UPD780114GB(A1)-XXX-8ES [NEC]

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP44, 10 X 10 MM, PLASTIC, LQFP-44;
UPD780114GB(A1)-XXX-8ES
型号: UPD780114GB(A1)-XXX-8ES
厂家: NEC    NEC
描述:

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP44, 10 X 10 MM, PLASTIC, LQFP-44

时钟 微控制器 外围集成电路
文件: 总431页 (文件大小:2614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary User’s Manual  
78K0/KC1  
8-Bit Single-Chip Microcontrollers  
µPD780111  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
µPD780111(A)  
µPD780112(A)  
µPD780113(A)  
µPD780114(A)  
µPD78F0114(A)  
µPD780111(A1)  
µPD780112(A1)  
µPD780113(A1)  
µPD780114(A1)  
Document No. U16227EJ1V0UD00 (1st edition)  
Date Published June 2002 N CP(K)  
2002  
©
Printed in Japan  
[MEMO]  
2
Preliminary User’s Manual U16227EJ1V0UD  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the  
United States and/or other countries.  
PC/AT is a trademark of International Business Machines Corporation.  
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.  
SPARCstation is a trademark of SPARC International, Inc.  
Solaris and SunOS are trademarks of Sun Microsystems, Inc.  
Ethernet is a trademark of Xerox Corp.  
OSF/Motif is a trademark of Open Software Foundation, Inc.  
TRON stands for The Realtime Operating system Nucleus.  
ITRON is an abbreviation of Industrial TRON.  
3
Preliminary User’s Manual U16227EJ1V0UD  
The export of these products from Japan is regulated by the Japanese government. The export of some or all of these  
products may be prohibited without governmental license. To export or re-export some or all of these products from a  
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
License not needed: µPD78F0114 and 78F0114(A)  
The customer must judge the need for a license: µPD780111, 780112, 780113, 780114, 780111(A), 780112(A),  
780113(A), 780114(A), 780111(A1), 780112(A1), 780113(A1),  
and 780114(A1)  
The information contained in this document is being issued in advance of the production cycle for the  
device. The parameters for the device may change before final production or NEC Corporation, at its own  
discretion, may withdraw the device prior to its production.  
Not all devices/types available in every country. Please check with local NEC representative for availability  
and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M5D 98. 12  
4
Preliminary Users Manual U16227EJ1V0UD  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, pIease contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
Filiale Italiana  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 02-66 75 42 99  
Fax: 2886-9022/9044  
Fax: 408-588-6130  
800-729-9288  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
Tel: 02-528-0303  
Fax: 02-528-4411  
Branch The Netherlands  
Eindhoven, TheNetherlands  
Tel: 040-244 58 45  
NEC do Brasil S.A.  
Electron Devices Division  
Guarulhos-SP, Brasil  
Tel: 11-6462-6810  
Fax: 040-244 45 80  
Branch Sweden  
Taeby, Sweden  
Tel: 08-63 80 820  
Fax: 08-63 80 388  
NEC Electronics Shanghai, Ltd.  
Shanghai, P.R. China  
Tel: 021-6841-1138  
Fax: 11-6462-6829  
NEC Electronics (Europe) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 01  
Fax: 021-6841-1137  
United Kingdom Branch  
Milton Keynes, UK  
Tel: 01908-691-133  
Fax: 01908-670-290  
Fax: 0211-65 03 327  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
Sucursal en España  
Madrid, Spain  
Fax: 02-2719-5951  
Tel: 091-504 27 87  
Fax: 091-504 28 60  
NEC Electronics Singapore Pte. Ltd.  
Novena Square, Singapore  
Tel: 253-8311  
Succursale Française  
Vélizy-Villacoublay, France  
Tel: 01-30-67 58 00  
Fax: 250-3583  
Fax: 01-30-67 58 99  
J02.4  
5
Preliminary Users Manual U16227EJ1V0UD  
INTRODUCTION  
Readers  
This manual is intended for user engineers who wish to understand the functions of the  
78K0/KC1 Series and design and develop application systems and programs for these  
devices.  
The target products are as follows.  
78K0/KC1 Series: µPD780111, 780112, 780113, 780114, 78F0114, 780111(A),  
780112(A), 780113(A), 780114(A), 78F0114(A), 780111(A1),  
780112(A1), 780113(A1), and 780114(A1)  
Purpose  
This manual is intended to give users an understanding of the functions described in the  
Organization below.  
Organization  
The 78K0/KC1 Series manual is separated into two parts: this manual and the  
instructions edition (common to the 78K/0 Series).  
78K0/KC1  
78K/0 Series  
User’s Manual  
Instructions  
User’s Manual  
(This Manual)  
Pin functions  
CPU functions  
Internal block functions  
Instruction set  
Interrupts  
Explanation of each instruction  
Other on-chip peripheral functions  
Electrical specifications (Target values)  
6
Preliminary User’s Manual U16227EJ1V0UD  
How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical  
engineering, logic circuits, and microcontrollers.  
When using this manual as the manual for (A) products and (A1) products:  
Only the quality grade differs between standard products and (A) and (A1)  
products. Read the part number as follows.  
µPD780111 µPD780111(A), 780111(A1)  
µPD780112 µPD780112(A), 780112(A1)  
µPD780113 µPD780113(A), 780113(A1)  
µPD780114 µPD780114(A), 780114(A1)  
µPD78F0114 µPD78F0114(A)  
To gain a general understanding of functions:  
Read this manual in the order of the CONTENTS.  
How to interpret the register format:  
For a bit number enclosed in square, the bit name is defined as a reserved word  
in the assembler, and is already defined in the header file named sfrbit.h in the C  
compiler.  
To check the details of a register when you know the register name.  
Refer to APPENDIX C REGISTER INDEX.  
To know details of the 78K/0 Series instructions.  
Refer to the separate document 78K/0 Series Instructions User’s Manual  
(U12326E).  
Caution Examples in this manual employ the “standard” quality grade for  
general electronics. When using examples in this manual for the  
“special” quality grade, review the quality grade of each part and/or  
circuit actually used.  
Conventions  
Data significance:  
Higher digits on the left and lower digits on the right  
Active low representations: ××× (overscore over pin and signal name)  
Note:  
Footnote for item marked with Note in the text.  
Caution:  
Remark:  
Information requiring particular attention  
Supplementary information  
...  
Numerical representations: Binary  
Decimal  
×××× or ××××B  
××××  
...  
...  
Hexadecimal  
××××H  
7
Preliminary User’s Manual U16227EJ1V0UD  
Related Documents  
The related documents indicated in this publication may include preliminary versions.  
However, preliminary versions are not marked as such.  
Documents Related to Devices  
Document Name  
Document No.  
This manual  
U12326E  
78K0/KC1 User’s Manual  
78K/0 Series Instructions User’s Manual  
Documents Related to Development Tools (Software) (User’s Manuals)  
Document Name  
Document No.  
RA78K0 Assembler Package  
CC78K0 C Compiler  
Operation  
U14445E  
U14446E  
U11789E  
U14297E  
U14298E  
U14611E  
U15006E  
Language  
Structured Assembly Language  
Operation  
Language  
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later  
SM78K Series System Simulator Ver. 2.10 or Later  
Operation (WindowsTM Based)  
External Part User Open Interface  
Specifications  
ID78K Series Integrated Debugger Ver. 2.30 or Later  
RX78K0 Real-Time OS  
Operation (Windows Based)  
Fundamentals  
U15185E  
U11537E  
U11536E  
U14610E  
Installation  
Project Manager Ver. 3.12 or Later (Windows Based)  
Documents Related to Development Tools (Hardware) (User’s Manuals)  
Document Name  
IE-78K0-NS In-Circuit Emulator  
Document No.  
U13731E  
IE-78K0-NS-A In-Circuit Emulator  
U14889E  
IE-780148-NS-EM1 Emulation Board  
To be prepared  
Documents Related to Flash Memory Programming  
Document Name  
PG-FP3 Flash Memory Programmer User’s Manual  
PG-FP4 Flash Memory Programmer User’s Manual  
Document No.  
U13502E  
U15260E  
Other Documents  
Document Name  
SEMICONDUCTOR SELECTION GUIDE Product & Packages −  
Semiconductor Device Mounting Technology Manual  
Document No.  
X13769E  
C10535E  
Quality Grades on NEC Semiconductor Devices  
C11531E  
NEC Semiconductor Device Reliability/Quality Control System  
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)  
C10983E  
C11892E  
Caution The related documents listed above are subject to change without notice. Be sure to use the latest  
version of each document when designing.  
8
Preliminary User’s Manual U16227EJ1V0UD  
CONTENTS  
CHAPTER 1 OUTLINE .............................................................................................................................25  
1.1 Features .......................................................................................................................................25  
1.2 Applications.................................................................................................................................26  
1.3 Ordering Information..................................................................................................................27  
1.4 Pin Configuration (Top View).....................................................................................................29  
1.5 78K0/Kxx Series Lineup .............................................................................................................31  
1.6 Block Diagram.............................................................................................................................33  
1.7 Outline of Functions...................................................................................................................34  
CHAPTER 2 PIN FUNCTIONS................................................................................................................36  
2.1 Pin Function List.........................................................................................................................36  
2.2 Description of Pin Functions.....................................................................................................38  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
P00 and P01 (port 0) ......................................................................................................................38  
P10 to P17 (port 1) .........................................................................................................................39  
P20 to P27 (port 2) .........................................................................................................................39  
P30 to P33 (port 3) .........................................................................................................................40  
P60 to P63 (port 6) .........................................................................................................................40  
P70 to P73 (port 7) .........................................................................................................................40  
P120 (port 12).................................................................................................................................41  
P130 (port 13).................................................................................................................................41  
AVREF..............................................................................................................................................41  
2.2.10 AVSS ...............................................................................................................................................41  
2.2.11 RESET ...........................................................................................................................................41  
2.2.12 X1 and X2.......................................................................................................................................41  
2.2.13 XT1 and XT2 ..................................................................................................................................41  
2.2.14 VDD and EVDD .................................................................................................................................41  
2.2.15 VSS and EVSS ..................................................................................................................................41  
2.2.16 VPP (flash memory versions only) ...................................................................................................41  
2.2.17 IC (mask ROM versions only).........................................................................................................42  
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins..........................................43  
CHAPTER 3 CPU ARCHITECTURE.......................................................................................................46  
3.1 Memory Space.............................................................................................................................46  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
Internal program memory space.....................................................................................................52  
Internal data memory space...........................................................................................................53  
Special function register (SFR) area...............................................................................................53  
Data memory addressing ...............................................................................................................54  
3.2 Processor Registers...................................................................................................................59  
3.2.1  
3.2.2  
3.2.3  
Control registers .............................................................................................................................59  
General-purpose registers..............................................................................................................62  
Special Function Registers (SFRs).................................................................................................63  
3.3 Instruction Address Addressing ...............................................................................................67  
3.3.1  
3.3.2  
Relative addressing........................................................................................................................67  
Immediate addressing ....................................................................................................................68  
9
Preliminary User’s Manual U16227EJ1V0UD  
3.3.3  
3.3.4  
Table indirect addressing............................................................................................................... 69  
Register addressing....................................................................................................................... 69  
3.4 Operand Address Addressing .................................................................................................. 70  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
Implied addressing......................................................................................................................... 70  
Register addressing....................................................................................................................... 71  
Direct addressing........................................................................................................................... 72  
Short direct addressing.................................................................................................................. 73  
Special function register (SFR) addressing ................................................................................... 74  
Register indirect addressing .......................................................................................................... 75  
Based addressing.......................................................................................................................... 76  
Based indexed addressing ............................................................................................................ 77  
Stack addressing ........................................................................................................................... 77  
CHAPTER 4 PORT FUNCTIONS ........................................................................................................... 78  
4.1 Port Functions............................................................................................................................ 78  
4.2 Port Configuration...................................................................................................................... 80  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
Port 0............................................................................................................................................. 81  
Port 1............................................................................................................................................. 83  
Port 2............................................................................................................................................. 89  
Port 3............................................................................................................................................. 90  
Port 6............................................................................................................................................. 92  
Port 7............................................................................................................................................. 93  
Port 12........................................................................................................................................... 94  
Port 13........................................................................................................................................... 95  
4.3 Registers Controlling Port Function ........................................................................................ 96  
4.4 Port Function Operations........................................................................................................ 100  
4.4.1  
4.4.2  
4.4.3  
Writing to I/O port......................................................................................................................... 100  
Reading from I/O port .................................................................................................................. 100  
Operations on I/O port ................................................................................................................. 100  
CHAPTER 5 CLOCK GENERATOR .................................................................................................... 101  
5.1 Functions of Clock Generator................................................................................................. 101  
5.2 Configuration of Clock Generator .......................................................................................... 102  
5.3 Registers Controlling Clock Generator.................................................................................. 103  
5.4 System Clock Oscillator.......................................................................................................... 109  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
X1 oscillator ................................................................................................................................. 109  
Subsystem clock oscillator........................................................................................................... 109  
When subsystem clock is not used.............................................................................................. 112  
Ring-OSC oscillator ..................................................................................................................... 112  
Prescaler ..................................................................................................................................... 112  
5.5 Clock Generator Operation ..................................................................................................... 112  
5.6 Time Required to Switch Between Ring-OSC Clock and X1 Input Clock........................... 119  
5.7 Changing System Clock and CPU Clock Settings................................................................ 120  
5.7.1  
Time required for switching between system clock and CPU clock ............................................. 120  
5.8 Clock Switching Flowchart and Register Setting ................................................................. 121  
5.8.1  
5.8.2  
5.8.3  
Switching from Ring-OSC clock to X1 input clock........................................................................ 121  
Switching from X1 input clock to Ring-OSC clock........................................................................ 122  
Switching from X1 input clock to subsystem clock....................................................................... 123  
10  
Preliminary User’s Manual U16227EJ1V0UD  
5.8.4  
5.8.5  
Switching from subsystem clock to X1 input clock........................................................................124  
Register settings...........................................................................................................................125  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00............................................................................126  
6.1 Functions of 16-Bit Timer/Event Counter 00..........................................................................126  
6.2 Configuration of 16-Bit Timer/Event Counter 00 ...................................................................127  
6.3 Registers Controlling 16-Bit Timer/Event Counter 00...........................................................130  
6.4 Operation of 16-Bit Timer/Event Counter 00..........................................................................136  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
Interval timer operation.................................................................................................................136  
PPG output operations .................................................................................................................138  
Pulse width measurement operations...........................................................................................140  
External event counter operation..................................................................................................147  
Square-wave output operation .....................................................................................................149  
One-shot pulse output operation ..................................................................................................150  
6.5 Cautions for 16-Bit Timer/Event Counter 00 ..........................................................................155  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51 ...........................................................159  
7.1 Functions of 8-Bit Timer/Event Counters 50 and 51 .............................................................159  
7.2 Configuration of 8-Bit Timer/Event Counters 50 and 51.......................................................161  
7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51 ..............................................162  
7.4 Operations of 8-Bit Timer/Event Counters 50 and 51............................................................168  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
Operation as interval timer ...........................................................................................................168  
Operation as external event counter.............................................................................................170  
Square-wave output operation .....................................................................................................171  
PWM output operation..................................................................................................................173  
7.5 Cautions for 8-Bit Timer/Event Counters 50 and 51..............................................................175  
CHAPTER 8 8-BIT TIMERS H0 AND H1 ...........................................................................................176  
8.1 Functions of 8-Bit Timers H0 and H1......................................................................................176  
8.2 Configuration of 8-Bit Timers H0 and H1 ...............................................................................176  
8.3 Registers Controlling 8-Bit Timers H0 and H1.......................................................................178  
8.4 Operation of 8-Bit Timers H0 and H1......................................................................................181  
8.4.1  
8.4.2  
8.4.3  
Operation as interval timer ...........................................................................................................181  
Operation as PWM pulse generator .............................................................................................184  
Carrier generator mode operation (8-bit timer H1 only)................................................................190  
CHAPTER 9 WATCH TIMER ................................................................................................................197  
9.1 Functions of Watch Timer........................................................................................................197  
9.2 Configuration of Watch Timer .................................................................................................199  
9.3 Register Controlling Watch Timer...........................................................................................199  
9.4 Watch Timer Operations ..........................................................................................................201  
9.4.1  
9.4.2  
Watch timer operation ..................................................................................................................201  
Interval timer operation.................................................................................................................202  
CHAPTER 10 WATCHDOG TIMER ......................................................................................................204  
10.1 Functions of Watchdog Timer .................................................................................................204  
11  
Preliminary User’s Manual U16227EJ1V0UD  
10.2 Configuration of Watchdog Timer.......................................................................................... 206  
10.3 Registers Controlling Watchdog Timer ................................................................................. 207  
10.4 Operation of Watchdog Timer................................................................................................. 209  
10.4.1 Watchdog timer operation when “Ring-OSC cannot be stopped” is selected by a mask option .. 209  
10.4.2 Watchdog timer operation when “Ring-OSC can be stopped by software” is selected  
by mask option............................................................................................................................. 210  
10.4.3 Watchdog timer operation in STOP mode (when “Ring-OSC can be stopped by software” is  
selected by mask option)............................................................................................................. 211  
10.4.4 Watchdog timer operation in HALT mode (when “Ring-OSC can be stopped by software” is  
selected by mask option)............................................................................................................. 213  
CHAPTER 11 A/D CONVERTER ......................................................................................................... 214  
11.1 Functions of A/D Converter .................................................................................................... 214  
11.2 Configuration of A/D Converter.............................................................................................. 216  
11.3 Registers Controlling A/D Converter ..................................................................................... 218  
11.4 A/D Converter Operations....................................................................................................... 222  
11.4.1 Basic operations of A/D converter ............................................................................................... 222  
11.4.2 Input voltage and conversion results ........................................................................................... 224  
11.4.3 A/D converter operation mode..................................................................................................... 225  
11.5 How to Read A/D Converter Characteristics Table............................................................... 228  
11.6 Cautions for A/D Converter..................................................................................................... 230  
CHAPTER 12 SERIAL INTERFACE UART0 ...................................................................................... 235  
12.1 Functions of Serial Interface UART0...................................................................................... 235  
12.2 Configuration of Serial Interface UART0 ............................................................................... 236  
12.3 Registers Controlling Serial Interface UART0....................................................................... 239  
12.4 Operation of Serial Interface UART0...................................................................................... 243  
12.4.1 Operation stop mode ................................................................................................................... 243  
12.4.2 Asynchronous serial interface (UART) mode............................................................................... 244  
12.4.3 Dedicated baud rate generator .................................................................................................... 252  
CHAPTER 13 SERIAL INTERFACE UART6 ...................................................................................... 258  
13.1 Functions of Serial Interface UART6...................................................................................... 258  
13.2 Configuration of Serial Interface UART6 ............................................................................... 262  
13.3 Registers Controlling Serial Interface UART6....................................................................... 265  
13.4 Operation of Serial Interface UART6...................................................................................... 273  
13.4.1 Operation stop mode ................................................................................................................... 273  
13.4.2 Asynchronous serial interface (UART) mode............................................................................... 274  
13.4.3 Dedicated baud rate generator .................................................................................................... 292  
CHAPTER 14 SERIAL INTERFACE CSI10 ........................................................................................ 301  
14.1 Functions of Serial Interface CSI10........................................................................................ 301  
14.2 Configuration of Serial Interface CSI10 ................................................................................. 301  
14.3 Registers Controlling Serial Interface CSI10......................................................................... 303  
14.4 Operation of Serial Interface CSI10........................................................................................ 305  
14.4.1 Operation stop mode ................................................................................................................... 305  
14.4.2 3-wire serial I/O mode.................................................................................................................. 306  
12  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS .............................................................................................314  
15.1 Interrupt Function Types..........................................................................................................314  
15.2 Interrupt Sources and Configuration......................................................................................314  
15.3 Registers Controlling Interrupt Functions .............................................................................317  
15.4 Interrupt Servicing Operations................................................................................................324  
15.4.1 Maskable interrupt acknowledgement ..........................................................................................324  
15.4.2 Software interrupt request acknowledgement ..............................................................................326  
15.4.3 Multiple interrupt servicing............................................................................................................327  
15.4.4 Interrupt request hold ...................................................................................................................330  
CHAPTER 16 KEY INTERRUPT FUNCTION ......................................................................................331  
16.1 Functions of Key Interrupt.......................................................................................................331  
16.2 Configuration of Key Interrupt.................................................................................................331  
16.3 Register Controlling Key Interrupt..........................................................................................332  
CHAPTER 17 STANDBY FUNCTION...................................................................................................333  
17.1 Standby Function and Configuration .....................................................................................333  
17.1.1 Standby function...........................................................................................................................333  
17.1.2 Registers controlling standby function..........................................................................................335  
17.2 Standby Function Operation....................................................................................................337  
17.2.1 HALT mode ..................................................................................................................................337  
17.2.2 STOP mode..................................................................................................................................341  
CHAPTER 18 RESET FUNCTION ........................................................................................................344  
18.1 Register for Confirming Reset Source ...................................................................................349  
CHAPTER 19 CLOCK MONITOR .........................................................................................................350  
19.1 Functions of Clock Monitor .....................................................................................................350  
19.2 Configuration of Clock Monitor...............................................................................................350  
19.3 Registers Controlling Clock Monitor ......................................................................................351  
19.4 Operation of Clock Monitor......................................................................................................352  
CHAPTER 20 POWER-ON-CLEAR CIRCUIT ......................................................................................356  
20.1 Functions of Power-on-Clear Circuit ......................................................................................356  
20.2 Configuration of Power-on-Clear Circuit................................................................................357  
20.3 Operation of Power-on-Clear Circuit ......................................................................................357  
20.4 Cautions for Power-on-Clear Circuit.......................................................................................358  
CHAPTER 21 LOW-VOLTAGE DETECTOR........................................................................................360  
21.1 Functions of Low-Voltage Detector ........................................................................................360  
21.2 Configuration of Low-Voltage Detector..................................................................................360  
21.3 Registers Controlling Low-Voltage Detector .........................................................................361  
21.4 Operation of Low-Voltage Detector.........................................................................................364  
21.5 Cautions for Low-Voltage Detector.........................................................................................368  
13  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 22 MASK OPTIONS ........................................................................................................... 372  
CHAPTER 23 µPD78F0114................................................................................................................... 373  
23.1 Internal Memory Size Switching Register.............................................................................. 374  
23.2 Flash Memory Programming................................................................................................... 375  
23.2.1 Selection of communication mode............................................................................................... 375  
23.2.2 Flash memory programming function .......................................................................................... 376  
23.2.3 Connecting Flashpro III/Flashpro IV ............................................................................................ 377  
23.2.4 Connection on adapter for flash memory writing.......................................................................... 379  
CHAPTER 24 INSTRUCTION SET....................................................................................................... 384  
24.1 Conventions Used in Operation List...................................................................................... 384  
24.1.1 Operand identifiers and specification methods............................................................................ 384  
24.1.2 Description of operation column .................................................................................................. 385  
24.1.3 Description of flag operation column............................................................................................ 385  
24.2 Operation List........................................................................................................................... 386  
24.3 Instructions Listed by Addressing Type................................................................................ 394  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)............................................. 397  
CHAPTER 26 PACKAGE DRAWING................................................................................................... 413  
CHAPTER 27 CAUTIONS FOR WAIT................................................................................................. 414  
27.1 Cautions for Wait...................................................................................................................... 414  
27.2 Peripheral Hardware That Generates Wait ............................................................................ 415  
27.3 Example of Wait Occurrence .................................................................................................. 416  
APPENDIX A DEVELOPMENT TOOLS............................................................................................... 417  
A.1 Software Package..................................................................................................................... 419  
A.2 Language Processing Software.............................................................................................. 420  
A.3 Flash Memory Writing Tools................................................................................................... 421  
A.4 Debugging Tools...................................................................................................................... 422  
A.4.1 Hardware..................................................................................................................................... 422  
A.4.2 Software ...................................................................................................................................... 423  
APPENDIX B EMBEDDED SOFTWARE ............................................................................................. 424  
APPENDIX C REGISTER INDEX ......................................................................................................... 425  
C.1 Register Index (In Alphabetical Order with Respect to Register Names) .......................... 425  
C.2 Register Index (In Alphabetical Order with Respect to Register Symbol) ......................... 428  
14  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (1/7)  
Figure No.  
