
1
IL (%) =  
× 100  
OUT  
V
9. Total transfer efficiency : TTE  
The total transfer rate of CCD analog shift register. This is calculated by the following formula, it is difined by each  
output.  
TTE (%) = (1 Vb / average output of all the valid pixels) × 100  
Vb  
V
V
V
a1 : The last pixel output 1 (Odd pixel: 7537th pixel)  
a
b
: The last pixel output (Odd pixel: 7539th pixel)  
: The spilt pixel output (Odd pixel: 7541st pixel)  
V
a1  
Va  
17  
Data Sheet S17147EJ1V0DS  
µPD8670A  
10. Register imbalance : RI  
The rate of the difference between the averages of the output voltage of Odd and Even pixels, against the average  
output voltage of all the valid pixels.  
n
2
2
n
(V2j – 1 – V2j)  
j = 1  
RI (%) =  
× 100  
n
1
n
V
j
j = 1  
n
: Number of valid pixels  
Vj  
: Output voltage of each pixel  
11. Random noise : σ  
Random noise σ is defined as the standard deviation of a valid pixel output signal with 100 times (= 100 lines)  
data sampling at dark (light shielding).  
100  
(V  
i
– V)2  
Σ
100  
1
i = 1  
, V =  
V
i
σ
(mV) =  
100 Σ  
100  
i = 1  
Vi : A valid pixel output signal among all of the valid pixels  
VOUT  
V
1
2
line 1  
line 2  
V
V100  
line 100  
This is measured by the DC level sampling of only the signal level, not by CDS (Correlated Double Sampling).  
12. Shot noise : σ shot  
Shot noise is defined as the standard deviation of a valid pixel output signal with 100 times (= 100 lines) data  
sampling in the light. This includes the random noise.  
The formula is the same with that of random noise.  
18  
Data Sheet S17147EJ1V0DS  
µPD8670A  
13. Offset level : VOS  
DC level of output signal is defined as follows.  
14. Reset feed-through noise and peak reset feed-through noise : RFTN and PRFTN  
RTFN is switching noise of φR and φCP. Reset feed-through noise (RFTN) and peak of RFTN (PRFTN) are  
defined as follows.  
<1> Bit clamp operation  
2L1  
φ
R1  
φ
CP1  
RFTN2  
PRFTN  
V
OUT  
1
RFTN1  
V
OS  
Caution This shows timing of VOUT1 side (φ2L1, φR1, φCP1, VOUT1). The definition of VOUT2 side (φ2L2,  
φR2, φCP2, VOUT2) is equal.  
<2> Line clamp operation  
φ
2L1  
φ
R1  
φ
CP1  
"L"  
PRFTN  
VOUT  
1
RFTN1  
V
OS  
Caution This shows timing of VOUT1 side (φ2L1, φR1, φCP1, VOUT1). The definition of VOUT2 side (φ2L2,  
φR2, φCP2, VOUT2) is equal.  
19  
Data Sheet S17147EJ1V0DS  
µPD8670A  
STANDARD CHARACTERISTIC CURVES (Reference Value)  
DARK OUTPUT TEMPERATURE  
CHARACTERISTIC  
STORAGE TIME OUTPUT VOLTAGE  
CHARACTERISTIC (T  
A
= +25°C)  
2
1
8
4
2
1
0.5  
0.2  
0.1  
0.25  
0.1  
1
5
10  
0
10  
20  
30  
40  
50  
Storage Time (ms)  
Operating Ambient Temperature TA (°C)  
TOTAL SPECTRAL RESPONSE CHARACTERISTIC  
(without infrared cut filter and heat absorbing filter) (T  
A
= +25°C)  
100  
80  
60  
40  
20  
0
400  
600  
800  
1000  
1200  
Wavelength (nm)  
20  
Data Sheet S17147EJ1V0DS  
µPD8670A  
APPLICATION CIRCUIT EXAMPLE  
+12 V  
µ
PD8670A  
+5 V  
0.1 µF 47 µF/25 V +5 V  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
B1  
V
V
φ
OUT  
1
V
OUT  
2
B2  
OD  
GND  
CP2  
10  
µ
F/16 V 0.1  
CP1  
µ
F
0.1 µF 10 µF/16 V  
47 Ω  
47 Ω  
3
φ
CP1  
R1  
φ
φ
φ
φ
CP2  
R2  
47 Ω  
47 Ω  
47 Ω  
47 Ω  
4
φ
R1  
φ
φ
R2  
5
φ
2L1  
φ
2L1  
φ
2L2  
IC  
2L2  
6
IC  
7
IC  
IC  
8
NC  
NC  
2 Ω  
2 Ω  
2 Ω  
2 Ω  
9
φ
φ
11  
21  
φ
φ
11  
21  
φ
φ
22  
12  
φ
φ
22  
12  
10  
11  