2-1  
Title  
Page  
Pin I/O Circuit List ....................................................................................................................................44  
3-1  
Memory Map (µPD780111)......................................................................................................................47  
Memory Map (µPD780112)......................................................................................................................48  
Memory Map (µPD780113)......................................................................................................................49  
Memory Map (µPD780114)......................................................................................................................50  
Memory Map (µPD78F0114)....................................................................................................................51  
Data Memory Addressing (µPD780111) ..................................................................................................54  
Data Memory Addressing (µPD780112) ..................................................................................................55  
Data Memory Addressing (µPD780113) ..................................................................................................56  
Data Memory Addressing (µPD780114) ..................................................................................................57  
Data Memory Addressing (µPD78F0114) ................................................................................................58  
Format of Program Counter .....................................................................................................................59  
Format of Program Status Word ..............................................................................................................59  
Format of Stack Pointer ...........................................................................................................................61  
Data to Be Saved to Stack Memory .........................................................................................................61  
Data to Be Restored from Stack Memory.................................................................................................61  
Configuration of General-Purpose Registers............................................................................................62  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
3-9  
3-10  
3-11  
3-12  
3-13  
3-14  
3-15  
3-16  
4-1  
Port Types................................................................................................................................................78  
Block Diagram of P00 ..............................................................................................................................81  
Block Diagram of P01 ..............................................................................................................................82  
Block Diagram of P10 ..............................................................................................................................83  
Block Diagram of P11 and P14 ................................................................................................................84  
Block Diagram of P12 ..............................................................................................................................85  
Block Diagram of P13 ..............................................................................................................................86  
Block Diagram of P15 ..............................................................................................................................87  
Block Diagram of P16 and P17 ................................................................................................................88  
Block Diagram of P20 to P27 ...................................................................................................................89  
Block Diagram of P30 to P32 ...................................................................................................................90  
Block Diagram of P33 ..............................................................................................................................91  
Block Diagram of P60 to P63 ...................................................................................................................92  
Block Diagram of P70 to P73 ...................................................................................................................93  
Block Diagram of P120 ............................................................................................................................94  
Block Diagram of P130 ............................................................................................................................95  
Format of Port Mode Register..................................................................................................................96  
Format of Pull-up Resistor Option Register..............................................................................................98  
Format of Input Switch Control Register (ISC) .........................................................................................99  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
5-1  
5-2  
5-3  
5-4  
5-5  
Block Diagram of Clock Generator.........................................................................................................102  
Subsystem Clock Feedback Resistor.....................................................................................................103  
Format of Processor Clock Control Register (PCC)...............................................................................104  
Format of Ring-OSC Mode Register (RCM)...........................................................................................105  
Format of Main Clock Mode Register (MCM).........................................................................................106  
15  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (2/7)  
Figure No.  
Title  
Page  
5-6  
Format of Main OSC Control Register (MOC)........................................................................................107  
Format of Oscillation Stabilization Time Counter Status Register (OSTC).............................................107  
Format of Oscillation Stabilization Time Select Register (OSTS)...........................................................108  
External Circuit of X1 Oscillator..............................................................................................................109  
External Circuit of Subsystem Clock Oscillator.......................................................................................109  
Examples of Incorrect Resonator Connection ........................................................................................110  
Timing Diagram of CPU Default Start Using Ring-OSC .........................................................................113  
Status Transition Diagram......................................................................................................................114  
Switching from Ring-OSC Clock to X1 Input Clock (Flowchart)..............................................................121  
Switching from X1 Input Clock to Ring-OSC Clock (Flowchart)..............................................................122  
Switching from X1 Input Clock to Subsystem Clock (Flowchart) ............................................................123  
Switching from Subsystem Clock to X1 Input Clock (Flowchart) ............................................................124  
5-7  
5-8  
5-9  
5-10  
5-11  
5-12  
5-13  
5-14  
5-15  
5-16  
5-17  
6-1  
Block Diagram of 16-Bit Timer/Event Counter 00...................................................................................127  
Format of 16-Bit Timer Mode Control Register 00 (TMC00)...................................................................131  
Format of Capture/Compare Control Register 00 (CRC00)....................................................................132  
Format of 16-Bit Timer Output Control Register 00 (TOC00) .................................................................133  
Format of Prescaler Mode Register 00 (PRM00) ...................................................................................134  
Format of Port Mode Register 0 (PM0)...................................................................................................135  
Control Register Settings for Interval Timer Operation...........................................................................136  
Interval Timer Configuration Diagram.....................................................................................................137  
Timing of Interval Timer Operation.........................................................................................................137  
Control Register Settings for PPG Output Operation .............................................................................138  
Configuration of PPG Output..................................................................................................................139  
PPG Output Operation Timing................................................................................................................139  
Control Register Settings for Pulse Width Measurement with Free-Running Counter  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
6-10  
6-11  
6-12  
6-13  
and One Capture Register......................................................................................................................140  
Configuration Diagram for Pulse Width Measurement with Free-Running Counter................................141  
Timing of Pulse Width Measurement Operation with Free-Running Counter  
6-14  
6-15  
and One Capture Register (with Both Edges Specified).........................................................................141  
Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter ..............142  
CR010 Capture Operation with Rising Edge Specified ..........................................................................143  
Timing of Pulse Width Measurement Operation with Free-Running Counter  
6-16  
6-17  
6-18  
(with Both Edges Specified) ...................................................................................................................143  
Control Register Settings for Pulse Width Measurement with Free-Running Counter and  
6-19  
6-20  
Two Capture Registers...........................................................................................................................144  
Timing of Pulse Width Measurement Operation with Free-Running Counter  
and Two Capture Registers (with Rising Edge Specified)......................................................................145  
Control Register Settings for Pulse Width Measurement by Means of Restart.......................................146  
Timing of Pulse Width Measurement Operation by Means of Restart  
6-21  
6-22  
(with Rising Edge Specified)...................................................................................................................146  
Control Register Settings in External Event Counter Mode....................................................................147  
Configuration Diagram of External Event Counter..................................................................................148  
External Event Counter Operation Timing (with Rising Edge Specified) ................................................148  
6-23  
6-24  
6-25  
16  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (3/7)  
Figure No.  
Title  
Page  
6-26  
6-27  
6-28  
6-29  
6-30  
6-31  
6-32  
6-33  
6-34  
6-35  
Control Register Settings in Square-Wave Output Mode.......................................................................149  
Square-Wave Output Operation Timing.................................................................................................149  
Control Register Settings for One-Shot Pulse Output with Software Trigger .........................................151  
Timing of One-Shot Pulse Output Operation with Software Trigger.......................................................152  
Control Register Settings for One-Shot Pulse Output with External Trigger ..........................................153  
Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified) ..........154  
Start Timing of 16-Bit Timer Counter 00 (TM00) ....................................................................................155  
Timings After Change of Compare Register During Timer Count Operation..........................................155  
Capture Register Data Retention Timing ...............................................................................................156  
Operation Timing of OVF00 Flag ...........................................................................................................157  
7-1  
Block Diagram of 8-Bit Timer/Event Counter 50.....................................................................................159  
Block Diagram of 8-Bit Timer/Event Counter 51.....................................................................................160  
Format of Timer Clock Selection Register 50 (TCL50)...........................................................................162  
Format of Timer Clock Selection Register 51 (TCL51)...........................................................................163  
Format of 8-Bit Timer Mode Control Register 50 (TMC50) ....................................................................164  
Format of 8-Bit Timer Mode Control Register 51 (TMC51) ....................................................................165  
Format of Port Mode Register 1 (PM1) ..................................................................................................167  
Format of Port Mode Register 3 (PM3) ..................................................................................................167  
Interval Timer Operation Timing.............................................................................................................168  
External Event Counter Operation Timing (with Rising Edge Specified)................................................170  
Square-Wave Output Operation Timing.................................................................................................172  
PWM Output Operation Timing ..............................................................................................................174  
Timing of Operation with CR5n Changed...............................................................................................175  
8-Bit Timer Counter 5n Start Timing.......................................................................................................175  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
7-12  
7-13  
7-14  
8-1  
Block Diagram of 8-Bit Timer H0............................................................................................................176  
Block Diagram of 8-Bit Timer H1............................................................................................................177  
Format of 8-Bit Timer H Mode Register 0 (TMHMD0)............................................................................178  
Format of 8-Bit Timer H Mode Register 1 (TMHMD1)............................................................................179  
Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)..............................................................180  
Register Setting in Interval Timer Mode.................................................................................................181  
Timing of Interval Timer Operation.........................................................................................................182  
Register Setting in PWM Pulse Generator Mode ...................................................................................184  
Operation Timing in PWM Pulse Generator Mode .................................................................................186  
Example of Connection Between 8-Bit Timer H1 and 8-Bit Timer/Event Counter 51.............................190  
Transfer Timing......................................................................................................................................191  
Register Setting in Carrier Generator Mode...........................................................................................192  
Carrier Generator Mode Operation Timing.............................................................................................194  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
8-10  
8-11  
8-12  
8-13  
9-1  
9-2  
9-3  
Watch Timer Block Diagram...................................................................................................................197  
Format of Watch Timer Operation Mode Register (WTM)......................................................................200  
Operation Timing of Watch Timer/Interval Timer....................................................................................203  
17  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (4/7)  
Figure No.  
Title  
Page  
10-1  
10-2  
10-3  
10-4  
10-5  
10-6  
10-7  
10-8  
Block Diagram of Watchdog Timer.........................................................................................................206  
Format of Watchdog Timer Mode Register (WDTM)..............................................................................207  
Format of Watchdog Timer Enable Register (WDTE) ............................................................................208  
Operation in STOP Mode (CPU Clock and WDT Operation Clock: X1 Input Clock) ..............................211  
Operation in STOP Mode (CPU Clock: X1 Input Clock, WDT Operation Clock: Ring-OSC Clock) ........211  
Operation in STOP Mode (CPU Clock: Ring-OSC Clock, WDT Operation Clock: X1 Input Clock) ........212  
Operation in STOP Mode (CPU Clock and WDT Operation Clock: Ring-OSC Clock) ...........................213  
Operation in HALT Mode........................................................................................................................213  
11-1  
Block Diagram of A/D Converter ............................................................................................................214  
Block Diagram of Power-Fail Detection Function ...................................................................................215  
Format of A/D Conversion Register (ADCR) ..........................................................................................216  
Format of A/D Converter Mode Register (ADM).....................................................................................218  
Timing Chart When Boost Reference Voltage Generator Is Used..........................................................219  
Format of Analog Input Channel Specification Register (ADS) ..............................................................220  
Format of Power-Fail Comparison Mode Register (PFM).......................................................................221  
Format of Power-Fail Comparison Threshold Register (PFT) ................................................................221  
Basic Operation of A/D Converter ..........................................................................................................223  
Relationship Between Analog Input Voltage and A/D Conversion Result ..............................................224  
A/D Conversion Operation......................................................................................................................225  
Power-Fail Detection (When PFEN = 1 and PFCM = 0).........................................................................226  
Overall Error...........................................................................................................................................228  
Quantization Error ..................................................................................................................................228  
Zero-Scale Error.....................................................................................................................................229  
Full-Scale Error ......................................................................................................................................229  
Integral Linearity Error............................................................................................................................229  
Differential Linearity Error.......................................................................................................................229  
Circuit Configuration of Series Resistor String .......................................................................................230  
Storing Conversion Result in ADCR and Timing of Data Read from ADCR...........................................231  
Analog Input Pin Connection..................................................................................................................232  
Timing of A/D Conversion End Interrupt Request Generation................................................................233  
Timing of A/D Converter Sampling and A/D Conversion Start Delay .....................................................234  
11-2  
11-3  
11-4  
11-5  
11-6  
11-7  
11-8  
11-9  
11-10  
11-11  
11-12  
11-13  
11-14  
11-15  
11-16  
11-17  
11-18  
11-19  
11-20  
11-21  
11-22  
11-23  
12-1  
12-2  
12-3  
12-4  
12-5  
12-6  
12-7  
12-8  
12-9  
12-10  
12-11  
Block Diagram of Serial Interface UART0 ..............................................................................................237  
Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) .....................................239  
Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASIS0) ...........................241  
Format of Baud Rate Generator Control Register 0 (BRGC0)................................................................242  
Format of Normal UART Transmit/Receive Data ...................................................................................247  
Example of Normal UART Transmit/Receive Data Format.....................................................................247  
Normal Transmission Completion Interrupt Request Timing ..................................................................249  
Reception Completion Interrupt Request Timing....................................................................................250  
Noise Filter Circuit..................................................................................................................................251  
Configuration of Baud Rate Generator...................................................................................................252  
Permissible Baud Rate Range During Reception...................................................................................256  
18  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (5/7)  
Figure No.  
Title  
Page  
13-1  
LIN Transmission Operation...................................................................................................................259  
LIN Reception Operation........................................................................................................................260  
Port Configuration for LIN Reception Operation.....................................................................................261  
Block Diagram of Serial Interface UART6..............................................................................................263  
Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) .....................................265  
Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6) ...........................267  
Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6) ...............................268  
Format of Clock Selection Register 6 (CKSR6)......................................................................................269  
Format of Baud Rate Generator Control Register 6 (BRGC6) ...............................................................270  
Format of Asynchronous Serial Interface Control Register 6 (ASICL6)..................................................271  
Format of Normal UART Transmit/Receive Data ...................................................................................280  
Example of Normal UART Transmit/Receive Data Format ....................................................................281  
Normal Transmission Completion Interrupt Request Timing..................................................................283  
Processing Flow of Continuous Transmission........................................................................................285  
Timing of Starting Continuous Transmission..........................................................................................286  
Timing of Ending Continuous Transmission...........................................................................................287  
Reception Completion Interrupt Request Timing....................................................................................288  
Reception Error Interrupt........................................................................................................................289  
Noise Filter Circuit..................................................................................................................................290  
SBF Transmission..................................................................................................................................290  
SBF Reception.......................................................................................................................................291  
Configuration of Baud Rate Generator...................................................................................................293  
Permissible Baud Rate Range During Reception...................................................................................298  
Transfer Rate During Continuous Transmission ....................................................................................300  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
13-9  
13-10  
13-11  
13-12  
13-13  
13-14  
13-15  
13-16  
13-17  
13-18  
13-19  
13-20  
13-21  
13-22  
13-23  
13-24  
14-1  
14-2  
14-3  
14-4  
14-5  
14-6  
14-7  
Block Diagram of Serial Interface CSI10................................................................................................302  
Format of Serial Operation Mode Register 10 (CSIM10) .......................................................................303  
Format of Serial Clock Selection Register 10 (CSIC10).........................................................................304  
Timing in 3-Wire Serial I/O Mode ...........................................................................................................309  
Timing of Clock/Data Phase...................................................................................................................311  
Output Operation of First Bit...................................................................................................................312  
Output Value of SO10 Pin (Last Bit).......................................................................................................313  
15-1  
15-2  
15-3  
15-4  
15-5  
Basic Configuration of Interrupt Function...............................................................................................316  
Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)..............................................................319  
Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)............................................................320  
Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)....................................................321  
Format of External Interrupt Rising Edge Enable Register (EGP)  
and External Interrupt Falling Edge Enable Register (EGN) ..................................................................322  
Format of Program Status Word ............................................................................................................323  
Interrupt Request Acknowledgement Processing Algorithm...................................................................325  
Interrupt Request Acknowledgement Timing (Minimum Time)...............................................................326  
Interrupt Request Acknowledgement Timing (Maximum Time)..............................................................326  
Examples of Multiple Interrupt Servicing................................................................................................328  
15-6  
15-7  
15-8  
15-9  
15-10  
19  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (6/7)  
Figure No.  
15-11  
Title  
Page  
Interrupt Request Hold ...........................................................................................................................330  
16-1  
16-2  
Block Diagram of Key Interrupt...............................................................................................................331  
Format of Key Return Mode Register (KRM)..........................................................................................332  
17-1  
17-2  
17-3  
17-4  
17-5  
17-6  
17-7  
Operation Timing When STOP Mode Is Released.................................................................................334  
Format of Oscillation Stabilization Time Counter Status Register (OSTC).............................................335  
Format of Oscillation Stabilization Time Select Register (OSTS)...........................................................336  
HALT Mode Release by Interrupt Request Generation..........................................................................339  
HALT Mode Release by RESET Input ...................................................................................................340  
STOP Mode Release by Interrupt Request Generation .........................................................................342  
STOP Mode Release by RESET Input...................................................................................................343  
18-1  
18-2  
18-3  
18-4  
18-5  
Block Diagram of Reset Function...........................................................................................................345  
Timing of Reset by RESET Input............................................................................................................346  
Timing of Reset Due to Watchdog Timer Overflow ................................................................................346  
Timing of Reset in STOP Mode by RESET Input ...................................................................................346  
Format of Reset Control Flag Register (RESF)......................................................................................349  
19-1  
19-2  
19-3  
Block Diagram of Clock Monitor .............................................................................................................350  
Format of Clock Monitor Mode Register (CLM)......................................................................................351  
Timing of Clock Monitor..........................................................................................................................353  
20-1  
20-2  
20-3  
Block Diagram of Power-on-Clear Circuit...............................................................................................357  
Timing of Internal Reset Signal Generation in Power-on-Clear Circuit...................................................357  
Example of Software Processing After Release of Reset.......................................................................358  
21-1  
21-2  
21-3  
21-4  
21-5  
21-6  
21-7  
Block Diagram of Low-Voltage Detector.................................................................................................360  
Format of Low-Voltage Detection Register (LVIM).................................................................................362  
Format of Low-Voltage Detection Level Selection Register (LVIS) ........................................................363  
Timing of Low-Voltage Detector Internal Reset Signal Generation ........................................................365  
Timing of Low-Voltage Detector Interrupt Signal Generation .................................................................367  
Example of Software Processing After Release of Reset.......................................................................369  
Example of Software Processing of LVI Interrupt...................................................................................371  
23-1  
23-2  
23-3  
23-4  
23-5  
23-6  
23-7  
23-8  
23-9  
Format of Internal Memory Size Switching Register (IMS).....................................................................374  
Communication Mode Selection Format.................................................................................................376  
Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode..........................................................377  
Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode (Using Handshake) ..........................377  
Connection of Flashpro III/Flashpro IV in UART (UART0) Mode............................................................378  
Connection of Flashpro III/Flashpro IV in UART (UART0) Mode (Using Handshake)............................378  
Connection of Flashpro III/Flashpro IV in UART (UART6) Mode............................................................378  
Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode...................................379  
Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode (Using Handshake) ...380  
20  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF FIGURES (7/7)  
Figure No.  
Title  
Page  
23-10  
23-11  
23-12  
Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode ....................................381  
Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode (Using Handshake).....382  
Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode ....................................383  
A-1  
Development Tool Configuration............................................................................................................418  
21  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF TABLES (1/3)  
Table No.  
Title  
Page  
1-1  
2-1  
Flash Memory Versions Corresponding to Mask Options of Mask ROM Versions...................................28  
Pin I/O Circuit Types ................................................................................................................................43  
3-1  
3-2  
3-3  
3-4  
3-5  
Set Value of Internal Memory Size Switching Register (IMS)...................................................................46  
Internal Memory Capacity.........................................................................................................................52  
Vector Table.............................................................................................................................................52  
Internal High-Speed RAM Capacity..........................................................................................................53  
Special Function Register List..................................................................................................................64  
4-1  
4-2  
4-3  
4-4  
Port Functions ..........................................................................................................................................79  
Port Configuration ....................................................................................................................................80  
Pull-up Resistor of Port 6..........................................................................................................................92  
Settings of Port Mode Register and Output Latch When Using Alternate Function..................................97  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
5-7  
Configuration of Clock Generator...........................................................................................................102  
Relationship Between CPU Clock and Minimum Instruction Execution Time.........................................105  
Relationship Between Operation Clocks in Each Operation Status........................................................118  
Oscillation Control Flags and Clock Oscillation Status...........................................................................118  
Time Required to Switch Between Ring-OSC Clock and X1 Input Clock...............................................119  
Maximum Time Required for CPU Clock Switchover .............................................................................120  
Clock and Register Setting.....................................................................................................................125  
6-1  
6-2  
6-3  
Configuration of 16-Bit Timer/Event Counter 00.....................................................................................127  
TI000 Pin Valid Edge and CR000, CR010 Capture Trigger....................................................................128  
TI010 Pin Valid Edge and CR000 Capture Trigger.................................................................................128  
7-1  
8-1  
Configuration of 8-Bit Timer/Event Counters 50 and 51.........................................................................161  
Configuration of 8-Bit Timers H0 and H1................................................................................................176  
9-1  
9-2  
9-3  
9-4  
9-5  
Watch Timer Interrupt Time....................................................................................................................198  
Interval Timer Interval Time....................................................................................................................198  
Watch Timer Configuration.....................................................................................................................199  
Watch Timer Interrupt Time....................................................................................................................201  
Interval Timer Interval Time....................................................................................................................202  
10-1  
10-2  
10-3  
Loop Detection Time of Watchdog Timer ...............................................................................................204  
Mask Option Setting and Watchdog Timer Operation Mode ..................................................................205  
Configuration of Watchdog Timer...........................................................................................................206  
11-1  
11-2  
11-3  
Configuration of A/D Converter ..............................................................................................................216  
Settings of ADCS and ADCE..................................................................................................................219  
A/D Converter Sampling Time and A/D Conversion Start Delay Time (ADM Set Value) .......................234  
22  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF TABLES (2/3)  
Table No.  
Title  
Page  
12-1  
12-2  
12-3  
12-4  
Configuration of Serial Interface UART0................................................................................................236  
Cause of Reception Error.......................................................................................................................251  
Set Data of Baud Rate Generator ..........................................................................................................255  
Maximum/Minimum Permissible Baud Rate Error..................................................................................257  
13-1  
13-2  
13-3  
13-4  
13-5  
Configuration of Serial Interface UART6................................................................................................262  
Write Processing and Writing to TXB6 During Execution of Continuous Transmission..........................284  
Cause of Reception Error.......................................................................................................................289  
Set Data of Baud Rate Generator ..........................................................................................................297  
Maximum/Minimum Permissible Baud Rate Error..................................................................................299  
14-1  
Configuration of Serial Interface CSI10..................................................................................................301  
15-1  
15-2  
15-3  
15-4  
15-5  
Interrupt Source List...............................................................................................................................315  
Flags Corresponding to Interrupt Request Sources ...............................................................................318  
Ports Corresponding to EGPn and EGNn..............................................................................................322  
Time from Generation of Maskable Interrupt Until Servicing..................................................................324  
Interrupt Request Enabled for Multiple Interrupt Servicing During Interrupt Servicing ...........................327  
16-1  
16-2  
Assignment of Key Interrupt Detection Pins...........................................................................................331  
Configuration of Key Interrupt ................................................................................................................331  
17-1  
17-2  
17-3  
17-4  
17-5  
Relationship Between HALT Mode, STOP Mode, and Clock.................................................................333  
Operating Statuses in HALT Mode.........................................................................................................337  
Operation After HALT Mode Release.....................................................................................................340  
Operating Statuses in STOP Mode........................................................................................................341  
Operation After STOP Mode Release....................................................................................................343  
18-1  
18-2  
Hardware Statuses After Reset..............................................................................................................347  
RESF Status When Reset Request Is Generated..................................................................................349  
19-1  
19-2  
Configuration of Clock Monitor...............................................................................................................350  
Operation Status of Clock Monitor (When CLME = 1)............................................................................352  
22-1  
Flash Memory Versions Supporting Mask Options of Mask ROM Versions...........................................372  
23-1  
23-2  
23-3  
23-4  
Differences Between µPD78F0114 and Mask ROM Versions ...............................................................373  
Internal Memory Size Switching Register Settings.................................................................................374  
Communication Mode List......................................................................................................................375  
Main Functions of Flash Memory Programming.....................................................................................376  
24-1  
Operand Identifiers and Specification Methods......................................................................................384  
23  
Preliminary User’s Manual U16227EJ1V0UD  
LIST OF TABLES (3/3)  
Table No.  
Title  
Page  
27-1  
27-2  
Registers That Generate Wait and Number of CPU Wait Clocks...........................................................415  
Number of Wait Clocks and Number of Execution Clocks on Occurrence of Wait (A/D Converter) .......416  
24  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.1 Features  
{ ROM, RAM capacities  
Item  
Program Memory  
(ROM)  
Data Memory  
(Internal High-Speed RAM)  
Part Number  
µPD780111  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
Mask ROM  
8 KB  
512 bytes  
16 KB  
24 KB  
32 KB  
32 KBNote  
1024 bytes  
Flash memory  
1024 bytesNote  
Note The internal flash memory and internal high-speed RAM capacities can be changed using the internal  
memory size switching register (IMS).  
{ On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)  
{ Short startup is possible via the CPU default start using the on-chip Ring-OSC  
{ On-chip clock monitor function using on-chip Ring-OSC  
{ On-chip watchdog timer (operable with Ring-OSC clock)  
{ On-chip UART supporting LIN (Local Interconnect Network) bus  
{ On-chip key interrupt function  
{ Minimum instruction execution time can be changed from high speed (0.2 µs: @ 10 MHz operation with X1  
input clock) to ultra low-speed (122 µs: @ 32.768 kHz operation with subsystem clock)  
{ I/O ports: 32 (N-ch open drain: 4)  
{ Timer: 7 channels  
{ Serial interface: 3 channels  
(UART: 2 channels, CSI: 1 channel)  
{ 10-bit resolution A/D converter: 8 channels  
{ Supply voltage: VDD = 2.7 to 5.5 V  
25  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.2 Applications  
{ Automotive equipment  
System control for body electricals (power windows, keyless entry reception, etc.)  
Sub-microcontrollers for control  
{ Home audio, car audio  
{ AV equipment  
{ PC peripheral equipment (keyboards, etc.)  
{ Household electrical appliances  
Outdoor air conditioner units  
Microwave ovens, electric rice cookers  
{ Industrial equipment  
Pumps  
Vending machines  
FA  
26  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.3 Ordering Information  
Part Number  
Package  
Quality Grade  
µPD780111GB-×××-8ES  
µPD780112GB-×××-8ES  
µPD780113GB-×××-8ES  
µPD780114GB-×××-8ES  
µPD780111GB(A)-×××-8ES  
µPD780112GB(A)-×××-8ES  
µPD780113GB(A)-×××-8ES  
µPD780114GB(A)-×××-8ES  
µPD780111GB(A1)-×××-8ES  
µPD780112GB(A1)-×××-8ES  
µPD780113GB(A1)-×××-8ES  
µPD780114GB(A1)-×××-8ES  
µPD78F0114M1GB-8ES  
µPD78F0114M2GB-8ES  
µPD78F0114M3GB-8ES  
µPD78F0114M4GB-8ES  
µPD78F0114M5GB-8ES  
µPD78F0114M6GB-8ES  
µPD78F0114M1GB(A)-8ES  
µPD78F0114M2GB(A)-8ES  
µPD78F0114M3GB(A)-8ES  
µPD78F0114M4GB(A)-8ES  
µPD78F0114M5GB(A)-8ES  
µPD78F0114M6GB(A)-8ES  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
44-pin plastic LQFP (10 × 10)  
Standard  
Standard  
Standard  
Standard  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Special  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Special  
Special  
Special  
Special  
Special  
Special  
Remark ××× indicates ROM code suffix.  
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by  
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.  
27  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
Mask ROM versions (µPD780111, 780112, 780113, and 780114) include mask options. When ordering, it is  
possible to select Power-on-clear (POC) circuit can be used/cannot be used, Ring-OSC clock can be  
stopped/cannot be stopped by softwareand Pull-up resistor incorporated/not incorporated in 1-bit units (P60 to  
P63).  
Flash memory versions corresponding to the mask options of the mask ROM versions are as follows.  
Table 1-1. Flash Memory Versions Corresponding to Mask Options of Mask ROM Versions  
Mask Option  
Flash Memory Versions  
(Part Number)  
POC Circuit  
POC cannot be used  
Ring-OSC  
Cannot be stopped  
µPD78F0114M1GB-8ES  
µPD78F0114M1GB(A)-8ES  
Can be stopped by software  
Cannot be stopped  
µPD78F0114M2GB-8ES  
µPD78F0114M2GB(A)-8ES  
POC used (VPOC = 2.85 V 0.15 V)  
POC used (VPOC = 3.5 V 0.2 V)  
µPD78F0114M3GB-8ES  
µPD78F0114M3GB(A)-8ES  
Can be stopped by software  
Cannot be stopped  
µPD78F0114M4GB-8ES  
µPD78F0114M4GB(A)-8ES  
µPD78F0114M5GB-8ES  
µPD78F0114M5GB(A)-8ES  
Can be stopped by software  
µPD78F0114M6GB-8ES  
µPD78F0114M6GB(A)-8ES  
28  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.4 Pin Configuration (Top View)  
44-pin plastic LQFP (10 × 10)  
µPD780111GB-×××-8ES, 780112GB-×××-8ES, 780113GB-×××-8ES, 780114GB-×××-8ES,  
µPD780111GB(A)-×××-8ES, 780112GB(A)-×××-8ES, 780113GB(A)-×××-8ES,  
µPD780114GB(A)-×××-8ES, 780111GB(A1)-×××-8ES, 780112GB(A1)-×××-8ES,  
µPD780113GB(A1)-×××-8ES, 780114GB(A1)-×××-8ES, 78F0114M1GB-8ES,  
µPD78F0114M2GB-8ES, 78F0114M3GB-8ES, 78F0114M4GB-8ES, 78F0114M5GB-8ES,  
µPD78F0114M6GB-8ES, 78F0114M1GB(A)-8ES, 78F0114M2GB(A)-8ES, 78F0114M3GB(A)-8ES,  
µPD78F0114M4GB(A)-8ES, 78F0114M5GB(A)-8ES, 78F0114M6GB(A)-8ES  
44 43 42 41 40 39 38 37 36 35 34  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
AVREF  
AVSS  
P73/KR3  
2
P00/TI000  
3
IC (VPP  
)
P01/TI010/TO00  
P10/SCK10/TxD0  
P11/SI10/RxD0  
P12/SO10  
4
VDD  
5
VSS  
6
X1  
X2  
7
P13/TxD6  
8
RESET  
XT1  
P14/RxD6  
9
P15/TOH0  
10  
11  
XT2  
P16/TOH1/INTP5  
EVDD  
P130  
12 13 14 15 16 17 18 19 20 21 22  
Cautions 1. Connect the IC (Internally Connected) pin directly to VSS.  
2. Connect the AVREF pin to VDD.  
3. Connect the AVSS pin to VSS.  
Remark Figures in parentheses apply only to the µPD78F0114.  
29  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
Pin Identification  
ANI0 to ANI7:  
AVREF:  
AVSS:  
Analog input  
RESET:  
Reset  
Analog reference voltage  
Analog ground  
RxD0, RxD6:  
Receive data  
SCK10:  
Serial clock input/output  
Serial data input  
Serial data output  
EVDD:  
Power supply for port  
Ground for port  
SI10:  
EVSS:  
SO10:  
IC:  
Internally connected  
TI000, TI010,  
TI50, TI51:  
TO00, TO50, TO51,  
TOH0, TOH1:  
TxD0, TxD6:  
VDD:  
INTP0 to INTP5: External interrupt input  
Timer input  
KR0 to KR3:  
P00, P01:  
P10 to P17:  
P20 to P27:  
P30 to P33:  
P60 to P63:  
P70 to P73:  
P120:  
Key return  
Port 0  
Timer output  
Port 1  
Transmit data  
Port 2  
Power supply  
Port 3  
VPP:  
Programming power supply  
Ground  
Port 6  
VSS:  
Port 7  
X1, X2:  
Crystal (X1 input clock)  
Crystal (Subsystem clock)  
Port 12  
Port 13  
XT1, XT2:  
P130:  
30  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.5 78K0/Kxx Series Lineup  
The lineup of products in the 78K0/Kxx Series (under development or in planning) is shown below.  
78K0/KB1 Series: 30-pin (7.62 mm 0.65 mm pitch)  
µ
PD78F0103  
PD780103  
Flash memory: 24 KB, RAM: 768 bytes  
Mask ROM: 24 KB, RAM: 768 bytes  
Mask ROM: 16 KB, RAM: 768 bytes  
µ
PD780102  
µ
Mask ROM: 8 KB, RAM: 512 bytes  
PD780101  
µ
78K0/KC1 Series: 44-pin (10 × 10 mm 0.8 mm pitch)  
PD78F0114  
Flash memory: 32 KB, RAM: 1 KB  
Mask ROM: 32 KB, RAM: 1 KB  
Mask ROM: 24 KB, RAM: 1 KB  
µ
µ
PD780114  
PD780113  
µ
Mask ROM: 16 KB, RAM: 512 bytes  
Mask ROM: 8 KB, RAM: 512 bytes  
PD780112  
µ
PD780111  
µ
78K0/KD1 Series: 52-pin (10 × 10 mm 0.65 mm pitch)  
PD78F0124  
Flash memory: 32 KB, RAM: 1 KB  
Mask ROM: 32 KB, RAM: 1 KB  
Mask ROM: 24 KB, RAM: 1 KB  
µ
PD780124  
µ
µ
PD780123  
PD780122  
Mask ROM: 16 KB, RAM: 512 bytes  
Mask ROM: 8 KB, RAM: 512 bytes  
µ
µ
PD780121  
78K0/KE1 Series: 64-pin (10 × 10 mm 0.5 mm pitch, 12 × 12 mm 0.65 mm pitch, 14 × 14 mm 0.8 mm pitch)  
PD78F0134  
Flash memory: 32 KB, RAM: 1 KB  
Mask ROM: 32 KB, RAM: 1 KB  
Mask ROM: 24 KB, RAM: 1 KB  
µ
PD78F0138  
PD780138  
Flash memory: 60 KB, RAM: 2 KB  
Mask ROM: 60 KB, RAM: 2 KB  
µ
PD780134  
µ
µ
PD780133  
µ
PD780136  
Mask ROM: 48 KB, RAM: 2 KB  
µ
Mask ROM: 16 KB, RAM: 512 bytes  
Mask ROM: 8 KB, RAM: 512 bytes  
µ
PD780132  
PD780131  
µ
78K0/KF1 Series: 80-pin (12 × 12 mm 0.5 mm pitch, 14 × 14 mm 0.65 mm pitch)  
PD78F0148  
Flash memory: 60 KB, RAM: 2 KB  
Mask ROM: 60 KB, RAM: 2 KB  
Mask ROM: 48 KB, RAM: 2 KB  
µ
µ
PD780148  
PD780146  
PD780144  
µ
Mask ROM: 32 KB, RAM: 1 KB  
Mask ROM: 24 KB, RAM: 1 KB  
µ
PD780143  
µ
31  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
The function list in the 78K0/Kxx Series (under development or in planning) is shown below.  
Part Number  
78K0/KB1  
78K0/KC1  
78K0/KD1  
52 pins  
78K0/KE1  
78K0/KF1  
80 pins  
Item  
Package  
30 pins  
44 pins  
24 K  
64 pins  
Internal  
memory  
(bytes)  
Mask ROM  
8 K  
16 K  
24 K  
8 K  
8 K 24 K  
8 K 24 K  
16 K 32 K  
48 K  
24 K 48 K  
32 K 60 K  
16 K 32 K  
16 K 32 K  
60 K  
Flash memory  
RAM  
24 K  
32 K  
32 K  
32 K  
60 K  
60 K  
512  
768  
512  
1 K  
512  
1 K  
DD = 2.7 to 5.5 V  
<Connect REGC pin to VDD  
0.24 µs (when 8.38 MHz, VDD = 3.3 to 5.5 V) 0.2 µs (when 10 MHz, VDD = 4.0 to 5.5 V)  
512  
1 K  
2 K  
1 K  
2 K  
Power supply voltage  
V
Minimum instruction  
execution time  
0.2 µs (when 10 MHz, VDD = 4.0 to 5.5 V)  
>
0.4 µs (when 5 MHz, VDD = 2.7 to 5.5 V)  
0.24 µs (when 8.38 MHz, VDD = 3.3 to 5.5 V)  
0.4 µs (when 5 MHz, VDD = 2.7 to 5.5 V)  
Clock  
Port  
X1 input  
2 to 10 MHz  
32.768 kHz  
Sub  
Ring-OSC  
CMOS I/O  
CMOS input  
CMOS output  
240 kHz (TYP.)  
17  
4
19  
26  
38  
54  
8
4
1
N-ch open-drain  
I/O  
Timer  
16 bits (TM0)  
8 bits (TM5)  
8 bits (TMH)  
For watch  
WDT  
1 ch  
2 ch  
1 ch  
2 ch  
1 ch  
2 ch  
1 ch  
2 ch  
1 ch  
Serial  
3-wire CSI  
1 ch  
2 ch  
1 ch  
2 ch  
1 ch  
interface  
Automatic  
transmit/receive  
3-wire CSI  
UART  
1 ch  
UART  
1 ch  
supporting LIN-  
bus  
10-bit A/D converter  
4 ch  
6
8 ch  
Interrupt  
External  
Internal  
7
8
9
9
11  
12  
15  
16  
19  
8 ch  
17  
20  
Key return input  
Reset RESET pin  
4 ch  
Provided  
2.85 V 0.15 V/3.5 V 0.20 V (selectable by mask option)  
POC  
LVI  
3.1 V 0.15 V/3.3 V/3.5 V/3.7 V/3.9 V/4.1 V/4.3 V 0.2 V (selectable by software)  
Clock monitor  
WDT  
Provided  
Provided  
Multiplier/divider  
ROM correction  
Standby function  
16 bits × 16 bits, 32 bits ÷ 16 bits  
Provided  
HALT/STOP mode  
Standard products, special (A) products: 40 to +85°C  
Special (A1) products: 40 to +110°C (mask ROM version only)  
Operating ambient  
temperature  
32  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.6 Block Diagram  
TO00/TI010/P01  
TI000/P00  
16-bit timer/  
event counter 00  
2
8
8
4
Port 0  
Port 1  
Port 2  
Port 3  
P00, P01  
P10 to P17  
P20 to P27  
P30 to P33  
TOH0/P15  
TOH1/P16  
8-bit timer H0  
8-bit timer H1  
4
4
Port 6  
Port 7  
P60 to P63  
P70 to P73  
P120  
8-bit timer/  
event counter 50  
TI50/TO50/P17  
TI51/TO51/P33  
8-bit timer/  
event counter 51  
78K/0  
CPU  
core  
ROM  
(Flash  
memory)  
Port 12  
Port 13  
Watch timer  
P130  
Watchdog timer  
Clock monitor  
Power on clear/  
low voltage  
indicator  
Serial  
interface UART0  
RxD0/P11  
TxD0/P10  
Internal  
high-speed  
RAM  
KR0/P70 to  
KR3/P73  
RxD6/P14  
TxD6/P13  
Serial  
interface UART6  
Key return  
4
SI10/P11  
SO10/P12  
SCK10/P10  
Reset control  
Serial  
interface CSI10  
Ring-OSC  
ANI0/P20 to  
8
ANI7/P27  
A/D converter  
AVREF  
AVSS  
RESET  
X1  
V
DD  
,
V
SS  
,
IC  
X2  
XT1  
XT2  
EVDD EVSS (VPP  
)
System control  
INTP0/P120  
INTP1/P30 to  
4
Interrupt control  
INTP4/P33  
INTP5/P16  
Remark Items in parentheses are available only in the µPD78F0114.  
33  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
1.7 Outline of Functions  
Item  
µPD780111  
8 KB  
µPD780112  
16 KB  
µPD780113  
24 KB  
µPD780114  
32 KB  
µPD78F0114  
32 KBNote  
Internal memory  
ROM  
(flash memory)  
High-speed RAM 512 bytes  
64 KB  
1 KB  
1 KBNote  
Memory space  
X1 input clock (oscillation frequency)  
Ceramic/crystal/external clock oscillation  
(10 MHz: VDD = 4.0 to 5.5 V, 8.38 MHz: VDD = 3.3 to 5.5 V, 5 MHz: VDD = 2.7 to 5.5 V)  
Ring-OSC clock  
On-chip Ring oscillation (240 kHz (TYP.))  
(oscillation frequency)  
Subsystem clock  
Crystal/external clock oscillation (32.768 kHz)  
(oscillation frequency)  
General-purpose registers  
8 bits × 32 registers (8 bits × 8 registers × 4 banks)  
Minimum instruction execution time  
0.2 µs/0.4 µs/0.8 µs/1.6 µs/3.2 µs (X1 input clock: @ fXP = 10 MHz operation)  
8.3 µs/16.6 µs/33.2 µs/66.4 µs/132.8 µs (TYP.) (Ring-OSC clock: @ fR = 240 kHz (TYP.)  
operation)  
122 µs (subsystem clock: when operating at fXT = 32.768 kHz)  
Instruction set  
I/O ports  
16-bit operation Multiply/divide (8 bits × 8 bits × 4 banks)  
Bit manipulate (set, reset, test, and Boolean operation) BCD adjust, etc.  
Total:  
32  
CMOS I/O  
19  
8
CMOS input  
CMOS output  
N-ch open-drain I/O  
1
4
Timers  
16-bit timer/event counter: 1 channel  
8-bit timer/event counter: 2 channels  
8-bit timer:  
2 channels  
1 channel  
1 channel  
Watch timer  
Watchdog timer:  
Timer outputs  
A/D converter  
Serial interface  
5 (PWM output: 3)  
10-bit resolution × 8 channels  
UART mode supporting LIN-bus:  
3-wire serial I/O mode:  
UART mode:  
1 channel  
1 channel  
1 channel  
Vectored interrupt Internal  
15  
7
sources  
External  
Key interrupt  
Reset  
Key interrupt (INTKR) occurs by detecting falling edge of key input pins (KR0 to KR3).  
Reset using RESET pin  
Internal reset by watchdog timer  
Internal reset by clock monitor  
Internal reset by power-on-clear  
Internal reset by low-voltage detector  
Supply voltage  
VDD = 2.7 to 5.5 V  
Operating ambient temperature  
Standard products, (A) products: TA = 40 to +85°C  
(A1) products: TA = 40 to +110°C (µPD780111, 780112, 780113, and 780114 only)  
Package  
44-pin plastic LQFP (10 × 10)  
Note The internal flash memory capacity and internal high-speed RAM capacity can be changed using the internal  
memory size switching register (IMS).  
34  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 1 OUTLINE  
An outline of the timer is shown below.  
16-Bit Timer/  
8-Bit Timer/  
8-Bit Timers H0  
and H1  
Watch Timer  
Watchdog Timer  
Event Counter 00 Event Counters  
50 and 51  
Operation Interval timer  
mode  
1 channel  
1 channel  
1 output  
1 output  
2 channels  
2 channels  
2 outputs  
2 channels  
1 channelNote  
1 channel  
External event counter  
1
Function  
Timer output  
2 outputs  
PPG output  
PWM output  
2 outputs  
2 outputs  
Pulse width measurement  
Square-wave output  
Interrupt source  
2 inputs  
1 output  
2
2
2 outputs  
2
Note In the watch timer, the watch timer function and interval timer function can be used simultaneously.  
35  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.1 Pin Function List  
(1) Port pins  
Pin Name  
I/O  
Function  
After Reset Alternate Function  
P00  
P01  
I/O  
Port 0.  
Input  
TI000  
2-bit I/O port.  
TI010/TO00  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
I/O  
Port 1.  
Input  
SCK10/TxD0  
SI10/RxD0  
SO10  
8-bit I/O port.  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
TxD6  
RxD6  
TOH0  
TOH1/INTP5  
TI50/TO50  
ANI0 to ANI7  
P20 to P27  
Input  
I/O  
Port 2.  
Input  
Input  
8-bit input-only port.  
P30 to P32  
P33  
Port 3.  
INTP1 to INTP3  
4-bit I/O port.  
INTP4/TI51/TO51  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P60 to P63  
P70 to P73  
I/O  
I/O  
Port 6.  
Input  
Input  
4-bit I/O port (N-ch open drain).  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a mask  
option only for mask ROM versions.  
Port 7.  
KR0 to KR3  
4-bit I/O port.  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P120  
P130  
I/O  
Port 12.  
Input  
INTP0  
1-bit I/O port.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
Output  
Port 13.  
Output  
1-bit output-only port.  
36  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
(2) Non-port pins  
Pin Name  
I/O  
Input  
Function  
After Reset Alternate Function  
INTP0  
INTP1 to INTP3  
INTP4  
INTP5  
SI10  
External interrupt request input for which the valid edge (rising Input  
edge, falling edge, or both rising and falling edges) can be  
specified  
P120  
P30 to P32  
P33/TI51/TO51  
P16/TOH1  
P11/RxD0  
P12  
Input  
Serial data input to serial interface  
Input  
Input  
Input  
Input  
SO10  
Output  
I/O  
Serial data output from serial interface  
Clock input/output for serial interface  
Serial data input to asynchronous serial interface  
SCK10  
RxD0  
P10/TxD0  
P11/SI10  
P14  
Input  
RxD6  
TxD0  
Output  
Input  
Serial data output from asynchronous serial interface  
Input  
Input  
P10/SCK10  
P13  
TxD6  
TI000  
External count clock input to 16-bit timer/event counter 00  
Capture trigger input to capture registers (CR000, CR010) of  
16-bit timer/event counter 00  
P00  
TI010  
Capture trigger input to capture register (CR000) of 16-bit  
timer/event counter 00  
P01/TO00  
TO00  
TI50  
Output  
Input  
16-bit timer/event counter 00 output  
External count clock input to 8-bit timer/event counter 50  
External count clock input to 8-bit timer/event counter 51  
8-bit timer/event counter 50 output  
8-bit timer/event counter 51 output  
8-bit timer H0 output  
Input  
Input  
P01/TI010  
P17/TO50  
P33/TO51/INTP4  
P17/TI50  
P33/TI51/INTP4  
P15  
TI51  
TO50  
TO51  
TOH0  
TOH1  
ANI0 to ANI7  
AVREF  
AVSS  
Output  
Input  
8-bit timer H1 output  
P16/INTP5  
P20 to P27  
Input  
Input  
A/D converter analog input  
Input  
Input  
A/D converter reference voltage input  
A/D converter ground potential. Make the same potential as  
EVSS or VSS.  
KR0 to KR3  
RESET  
X1  
Input  
Key interrupt input  
P70 to P73  
Input  
System reset input  
Input  
Connecting crystal resonator for X1 input clock oscillation  
X2  
XT1  
Input  
Connecting crystal resonator for subsystem clock oscillation  
XT2  
VDD  
Positive power supply (except for ports)  
Positive power supply for ports  
EVDD  
VSS  
Ground potential (except for ports)  
Ground potential for ports  
EVSS  
IC  
Internally connected. Connect directly to EVSS or VSS.  
VPP  
Flash memory programming mode setting. High-voltage  
application for program write/verify. Connect directly to EVSS  
or VSS in normal operation mode.  
37  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.2 Description of Pin Functions  
2.2.1 P00 and P01 (port 0)  
P00 and P01 function as a 2-bit I/O port. These pins also function as timer I/O.  
The following operation modes can be specified in 1-bit units.  
(1) Port mode  
P00 and P01 function as a 2-bit I/O port. P00 to P06 can be set to input or output in 1-bit units using port mode  
register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).  
(2) Control mode  
P00 and P01 function as timer I/O.  
(a) TI000  
This is the pin for inputting an external count clock to 16-bit timer/event counter 00 and is also for inputting a  
capture trigger signal to the capture registers (CR000 or CR001) of 16-bit timer/event counter 00.  
(b) TI010  
This is the pin for inputting a capture trigger signal to the capture register (CR000) of 16-bit timer/event  
counter 00.  
(c) TO00  
This is timer output pin.  
38  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.2.2 P10 to P17 (port 1)  
P10 to P17 function as an 8-bit I/O port. These pins also function as pins for external interrupt request input, serial  
interface data I/O, clock I/O, and timer I/O.  
The following operation modes can be specified in 1-bit units.  
(1) Port mode  
P10 to P17 function as an 8-bit I/O port. P10 to P17 can be set to input or output in 1-bit units using port mode  
register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).  
(2) Control mode  
P10 to P17 function as external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.  
(a) SI10, SO10  
These are serial interface serial data I/O pins.  
(b) SCK10  
This is the serial interface serial clock I/O pin.  
(c) RxD0, RxD6, TxD0, and TxD6  
These are the serial data I/O pins of the asynchronous serial interface.  
(d) TI50  
This is the pin for inputting an external count clock to 8-bit timer/event counter 50.  
(e) TO50, TOH0, and TOH1  
These are timer output pins.  
(f) INTP5  
This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising  
and falling edges) can be specified.  
2.2.3 P20 to P27 (port 2)  
P20 to P27 function as an 8-bit input-only port. These pins also function as pins for A/D converter analog input.  
The following operation modes can be specified in 1-bit units.  
(1) Port mode  
P20 to P27 function as an 8-bit input-only port.  
(2) Control mode  
P20 to P27 function as A/D converter analog input pins (ANI0 to ANI7).  
39  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.2.4 P30 to P33 (port 3)  
P30 to P33 function as a 4-bit I/O port. These pins also function as pins for external interrupt request input and  
timer I/O.  
The following operation modes can be specified in 1-bit units.  
(1) Port mode  
P30 to P33 function as a 4-bit I/O port. P30 to P33 can be set to input or output in 1-bit units using port mode  
register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).  
(2) Control mode  
P30 to P33 function as external interrupt request input pins and timer I/O pins.  
(a) INTP1 to INTP4  
These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both  
rising and falling edges) can be specified.  
(b) TI51  
This is an external count clock input pin to 8-bit timer/event counter 51.  
(c) TO51  
This is a timer output pin.  
2.2.5 P60 to P63 (port 6)  
P60 to P63 function as a 4-bit I/O port. P60 to P63 can be set to input port or output port in 1-bit units using port  
mode register 6 (PM6).  
P60 to P63 are N-ch open-drain pins. Use of an on-chip pull-up resistor can be specified by a mask option only for  
mask ROM versions.  
2.2.6 P70 to P73 (port 7)  
P70 to P73 function as a 4-bit I/O port. These pins also function as key interrupt input pins.  
The following operation modes can be specified in 1-bit units.  
(1) Port mode  
P70 to P73 function as a 4-bit I/O port. P70 to P73 can be set to input or output in 1-bit units using port mode  
register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).  
(2) Control mode  
P70 to P73 function as key interrupt input pins.  
40  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.2.7 P120 (port 12)  
P120 functions as a 1-bit I/O port. This pin also functions as a pin for external interrupt request input.  
The following operation modes can be specified.  
(1) Port mode  
P120 functions as a 1-bit I/O port. P120 can be set to input or output using port mode register 12 (PM12). Use of  
an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).  
(2) Control mode  
P120 functions as an external interrupt request input pin (INTP0) for which the valid edge (rising edge, falling  
edge, or both rising and falling edges) can be specified.  
2.2.8 P130 (port 13)  
P130 functions as a 1-bit output-only port.  
2.2.9 AVREF  
This is the A/D converter reference voltage input pin.  
When A/D converter is not used, connect this pin to VDD.  
2.2.10 AVSS  
This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with  
the same potential as the EVSS pin or VSS pin.  
2.2.11 RESET  
This is the active-low system reset input pin.  
2.2.12 X1 and X2  
These are the pins for connecting a crystal resonator for X1 input clock oscillation.  
When supplying an external clock, input a signal to the X1 pin and input the inverse signal to the X2 pin.  
2.2.13 XT1 and XT2  
These are the pins for connecting a crystal resonator for subsystem clock oscillation.  
When supplying an external clock, input a signal to the XT1 pin and input the inverse signal to the XT2 pin.  
2.2.14 VDD and EVDD  
VDD is the positive power supply pin for other than ports.  
EVDD is the positive power supply pin for ports.  
2.2.15 VSS and EVSS  
VSS is the ground potential pin for other than ports.  
EVSS is the ground potential pin for ports.  
2.2.16 VPP (flash memory versions only)  
This is a pin for flash memory programming mode setting and high-voltage application for program write/verify.  