12  
13  
14  
15  
16  
GND  
IC  
φ
TG  
IC  
10 Ω  
φ
TG  
IC  
IC  
NC  
NC  
NC  
NC  
NC  
NC  
Cautions 1. Leave pins 6, 7, 12, 13, 20, 21, 26 and 27 (IC) unconnected.  
2. Connect the No connection pins (NC) to GND.  
Remark The inverters shown in the above application circuit example are the 74AC04.  
21  
Data Sheet S17147EJ1V0DS  
µPD8670A  
+12 V  
B1, B2 EQUIVALENT CIRCUIT  
+
µ
47 F/25 V  
4.7 kΩ  
110 Ω  
2SC1842  
47 Ω  
CCD  
2SA1206  
VOUT  
Output  
1 kΩ  
22  
Data Sheet S17147EJ1V0DS  
µPD8670A  
PACKAGE DRAWING  
µ
PD8670CY, µPD8670ACY  
CCD LINEAR IMAGE SENSOR 32-PIN PLASTIC DIP (10.16 mm (400) )  
(Unit : mm)  
55.2 0.5  
54.8 0.5  
1st valid pixel  
1
3.2 0.3  
32  
17  
16  
1
4
46.7  
4
2.0  
12.6 0.5  
4.1 0.5  
10.16 0.20  
4.55 0.5  
1.02 0.15  
2
(2.0)  
3
2.45 0.3  
0.25 0.05  
(5.42)  
4.21 0.5  
0.46 0.1  
2.54 0.25  
+0.70  
10.16  
0.20  
Name  
Dimensions  
Refractive index  
5
)
Plastic cap  
52.2×6.4×0.8 (0.7  
1.5  
1 1st valid pixel  
The center of the pin1  
2 The surface of the CCD chip  
3 The bottom of the package  
4 Mirror finishied surface  
The top of the cap  
The surface of the CCD chip  
5 Thickness of mirror finished surface  
32C-1CCD-PKG10-2  
23  
Data Sheet S17147EJ1V0DS  
µPD8670A  
RECOMMENDED SOLDERING CONDITIONS  
When soldering this product, it is highly recommended to observe the conditions as shown below.  
If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to  
consult with our sales offices.  
Type of Through-hole Device  
µ PD8670ACY : CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
Process  
Conditions  
Partial heating method  
Pin temperature : 350°C or below, Heat time : 3 seconds or less (per pin)  
Cautions 1. During assembly care should be taken to prevent solder or flux from contacting the plastic cap.  
The optical characteristics could be degraded by such contact.  
2. Soldering by the solder flow method may have deleterious effects on prevention of plastic cap  
soiling and heat resistance. So the method cannot be guaranteed.  
24  
Data Sheet S17147EJ1V0DS  
µPD8670A  
NOTES ON HANDLING THE PACKAGES  
1
DUST AND DIRT PROTECTING  
The optical characteristics of the CCD will be degraded if the cap is scratched during cleaning. Don’t either  
touch plastic cap surface by hand or have any object come in contact with plastic cap surface. Should dirt  
stick to a plastic cap surface, blow it off with an air blower. For dirt stuck through electricity ionized air is  
recommended. And if the plastic cap surface is grease stained, clean with our recommended solvents.  
CLEANING THE PLASTIC CAP  
Care should be taken when cleaning the surface to prevent scratches.  
We recommend cleaning the cap with a soft cloth moistened with one of the recommended solvents below.  
Excessive pressure should not be applied to the cap during cleaning. If the cap requires multiple cleanings it is  
recommended that a clean surface or cloth be used.  
RECOMMENDED SOLVENTS  
The following are the recommended solvents for cleaning the CCD plastic cap.  
Use of solvents other than these could result in optical or physical degradation in the plastic cap.  
Please consult your sales office when considering an alternative solvent.  
Solvents  
Ethyl Alcohol  
Symbol  
EtOH  
MeOH  
IPA  
Methyl Alcohol  
Isopropyl Alcohol  
N-methyl Pyrrolidone  
NMP  
2
MOUNTING OF THE PACKAGE  