Connect directly to EVSS or VSS in the normal operation mode.  
41  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.2.17 IC (mask ROM versions only)  
The IC (Internally Connected) pin is provided to set the test mode to check the 78K0/KC1 Series at shipment.  
Connect it directly to EVSS or VSS pin with the shortest possible wire in the normal operation mode.  
When a potential difference is produced between the IC pin and the EVSS or VSS pin because the wiring between  
these two pins is too long or external noise is input to the IC pin, the user’s program may not operate normally.  
• Connect the IC pin directly to EVSS or VSS.  
EVSS or VSS IC  
As short as possible  
42  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
2.3 Pin I/O Circuits and Recommended Connection of Unused Pins  
Table 2-1 shows the types of pin I/O circuits and the recommended connections of unused pins.  
Refer to Figure 2-1 for the configuration of the I/O circuit of each type.  
Table 2-1. Pin I/O Circuit Types  
Pin Name  
I/O Circuit Type  
8-A  
I/O  
Recommended Connection of Unused Pins  
P00/TI000  
I/O  
Input: Independently connect to EVDD or EVSS via a resistor.  
Output: Leave open.  
P01/TI010/TO00  
P12/SO10  
5-A  
P13/TxD6  
P14/RxD6  
8-A  
5-A  
8-A  
P15/TOH0  
P16/TOH1/INTP5  
P17/TI50/TO50  
P20/ANI0 to P27/ANI7  
9-C  
8-A  
Input  
I/O  
Connect to EVDD or EVSS.  
P30/INTP1 to P32/INTP3  
Input: Independently connect to EVDD or EVSS via a resistor.  
Output: Leave open.  
P33/TI51/TO51/INTP4  
P60, P61 (Mask ROM version)  
13-S  
13-R  
13-W  
13-V  
8-A  
Input: Connect to EVSS.  
Output: Leave open and keep this pin to low.  
P60, P61 (Flash memory version)  
P62, P63 (Mask ROM version)  
P62, P63 (Flash memory version)  
P70/KR0 to P73/KR3  
Input: Independently connect to EVDD or EVSS via a resistor.  
Output: Leave open.  
P120/INTP0  
P130  
RESET  
XT1  
3-C  
2
Output  
Input  
Leave open.  
16  
Connect directly to EVDD or VDD.  
Leave open.  
XT2  
AVREF  
AVSS  
Connect directly to EVDD or VDD.  
Connect directly to EVSS or VSS.  
Connect directly to EVSS or VSS.  
IC  
VPP  
43  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
Figure 2-1. Pin I/O Circuit List (1/2)  
Type 2  
Type 8-A  
EVDD  
P-ch  
Pullup  
enable  
IN  
VDD  
Data  
P-ch  
IN/OUT  
Schmitt-triggered input with hysteresis characteristics  
Output  
disable  
N-ch  
Type 3-C  
Type 9-C  
EVDD  
P-ch  
Comparator  
+
P-ch  
N-ch  
IN  
AVSS  
Data  
OUT  
VREF  
(threshold voltage)  
N-ch  
Input  
enable  
Type 5-A  
Type 13-R  
EVDD  
Pullup  
enable  
P-ch  
IN/OUT  
V
DD  
Data  
Output disable  
N-ch  
Data  
P-ch  
IN/OUT  
Output  
disable  
N-ch  
Input  
enable  
44  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 2 PIN FUNCTIONS  
Figure 2-1. Pin I/O Circuit List (2/2)  
Type 13-S  
Type 13-W  
EVDD  
IN/OUT  
Mask  
option  
Data  
Output disable  
N-ch  
IN/OUT  
Data  
Output disable  
N-ch  
Input  
enable  
Middle-voltage input buffer  
Type 13-V  
Type 16  
EVDD  
Feedback  
cut-off  
Mask  
option  
IN/OUT  
P-ch  
Data  
Output disable  
N-ch  
XT1  
XT2  
Input  
enable  
Middle-voltage input buffer  
45  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.1 Memory Space  
Products in the 78K0/KC1 Series can each access a 64 KB memory space. Figures 3-1 to 3-5 show the memory  
maps.  
Caution Regardless of the internal memory capacity, the initial value of the internal memory size  
switching register (IMS) of all products in the 78K0/KC1 Series is fixed (CFH). Therefore, set the  
value corresponding to each product as indicated below.  
Table 3-1. Set Value of Internal Memory Size Switching Register (IMS)  
Internal Memory Size Switching Register (IMS)  
µPD780111  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
42H  
44H  
C6H  
C8H  
Value corresponding to mask ROM version  
46  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-1. Memory Map (µPD780111)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose  
registers  
FEE0H  
FEDFH  
32 × 8 bits  
Internal high-speed RAM  
512 × 8 bits  
FD00H  
FCFFH  
1FFFH  
Program area  
CALLF entry area  
Program area  
Data memory  
space  
1000H  
0FFFH  
Reserved  
0800H  
07FFH  
0080H  
007FH  
2000H  
1FFFH  
CALLT table area  
Vector table area  
0040H  
003FH  
Program  
memory  
space  
Internal ROM  
8192 × 8 bits  
0000H  
0000H  
47  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-2. Memory Map (µPD780112)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose  
registers  
FEE0H  
FEDFH  
32 × 8 bits  
Internal high-speed RAM  
512 × 8 bits  
FD00H  
FCFFH  
3FFFH  
Program area  
CALLF entry area  
Program area  
Data memory  
space  
1000H  
0FFFH  
Reserved  
0800H  
07FFH  
0080H  
007FH  
4000H  
3FFFH  
CALLT table area  
Vector table area  
0040H  
003FH  
Program  
memory  
space  
Internal ROM  
16384 × 8 bits  
0000H  
0000H  
48  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-3. Memory Map (µPD780113)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose  
registers  
FEE0H  
FEDFH  
32 × 8 bits  
Internal high-speed RAM  
1024 × 8 bits  
FB00H  
FAFFH  
5FFFH  
Program area  
CALLF entry area  
Program area  
Data memory  
space  
1000H  
0FFFH  
Reserved  
0800H  
07FFH  
0080H  
007FH  
6000H  
5FFFH  
CALLT table area  
Vector table area  
Program  
memory  
space  
0040H  
003FH  
Internal ROM  
24576 × 8 bits  
0000H  
0000H  
49  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-4. Memory Map (µPD780114)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose  
registers  
FEE0H  
FEDFH  
32 × 8 bits  
Internal high-speed RAM  
1024 × 8 bits  
FB00H  
FAFFH  
7FFFH  
Program area  
CALLF entry area  
Program area  
Data memory  
space  
1000H  
0FFFH  
Reserved  
0800H  
07FFH  
0080H  
007FH  
8000H  
7FFFH  
CALLT table area  
Vector table area  
0040H  
003FH  
Program  
memory  
space  
Internal ROM  
32768 × 8 bits  
0000H  
0000H  
50  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-5. Memory Map (µPD78F0114)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
FF00H  
FEFFH  
General-purpose  
registers  
FEE0H  
FEDFH  
32 × 8 bits  
Internal high-speed RAM  
1024 × 8 bits  
FB00H  
FAFFH  
7FFFH  
Program area  
CALLF entry area  
Program area  
Data memory  
space  
1000H  
0FFFH  
Reserved  
0800H  
07FFH  
0080H  
007FH  
8000H  
7FFFH  
CALLT table area  
Vector table area  
0040H  
003FH  
Program  
memory  
space  
Flash memory  
32768 × 8 bits  
0000H  
0000H  
51  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.1.1 Internal program memory space  
The internal program memory space stores the program and table data. Normally, it is addressed with the program  
counter (PC).  
78K0/KC1 Series products incorporate internal ROM (or flash memory), as shown below.  
Table 3-2. Internal Memory Capacity  
Part Number  
Internal ROM  
Structure  
Capacity  
µPD780111  
Mask ROM  
8192 × 8 bits (0000H to 1FFFH)  
16384 × 8 bits (0000H to 3FFFH)  
24576 × 8 bits (0000H to 5FFFH)  
32768 × 8 bits (0000H to 7FFFH)  
32768 × 8 bits (0000H to 7FFFH)  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
Flash memory  
The internal program memory space is divided into the following areas.  
(1) Vector table area  
The 64-byte area 0000H to 003FH is reserved as a vector table area. The program start addresses for branch  
upon RESET input or generation of each interrupt request are stored in the vector table area.  
Of the 16-bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd  
addresses.  
Table 3-3. Vector Table  
Vector Table Address  
0000H  
Interrupt Source  
Vector Table Address  
0018H  
Interrupt Source  
INTCSI10/INTST0  
INTTMH1  
INTTMH0  
INTTM50  
RESET input, POC, LVI,  
clock monitor, WDT  
001AH  
0004H  
0006H  
0008H  
000AH  
000CH  
000EH  
0010H  
0012H  
0014H  
0016H  
INTLVI  
INTP0  
001CH  
001EH  
INTP1  
0020H  
INTTM000  
INTTM010  
INTAD  
INTP2  
0022H  
INTP3  
0024H  
INTP4  
0026H  
INTSR0  
INTP5  
0028H  
INTWTI  
INTSRE6  
INTSR6  
INTST6  
002AH  
INTTM51  
002CH  
INTKR  
002EH  
INTWT  
(2) CALLT instruction table area  
The 64-byte area 0040H to 007FH can store the subroutine entry address of a 1-byte call instruction (CALLT).  
(3) CALLF instruction entry area  
The area 0800H to 0FFFH can perform a direct subroutine call with a 2-byte call instruction (CALLF).  
52  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.1.2 Internal data memory space  
78K0/KC1 Series products incorporate the following internal high-speed RAMs.  
Table 3-4. Internal High-Speed RAM Capacity  
Part Number  
µPD780111  
Internal Expansion RAM  
512 × 8 bits (FD00H to FEFFH)  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
1024 × 8 bits (FB00H to FEFFH)  
The 32-byte area FEE0H to FEFFH is assigned to four general-purpose register banks consisting of eight 8-bit  
registers per one bank.  
This area cannot be used as a program area in which instructions are written and executed.  
The internal high-speed RAM can also be used as a stack memory.  
3.1.3 Special function register (SFR) area  
On-chip peripheral hardware special function registers (SFRs) are allocated in the area FF00H to FFFFH (refer to  
Table 3-5 Special Function Register List in 3.2.3 Special Function Registers (SFRs)).  
Caution Do not access addresses to which SFRs are not assigned.  
53  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.1.4 Data memory addressing  
Addressing refers to the method of specifying the address of the instruction to be executed next or the address of  
the register or memory relevant to the execution of instructions.  
The address of an instruction to be executed next is addressed by the program counter (PC) (for details, see 3.3  
Instruction Address Addressing).  
Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the  
78K0/KC1 Series, based on operability and other considerations. For areas containing data memory in particular,  
special addressing methods designed for the functions of special function registers (SFR) and general-purpose  
registers are available for use. Data memory addressing is illustrated in Figures 3-6 to 3-10. For the details of each  
addressing mode, see 3.4 Operand Address Addressing.  
Figure 3-6. Data Memory Addressing (µPD780111)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
SFR addressing  
FF20H  
FF1FH  
FF00H  
FEFFH  
General-purpose registers  
Register addressing  
32 × 8 bits  
Short direct  
addressing  
FEE0H  
FEDFH  
Internal high-speed RAM  
512 × 8 bits  
FE20H  
FE1FH  
FD00H  
FCFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Based indexed  
addressing  
Reserved  
2000H  
1FFFH  
Internal ROM  
8192 × 8 bits  
0000H  
54  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-7. Data Memory Addressing (µPD780112)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
SFR addressing  
FF20H  
FF1FH  
FF00H  
FEFFH  
General-purpose registers  
Register addressing  
32 × 8 bits  
Short direct  
addressing  
FEE0H  
FEDFH  
Internal high-speed RAM  
512 × 8 bits  
FE20H  
FE1FH  
FD00H  
FCFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Based indexed  
addressing  
Reserved  
4000H  
3FFFH  
Internal ROM  
16384 × 8 bits  
0000H  
55  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-8. Data Memory Addressing (µPD780113)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
SFR addressing  
FF20H  
FF1FH  
FF00H  
FEFFH  
General-purpose registers  
Register addressing  
32 × 8 bits  
Short direct  
addressing  
FEE0H  
FEDFH  
Internal high-speed RAM  
1024 × 8 bits  
FE20H  
FE1FH  
FB00H  
FAFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
Based indexed  
addressing  
6000H  
5FFFH  
Internal ROM  
24576 × 8 bits  
0000H  
56  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-9. Data Memory Addressing (µPD780114)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
SFR addressing  
FF20H  
FF1FH  
FF00H  
FEFFH  
General-purpose registers  
Register addressing  
32 × 8 bits  
Short direct  
addressing  
FEE0H  
FEDFH  
Internal high-speed RAM  
1024 × 8 bits  
FE20H  
FE1FH  
FB00H  
FAFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
Based indexed  
addressing  
8000H  
7FFFH  
Internal ROM  
32768 × 8 bits  
0000H  
57  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-10. Data Memory Addressing (µPD78F0114)  
FFFFH  
Special function  
registers (SFRs)  
256 × 8 bits  
SFR addressing  
FF20H  
FF1FH  
FF00H  
FEFFH  
General-purpose registers  
Register addressing  
32 × 8 bits  
Short direct  
addressing  
FEE0H  
FEDFH  
Internal high-speed RAM  
1024 × 8 bits  
FE20H  
FE1FH  
FB00H  
FAFFH  
Direct addressing  
Register indirect  
addressing  
Based addressing  
Reserved  
Based indexed  
addressing  
8000H  
7FFFH  
Flash memory  
32768 × 8 bits  
0000H  
58  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.2 Processor Registers  
The 78K0/KC1 Series products incorporate the following processor registers.  
3.2.1 Control registers  
The control registers control the program sequence, statuses and stack memory. The control registers consist of a  
program counter (PC), a program status word (PSW) and a stack pointer (SP).  
(1) Program counter (PC)  
The program counter is a 16-bit register that holds the address information of the next program to be executed.  
In normal operation, the PC is automatically incremented according to the number of bytes of the instruction to be  
fetched. When a branch instruction is executed, immediate data and register contents are set.  
RESET input sets the reset vector table values at addresses 0000H and 0001H to the program counter.  
Figure 3-11. Format of Program Counter  
15  
0
PC  
PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
(2) Program status word (PSW)  
The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.  
Program status word contents are automatically stacked upon interrupt request generation or PUSH PSW  
instruction execution and are automatically restored upon execution of the RETB, RETI and POP PSW  
instructions.  
RESET input sets the PSW to 02H.  
Figure 3-12. Format of Program Status Word  
7
0
PSW  
IE  
Z
RBS1  
AC  
RBS0  
0
ISP  
CY  
59  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
(a) Interrupt enable flag (IE)  
This flag controls the interrupt request acknowledge operations of the CPU.  
When 0, the IE flag is set to the interrupt disabled (DI) state, and only non-maskable interrupt requests  
become acknowledgeable. Other interrupt requests are all disabled.  
When 1, the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgement is  
controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a  
priority specification flag.  
The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgement and is set (1) upon EI  
instruction execution.  
(b) Zero flag (Z)  
When the operation result is zero, this flag is set (1). It is reset (0) in all other cases.  
(c) Register bank select flags (RBS0 and RBS1)  
These are 2-bit flags to select one of the four register banks.  
In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction  
execution is stored.  
(d) Auxiliary carry flag (AC)  
If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other  
cases.  
(e) In-service priority flag (ISP)  
This flag manages the priority of acknowledgeable maskable vectored interrupts. When this flag is 0, low-  
level vectored interrupt requests specified by a priority specification flag register (PR0L, PR0H, PR1L) (refer  
to 15.3 (3) Priority specification flag registers (PR0L, PR0H, PR1L)) can not be acknowledged. Actual  
request acknowledgement is controlled by the interrupt enable flag (IE).  
(f) Carry flag (CY)  
This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value  
upon rotate instruction execution and functions as a bit accumulator during bit operation instruction  
execution.  
(3) Stack pointer (SP)  
This is a 16-bit register to hold the start address of the memory stack area. Only the internal high-speed RAM  
area can be set as the stack area.  
60  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Figure 3-13. Format of Stack Pointer  
15  
0
SP  
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
The SP is decremented ahead of write (save) to the stack memory and is incremented after read (restored) from  
the stack memory.  
Each stack operation saves/restores data as shown in Figures 3-14 and 3-15.  
Caution Since RESET input makes the SP contents undefined, be sure to initialize the SP before  
instruction execution.  
Figure 3-14. Data to Be Saved to Stack Memory  
Interrupt and  
BRK instructions  
PUSH rp instruction  
CALL, CALLF, and  
CALLT instructions  
_
_
_
_
SP SP  
SP  
3
3
2
1
_
_
_
_
_
_
SP SP  
SP  
2
2
1
SP SP  
SP  
2
2
1
PC7 to PC0  
PC15 to PC8  
PSW  
Register pair lower  
Register pair upper  
SP  
PC7 to PC0  
SP  
SP  
SP  
PC15 to PC8  
SP  
SP  
SP  
Figure 3-15. Data to Be Restored from Stack Memory  
RETI and RETB  
instructions  
POP rp instruction  
RET instruction  
SP  
SP + 1  
Register pair lower  
Register pair upper  
SP  
SP + 1  
SP  
PC7 to PC0  
PC7 to PC0  
PC15 to PC8  
PSW  
SP + 1  
SP + 2  
PC15 to PC8  
SP SP + 2  
SP SP + 2  
SP SP + 3  
61  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.2.2 General-purpose registers  
General-purpose registers are mapped at particular addresses (FEE0H to FEFFH) of the data memory. The  
general-purpose registers consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).  
Each register can be used as an 8-bit register, and two 8-bit registers can also be used in a pair as a 16-bit register  
(AX, BC, DE, and HL).  
These registers can be described in terms of function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL) and  
absolute names (R0 to R7 and RP0 to RP3).  
Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of  
the 4-register bank configuration, an efficient program can be created by switching between a register for normal  
processing and a register for interrupts for each bank.  
Figure 3-16. Configuration of General-Purpose Registers  
(a) Absolute Name  
16-bit processing  
RP3  
8-bit processing  
R7  
FEFFH  
FEF8H  
BANK0  
BANK1  
BANK2  
BANK3  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
RP2  
RP1  
RP0  
FEF0H  
FEE8H  
FEE0H  
15  
0
7
0
(b) Function Name  
16-bit processing  
8-bit processing  
H
FEFFH  
FEF8H  
BANK0  
BANK1  
BANK2  
BANK3  
HL  
DE  
BC  
L
D
E
B
C
A
X
FEF0H  
FEE8H  
AX  
FEE0H  
15  
0
7
0
62  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.2.3 Special Function Registers (SFRs)  
Unlike a general-purpose register, each special function register has a special function.  
SFRs are allocated to the FF00H to FFFFH area.  
Special function registers can be manipulated like general-purpose registers, using operation, transfer and bit  
manipulation instructions. The manipulatable bit units, 1, 8, and 16, depend on the special function register type.  
Each manipulation bit unit can be specified as follows.  
1-bit manipulation  
Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit).  
This manipulation can also be specified with an address.  
8-bit manipulation  
Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr).  
This manipulation can also be specified with an address.  
16-bit manipulation  
Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp).  
When specifying an address, describe an even address.  
Table 3-5 gives a list of the special function registers. The meanings of items in the table are as follows.  
Symbol  
Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined  
by the header file sfrbit.hin the CC78K0. When using the RA78K0, ID78K0-NS, ID78K0, or SM78K0, symbols  
can be written as an instruction operand.  
R/W  
Indicates whether the corresponding special function register can be read or written.  
R/W: Read/write enable  
R:  
Read only  
W: Write only  
Manipulatable bit units  
Indicates the manipulatable bit unit (1, 8, or 16). indicates a bit unit for which manipulation is not possible.  
After reset  
Indicates each register status upon RESET input.  
63  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Table 3-5. Special Function Register List (1/3)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Manipulatable Bit Unit  
After  
Reset  
1 Bit  
8 Bits  
16 Bits  
FF00H  
FF01H  
FF02H  
FF03H  
FF06H  
FF07H  
FF08H  
FF09H  
FF0AH  
FF0BH  
FF0CH  
FF0DH  
FF0FH  
FF10H  
FF11H  
FF12H  
FF13H  
FF14H  
FF15H  
FF16H  
FF17H  
FF18H  
FF19H  
FF1AH  
FF1BH  
FF1FH  
FF20H  
FF21H  
FF23H  
FF26H  
FF27H  
FF28H  
FF29H  
FF2AH  
FF2BH  
FF2CH  
FF30H  
FF31H  
FF33H  
FF37H  
Port 0  
P0  
P1  
P2  
P3  
P6  
P7  
R/W  
R/W  
R
00H  
00H  
Port 1  
Port 2  
00H  
Port 3  
R/W  
R/W  
R/W  
R
00H  
Port 6  
00H  
Port 7  
00H  
A/D conversion result register  
ADCR  
Undefined  
Receive buffer register 6  
Transmit buffer register 6  
Port 12  
RXB6  
TXB6  
P12  
R
R/W  
R/W  
R/W  
R
FFH  
FFH  
00H  
Port 13  
P13  
00H  
Serial I/O shift register 10  
16-bit timer counter 00  
SIO10  
TM00  
00H  
R
0000H  
16-bit timer capture/compare register 000  
16-bit timer capture/compare register 010  
CR000  
CR010  
R/W  
R/W  
0000H  
0000H  
8-bit timer counter 50  
TM50  
CR50  
CMP00  
CMP10  
CMP01  
CMP11  
TM51  
PM0  
R
00H  
00H  
00H  
00H  
00H  
00H  
00H  
FFH  
FFH  
FFH  
FFH  
FFH  
00H  
00H  
00H  
00H  
FFH  
00H  
00H  
00H  
00H  
8-bit timer compare register 50  
8-bit timer H compare register 00  
8-bit timer H compare register 10  
8-bit timer H compare register 01  
8-bit timer H compare register 11  
8-bit timer counter 51  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Port mode register 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port mode register 1  
PM1  
Port mode register 3  
PM3  
Port mode register 6  
PM6  
Port mode register 7  
PM7  
A/D converter mode register  
Analog input channel specification register  
Power-fail comparison mode register  
Power-fail comparison threshold register  
Port mode register 12  
ADM  
ADS  
PFM  
PFT  
PM12  
PU0  
Pull-up resistor option register 0  
Pull-up resistor option register 1  
Pull-up resistor option register 3  
Pull-up resistor option register 7  
PU1  
PU3  
PU7  
64  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Table 3-5. Special Function Register List (2/3)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Manipulatable Bit Unit  
After  
Reset  
1 Bit  
8 Bits  
16 Bits  
FF3CH  
FF41H  
FF43H  
FF48H  
FF49H  
FF4FH  
FF50H  
Pull-up resistor option register 12  
8-bit timer compare register 51  
PU12  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00H  
00H  
00H  
00H  
00H  
00H  
01H  
CR51  
TMC51  
EGP  
8-bit timer mode control register 51  
External interrupt rising edge enable register  
External interrupt falling edge enable register  
Input switch control register  
EGN  
ISC  
Asynchronous serial interface operation mode  
register 6  
ASIM6  
FF53H  
FF55H  
Asynchronous serial interface reception error  
status register 6  
ASIS6  
ASIF6  
R
R
00H  
00H  
Asynchronous serial interface transmission  
status register 6  
FF56H  
FF57H  
FF58H  
FF69H  
FF6AH  
FF6BH  
FF6CH  
FF6DH  
FF6EH  
FF6FH  
FF70H  
Clock selection register 6  
CKSR6  
BRGC6  
ASICL6  
TMHMD0  
TCL50  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00H  
FFH  
16H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
01H  
Baud rate generator control register 6  
Asynchronous serial interface control register 6  
8-bit timer H mode register 0  
Timer clock selection register 50  
8-bit timer mode control register 50  
8-bit timer H mode register 1  
TMC50  
TMHMD1  
TMCYC1  
KRM  
8-bit timer H carrier control register 1  
Key return mode register  
Watch timer operation mode register  
WTM  
Asynchronous serial interface operation mode  
register 0  
ASIM0  
FF71H  
FF72H  
FF73H  
Baud rate generator control register 0  
Receive buffer register 0  
BRGC0  
RXB0  
R/W  
R
1FH  
FFH  
00H  
Asynchronous serial interface reception error  
status register 0  
ASIS0  
R
FF74H  
FF80H  
FF81H  
FF84H  
FF8CH  
FF98H  
FF99H  
FFA0H  
FFA1H  
FFA2H  
FFA3H  
FFA4H  
FFA9H  
Transmit shift register 0  
TXS0  
W
FFH  
00H  
Serial operation mode register 10  
Serial clock selection register 10  
Transmit buffer register 10  
Timer clock selection register 51  
Watchdog timer mode register  
Watchdog timer enable register  
Ring-OSC mode register  
CSIM10  
CSIC10  
SOTB10  
TCL51  
WDTM  
WDTE  
RCM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
00H  
Undefined  
00H  
67H  
9AH  
00H  
Main clock mode register  
MCM  
00H  
Main OSC control register  
MOC  
00H  
Oscillation stabilization time counter status register OSTC  
00H  
Oscillation stabilization time select register  
Clock monitor mode register  
OSTS  
CLM  
R/W  
R/W  
05H  
00H  
65  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
Table 3-5. Special Function Register List (3/3)  
Address  
Special Function Register (SFR) Name  
Symbol  
R/W  
Manipulatable Bit Unit  
After  
Reset  
1 Bit  
8 Bits  
16 Bits  
FFACH  
FFBAH  
FFBBH  
FFBCH  
FFBDH  
FFBEH  
FFBFH  
FFE0H  
FFE1H  
FFE2H  
FFE4H  
FFE5H  
FFE6H  
FFE8H  
FFE9H  
FFEAH  
FFF0H  
FFFBH  
Reset control flag register  
RESF  
R
R/W  
00HNote 1  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
FFH  
FFH  
FFH  
FFH  
FFH  
FFH  
CFH  
00H  
16-bit timer mode control register 00  
Prescaler mode register 00  
TMC00  
PRM00  
CRC00  
TOC00  
LVIM  
R/W  
Capture/compare control register 00  
16-bit timer output control register 00  
Low-voltage detection register  
R/W  
R/W  
R/W  
Low-voltage detection level selection register  
Interrupt request flag register 0L  
Interrupt request flag register 0H  
Interrupt request flag register 1L  
Interrupt mask flag register 0L  
LVIS  
R/W  
IF0  
IF0L R/W  
IF0H R/W  
R/W  
IF1L  
MK0 MK0L R/W  
MK0H R/W  
Interrupt mask flag register 0H  
Interrupt mask flag register 1L  
MK1L  
R/W  
Priority specification flag register 0L  
Priority specification flag register 0H  
Priority specification flag register 1L  
Internal memory size switching registerNote 2  
Processor clock control register  
PR0 PR0L R/W  
PR0H R/W  
PR1L  
IMS  
R/W  
R/W  
R/W  
PCC  
Notes 1. This value varies depending on the reset source.  
2. The default value of IMS is fixed (CFH) in all products in the 78K0/KC1 Series regardless of the internal  
memory capacity. Therefore, set the following value to each product.  
Internal Memory Size Switching Register (IMS)  
µPD780111  
µPD780112  
µPD780113  
µPD780114  
µPD78F0114  
42H  
44H  
C6H  
C8H  
Value corresponding to mask ROM version  
66  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.3 Instruction Address Addressing  
An instruction address is determined by program counter (PC) contents and is normally incremented (+1 for each  
byte) automatically according to the number of bytes of an instruction to be fetched each time another instruction is  
executed. When a branch instruction is executed, the branch destination information is set to the PC and branched by  
the following addressing (for details of instructions, refer to 78K/0 Series Instructions User’s Manual (U12326E).  
3.3.1 Relative addressing  
[Function]  
The value obtained by adding 8-bit immediate data (displacement value: jdisp8) of an instruction code to the  
start address of the following instruction is transferred to the program counter (PC) and branched. The  
displacement value is treated as signed twos complement data (128 to +127) and bit 7 becomes a sign bit.  
In other words, relative addressing consists of relative branching from the start address of the following  
instruction to the 128 to +127 range.  
This function is carried out when the BR $addr16 instruction or a conditional branch instruction is executed.  
[Illustration]  
15  
15  
0
0
PC indicates the start address  
of the instruction after the BR instruction.  
...  
PC  
+
8
7
6
S
α
jdisp8  
15  
0
PC  
When S = 0, all bits of  
When S = 1, all bits of  
α
α
are 0.  
are 1.  
67  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.3.2 Immediate addressing  
[Function]  
Immediate data in the instruction word is transferred to the program counter (PC) and branched.  
This function is carried out when the CALL !addr16 or BR !addr16 or CALLF !addr11 instruction is executed.  
CALL !addr16 and BR !addr16 instructions can be branched to the entire memory space. The CALLF !addr11  
instruction is branched to the 0800H to 0FFFH area.  
[Illustration]  
In the case of CALL !addr16 and BR !addr16 instructions  
7
0
CALL or BR  
Low Addr.  
High Addr.  
15  
8 7  
0
PC  
In the case of CALLF !addr11 instruction  
7
6
4
3
0
fa108  
CALLF  
fa70  
15  
11 10  
1
8 7  
0
PC  
0
0
0
0
68  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.3.3 Table indirect addressing  
[Function]  
Table contents (branch destination address) of the particular location to be addressed by bits 1 to 5 of the  
immediate data of an operation code are transferred to the program counter (PC) and branched.  
This function is carried out when the CALLT [addr5] instruction is executed.  
This instruction references the address stored in the memory table from 40H to 7FH, and allows branching to  
the entire memory space.  
[Illustration]  
7
6
1
5
1
0
1
Operation code  
1
ta40  
15  
8
0
7
0
6
1
5
1
0
0
Effective address  
0
0
0
0
0
0
0
7
Memory (Table)  
Low Addr.  
0
High Addr.  
Effective address+1  
15  
8
7
0
PC  
3.3.4 Register addressing  
[Function]  
Register pair (AX) contents to be specified with an instruction word are transferred to the program counter (PC)  
and branched.  
This function is carried out when the BR AX instruction is executed.  
[Illustration]  
7
0
8
7
7
0
0
rp  
A
X
15  
PC  
69  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4 Operand Address Addressing  
The following methods are available to specify the register and memory (addressing) to undergo manipulation  
during instruction execution.  
3.4.1 Implied addressing  
[Function]  
The register that functions as an accumulator (A and AX) among the general-purpose registers is automatically  
(implicitly) addressed.  
Of the 78K0/KC1 Series instruction words, the following instructions employ implied addressing.  
Instruction  
MULU  
Register to Be Specified by Implied Addressing  
A register for multiplicand and AX register for product storage  
AX register for dividend and quotient storage  
DIVUW  
ADJBA/ADJBS  
ROR4/ROL4  
A register for storage of numeric values that become decimal correction targets  
A register for storage of digit data that undergoes digit rotation  
[Operand format]  
Because implied addressing can be automatically employed with an instruction, no particular operand format is  
necessary.  
[Description example]  
In the case of MULU X  
With an 8-bit × 8-bit multiply instruction, the product of A register and X register is stored in AX. In this example,  
the A and AX registers are specified by implied addressing.  
70  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.2 Register addressing  
[Function]  
The general-purpose register to be specified is accessed as an operand with the register bank select flags  
(RBS0 to RBS1) and the register specify codes (Rn and RPn) of an operation code.  
Register addressing is carried out when an instruction with the following operand format is executed. When an  
8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.  
[Operand format]  
Identifier  
Description  
X, A, C, B, E, D, L, H  
AX, BC, DE, HL  
r
rp  
rand rpcan be described by absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C,  
B, E, D, L, H, AX, BC, DE, and HL).  
[Description example]  
MOV A, C; when selecting C register as r  
Operation code  
0
1
1
0
0
0
1
0
Register specify code  
INCW DE; when selecting DE register pair as rp  
Operation code  
1
0
0
0
0
1
0
0
Register specify code  
71  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.3 Direct addressing  
[Function]  
The memory to be manipulated is directly addressed with immediate data in an instruction word becoming an  
operand address.  
[Operand format]  
Identifier  
addr16  
Description  
Label or 16-bit immediate data  
[Description example]  
MOV A, !0FE00H; when setting !addr16 to FE00H  
Operation code  
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
1
0
1
1
0
1
0
0
0
OP code  
00H  
FEH  
[Illustration]  
7
0
OP code  
addr16 (lower)  
addr16 (upper)  
Memory  
72  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.4 Short direct addressing  
[Function]  
The memory to be manipulated in the fixed space is directly addressed with 8-bit data in an instruction word.  
This addressing is applied to the 256-byte space FE20H to FF1FH. Internal RAM and special function registers  
(SFRs) are mapped at FE20H to FEFFH and FF00H to FF1FH, respectively.  
The SFR area (FF00H to FF1FH) where short direct addressing is applied is a part of the overall SFR area.  
Ports that are frequently accessed in a program and compare and capture registers of the timer/event counter  
are mapped in this area, allowing SFRs to be manipulated with a small number of bytes and clocks.  
When 8-bit immediate data is at 20H to FFH, bit 8 of an effective address is set to 0. When it is at 00H to 1FH,  
bit 8 is set to 1. Refer to the [Illustration] shown below.  
[Operand format]  
Identifier  
saddr  
Description  
Label or FE20H to FF1FH immediate data  
saddrp  
Label or FE20H to FF1FH immediate data (even address only)  
[Description example]  
MOV 0FE30H, #50H; when setting saddr to FE30H and immediate data to 50H  
Operation code  
0
0
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
OP code  
30H (saddr-offset)  
50H (immediate data)  
[Illustration]  
7
0
OP code  
saddr-offset  
Short direct memory  
15  
1
8 7  
0
Effective address  
1
1
1
1
1
1
α
When 8-bit immediate data is 20H to FFH, α = 0  
When 8-bit immediate data is 00H to 1FH, α = 1  
73  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.5 Special function register (SFR) addressing  
[Function]  
A memory-mapped special function register (SFR) is addressed with 8-bit immediate data in an instruction word.  
This addressing is applied to the 240-byte spaces FF00H to FFCFH and FFE0H to FFFFH. However, the SFRs  
mapped at FF00H to FF1FH can be accessed with short direct addressing.  
[Operand format]  
Identifier  
sfr  
Description  
Special function register name  
sfrp  
16-bit manipulatable special function register name (even address  
only)  
[Description example]  
MOV PM0, A; when selecting PM0 (FF20H) as sfr  
Operation code  
1
0
1
0
1
1
1
0
0
0
1
0
1
0
0
0
OP code  
20H (sfr-offset)  
[Illustration]  
7
0
OP code  
sfr-offset  
SFR  
15  
1
8 7  
0
Effective address  
1
1
1
1
1
1
1
74  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.6 Register indirect addressing  
[Function]  
Register pair contents specified by a register pair specify code in an instruction word and by a register bank  
select flag (RBS0 and RBS1) serve as an operand address for addressing the memory. This addressing can be  
carried out for all the memory spaces.  
[Operand format]  
Identifier  
Description  
[DE], [HL]  
[Description example]  
MOV A, [DE]; when selecting [DE] as register pair  
Operation code  
1
0
0
0
0
1
0
1
[Illustration]  
16  
8
7
7
0
0
DE  
D
E
The memory address  
specified with the  
register pair DE  
Memory  
The contents of the memory  
addressed are transferred.  
7
0
A
75  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.7 Based addressing  
[Function]  
8-bit immediate data is added as offset data to the contents of the base register, that is, the HL register pair in  
the register bank specified by the register bank select flag (RBS0 and RBS1), and the sum is used to address  
the memory. Addition is performed by expanding the offset data as a positive number to 16 bits. A carry from  
the 16th bit is ignored. This addressing can be carried out for all the memory spaces.  
[Operand format]  
Identifier  
Description  
[HL + byte]  
[Description example]  
MOV A, [HL + 10H]; when setting byte to 10H  
Operation code  
1
0
0
0
1
0
0
1
1
0
1
0
1
0
0
0
76  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 3 CPU ARCHITECTURE  
3.4.8 Based indexed addressing  
[Function]  
The B or C register contents specified in an instruction word are added to the contents of the base register, that  
is, the HL register pair in the register bank specified by the register bank select flag (RBS0 and RBS1), and the  
sum is used to address the memory.  
Addition is performed by expanding the B or C register contents as a positive number to 16 bits. A carry from  
the 16th bit is ignored. This addressing can be carried out for all the memory spaces.  
[Operand format]  
Identifier  
Description  
[HL + B], [HL + C]  
[Description example]  
In the case of MOV A, [HL + B]  
Operation code  
1
0
1
0
1
0
1
1
3.4.9 Stack addressing  
[Function]  
The stack area is indirectly addressed with the stack pointer (SP) contents.  
This addressing method is automatically employed when the PUSH, POP, subroutine call and return  
instructions are executed or the register is saved/reset upon generation of an interrupt request.  
With stack addressing, only the internal high-speed RAM area can be accessed.  
[Description example]  
In the case of PUSH DE  
Operation code  
1
0
1
1
0
1
0
1
77  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.1 Port Functions  
78K0/KC1 Series products are provided with the ports shown in Figure 4-1, which enable variety of control  
operations. The functions of each port are shown in Table 4-1.  
In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the  
alternate functions, refer to CHAPTER 2 PIN FUNCTIONS.  
Figure 4-1. Port Types  
P30  
P00  
P01  
Port 0  
Port 1  
Port 3  
Port 6  
Port 7  
P33  
P60  
P10  
P63  
P70  
P17  
P20  
P73  
Port 12  
Port 13  
P120  
P130  
Port 2  
P27  
78  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Table 4-1. Port Functions  
Pin Name  
I/O  
Function  
After Reset Alternate Function  
P00  
P01  
I/O  
I/O  
Port 0.  
Input  
TI000  
2-bit I/O port.  
TI010/TO00  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
Port 1.  
Input  
SCK10/TxD0  
SI10/RxD0  
SO10  
8-bit I/O port.  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
TxD6  
RxD6  
TOH0  
TOH1/INTP5  
TI50/TO50  
ANI0 to ANI7  
P20 to P27  
Input  
I/O  
Port 2.  
Input  
Input  
8-bit input-only port.  
P30 to P32  
P33  
Port 3.  
INTP1 to INTP3  
4-bit I/O port.  
INTP4/TI51/TO51  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P60 to P63  
P70 to P73  
I/O  
I/O  
Port 6.  
Input  
Input  
4-bit I/O port (N-ch open drain).  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a mask  
option only for mask ROM versions.  
Port 7.  
KR0 to KR3  
4-bit I/O port.  
Input/output can be specified in 1-bit units.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
P120  
P130  
I/O  
Port 12.  
Input  
INTP0  
1-bit I/O port.  
Use of an on-chip pull-up resistor can be specified by a  
software setting.  
Output  
Port 13.  
Output  
1-bit output-only port.  
79  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2 Port Configuration  
Ports consist of the following hardware.  
Table 4-2. Port Configuration  
Configuration  
Item  
Control registers  
Port mode register (PM0, PM1, PM3, PM6, PM7, PM12)  
Pull-up resistor option register (PU0, PU1, PU3, PU7, PU12)  
Input switch control register (ISC)  
Port  
Total: 32 (CMOS I/O: 19, CMOS input: 8, CMOS output: 1, N-ch open drain I/O: 4)  
Pull-up resistor  
Mask ROM version  
Total: 23 (software control: 19, mask option specification: 4)  
Flash memory version: Total: 19  
80  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.1 Port 0  
Port 0 is a 2-bit I/O port with an output latch. Port 0 can be set to the input mode or output mode in 1-bit units  
using port mode register 0 (PM0). When the P00 and P01 pins are used as an input port, use of an on-chip pull-up  
resistor can be specified by pull-up resistor option register 0 (PU0).  
This port can also be used for timer I/O.  
RESET input sets port 0 to input mode.  
Figures 4-2 and 4-3 show block diagrams of port 0.  
Figure 4-2. Block Diagram of P00  
EVDD  
WRPU  
PU00  
P-ch  
Alternate function  
RD  
WRPORT  
Output latch  
P00/TI000  
(P00)  
WRPM  
PM00  
PU0: Pull-up resistor option register 0  
PM:  
RD:  
Port mode register  
Port 0 read signal  
WR: Port 0 write signal  
81  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-3. Block Diagram of P01  
EVDD  
WRPU  
PU01  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P01)  
P01/TI010/TO00  
WRPM  
PM01  
Alternate  
function  
PU0: Pull-up resistor option register 0  
PM:  
RD:  
Port mode register  
Port 0 read signal  
WR: Port 0 write signal  
82  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.2 Port 1  
Port 1 is an 8-bit I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units  
using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up  
resistor can be specified by pull-up resistor option register 1 (PU1).  
This port can also be used for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.  
RESET input sets port 1 to input mode.  
Figures 4-4 to 4-9 show block diagrams of port 1.  
Caution When P10/SCK10/TxD0, P11/SI10/RxD0, and P12/SO10 are used as general-purpose ports, do not  
write to serial clock selection register 10 (CSIC10).  
Figure 4-4. Block Diagram of P10  
EVDD  
WRPU  
PU10  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
P10/SCK10/TxD0  
(P10)  
WRPM  
PM10  
Alternate  
function  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
83  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-5. Block Diagram of P11 and P14  
EVDD  
WRPU  
PU11, PU14  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P11, P14)  
P11/SI10/RxD0,  
P14/RxD6  
WRPM  
PM11, PM14  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
84  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-6. Block Diagram of P12  
EVDD  
WRPU  
PU12  
P-ch  
RD  
WRPORT  
Output latch  
(P12)  
P12/SO10  
WRPM  
PM12  
Alternate  
function  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
85  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-7. Block Diagram of P13  
EVDD  
WRPU  
PU13  
P-ch  
RD  
WRPORT  
Output latch  
(P13)  
P13/TxD6  
WRPM  
PM13  
Alternate  
function  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
86  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-8. Block Diagram of P15  
EVDD  
WRPU  
PU15  
P-ch  
RD  
WRPORT  
Output latch  
(P15)  
P15/TOH0  
WRPM  
PM15  
Alternate  
function  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
87  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-9. Block Diagram of P16 and P17  
EVDD  
WRPU  
PU16, PU17  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P16, P17)  
P16/TOH1/INTP5,  
P17/TI50/TO50  
WRPM  
PM16, PM17  
Alternate  
function  
PU1: Pull-up resistor option register 1  
PM:  
RD:  
Port mode register  
Port 1 read signal  
WR: Port 1 write signal  
88  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.3 Port 2  
Port 2 is an 8-bit input-only port.  
This port can also be used for A/D converter analog input.  
Figure 4-10 shows a block diagram of port 2.  
Figure 4-10. Block Diagram of P20 to P27  
RD  
+
P20/ANI0 to P27/ANI7  
A/D converter  
VREF  
RD:  
Port 2 read signal  
89  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.4 Port 3  
Port 3 is a 4-bit I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units  
using port mode register 3 (PM3). When used as an input port, use of an on-chip pull-up resistor can be specified by  
pull-up resistor option register 3 (PU3).  
This port can also be used for external interrupt request input.  
RESET input sets port 3 to input mode.  
Figures 4-11 and 4-12 show block diagrams of port 3.  
Figure 4-11. Block Diagram of P30 to P32  
EVDD  
WRPU  
PU30 to PU32  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P30 to P32)  
P30/INTP1 to  
P32/INTP3  
WRPM  
PM30 to PM32  
PU3: Pull-up resistor option register 3  
PM:  
RD:  
Port mode register  
Port 3 read signal  
WR: Port 3 write signal  
90  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Figure 4-12. Block Diagram of P33  
EVDD  
WRPU  
PU33  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P33)  
P33/INTP4/TI51/TO51  
WRPM  
PM33  
Alternate  
function  
PU3: Pull-up resistor option register 3  
PM:  
RD:  
Port mode register  
Port 3 read signal  
WR: Port 3 write signal  
91  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.5 Port 6  
Port 6 is a 4-bit I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units  
using port mode register 6 (PM6).  
This port has the following functions for pull-up resistors. These functions differ depending on whether the product  
is a mask ROM version or a flash memory version.  
Table 4-3. Pull-up Resistor of Port 6  
Pins P60 to P63  
Mask ROM version  
An on-chip pull-up resistor can be  
specified in 1-bit units by mask option  
Flash memory version  
On-chip pull-up resistors are not provided  
RESET input sets port 6 to input mode.  
Figure 4-13 shows block diagram of port 6.  
Figure 4-13. Block Diagram of P60 to P63  
EVDD  
Mask option resistor  
RD  
Mask ROM versions only  
No pull-up resistor for  
flash memory versions  
Selector  
WRPORT  
Output latch  
(P60 to P63)  
P60 to P63  
WRPM  
PM60 to PM63  
PM:  
RD:  
WR: Port 6 write signal  
Port mode register  
Port 6 read signal  
92  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.6 Port 7  
Port 7 is a 4-bit I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units  
using port mode register 7 (PM7). When the P70 to P73 pins are used as an input port, use of an on-chip pull-up  
resistor can be specified by pull-up resistor option register 7 (PU7).  
This port can also be used for key return input.  
RESET input sets port 7 to input mode.  
Figure 4-14 shows a block diagram of port 7.  
Figure 4-14. Block Diagram of P70 to P73  
EVDD  
WRPU  
PU70 to PU73  
P-ch  
Alternate function  
RD  
WRPORT  
Output latch  
(P70 to P73)  
P70/KR0 to  
P73/KR3  
WRPM  
PM70 to PM73  
PU7: Pull-up resistor option register 7  
PM:  
RD:  
Port mode register  
Port 7 read signal  
WR: Port 7 write signal  
93  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.7 Port 12  
Port 12 is a 1-bit I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units  
using port mode register 12 (PM12). When used as an input port, use of an on-chip pull-up resistor can be specified  
by pull-up resistor option register 12 (PU12).  
This port can also be used for external interrupt input.  
RESET input sets port 12 to input mode.  
Figure 4-15 shows a block diagram of port 12.  
Figure 4-15. Block Diagram of P120  
EVDD  
WRPU  
PU120  
P-ch  
Alternate  
function  
RD  
WRPORT  
Output latch  
(P120)  
P120/INTP0  
WRPM  
PM120  
PU12: Pull-up resistor option register 12  
PM:  
RD:  
Port mode register  
Port 12 read signal  
WR: Port 12 write signal  
94  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.2.8 Port 13  
Port 13 is a 1-bit output-only port.  
Figure 4-16 shows a block diagram of port 13.  
Figure 4-16. Block Diagram of P130  
RD  
WRPORT  
Output latch  
(P130)  
P130  
RD:  
Port 13 read signal  
WD: Port 13 write signal  
95  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.3 Registers Controlling Port Function  
Port functions are controlled by the following three types of registers.  
Port mode registers (PM0, PM1, PM3, PM6, PM7, PM12)  
Pull-up resistor option registers (PU0, PU1, PU3, PU7, PU12)  
Input switch control register (ISC)  
(1) Port mode registers (PM0, PM1, PM3, PM6, PM7, and PM12)  
These registers specify input or output mode for the port in 1-bit units.  
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
When port pins are used as alternate-function pins, set the port mode register and output latch as shown in Table  
4-4.  
Figure 4-17. Format of Port Mode Register  
Symbol  
PM0  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
Address After reset  
R/W  
R/W  
PM01  
PM00  
FF20H  
FF21H  
FF23H  
FF26H  
FF27H  
FF2CH  
FFH  
FFH  
FFH  
FFH  
FFH  
FFH  
7
6
5
4
3
2
1
0
PM1  
PM3  
PM17  
PM16  
PM15  
PM14  
PM13  
PM12  
PM11  
PM10  
R/W  
R/W  
R/W  
R/W  
R/W  
7
1
6
1
5
1
4
1
3
2
1
0
PM33  
PM32  
PM31  
PM30  
7
1
6
1
5
1
4
1
3
2
1
0
PM6  
PM63  
PM62  
PM61  
PM60  
7
1
6
1
5
1
4
1
3
2
1
0
PM7  
PM73  
PM72  
PM71  
PM70  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PM12  
PM120  
PMmn  
Pmn pin I/O mode selection  
(m = 0, 1, 3, 6, 7, 12; n = 0 to 7)  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
96  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
Table 4-4. Settings of Port Mode Register and Output Latch When Using Alternate Function  
Pin Name  
Alternate Function  
Function Name  
PM××  
P××  
I/O  
Input  
P00  
TI000  
TI010  
TO00  
SCK10  
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
0
1
1
1
0
1
1
×
×
0
×
1
1
×
×
0
1
×
0
0
×
×
0
×
×
×
0
×
×
P01  
Input  
Output  
Input  
P10  
Output  
Output  
Input  
TxD0  
P11  
SI10  
RxD0  
Input  
P12  
P13  
P14  
P15  
P16  
SO10  
Output  
Output  
Input  
TxD6  
RxD6  
TOH0  
TOH1  
INTP5  
TI50  
Output  
Output  
Input  
P17  
Input  
TO50  
Output  
Input  
P30 to P32  
P33  
INTP1 to INTP3  
INTP4  
TI51  
Input  
Input  
TO51  
Output  
Input  
P70 to P73  
P120  
KR0 to KR3  
INTP0  
Input  
Remark ×:  
Dont care  
PM××: Port mode register  
P××: Port output latch  
97  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
(2) Pull-up resistor option registers (PU0, PU1, PU3, PU7, and PU12)  
These registers specify whether the on-chip pull-up resistors of P00, P01, P10 to P17, P30 to P33, P70 to P73, or  
P120 are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode  
of the pins to which the use of an on-chip pull-up resistor has been specified in PU0, PU1, PU3, PU7, and PU12.  
On-chip pull-up resistors cannot be used for bits set to output mode and bits used as alternate-function output  
pins, regardless of the settings of PU0, PU1, PU3, PU7, and PU12.  
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears these registers to 00H.  
Figure 4-18. Format of Pull-up Resistor Option Register  
Symbol  
PU0  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
Address After reset  
R/W  
R/W  
PU01  
PU00  
FF30H  
FF31H  
FF33H  
FF37H  
FF3CH  
00H  
00H  
00H  
00H  
00H  
7
6
5
4
3
2
1
0
PU1  
PU3  
PU17  
PU16  
PU15  
PU14  
PU13  
PU12  
PU11  
PU10  
R/W  
R/W  
R/W  
R/W  
7
0
6
0
5
0
4
0
3
2
1
0
PU33  
PU32  
PU31  
PU30  
7
0
6
0
5
0
4
0
3
2
1
0
PU7  
PU73  
PU72  
PU71  
PU70  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PU12  
PU120  
PUmn  
Pmn pin on-chip pull-up resistor selection  
(m = 0, 1, 3, 7, 12; n = 0 to 7)  
0
1
On-chip pull-up resistor not connected  
On-chip pull-up resistor connected  
98  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
(3) Input switch control register (ISC)  
This register is used to receive a status signal transmitted from the master during LIN (Local Interconnect  
Network) reception. The input signal is switched by setting ISC.  