The application of an excessive load to the package may cause the package to warp or break, or cause chips  
to come off internally. Particular care should be taken when mounting the package on the circuit board. Don't  
have any object come in contact with plastic cap. You should not reform the lead frame. We recommended to  
use a IC-inserter when you assemble to PCB.  
Also, be care that the any of the following can cause the package to crack or dust to be generated.  
1. Applying heat to the external leads for an extended period of time with soldering iron.  
2. Applying repetitive bending stress to the external leads.  
3. Rapid cooling or heating  
3
4
OPERATE AND STORAGE ENVIRONMENTS  
Operate in clean environments. CCD image sensors are precise optical equipment that should not be subject  
to mechanical shocks. Exposure to high temperatures or humidity will affect the characteristics. So avoid  
storage or usage in such conditions.  
Keep in a case to protect from dust and dirt. Dew condensation may occur on CCD image sensors when the  
devices are transported from a low-temperature environment to a high-temperature environment. Avoid such  
rapid temperature changes.  
For more details, refer to our document "Review of Quality and Reliability Handbook" (C12769E)  
ELECTROSTATIC BREAKDOWN  
CCD image sensor is protected against static electricity, but destruction due to static electricity is sometimes  
detected. Before handling be sure to take the following protective measures.  
1. Ground the tools such as soldering iron, radio cutting pliers of or pincer.  
2. Install a conductive mat or on the floor or working table to prevent the generation of static electricity.  
3. Either handle bare handed or use non-chargeable gloves, clothes or material.  
4. Ionized air is recommended for discharge when handling CCD image sensor.  
5. For the shipment of mounted substrates, use box treated for prevention of static charges.  
6. Anyone who is handling CCD image sensors, mounting them on PCBs or testing or inspecting PCBs on  
which CCD image sensors have been mounted must wear anti-static bands such as wrist straps and ankle  
straps which are grounded via a series resistance connection of about 1 M.  
25  
Data Sheet S17147EJ1V0DS  
µPD8670A  
[ NOTE ]  
26  
Data Sheet S17147EJ1V0DS  
µPD8670A  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
V
IH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
27  
Data Sheet S17147EJ1V0DS  
µPD8670A  
The information in this document is current as of August, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD8741AD

8-Bit Microcontroller
ETC

UPD8741D

IC,MICROCONTROLLER,8-BIT,8048 CPU,MOS,DIP,40PIN,CERAMIC
RENESAS

UPD8748D

8-Bit Microcontroller
ETC

UPD8748HC

8-Bit Microcontroller
ETC

UPD8748HD

8-Bit Microcontroller
ETC

UPD8749HC

High-Speed, 8-Bit, Single-Chip Hmos Microcomputers
NEC

UPD8749HD

High-Speed, 8-Bit, Single-Chip Hmos Microcomputers
NEC

UPD87PG11E

Microcontroller
ETC

UPD8821

7300 PIXELS 】 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8821CZ-A

7300 PIXELS 】 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8827ACZ-A

CCD Sensor, 7600 Horiz pixels, 7600 Vert pixels, 1.50-2V, Rectangular, Through Hole Mount, PLASTIC, DIP-40
NEC

UPD8828AD-A

CCD Sensor, 7500 Horiz pixels, 7500 Vert pixels, 1.50-2V, Rectangular, Through Hole Mount, CERAMIC, DIP-22
NEC