For the port configuration during LIN reception, refer to Figure 13-3 Port Configuration for LIN Reception  
Operation in CHAPTER 13 SERIAL INTERFACE UART6.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 4-19. Format of Input Switch Control Register (ISC)  
Address: FF4FH After reset: 00H R/W  
Symbol  
ISC  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ISC1  
ISC0  
ISC1  
Input signal selection  
0
1
TI000 input  
RxD6 input  
ISC0  
Input signal selection  
0
1
INTP0 input  
RxD6 input  
99  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 4 PORT FUNCTIONS  
4.4 Port Function Operations  
Port operations differ depending on whether the input or output mode is set, as shown below.  
4.4.1 Writing to I/O port  
(1) Output mode  
A value is written to the output latch by a transfer instruction, and the output latch contents are output from the  
pin.  
Once data is written to the output latch, it is retained until data is written to the output latch again.  
(2) Input mode  
A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does  
not change.  
Once data is written to the output latch, it is retained until data is written to the output latch again.  
4.4.2 Reading from I/O port  
(1) Output mode  
The output latch contents are read by a transfer instruction. The output latch contents do not change.  
(2) Input mode  
The pin status is read by a transfer instruction. The output latch contents do not change.  
4.4.3 Operations on I/O port  
(1) Output mode  
An operation is performed on the output latch contents, and the result is written to the output latch. The output  
latch contents are output from the pins.  
Once data is written to the output latch, it is retained until data is written to the output latch again.  
(2) Input mode  
The output latch contents are undefined, but since the output buffer is off, the pin status does not change.  
Caution In the case of 1-bit memory manipulation instruction, although a single bit is manipulated, the  
port is accessed as an 8-bit unit. Therefore, on a port with a mixture of input and output pins,  
the output latch contents for pins specified as input are undefined, even for bits other than the  
manipulated bit.  
100  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.1 Functions of Clock Generator  
The clock generator generates the clock to be supplied to the CPU and peripheral hardware.  
The following three system clock oscillators are available.  
X1 oscillator  
The X1 oscillator oscillates a clock of 2.0 to 10.0 MHz. Oscillation can be stopped by executing the STOP  
instruction or setting the main OSC control register (MOC) and processor clock control register (PCC).  
Ring-OSC oscillator  
The Ring-OSC oscillator oscillates a clock of 240 kHz (TYP.). Oscillation can be stopped by setting the Ring-  
OSC mode register (RCM) when “Can be stopped by software” is set by a mask option and the X1 input clock is  
used as the CPU clock.  
Subsystem clock oscillator  
The subsystem clock oscillator oscillates a clock of 32.768 kHz. Oscillation cannot be stopped. When  
subsystem clock oscillator is not used, setting not to use the on-chip feedback resistor is possible using the  
processor clock control register (PCC), and the power consumption can be reduced in the STOP mode.  
101  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.2 Configuration of Clock Generator  
The clock generator consists of the following hardware.  
Table 5-1. Configuration of Clock Generator  
Configuration  
Item  
Control registers  
Processor clock control register (PCC)  
Ring-OSC mode register (RCM)  
Main clock mode register (MCM)  
Main OSC control register (MOC)  
Oscillation stabilization time counter status register (OSTC)  
Oscillation stabilization time select register (OSTS)  
Oscillator  
X1 oscillator  
Ring-OSC oscillator  
Subsystem clock oscillator  
Figure 5-1. Block Diagram of Clock Generator  
Internal bus  
Oscillation  
Main clock  
Main OSC  
control  
register  
(MOC)  
Processor clock  
control register  
(PCC)  
stabilization time  
mode register  
select register  
(MCM)  
MCS MCM0  
(OSTS)  
OSTS2 OSTS1 OSTS0  
3
CLS CSS PCC2 PCC1 PCC0  
MCC CLS  
MSTOP  
4
X1 oscillation  
STOP  
C
P
U
CPU clock  
(fCPU  
Controller  
stabilization time counter  
)
Oscillation  
stabilization  
time counter  
status  
MOST MOST MOST MOST MOST  
11  
13  
14  
15  
16  
register  
(OSTC)  
X1  
X2  
fX  
X1 oscillator  
fXP  
Prescaler  
Operation  
clock switch  
f
2
X
f
X
f
X
fX  
22 23 24  
Ring-OSC  
oscillator  
fR  
Watch clock  
Prescaler  
Subsystem  
clock oscillator  
XT1  
XT2  
1/2  
Clock to peripheral  
hardware  
fXT  
Mask option  
1: Cannot be stopped  
0. Can be stopped  
Prescaler  
FRC  
8-bit timer H1,  
watchdog timer  
RSTOP  
Ring-OSC mode  
register (RCM)  
Internal bus  
102  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.3 Registers Controlling Clock Generator  
The following six registers are used to control the clock generator.  
Processor clock control register (PCC)  
Ring-OSC mode register (RCM)  
Main clock mode register (MCM)  
Main OSC control register (MOC)  
Oscillation stabilization time counter status register (OSTC)  
Oscillation stabilization time select register (OSTS)  
(1) Processor clock control register (PCC)  
The PCC register is used to select the CPU clock, the division ratio, main system clock oscillator operation/stop  
and whether to use the on-chip feedback resistor of the subsystem clock oscillator.  
The PCC is set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears PCC to 00H.  
Figure 5-2. Subsystem Clock Feedback Resistor  
FRC  
P-ch  
Feedback resistor  
XT1  
XT2  
103  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Figure 5-3. Format of Processor Clock Control Register (PCC)  
Address: FFFBH After reset: 00H R/WNote 1  
Symbol  
PCC  
7
6
5
4
3
0
2
1
0
MCC  
FRC  
CLS  
CSS  
PCC2  
PCC1  
PCC0  
MCC  
Control of X1 oscillator operationNote 2  
0
1
Oscillation possible  
Oscillation stopped  
FRC  
Subsystem clock feedback resistor selectionNote 3  
0
1
On-chip feedback resistor used  
On-chip feedback resistor not used  
CLS  
0
CPU clock status  
X1 input clock or Ring-OSC clock  
Subsystem clock  
1
CSSNote 4  
PCC2  
PCC1  
PCC0  
CPU Clock (fCPU) Selection  
MCM0 = 0 MCM0 = 1  
0
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
fX  
fR  
fXP  
fX/2  
fX/22  
fX/23  
fX/24  
fXT/2  
fR/2  
fXP/2  
fR/22  
fR/23  
fR/24  
fXP/22  
fXP/23  
fXP/24  
1
Other than above  
Setting prohibited  
Notes 1. Bit 5 is read-only.  
2. When the CPU is operating on the subsystem clock, MCC should be used to stop the X1 oscillator  
operation. When the CPU is operating on the Ring-OSC clock, use bit 7 (MSTOP) of the main OSC  
control register (MOC) to stop the X1 oscillator operation (this cannot be set by MCC). A STOP  
instruction should not be used.  
3. The feedback resistor is required to adjust the bias point of the oscillation waveform to close to the  
middle of the power supply voltage. Setting FRC to 1 can further reduce the current consumption in  
the STOP mode, but only when the subsystem clock is not used.  
4. Be sure to switch CSS from 1 to 0 when bits 1 (MCS) and 0 (MCM0) of the main clock mode register  
(MCM) are 1.  
Caution Be sure to set bit 3 to 0.  
Remarks 1. MCM0: Bit 0 of the main clock mode register (MCM)  
2. fX:  
Main system clock oscillation frequency (X1 input clock oscillation frequency or Ring-OSC  
clock oscillation frequency)  
3. fR:  
Ring-OSC clock oscillation frequency  
4. fXP:  
5. fXT:  
X1 input clock oscillation frequency  
Subsystem clock oscillation frequency  
104  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/KC1 Series. Therefore, the  
relationship between the CPU clock (fCPU) and minimum instruction execution time is as shown in the Table 5-2.  
Table 5-2. Relationship Between CPU Clock and Minimum Instruction Execution Time  
CPU Clock (fCPU)  
Minimum Instruction Execution Time: 2/fCPU  
Ring-OSC ClockNote  
X1 Input ClockNote  
Subsystem Clock  
(at 10 MHz Operation)  
(at 240 kHz (TYP.) Operation)  
(at 32.768 kHz Operation)  
fX  
0.2 µs  
8.3 µs (TYP.)  
fX/2  
0.4 µs  
0.8 µs  
1.6 µs  
3.2 µs  
16.6 µs (TYP.)  
33.2 µs (TYP.)  
66.4 µs (TYP.)  
132.8 µs (TYP.)  
fX/22  
fX/23  
fX/24  
fXT/2  
122.1 µs  
Note The main clock mode register (MCM) is used to set the CPU clock (X1 input clock/Ring-OSC clock) (see  
Figure 5-5).  
(2) Ring-OSC mode register (RCM)  
This register sets the operation mode of Ring-OSC.  
This register is valid when Can be stopped by softwareis set for Ring-OSC by a mask option, and the X1 input  
clock or subsystem clock is selected as the CPU clock. If Cannot be stoppedis selected for Ring-OSC by a  
mask option, settings for this register are invalid.  
RCM can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 5-4. Format of Ring-OSC Mode Register (RCM)  
Address: FFA0H After reset: 00H R/W  
Symbol  
RCM  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
RSTOP  
RSTOP  
Ring-OSC oscillating/stopped  
0
1
Ring-OSC oscillating  
Ring-OSC stopped  
Caution Make sure that the bit 1 (MCS) of the main clock mode register (MCM) is 1 before  
setting RSTOP.  
105  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
(3) Main clock mode register (MCM)  
This register sets the CPU clock (X1 input clock/Ring-OSC clock).  
MCM can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 5-5. Format of Main Clock Mode Register (MCM)  
Address: FFA1H After reset: 00H R/WNote  
Symbol  
MCM  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
MCS  
MCM0  
MCS  
CPU clock status  
0
1
Operates with Ring-OSC clock  
Operates with X1 input clock  
MCM0  
Selection of clock supplied to CPU  
0
1
Ring-OSC clock  
X1 input clock  
Note Bit 1 is read-only.  
Cautions 1. When Ring-OSC clock is selected as the clock to be supplied to the CPU, the  
divided clock of the Ring-OSC oscillator output (fX) is supplied to the peripheral  
hardware (fX = 240 kHz (TYP.)).  
Operation of the peripheral hardware with Ring-OSC clock cannot be  
guaranteed. Therefore, when Ring-OSC clock is selected as the clock supplied  
to the CPU, do not use peripheral hardware. In addition, stop the peripheral  
hardware before switching the clock supplied to the CPU from the X1 input clock  
to the Ring-OSC clock. Note, however, that the following peripheral hardware  
can be used when the CPU operates on the Ring-OSC clock.  
Watchdog timer  
Clock monitor  
8-bit timer H1 when fR/27 is selected as count clock  
Peripheral hardware selecting external clock as the clock source  
(Except when external count clock of TM00 is selected (TI000 valid edge))  
2. Set MCS = 1 and MCM0 = 1 before switching subsystem clock operation to X1  
input clock operation (bit 4 (CSS) of the processor clock control register (PCC)  
is changed from 1 to 0).  
106  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
(4) Main OSC control register (MOC)  
This register selects the operation mode of the X1 input clock.  
This register is used to stop the X1 oscillator operation when the CPU is operating with the Ring-OSC clock.  
Therefore, this register is valid only when the CPU is operating with the Ring-OSC clock.  
MOC can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 5-6. Format of Main OSC Control Register (MOC)  
Address: FFA2H After reset: 00H R/W  
Symbol  
MOC  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
MSTOP  
MSTOP  
Control of X1 oscillator operation  
0
1
X1 oscillator operating  
X1 oscillator stopped  
Cautions 1. Make sure that bit 1 (MCS) of the main clock mode register (MCM) is 1 before  
setting MSTOP.  
2. To stop X1 oscillation during operation with the subsystem clock, set bit 7 (MCC)  
of the processor clock control register (PCC) to 1 (setting by MSTOP is not  
possible).  
(5) Oscillation stabilization time counter status register (OSTC)  
This is the status register of the X1 input clock oscillation stabilization time counter. If the Ring-OSC clock is used  
as the CPU clock, the X1 input clock oscillation stabilization time can be checked.  
OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.  
RESET input, the STOP instruction, MSTOP = 1, and MCC = 1 clear OSTC to 00H.  
Figure 5-7. Format of Oscillation Stabilization Time Counter Status Register (OSTC)  
Address: FFA3H After reset: 00H  
R
Symbol  
OSTC  
7
0
6
0
5
0
4
3
2
1
0
MOST11  
MOST13  
MOST14  
MOST15  
MOST16  
MOST11  
MOST13  
MOST14  
MOST15  
MOST16  
Oscillation stabilization time status  
211/fXP min. (204.8 µs min.)  
213/fXP min. (819.2 µs min.)  
214/fXP min. (1.64 ms min.)  
215/fXP min. (3.27 ms min.)  
216/fXP min. (6.55 ms min.)  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
Caution After the above time has elapsed, the bits are set to 1 in order from MOST11 and  
remain 1.  
Remarks 1. Values in parentheses are for operation with fXP = 10 MHz.  
2. fXP: X1 input clock oscillation frequency  
107  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
(6) Oscillation stabilization time select register (OSTS)  
This register is used to select the X1 oscillation stabilization wait time when STOP mode is released.  
The wait time set by OSTS is valid only after STOP mode is released with the X1 input clock selected as CPU  
clock. After STOP mode is released with Ring-OSC selected as CPU clock, the oscillation stabilization time must  
be confirmed by OSTC.  
OSTS can be set by an 8-bit memory manipulation instruction.  
RESET input sets OSTS to 05H.  
Figure 5-8. Format of Oscillation Stabilization Time Select Register (OSTS)  
Address: FFA4H After reset: 05H R/W  
Symbol  
OSTS  
7
0
6
0
5
0
4
0
3
0
2
1
0
OSTS2  
OSTS1  
OSTS0  
OSTS2  
OSTS1  
OSTS0  
Oscillation stabilization time selection  
0
0
0
1
1
0
1
0
1
0
1
211/fXP (204.8 µs)  
213/fXP (819.2 µs)  
214/fXP (1.64 ms)  
215/fXP (3.27 ms)  
216/fXP (6.55 ms)  
Setting prohibited  
1
1
0
0
Other than above  
Cautions 1. If the STOP mode is entered and then released while the Ring-OSC is being used  
as the CPU clock, set the oscillation stabilization time as follows.  
Desired OSTC oscillation stabilization time Oscillation stabilization time  
set by OSTS  
The X1 oscillation stabilization time counter counts up to the oscillation  
stabilization time set by OSTS. Note, therefore, that only the status up to the  
oscillation stabilization time set by OSTS is set to OSTC after STOP mode is  
released.  
2. The wait time when STOP mode is released does not include the time after STOP  
mode release until clock oscillation starts (“a” below) regardless of whether  
STOP mode is released by RESET input or interrupt generation.  
STOP mode release  
X1 pin voltage  
waveform  
a
VSS  
Remarks 1. Values in parentheses are for operation with fXP = 10 MHz.  
2. fXP: X1 input clock oscillation frequency  
108  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.4 System Clock Oscillator  
5.4.1 X1 oscillator  
The X1 oscillator oscillates with a crystal resonator or ceramic resonator (Standard: 10 MHz) connected to the X1  
and X2 pins.  
External clocks can be input to the X1 oscillator. In this case, input the clock signal to the X1 pin and input the  
inverse signal to the X2 pin.  
Figure 5-9 shows the external circuit of the X1 oscillator.  
Figure 5-9. External Circuit of X1 Oscillator  
(a) Crystal, ceramic oscillation  
(b) External clock  
IC  
X1  
External  
clock  
X1  
X2  
VSS  
X2  
Crystal resonator or  
ceramic resonator  
5.4.2 Subsystem clock oscillator  
The subsystem clock oscillator oscillates with a crystal resonator (Standard: 32.768 kHz) connected to the XT1  
and XT2 pins.  
External clocks can be input to the subsystem clock oscillator. In this case, input the clock signal to the XT1 pin  
and the inverse signal to the XT2 pin.  
Figure 5-10 shows an external circuit of the subsystem clock oscillator.  
Figure 5-10. External Circuit of Subsystem Clock Oscillator  
(a) Crystal oscillation  
(b) External clock  
External  
clock  
IC  
XT1  
XT1  
XT2  
32.768  
kHz  
XT2  
VSS  
Cautions are listed on the next page.  
109  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Cautions 1. When using the X1 oscillator and subsystem clock oscillator, wire as follows in the area  
enclosed by the broken lines in the Figure 5-11 to avoid an adverse effect from wiring  
capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as V . Do  
not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
Note that the subsystem clock oscillator is designed as a low-amplitude circuit for reducing  
power consumption.  
Figure 5-11 shows examples of incorrect resonator connection.  
Figure 5-11. Examples of Incorrect Resonator Connection (1/2)  
(a) Too long wiring  
(b) Crossed signal line  
PORT  
IC  
X2  
X1  
IC  
X2  
X1  
VSS  
VSS  
Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert  
resistors in series on the XT2 side.  
110  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Figure 5-11. Examples of Incorrect Resonator Connection (2/2)  
(c) Wiring near high alternating current  
(d) Current flowing through ground line of oscillator  
(potential at points A, B, and C fluctuates)  
V
DD0  
Pmn  
X1  
IC  
X2  
X1  
IC  
X2  
A
B
C
High current  
V
SS  
V
SS  
(e) Signals are fetched  
IC  
X2  
X1  
VSS  
Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert  
resistors in series on the XT2 side.  
Cautions 2. When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1,  
resulting in malfunctioning.  
To prevent that from occurring, it is recommended to wire X2 and XT1 so that they are not in  
parallel, and to connect the IC pin between X2 and XT1 directly to V  
.
111  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.4.3 When subsystem clock is not used  
If it is not necessary to use the subsystem clock for low power consumption operations and watch operations,  
connect the XT1 and XT2 pins as follows.  
XT1: Connect to EVDD or VDD  
XT2: Leave open  
In this state, however, some current may leak via the on-chip feedback resistor of the subsystem clock oscillator  
when the X1 input clock and Ring-OSC clock stop. To minimize leakage current, the above on-chip feedback resistor  
can be set not to be used via bit 6 (FRC) of the processor clock control register (PCC). In this case also, connect the  
XT1 and XT2 pins as described above.  
5.4.4 Ring-OSC oscillator  
Ring-OSC oscillator is incorporated in the µPD780111, 780112, 780113, 780114, and 78F0114.  
Can be stopped by softwareor Cannot be stoppedcan be selected by a mask option. The Ring-OSC clock  
always oscillates after RESET release (240 kHz (TYP.)).  
5.4.5 Prescaler  
The prescaler generates various clocks by dividing the X1 oscillator output (fX) when the X1 input clock is selected  
as the clock to be supplied to the CPU.  
Caution When the Ring-OSC clock is selected as the clock supplied to the CPU, the prescaler generates  
various clocks by dividing the Ring-OSC oscillator output (fX) (fX = 240 kHz (TYP.)).  
5.5 Clock Generator Operation  
The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby  
mode.  
X1 input clock fXP  
Ring-OSC clock fR  
Subsystem clock fXT  
CPU clock fCPU  
Clock to peripheral hardware  
The CPU starts operation when the on-chip Ring-OSC oscillator starts outputting after reset release in the  
78K0/KC1 Series, thus enabling the following.  
(1) Enhancement of security function  
When the X1 input clock is set as the CPU clock by the default setting, the device cannot operate if the X1 input  
clock is damaged or badly connected and therefore does not operate after reset is released. However, the start  
clock of the CPU is the on-chip Ring-OSC clock, so the device can be started by the Ring-OSC clock after reset  
release by the clock monitor (detection of X1 input clock stop). Consequently, the system can be safely shut  
down by performing a minimum operation, such as acknowledging a reset source by software or performing  
safety processing when there is a malfunction.  
112  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
(2) Improvement of performance  
Because the CPU can be started without waiting for the X1 input clock oscillation stabilization time, the total  
performance can be improved.  
A timing diagram of the CPU default start using Ring-OSC is shown in Figure 5-12.  
Figure 5-12. Timing Diagram of CPU Default Start Using Ring-OSC  
X1 input clock  
(fXP  
)
Ring-OSC clock  
(f  
R)  
Subsystem clock  
(fXT  
)
RESET  
Switched by software  
X1 input clock  
Ring-OSC clock  
CPU clock  
Operation  
stopped: 17/f  
R
Note  
X1 oscillation stabilization time: 211/fXP to 216/fXP  
Note Check using the oscillation stabilization time counter status register (OSTC).  
(a) When the RESET signal is generated, bit 0 of the main clock mode register (MCM) is set to 0 and the Ring-  
OSC clock is set as the CPU clock. However, a clock is supplied to the CPU after 17 clocks of the Ring-OSC  
clock have elapsed after RESET release (or clock supply to the CPU stops for 17 clocks). During the  
RESET period, oscillation of the X1 input clock and Ring-OSC clock is stopped.  
(b) After RESET release, the CPU clock can be switched from the Ring-OSC clock to the X1 input clock using bit  
0 (MCM0) of the main clock mode register (MCM) after the X1 input clock oscillation stabilization time has  
elapsed. At this time, check the oscillation stabilization time using the oscillation stabilization time counter  
status register (OSTC) before switching the CPU clock. The CPU clock status can be checked using bit 1  
(MCS) of MCM.  
(c) Ring-OSC can be set to stopped/oscillating using the Ring-OSC mode register (RCM) when Can be stopped  
by softwareis selected for the Ring-OSC by a mask option, if the X1 input or subsystem clock is used as the  
CPU clock. Make sure that MCS is 1 at this time.  
(d) When Ring-OSC is used as the CPU clock, the X1 input clock can be set to stopped/oscillating using the  
main OSC control register (MOC). Make sure that MCS is 0 at this time.  
When the subsystem clock is used as the CPU clock, whether the X1 input clock stops or oscillates can be  
set by the processor clock control register (PCC). In addition, HALT mode can be used during operation with  
the subsystem clock, but STOP mode cannot be used (subsystem clock oscillation cannot be stopped by the  
STOP instruction).  
113  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
(e) Select the X1 input clock oscillation stabilization time (211/fXP, 213/fXP, 214/fXP, 215/fXP, 216/fXP) using the oscillation  
stabilization time select register (OSTS) when releasing STOP mode while X1 input clock is being used as  
the CPU clock. In addition, when releasing STOP mode while RESET is released and Ring-OSC is being  
used as the CPU clock, check the X1 input clock oscillation stabilization time using the oscillation  
stabilization time counter status register (OSTC).  
A status transition diagram of this product is shown in Figure 5-13, and the relationship between the operation  
clocks in each operation status and between the oscillation control flag and oscillation status of each clock are shown  
in Tables 5-3 and 5-4, respectively.  
Figure 5-13. Status Transition Diagram (1/4)  
(1) When Ring-OSC can be stopped by softwareis selected by mask option  
(when subsystem clock is not used)  
HALTNote 4  
HALT instruction  
Interrupt  
HALT  
instruction  
Interrupt  
Interrupt  
HALT  
instruction  
HALT  
Interrupt  
instruction  
Status 4  
CPU clock: fXP  
XP: Oscillating  
: Oscillation stopped  
MSTOP = 1Note 3  
Status 3  
CPU clock: fXP  
XP: Oscillating  
Status 1  
CPU clock: f  
XP: Oscillation stopped  
RSTOP = 0  
MCM0 = 0  
Status 2  
R
CPU clock: f  
XP: Oscillating  
: Oscillating  
R
f
f
f
f
f
f
fR  
RSTOP = 1Note 1  
MCM0 = 1Note 2  
MSTOP = 0  
STOP  
R
: Oscillating  
f : Oscillating  
R
R
Interrupt  
instruction  
STOP  
Interrupt  
STOP  
instruction  
instruction  
Interrupt  
Interrupt  
STOP  
instruction  
STOPNote 4  
Reset release  
ResetNote 5  
Notes 1. When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register  
(MCM) is 1.  
2. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock  
oscillation stabilization time status using the oscillation stabilization time counter status register  
(OSTC).  
3. When shifting from status 2 to status 1, make sure that MCS is 0.  
4. When Ring-OSC can be stopped by softwareis selected by a mask option, the watchdog timer  
stops operating in the HALT and STOP modes, regardless of the source clock of the watchdog timer.  
However, oscillation of Ring-OSC does not stop even in the HALT and STOP modes if RSTOP = 0.  
5. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)  
114  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Figure 5-13. Status Transition Diagram (2/4)  
(2) When Ring-OSC can be stopped by softwareis selected by mask option  
(when subsystem clock is used)  
Status 6  
CPU clock: fXT  
f
: Oscillation  
XP stopped  
f
: Oscillating/  
Roscillation  
stopped  
Interrupt  
MCC = 0  
MCC = 1  
HALT  
instruction  
Status 5  
CPU clock: fXT  
XP: Oscillating  
: Oscillating/  
oscillation  
stopped  
Interrupt  
f
HALTNote 4  
fR  
HALT  
instruction  
HALT  
instruction  
Interrupt  
HALT  
instruction  
CSS = 0Note 6  
HALT  
instruction  
Interrupt  
CSS = 1Note 5  
Interrupt  
Status 4  
CPU clock: fXP  
XP: Oscillating  
: Oscillation  
stopped  
Status 1  
Status 2  
CPU clock: f  
XP: Oscillating  
: Oscillating  
Status 3  
CPU clock: fXP  
XP: Oscillating  
RSTOP = 0  
MCM0 = 0  
MSTOP = 1Note 3  
CPU clock: f  
R
R
f
XP: Oscillation  
f
f
f
f
f
stopped  
MCM0 = 1Note 2  
MSTOP = 0  
RSTOP = 1Note 1  
fR  
R
R
: Oscillating  
fR  
: Oscillating  
STOP  
instruction  
STOP  
instruction  
Interrupt  
Interrupt  
STOP  
instruction  
Interrupt  
Reset release  
STOPNote 4  
ResetNote 7  
Notes 1. When shifting from status 3 to status 4, make sure that bit 1 (MCS) of the main clock mode register  
(MCM) is 1.  
2. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock  
oscillation stabilization time status using the oscillation stabilization time counter status register  
(OSTC).  
3. When shifting from status 2 to status 1, make sure that MCS is 0.  
4. When Ring-OSC can be stopped by softwareis selected by a mask option, the watchdog timer  
stops operating in the HALT and STOP modes, regardless of the source clock of the watchdog timer.  
However, oscillation of Ring-OSC does not stop even in the HALT and STOP modes if RSTOP = 0.  
5. Shifting to status 5 (subsystem clock operation) can be performed only from status 3 or 4 (X1 input  
clock operation).  
6. Shifting to status 1 or status 2 from status 5 is not possible.  
7. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)  
115  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Figure 5-13. Status Transition Diagram (3/4)  
(3) When Ring-OSC cannot be stoppedis selected by mask option  
(when subsystem clock is not used)  
HALT  
HALT  
instruction  
Interrupt  
HALT instruction  
Interrupt  
Interrupt  
HALT  
instruction  
Status 3  
CPU clock: fXP  
XP: Oscillating  
: Oscillating  
Status 1  
CPU clock: f  
fXP: Oscillation stopped  
Status 2  
CPU clock: f  
XP: Oscillating  
: Oscillating  
MCM0 = 0  
MSTOP = 1Note 2  
R
R
f
f
f
f
MCM0 = 1Note 1  
MSTOP = 0  
R
f : Oscillating  
R
R
STOP  
instruction  
Interrupt  
Interrupt  
STOP  
STOP  
instruction  
Interrupt  
instruction  
STOPNote 3  
Reset release  
ResetNote 4  
Notes 1. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock  
oscillation stabilization time status using the oscillation stabilization time counter status register  
(OSTC).  
2. When shifting from status 2 to status 1, make sure that MCS is 0.  
3. The watchdog timer operates using Ring-OSC even in STOP mode if Ring-OSC cannot be stopped”  
is selected by a mask option. Ring-OSC division can be selected as the count source of 8-bit timer  
H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer  
overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer  
overflow after STOP instruction execution.  
4. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)  
116  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Figure 5-13. Status Transition Diagram (4/4)  
(4) When Ring-OSC cannot be stoppedis selected by mask option  
(when subsystem clock is used)  
Status 5  
CPU clock: fXT  
fXP: Oscillation stopped  
fR: Oscillating/  
oscillation stopped  
Interrupt  
MCC = 0  
MCC = 1  
HALT instruction  
Interrupt  
Status 4  
CPU clock: fXT  
fXP: Oscillating  
fR: Oscillating/  
oscillation stopped  
HALT  
HALT instruction  
HALT instruction  
HALT  
instruction  
Interrupt  
Interrupt  
CSS = 0Note 5  
HALT  
instruction  
Interrupt  
CSS = 1Note 4  
Status 1  
CPU clock: fR  
fXP: Oscillation stopped  
fR: Oscillating  
Status 3  
MCM0 = 0  
MSTOP = 1Note 2  
Status 2  
CPU clock: fXP  
fXP: Oscillating  
fR: Oscillating  
CPU clock: fR  
fXP: Oscillating  
fR: Oscillating  
MCM0 = 1Note 1  
MSTOP = 0  
STOP  
instruction  
Interrupt  
STOP  
instruction  
STOP  
instruction  
Interrupt  
Interrupt  
STOPNote 3  
Reset release  
ResetNote 6  
Notes 1. Before shifting from status 2 to status 3 after reset and STOP are released, check the X1 input clock  
oscillation stabilization time status using the oscillation stabilization time counter status register  
(OSTC).  
2. When shifting from status 2 to status 1, make sure that MCS is 0.  
3. The watchdog timer operates using Ring-OSC even in STOP mode if Ring-OSC cannot be stopped”  
is selected by a mask option. Ring-OSC division can be selected as the count source of 8-bit timer  
H1 (TMH1), so clear the watchdog timer using the TMH1 interrupt request before watchdog timer  
overflow. If this processing is not performed, an internal reset signal is generated at watchdog timer  
overflow after STOP instruction execution.  
4. Shifting to status 4 (subsystem clock operation) can be performed only from status 3 (X1 input clock  
operation).  
5. Shifting to status 1 or status 2 from status 4 is not possible.  
6. All reset sources (RESET input, POC, LVI, clock monitor, and WDT)  
117  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
Table 5-3. Relationship Between Operation Clocks in Each Operation Status  
Status  
X1  
Ring-OSC Oscillator  
Subsystem  
Clock  
CPU Clock  
After  
Prescaler Clock Supplied  
to Peripherals  
Oscillator  
Oscillator  
Release  
Note 1  
Note 2  
MCM0 = 0  
MCM0 = 1  
Operation  
Mode  
Reset  
STOP  
HALT  
RSTOP = 0 RSTOP = 1  
Stopped  
Stopped  
Stopped  
Ring-OSC  
Note 3  
Stopped  
Stopped  
Ring-OSC  
Oscillating  
Oscillating  
Stopped  
Oscillating  
Oscillating  
Note 4  
X1  
Caution The RSTOP setting is valid only when Can be stopped by softwareis set for Ring-OSC by a mask  
option.  
Notes 1. When Cannot be stoppedis selected for Ring-OSC by a mask option.  
2. When Can be stopped by softwareis selected for Ring-OSC by a mask option.  
3. Operates using the CPU clock at STOP instruction execution.  
4. Operates using the CPU clock at HALT instruction execution.  
Remark RSTOP: Bit 0 of the Ring-OSC mode register (RCM)  
MCM0: Bit 0 of the main clock mode register (MCM)  
Table 5-4. Oscillation Control Flags and Clock Oscillation Status  
X1 Oscillator  
Ring-OSC Oscillator  
Oscillating  
MSTOP = 1Note RSTOP = 0  
RSTOP = 1  
Stopped  
Setting prohibited  
Oscillating  
MSTOP = 0Note RSTOP = 0  
Oscillating  
Stopped  
RSTOP = 1  
MCC = 1Note  
MCC = 0Note  
RSTOP = 0  
RSTOP = 1  
RSTOP = 0  
RSTOP = 1  
Stopped  
Oscillating  
Stopped  
Oscillating  
Oscillating  
Stopped  
Note Setting X1 oscillator oscillating/stopped differs depending on the CPU clock used.  
When the Ring-OSC clock is used as the CPU clock: Set using the MSTOP bit  
When the subsystem clock is used as the CPU clock: Set using the MCC bit  
Caution The RSTOP setting is valid only when Can be stopped by softwareis set for Ring-OSC  
by a mask option.  
Remark MSTOP: Bit 7 of the main OSC control register (MOC)  
MCC:  
Bit 7 of the processor clock control register (PCC)  
RSTOP: Bit 0 of the Ring-OSC mode register (RCM)  
118  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.6 Time Required to Switch Between Ring-OSC Clock and X1 Input Clock  
Bit 0 (MCM0) of the main clock mode register (MCM) is used to switch between the Ring-OSC clock and X1 input  
clock.  
In the actual switching operation, switching does not occur immediately after MCM0 rewrite; several instructions  
are executed using the pre-switch clock after switching MCM0 (see Table 5-5).  
Bit 1 (MCS) of MCM is used to judge that operation is performed using either the Ring-OSC clock or X1 input clock.  
To stop the clock, wait for the number of clocks shown in Table 5-5 before stopping.  
Table 5-5. Time Required to Switch Between Ring-OSC Clock and X1 Input Clock  
PCC  
Time Required for Switching  
PCC2  
PCC1  
PCC0  
X1Ring-OSC  
Ring-OSCX1  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
fXP/fR + 1 clock  
fXP/2fR + 1 clock  
fXP/4fR + 1 clock  
fXP/8fR + 1 clock  
2 clocks  
fXP/16fR + 1 clock  
Caution To calculate the maximum time, set fR = 120 kHz.  
Remarks 1. PCC: Processor clock control register  
2. fXP: X1 input clock oscillation frequency  
3. fR: Ring-OSC clock oscillation frequency  
4. The maximum time is the number of clocks of the CPU clock before switching.  
119  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.7 Changing System Clock and CPU Clock Settings  
5.7.1 Time required for switching between system clock and CPU clock  
The system clock and CPU clock can be switched using bits 0 to 2 (PCC0 to PCC2) and bit 4 (CSS) of the  
processor clock control register (PCC).  
The actual switchover operation is not performed immediately after rewriting to the PCC; operation continues on  
the pre-switchover clock for several instructions (see Table 5-6).  
Whether the system is operating on the X1 input clock (or Ring-OSC clock) or the subsystem clock can be  
ascertained using bit 5 (CLS) of the PCC register.  
Table 5-6. Maximum Time Required for CPU Clock Switchover  
Set Value Before  
Switchover  
Set Value After Switchover  
CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0 CSS PCC2 PCC1 PCC0  
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
×
×
×
0
0
0
0
0
1
×
0
0
1
1
0
×
0
1
0
1
0
×
16 clocks  
16 clocks  
16 clocks  
8 clocks  
4 clocks  
16 clocks  
8 clocks  
4 clocks  
2 clocks  
fXP/fXT clocks  
(306 clocks)  
8 clocks  
4 clocks  
2 clocks  
1 clock  
1 clock  
8 clocks  
fXP/2fXT clocks  
(153 clocks)  
4 clocks  
2 clocks  
1 clock  
1 clock  
fXP/4fXT clocks  
(77 clocks)  
2 clocks  
1 clock  
1 clock  
fXP/8fXT clocks  
(39 clocks)  
1 clock  
1 clock  
fXP/16fXT clocks  
(20 clocks)  
1
1 clock  
Remarks 1. The maximum time is the number of clocks of the pre-switchover CPU clock.  
2. Figures in parentheses apply to operation with fXP = 10 MHz and fXT = 32.768 kHz.  
Caution Selection of the CPU clock cycle division factor (PCC0 to PCC2) and switchover from the X1  
input clock to the subsystem clock (changing CSS from 0 to 1) should not be set  
simultaneously.  
Simultaneous setting is possible, however, for selection of the CPU clock cycle division factor  
(PCC0 to PCC2) and switchover from the subsystem clock to the X1 input clock (changing CSS  
from 1 to 0).  
120  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.8 Clock Switching Flowchart and Register Setting  
5.8.1 Switching from Ring-OSC clock to X1 input clock  
Figure 5-14. Switching from Ring-OSC Clock to X1 Input Clock (Flowchart)  
After reset  
PCC = 00H  
RCM = 00H  
MCM = 00H  
MOC = 00H  
OSTC = 00H  
OSTS = 05HNote  
; fCPU = f  
R
; Ring-OSC oscillation  
Register value  
after reset  
; Ring-OSC clock operation  
; X1 oscillation  
; Oscillation stabilization time status register  
; Oscillation stabilization time fXP/216  
Each processing  
OSTC checkNote  
; X1 oscillation stabilization time status check  
X1 oscillation stabilization  
time has not elapsed  
Ring-OSC clock  
operation  
X1 oscillation stabilization time has elapsed  
PCC setting  
Ring-OSC  
clock operation  
(dividing set PCC)  
MCM.0 1  
MCM.1 (MCS) is changed from 0 to 1  
X1 input clock operation  
X1 input clock  
Note Check the oscillation stabilization wait time of the X1 oscillator after reset release using the OSTC register  
and then switch to the X1 input clock operation after the oscillation stabilization wait time has elapsed. The  
OSTS register setting is valid only after STOP mode is released during X1 input clock operation.  
121  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.8.2 Switching from X1 input clock to Ring-OSC clock  
Figure 5-15. Switching from X1 Input Clock to Ring-OSC Clock (Flowchart)  
Register setting  
in X1 input  
clock operation  
PCC.7 (MCC) = 0  
PCC.4 (CSS) = 0  
MCM = 03H  
; X1 oscillation  
; X1 input clock or Ring-OSC clock  
; X1 input clock operation  
Yes: RSTOP = 1  
RCM.0Note  
(RSTOP) = 1?  
X1 input  
clock operation  
; Ring-OSC oscillating?  
No: RSTOP = 0  
RSTOP = 0  
MCM0 0  
; Ring-OSC oscillating  
MCM.1 (MCS) is changed from 1 to 0  
Ring-OSC  
clock operation  
Ring-OSC clock operation  
Note Required only when clock can be stopped by softwareis selected for Ring-OSC by a mask option.  
122  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.8.3 Switching from X1 input clock to subsystem clock  
Figure 5-16. Switching from X1 Input Clock to Subsystem Clock (Flowchart)  
Register setting  
in X1 input  
clock operation  
PCC.7 (MCC) = 0  
PCC.4 (CSS) = 0  
MCM = 03H  
; X1 oscillation  
; X1 input clock or Ring-OSC clock  
; X1 input clock operation  
X1 input  
clock operation  
CSS 1  
; Subsystem clock operation  
MCS = 1 not changed.  
CLS is changed from 0 to 1.  
Subsystem  
clock  
Subsystem clock operation  
123  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.8.4 Switching from subsystem clock to X1 input clock  
Figure 5-17. Switching from Subsystem Clock to X1 Input Clock (Flowchart)  
PCC.4 (CSS) = 1  
MCM = 03H  
; Subsystem clock operation  
No: X1 oscillating  
MCC = 1?  
; X1 oscillating?  
Yes: X1 oscillation stopped  
MCC 0  
; X1 oscillation enabled  
Subsystem  
clock operation  
OSTC check  
; Wait for X1 oscillation stabilization time  
X1 oscillation  
stabilization time  
not elapsed  
X1 oscillation stabilization time elapsed  
CSS 0  
; X1 input clock operation  
CLS is changed from 1 to 0.  
MCS = 1 not changed.  
X1 input  
clock operation  
X1 input clock operation  
124  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 5 CLOCK GENERATOR  
5.8.5 Register settings  
Table 5-7. Clock and Register Setting  
fCPU  
Mode  
Setting Flag  
MCM  
Status Flag  
PCC MCM  
PCC Register  
MOC  
RCM  
Register Register Register Register Register  
MCC  
CSS  
MCM0 MSTOP RSTOPNote 1 CLS  
MCS  
X1 input clockNote 2  
Ring-OSC clock  
Ring-OSC oscillating  
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
Ring-OSC stopped  
X1 oscillating  
X1 stopped  
0
0
0
0Note 3  
0
1
Subsystem clockNote 4 X1 oscillating, Ring-OSC oscillating  
0
1Note 5  
1Note 5  
1Note 5  
1Note 5  
0Note 6  
0Note 6  
0Note 6  
0Note 6  
X1 stopped, Ring-OSC oscillating  
1
X1 oscillating, Ring-OSC stopped  
0
X1 stopped, Ring-OSC stopped  
1
Notes 1. Valid only when clock can be stopped by softwareis selected for Ring-OSC by a mask option.  
2. Do not set MCC = 1 or MSTOP = 1 during X1 input clock operation (even if MCC = 1 or MSTOP = 1 is set,  
the X1 oscillation does not stop).  
3. Do not set MCC = 1 during Ring-OSC operation (even if MCC = 1 is set, the X1 oscillation does not stop).  
To stop X1 oscillation during Ring-OSC operation, use MSTOP.  
4. Shifting to subsystem clock operation mode must be performed from the X1 input clock operation mode.  
From subsystem clock operation mode, only X1 input clock operation mode can be shifted to.  
5. Do not set MCM0 = 0 (shifting to Ring-OSC) during subsystem clock operation.  
6. Do not set MSTOP = 1 during subsystem clock operation (even if MSTOP = 1 is set, X1 oscillation does  
not stop). To stop X1 oscillation during subsystem clock operation, use MCC.  
125  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.1 Functions of 16-Bit Timer/Event Counter 00  
16-bit timer/event counter 00 has the following functions.  
Interval timer  
PPG output  
Pulse width measurement  
External event counter  
Square-wave output  
One-shot pulse output  
(1) Interval timer  
16-bit timer/event counter 00 generates an interrupt request at the preset time interval.  
(2) PPG output  
16-bit timer/event counter 00 can output a rectangular wave whose frequency and output pulse width can be set  
freely.  
(3) Pulse width measurement  
16-bit timer/event counter 00 can measure the pulse width of an externally input signal.  
(4) External event counter  
16-bit timer/event counter 00 can measure the number of pulses of an externally input signal.  
(5) Square-wave output  
16-bit timer/event counter 00 can output a square wave with any selected frequency.  
(6) One-shot pulse output  
16-bit timer event counter 00 can output a one-shot pulse whose output pulse width can be set freely.  
126  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.2 Configuration of 16-Bit Timer/Event Counter 00  
16-bit timer/event counter 00 consists of the following hardware.  
Table 6-1. Configuration of 16-Bit Timer/Event Counter 00  
Configuration  
Item  
Timer counter  
16 bits × 1 (TM00)  
Register  
16-bit timer capture/compare register: 16 bits × 2 (CR000, CR010)  
Timer output  
Control registers  
1 (TO00)  
16-bit timer mode control register 00 (TMC00)  
16-bit timer capture/compare control register 00 (CRC00)  
16-bit timer output control register 00 (TOC00)  
Prescaler mode register 00 (PRM00)  
Port mode register 0 (PM0)Note  
Note See Figure 4-2 Block Diagram of P00 and Figure 4-3 Block Diagram of P01.  
Figure 6-1 shows the block diagram.  
Figure 6-1. Block Diagram of 16-Bit Timer/Event Counter 00  
Internal bus  
Capture/compare control  
register 00 (CRC00)  
CRC002CRC001 CRC000  
INTTM000  
16-bit timer capture/compare  
register 000 (CR000)  
Noise  
elimi-  
nator  
TI010/TO00/P01  
Match  
fX  
f
f
X
X
/22  
/28  
16-bit timer counter 00  
(TM00)  
Clear  
Output  
controller  
TO00/TI010/  
P01  
Match  
Noise  
elimi-  
nator  
2
fX  
Noise  
elimi-  
nator  
16-bit timer capture/compare  
register 010 (CR010)  
TI000/P00  
INTTM010  
CRC002  
PRM001  
TMC003 TMC002 TMC001OVF00 OSPT00 OSPE00 TOC004 LVS00 LVR00 TOC001 TOE00  
PRM000  
16-bit timer output  
control register 00  
(TOC00)  
16-bit timer mode  
control register 00  
(TMC00)  
Prescaler mode  
register 00 (PRM00)  
Internal bus  
127  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(1) 16-bit timer counter 00 (TM00)  
TM00 is a 16-bit read-only register that counts count pulses.  
The counter is incremented in synchronization with the rising edge of the input clock. The count value is reset to  
0000H in the following cases.  
<1> At RESET input  
<2> If TMC003 and TMC002 are cleared  
<3> If the valid edge of TI000 is input in the mode in which clear & start occurs when inputting the valid edge of  
TI000  
<4> If TM00 and CR000 match in the mode in which clear & start occurs on a match of TM00 and CR000  
<5> OSPT00 is set in one-shot pulse output mode  
(2) 16-bit timer capture/compare register 000 (CR000)  
CR000 is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is  
used as a capture register or as a compare register is set by bit 0 (CRC000) of capture/compare control register  
00 (CRC00).  
When CR000 is used as a compare register  
The value set in CR000 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and an  
interrupt request (INTTM000) is generated if they match. It can also be used as the register that holds the  
interval time when TM00 is set to interval timer operation.  
When CR000 is used as a capture register  
It is possible to select the valid edge of the TI000 pin or the TI010 pin as the capture trigger. The TI000 or  
TI010 valid edge is set using prescaler mode register 00 (PRM00).  
If the capture trigger is specified to be the valid edge of the TI000 pin, the situation is as shown in Table 6-2.  
On the other hand, when the capture trigger is specified to be the valid edge of the TI010 pin, the situation is  
as shown in Table 6-3.  
Table 6-2. TI000 Pin Valid Edge and CR000, CR010 Capture Trigger  
ES001 ES000  
TI000 Pin Valid Edge  
Falling edge  
CR000 Capture Trigger  
Rising edge  
CR010 Capture Trigger  
Falling edge  
0
0
1
1
0
1
0
1
Rising edge  
Falling edge  
Rising edge  
Setting prohibited  
Both rising and falling edges  
Setting prohibited  
No capture operation  
Setting prohibited  
Both rising and falling edges  
Table 6-3. TI010 Pin Valid Edge and CR000 Capture Trigger  
TI010 Pin Valid Edge CR000 Capture Trigger  
ES101 ES100  
0
0
1
1
0
1
0
1
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Setting prohibited  
Setting prohibited  
Both rising and falling edges  
Both rising and falling edges  
128  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
CR000 can be set by a 16-bit memory manipulation instruction.  
RESET input clears CR000 to 0000H.  
Cautions 1. Set a value other than 0000H in CR000 in the mode in which clear & start occurs on a match  
of TM00 and CR000. However, in the free-running mode and in the clear mode using the  
valid edge of TI000, if CR000 is set to 0000H, an interrupt request (INTTM000) is generated  
following overflow (FFFFH).  
2. If the changed value of CR000 is smaller than the value of 16-bit timer counter 00 (TM00),  
TM00 continues counting and starts counting again from 0 after overflow. Therefore, if the  
value of CR000 after the change is smaller than before the change, the timer should be  
restarted after CR000 is changed.  
3. When P01 is used as the valid edge of TI010, it cannot be used as the timer output (TO00).  
Moreover, when P01 is used as TO00, it cannot be used as the valid edge of TI010.  
4. When CR000 is used as a capture register, read data is undefined if the register read time  
and capture trigger input conflict (the capture data itself is the correct value).  
If count stop input and capture trigger input conflict, the captured data is undefined.  
5. Do not rewrite the compare register during TM00 operation.  
(3) 16-bit timer capture/compare register 010 (CR010)  
CR010 is a 16-bit register that has the functions of both a capture register and a compare register. Whether it is  
used as a capture register or a compare register is set by bit 2 (CRC002) of capture/compare control register 00  
(CRC00).  
When CR010 is used as a compare register  
The value set in the CR010 is constantly compared with the 16-bit timer counter 00 (TM00) count value, and  
an interrupt request (INTTM010) is generated if they match.  
When CR010 is used as a capture register  
It is possible to select the valid edge of the TI000 pin as the capture trigger. The TI000 valid edge is set by  
prescaler mode register 00 (PRM00).  
CR010 can be set by a 16-bit memory manipulation instruction.  
RESET input clears CR010 to 0000H.  
Cautions 1. Set CR010 to other than 0000H. This means a 1-pulse count operation cannot be performed  
when CR010 is used as the event counter.  
However, in the free-running mode and in the clear mode using the valid edge of TI000, if  
CR010 is set to 0000H, an interrupt request (INTTM010) is generated following overflow  
(FFFFH).  
2. When CR010 is used as a capture register, read data is undefined if the register read time  
and capture trigger input conflict (the capture data itself is the correct value).  
If count stop input and capture trigger input conflict, the captured data is undefined.  
3. Do not rewrite the compare register during TM00 operation.  
129  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.3 Registers Controlling 16-Bit Timer/Event Counter 00  
The following five registers are used to control 16-bit timer/event counter 00.  
16-bit timer mode control register 00 (TMC00)  
Capture/compare control register 00 (CRC00)  
16-bit timer output control register 00 (TOC00)  
Prescaler mode register 00 (PRM00)  
Port mode register 0 (PM0)  
(1) 16-bit timer mode control register 00 (TMC00)  
This register sets the 16-bit timer operating mode, the 16-bit timer counter 00 (TM00) clear mode, and output  
timing, and detects an overflow.  
TMC00 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears TMC00 to 00H.  
Caution 16-bit timer counter 00 (TM00) starts operation at the moment TMC002 and TMC003 are set to  
values other than 0, 0 (operation stop mode), respectively. Set TMC002 and TMC003 to 0, 0 to  
stop the operation.  
130  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-2. Format of 16-Bit Timer Mode Control Register 00 (TMC00)  
Address FFBAH After reset: 00H R/W  
Symbol  
TMC00  
7
0
6
0
5
0
4
0
3
2
1
0
TMC003TMC002TMC001 OVF00  
TMC003 TMC002 TMC001  
Operating mode and clear  
mode selection  
TO00 output timing selection  
No change  
Interrupt request generation  
Not generated  
0
0
0
0
0
1
0
1
0
Operation stop  
(TM00 cleared to 0)  
Free-running mode  
Match between TM00 and  
CR000 or match between  
TM00 and CR010  
Generated on match between  
TM00 and CR000, or match  
between TM00 and CR010  
0
1
1
Match between TM00 and  
CR000, match between TM00  
and CR010 or TI000 valid edge  
1
1
1
0
0
1
0
1
0
Clear & start occurs on TI000  
valid edge  
Clear & start occurs on match  
between TM00 and CR000  
Match between TM00 and  
CR000 or match between  
TM00 and CR010  
1
1
1
Match between TM00 and  
CR000, match between TM00  
and CR010 or TI000 valid edge  
OVF00  
16-bit timer counter 00 (TM00) overflow detection  
0
1
Overflow not detected  
Overflow detected  
Cautions 1. Timer operation must be stopped before writing to bits other than the OVF00 flag.  
2. Set the valid edge of the TI000/P00 pin using prescaler mode register 00 (PRM00).  
3. If any the following modes: the mode in which clear & start occurs on match between TM00  
and CR000, the mode in which clear & start occurs at the TI00 valid edge, or free-running  
mode is selected, when the set value of CR000 is FFFFH and the TM00 value changes from  
FFFFH to 0000H, the OVF00 flag is set to 1.  
Remarks 1. TO00: 16-bit timer/event counter 00 output pin  
2. TI000: 16-bit timer/event counter 00 input pin  
3. TM00: 16-bit timer counter 00  
4. CR000: 16-bit timer capture/compare register 000  
5. CR010: 16-bit timer capture/compare register 010  
131  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(2) Capture/compare control register 00 (CRC00)  
This register controls the operation of the 16-bit timer capture/compare registers (CR000, CR010).  
CRC00 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CRC00 to 00H.  
Figure 6-3. Format of Capture/Compare Control Register 00 (CRC00)  
Address: FFBCH After reset: 00H R/W  
Symbol  
CRC00  
7
0
6
0
5
0
4
0
3
0
2
1
0
CRC002  
CRC001  
CRC000  
CRC002  
CR010 operating mode selection  
0
1
Operates as compare register  
Operates as capture register  
CRC001  
CR000 capture trigger selection  
0
1
Captures on valid edge of TI010  
Captures on valid edge of TI000 by reverse phase  
CRC000  
CR000 operating mode selection  
0
1
Operates as compare register  
Operates as capture register  
Cautions 1. Timer operation must be stopped before setting CRC00.  
2. When the mode in which clear & start occurs on a match between TM00 and CR000 is  
selected with 16-bit timer mode control register 00 (TMC00), CR000 should not be specified  
as a capture register.  
3. To ensure that the capture operation is performed properly, the capture trigger requires a  
pulse two times longer than the count clock selected by prescaler mode register 00 (PRM00).  
(3) 16-bit timer output control register 00 (TOC00)  
This register controls the operation of the 16-bit timer/event counter 00 output controller. It sets/resets the R-S  
type flip-flop (LV00), enables/disables output inversion and 16-bit timer/event counter 00 timer output,  
enables/disables the one-shot pulse output operation, and sets the one-shot pulse output trigger via software.  
TOC00 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears TOC00 to 00H.  
132  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-4. Format of 16-Bit Timer Output Control Register 00 (TOC00)  
Address: FFBDH After reset: 00H R/W  
Symbol  
TOC00  
7
0
6
5
4
3
2
1
0
OSPT00  
OSPE00  
TOC004  
LVS00  
LVR00  
TOC001  
TOE00  
OSPT00  
One-shot pulse output trigger control via software  
0
1
No one-shot pulse trigger  
One-shot pulse trigger  
OSPE00  
One-shot pulse output operation control  
0
1
Successive pulse output mode  
One-shot pulse output modeNote  
TOC004  
Timer output F/F control using match of CR010 and TM00  
0
1
Disables inversion operation  
Enables inversion operation  
LVS00  
LVR00  
16-bit timer/event counter 00 timer output F/F status setting  
0
0
1
1
0
1
0
1
No change  
Timer output F/F reset (0)  
Timer output F/F set (1)  
Setting prohibited  
TOC001  
Timer output F/F control using match of CR000 and TM00  
0
1
Disables inversion operation  
Enables inversion operation  
TOE00  
16-bit timer/event counter 00 output control  
0
1
Disables output (output fixed to level 0)  
Enables output  
Note The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which  
clear & start occurs at the TI000 valid edge. In the mode in which clear & start occurs on a match between  
the TM00 register and CR000 register, one-shot pulse output is not possible because an overflow does not  
occur.  
Cautions 1. Timer operation must be stopped before setting TOC00.  
2. If LVS00 and LVR00 are read after data is set, 0 is read.  
3. OSPT00 is automatically cleared after data is set, so 0 is read.  
4. Do not set OSPT00 to 1 other than in one-shot pulse output mode.  
5. A write interval of two cycles or more of the operating clock is required to write to OSPT00  
successively.  
133  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(4) Prescaler mode register 00 (PRM00)  
This register is used to set the 16-bit timer counter 00 (TM00) count clock and TI000 and TI010 input valid edges.  
PRM00 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears PRM00 to 00H.  
Figure 6-5. Format of Prescaler Mode Register 00 (PRM00)  
Address: FFBBH After reset: 00H R/W  
Symbol  
PRM00  
7
6
5
4
3
0
2
0
1
0
ES101  
ES100  
ES001  
ES000  
PRM001  
PRM000  
ES101  
ES100  
TI010 valid edge selection  
0
0
1
1
0
1
0
1
Falling edge  
Rising edge  
Setting prohibited  
Both falling and rising edges  
ES001  
ES000  
TI000 valid edge selection  
0
0
1
1
0
1
0
1
Falling edge  
Rising edge  
Setting prohibited  
Both falling and rising edges  
PRM001  
PRM000  
Count clock selection  
0
0
1
1
0
1
0
1
fX (10 MHz)  
fX/22 (2.5 MHz)  
fX/28 (39.06 kHz)  
TI000 valid edgeNote  
Note The external clock requires a pulse two times longer than internal count clock (fX).  
Cautions 1. If the valid edge of TI000 is to be set for the count clock, do not set the clear & start mode  
using the valid edge of TI000 and the capture trigger.  
2. Always set data to PRM00 after stopping the timer operation.  
3. If the TI000 or TI010 pin is high level immediately after system reset, the rising edge is  
immediately detected after the rising edge or both the rising and falling edges are set as the  
valid edge(s) of the TI000 pin or TI010 pin to enable the operation of 16-bit timer counter 00  
(TM00). Care is therefore required when pulling up the TI000 or TI010 pin. However, when re-  
enabling operation after the operation has been stopped once, the rising edge is not  
detected.  
4. When P01 is used as the TI010 valid edge, it cannot be used as the timer output (TO00), and  
when used as TO00, it cannot be used as the TI010 valid edge.  
Remarks 1. fX: X1 input clock oscillation frequency  
2. TI000, TI010: 16-bit timer/event counter 00 input pin  
3. Figures in parentheses are for operation with fX = 10 MHz.  
134  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(5) Port mode register 0 (PM0)  
This register sets port 0 input/output in 1-bit units.  
When using the P01/TO00/TI010 pin for timer output, set the output latch of PM01 and P01 to 0.  
PM0 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets PM0 to FFH.  
Figure 6-6. Format of Port Mode Register 0 (PM0)  
Address: FF20H After reset: FFH R/W  
Symbol  
PM0  
7
1
6
1
5
1
4
1
3
1
2
1
1
0
PM01 PM00  
PM0n  
P0n pin I/O mode selection (n = 0, 1)  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
135  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4 Operation of 16-Bit Timer/Event Counter 00  
6.4.1 Interval timer operation  
Setting 16-bit timer mode control register 00 (TMC00) and capture/compare control register 00 (CRC00) as shown  
in Figure 6-7 allows operation as an interval timer. Interrupt requests are generated repeatedly using the count value  
preset in 16-bit timer capture/compare register 000 (CR000) as the interval.  
When the count value of 16-bit timer counter 00 (TM00) matches the value set in CR000, counting continues with  
the TM00 value cleared to 0 and the interrupt request signal (INTTM000) is generated.  
The count clock of the 16-bit timer/event counter 00 can be selected with bits 0 and 1 (PRM000, PRM001) of  
prescaler mode register 00 (PRM00).  
See 6.5 Cautions for 16-Bit Timer/Event Counter 00 (2) 16-bit timer capture/compare register setting for  
details of the operation when the compare register value is changed during timer count operation.  
Figure 6-7. Control Register Settings for Interval Timer Operation  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF0  
0
TMC00  
0
0
0
0
1
1
0/1  
Clears and starts on match between TM00 and CR000.  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0/1  
0/1  
0
CR000 used as compare register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with the interval timer. For details,  
see Figures 6-2 and 6-3.  
136  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-8. Interval Timer Configuration Diagram  
16-bit timer capture/compare  
register 000 (CR000)  
INTTM000  
fX  
fX/22  
fX/28  
16-bit timer counter 00  
(TM00)  
OVF00  
Noise  
eliminator  
TI000/P00  
Clear  
circuit  
fX  
Figure 6-9. Timing of Interval Timer Operation  
t
Count clock  
TM00 count value  
0000H  
0000H  
0001H  
N
0001H  
N
0000H 0001H  
N
N
Count start  
Clear  
Clear  
N
N
N
CR000  
INTTM000  
Interrupt acknowledged  
Interval time  
Interrupt acknowledged  
Interval time  
TO00  
Interval time  
Remark Interval time = (N + 1) × t  
N = 0001H to FFFFH  
137  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4.2 PPG output operations  
Setting 16-bit timer mode control register 00 (TMC00) and capture/compare control register 00 (CRC00) as shown  
in Figure 6-10 allows operation as PPG (Programmable Pulse Generator) output.  
In the PPG output operation, rectangular waves are output from the TO00 pin with the pulse width and the cycle  
that correspond to the count values preset in 16-bit timer capture/compare register 010 (CR010) and in 16-bit timer  
capture/compare register 000 (CR000), respectively.  
Figure 6-10. Control Register Settings for PPG Output Operation  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF0  
0
TMC00  
0
0
0
0
1
1
0
Clears and starts on match between TM00 and CR000.  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0
×
0
CR000 used as compare register  
CR010 used as compare register  
(c) 16-bit timer output control register 00 (TOC00)  
OSPT00 OSPE00 TOC004 LVS00 LVR00 TOC001 TOE00  
TOC00  
0
0
0
1
0/1  
0/1  
1
1
Enables TO00 output  
Inverts output on match between TM00 and CR000  
Specifies initial value of TO00 output F/F  
Inverts output on match between TM00 and CR010  
Disables one-shot pulse output  
Cautions 1. Values in the following range should be set in CR000 and CR010:  
0000H < CR010 < CR000 FFFFH  
2. The cycle of the pulse generated through PPG output (CR000 setting value + 1) has a duty of  
(CR010 setting value + 1)/(CR000 setting value + 1).  
Remark ×: Dont care  
138  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-11. Configuration of PPG Output  
16-bit timer capture/compare  
register 000 (CR000)  
fX  
f
X
X
/22  
/28  
Clear  
circuit  
16-bit timer counter 00  
(TM00)  
f
Noise  
eliminator  
TI000/P00  
TO00/TI010/P01  
fX  
16-bit timer capture/compare  
register 010 (CR010)  
Figure 6-12. PPG Output Operation Timing  
t
Count clock  
TM00 count value  
0000H 0001H  
M 1  
M
0000H 0001H  
N 1  
N
Count start  
Clear  
CR000 capture value  
CR010 capture value  
TO00  
N
M
Pulse width: (M + 1) × t  
1 cycle: (N + 1) × t  
Remark 0000H < M < N FFFFH  
139  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4.3 Pulse width measurement operations  
It is possible to measure the pulse width of the signals input to the TI000 pin and TI010 pin using 16-bit timer  
counter 00 (TM00).  
There are two measurement methods: measuring with TM00 used in free-running mode, and measuring by  
restarting the timer in synchronization with the edge of the signal input to the TI000 pin.  
(1) Pulse width measurement with free-running counter and one capture register  
When 16-bit timer counter 00 (TM00) is operated in free-running mode (see register settings in Figure 6-13), and  
the edge specified by prescaler mode register 00 (PRM00) is input to the TI000 pin, the value of TM00 is taken  
into 16-bit timer capture/compare register 010 (CR010) and an external interrupt request signal (INTTM010) is  
set.  
Any of three edgesrising, falling, or both edgescan be selected using bits 4 and 5 (ES000 and ES001) of  
PRM00.  
For valid edge detection, sampling is performed using the count clock selected by PRM00, and a capture  
operation is only performed when a valid level is detected twice, thus eliminating noise with a short pulse width.  
Figure 6-13. Control Register Settings for Pulse Width Measurement with Free-Running Counter  
and One Capture Register  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
0
1
0/1  
0
Free-running mode  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
1
0/1  
0
CR000 used as compare register  
CR010 used as capture register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
For details, see Figures 6-2 and 6-3.  
140  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-14. Configuration Diagram for Pulse Width Measurement with Free-Running Counter  
fX  
/22  
/28  
16-bit timer counter 00  
(TM00)  
f
X
X
OVF00  
f
16-bit timer capture/compare  
register 010 (CR010)  
TI000  
INTTM010  
Internal bus  
Figure 6-15. Timing of Pulse Width Measurement Operation with Free-Running Counter  
and One Capture Register (with Both Edges Specified)  
t
Count clock  
0000H 0001H  
D0 D0 + 1  
D1 D1 + 1  
FFFFH 0000H  
D2  
D3  
TM00 count value  
TI000 pin input  
CR010 capture value  
INTTM010  
D0  
D1  
D2  
D3  
OVF00  
(D1 D0) × t  
(10000H D1 + D2) × t  
(D3 D2) × t  
141  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(2) Measurement of two pulse widths with free-running counter  
When 16-bit timer counter 00 (TM00) is operated in free-running mode (see Figure 6-16), it is possible to  
simultaneously measure the pulse widths of the two signals input to the TI000 pin and the TI010 pin.  
When the edge specified by bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00) is input to  
the TI000 pin, the value of TM00 is taken into 16-bit timer capture/compare register 010 (CR010) and an interrupt  
request signal (INTTM010) is set.  
Also, when the edge specified by bits 6 and 7 (ES100 and ES101) of PRM00 is input to the TI010 pin, the value  
of TM00 is taken into 16-bit timer capture/compare register 000 (CR000) and an interrupt request signal  
(INTTM000) is set.  
Any of three edgesrising, falling, or both edgescan be selected as the valid edge of the TI000 pin and the  
TI010 pin, specified using bits 4 and 5 (ES000 and ES001) and bits 6 and 7 (ES100 and ES101) of PRM00,  
respectively.  
For valid edge detection of the TI000 and TI010 pins, sampling is performed at the interval selected by prescaler  
mode register 00 (PRM00), and a capture operation is only performed when a valid level is detected twice, thus  
eliminating noise with a short pulse width.  
Figure 6-16. Control Register Settings for Measurement of Two Pulse Widths with Free-Running Counter  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF0  
0
TMC00  
0
0
0
0
0
1
0/1  
Free-running mode  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
1
0
1
CR000 used as capture register  
Captures valid edge of TI010 pin to CR000  
CR010 used as capture register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
For details, see Figure 6-2.  
142  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Capture operation (free-running mode)  
The capture register operation when capture trigger is input is shown below.  
Figure 6-17. CR010 Capture Operation with Rising Edge Specified  
Count clock  
TM00  
N 3  
N 2  
N 1  
N
N + 1  
TI000  
Rising edge detection  
N
CR010  
INTTM010  
Figure 6-18. Timing of Pulse Width Measurement Operation with Free-Running Counter  
(with Both Edges Specified)  
t
Count clock  
0000H 0001H  
D0 D0 + 1  
D1 D1 + 1  
FFFFH 0000H  
D2 D2 + 1 D2 + 2  
D3  
TM00 count value  
TI000 pin input  
D0  
D1  
D2  
CR010 capture value  
INTTM010  
TI010 pin input  
CR000 capture value  
INTTM000  
D1  
D2 + 1  
OVF00  
(D1 D0) × t  
(10000H D1 + D2) × t  
(D3 D2) × t  
(10000H D1 + (D2 + 1)) × t  
143  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(3) Pulse width measurement with free-running counter and two capture registers  
When 16-bit timer counter 00 (TM00) is operated in free-running mode (see Figure 6-19), it is possible to  
measure the pulse width of the signal input to the TI000 pin.  
When the edge specified by bits 4 and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00) is input to  
the TI000 pin, the value of TM00 is taken into 16-bit timer capture/compare register 010 (CR010) and an interrupt  
request signal (INTTM010) is set.  
Also, when the inverse edge to that of the capture operation is input into CR010, the value of TM00 is taken into  
16-bit timer capture/compare register 000 (CR000).  
Either of two edgesrising or fallingcan be selected as the valid edge of the TI000 pin specified using bits 4  
and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).  
For TI000 pin valid edge detection, sampling is performed at the interval selected by prescaler mode register 00  
(PRM00), and a capture operation is only performed when a valid level is detected twice, thus eliminating noise  
with a short pulse width.  
Figure 6-19. Control Register Settings for Pulse Width Measurement with Free-Running Counter and  
Two Capture Registers  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF0  
0
TMC00  
0
0
0
0
0
1
0/1  
Free-running mode  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
1
1
1
CR000 used as capture register  
Captures to CR000 at inverse edge  
to valid edge of TI000.  
CR010 used as capture register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
See the description of the respective control registers for details.  
144  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-20. Timing of Pulse Width Measurement Operation with Free-Running Counter  
and Two Capture Registers (with Rising Edge Specified)  
t
Count clock  
TM00 count value  
TI000 pin input  
0000H 0001H  
D0 D0 + 1  
D1 D1 + 1  
FFFFH 0000H  
D2 D2 + 1  
D3  
CR010 capture value  
CR000 capture value  
INTTM010  
D0  
D2  
D1  
D3  
OVF00  
(D1 D0) × t  
(10000H D1 + D2) × t  
(D3 D2) × t  
145  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(4) Pulse width measurement by means of restart  
When input of a valid edge to the TI000 pin is detected, the count value of 16-bit timer counter 00 (TM00) is taken  
into 16-bit timer capture/compare register 010 (CR010), and then the pulse width of the signal input to the TI000  
pin is measured by clearing TM00 and restarting the count operation (see Figure 6-21).  
Either of two edgesrising or fallingcan be selected using bits 4 and 5 (ES000 and ES001) of prescaler mode  
register 00 (PRM00).  
In valid edge detection, sampling is performed using the count clock cycle selected by prescaler mode register 00  
(PRM00) and a capture operation is only performed when a valid level is detected twice, thus eliminating noise  
with a short pulse width.  
Figure 6-21. Control Register Settings for Pulse Width Measurement by Means of Restart  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
1
0
0/1  
0
Clears and starts at valid edge of TI000 pin.  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
1
1
1
CR000 used as capture register  
Captures to CR000 at inverse edge to valid edge of TI000.  
CR010 used as capture register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
For details, see Figure 6-2.  
Figure 6-22. Timing of Pulse Width Measurement Operation by Means of Restart  
(with Rising Edge Specified)  
t
Count clock  
0000H 0001H  
D0 0000H 0001H D1  
D2 0000H 0001H  
TM00 count value  
TI000 pin input  
CR010 capture value  
D0  
D2  
D1  
CR000 capture value  
INTTM010  
D1 × t  
D2 × t  
146  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4.4 External event counter operation  
The external event counter counts the number of external clock pulses input to the TI000 pin using 16-bit timer  
counter 00 (TM00).  
TM00 is incremented each time the valid edge specified by prescaler mode register 00 (PRM00) is input.  
When the TM00 count value matches the 16-bit timer capture/compare register 000 (CR000) value, TM00 is  
cleared to 0 and the interrupt request signal (INTTM000) is generated.  
Input a value other than 0000H to CR000 (a count operation with 1-bit pulse cannot be carried out).  
Any of three edgesrising, falling, or both edgescan be selected using bits 4 and 5 (ES000 and ES001) of  
prescaler mode register 00 (PRM00).  
Because operation is carried out only after the valid edge is detected twice by sampling using the internal clock (fX),  
noise with short pulse widths can be eliminated.  
Figure 6-23. Control Register Settings in External Event Counter Mode  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
1
1
0/1  
0
Clears and starts on match between TM00 and CR000.  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0/1  
0/1  
0
CR000 used as compare register  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with the external event counter.  
For details, see Figures 6-2 and 6-3.  
147  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-24. Configuration Diagram of External Event Counter  
16-bit timer capture/compare  
register 000 (CR000)  
Match  
INTTM000  
f
X
Clear  
f
f
X
X
/22  
/28  
16-bit timer/counter 00 (TM00)  
OVF00  
f
X
Noise eliminator  
Noise eliminator  
16-bit timer capture/compare  
register 010 (CR010)  
Valid edge of TI000  
Internal bus  
Figure 6-25. External Event Counter Operation Timing (with Rising Edge Specified)  
TI000 pin input  
TM00 count value  
CR000  
0000H 0001H 0002H 0003H 0004H 0005H  
N 1  
N
0000H 0001H 0002H 0003H  
N
INTTM000  
Caution When reading the external event counter count value, TM00 should be read.  
148  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4.5 Square-wave output operation  
A square wave with any selected frequency can be output at intervals of the count value preset to 16-bit timer  
capture/compare register 000 (CR000).  
The TO00 pin output status is reversed at intervals of the count value preset to CR000 by setting bit 0 (TOE00) and  
bit 1 (TOC001) of 16-bit timer output control register 00 (TOC00) to 1. This enables a square wave with any selected  
frequency to be output.  
Figure 6-26. Control Register Settings in Square-Wave Output Mode  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
1
1
0
0
Clears and starts on match between TM00 and CR000.  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0/1  
0/1  
0
CR000 used as compare register  
(c) 16-bit timer output control register 00 (TOC00)  
OSPT00 OSPE00 TOC004 LVS00 LVR00 TOC001 TOE00  
TOC00  
0
0
0
0
0/1  
0/1  
1
1
Enables TO00 output.  
Inverts output on match between TM00 and CR000.  
Specifies initial value of TO00 output F/F.  
Does not invert output on match between TM00 and CR010.  
Disables one-shot pulse output.  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with square-wave output. For  
details, see Figures 6-3 and 6-4.  
Figure 6-27. Square-Wave Output Operation Timing  
Count clock  
TM00 count value  
CR000  
0000H 0001H 0002H  
N 1  
N
0000H 0001H 0002H  
N 1  
N
0000H  
N
INTTM000  
TO00 pin output  
149  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.4.6 One-shot pulse output operation  
16-bit timer/event counter 00 can output a one-shot pulse in synchronization with a software trigger or an external  
trigger (TI000 pin input).  
(1) One-shot pulse output with software trigger  
A one-shot pulse can be output from the TO00 pin by setting 16-bit timer mode control register 00 (TMC00),  
capture/compare control register 00 (CRC00), and 16-bit timer output control register 00 (TOC00) as shown in  
Figure 6-27, and by setting bit 6 (OSPT00) of the TOC00 register to 1 by software.  
By setting the OSPT00 bit to 1, 16-bit timer/event counter 00 is cleared and started, and its output becomes  
active at the count value (N) set in advance to 16-bit timer capture/compare register 010 (CR010). After that, the  
output becomes inactive at the count value (M) set in advance to 16-bit timer capture/compare register 000  
(CR000)Note  
.
Even after the one-shot pulse has been output, the TM00 register continues its operation. To stop the TM00  
register, the TMC003 and TMC002 bits of the TMC00 register must be set to 00.  
Note The case where N < M is described here. When N > M, the output becomes active with the CR000  
register and inactive with the CR010 register.  
Cautions 1. Do not set the OSPT00 bit while the one-shot pulse is being output. To output the one-shot  
pulse again, wait until the current one-shot pulse output is completed.  
2. When using the one-shot pulse output of 16-bit timer/event counter 00 with a software  
trigger, do not change the level of the TI000 pin or its alternate-function port pin.  
Because the external trigger is valid even in this case, the timer is cleared and started even  
at the level of the TI000 pin or its alternate-function port pin, resulting in the output of a  
pulse at an undesired timing.  
150  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-28. Control Register Settings for One-Shot Pulse Output with Software Trigger  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
0
1
0
0
Free-running mode  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0
0/1  
0
CR000 as compare register  
CR010 as compare register  
(c) 16-bit timer output control register 00 (TOC00)  
OSPT00 OSPE00 TOC004 LVS00  
0/1  
LVR00 TOC001 TOE00  
TOC00  
0
0
1
1
0/1  
1
1
Enables TO00 output  
Inverts output upon match  
between TM00 and CR000  
Specifies initial value of  
TO00 output F/F  
Inverts output upon match  
between TM00 and CR010  
Sets one-shot pulse output mode  
Set to 1 for output  
Caution Do not set 0000H to the CR000 and CR010 registers.  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
For details, see Figures 6-3 and 6-4.  
151  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-29. Timing of One-Shot Pulse Output Operation with Software Trigger  
Set TMC00 to 0CH  
(TM00 count starts)  
Count clock  
TM00 count  
CR010 set value  
CR000 set value  
0000H 0001H  
N
N + 1 0000H  
N 1  
N
N
M 1  
M
M + 1 M + 2  
N
N
N
M
M
M
M
OSPT00  
INTTM010  
INTTM000  
TO00 pin output  
Caution 16-bit timer counter 00 starts operating as soon as a value other than 00 (operation stop mode) is  
set to the TMC003 and TMC002 bits.  
Remark N < M  
(2) One-shot pulse output with external trigger  
A one-shot pulse can be output from the TO00 pin by setting 16-bit timer mode control register 00 (TMC00),  
capture/compare control register 00 (CRC00), and 16-bit timer output control register 00 (TOC00) as shown in  
Figure 6-30, and by using the valid edge of the TI000 pin as an external trigger.  
The valid edge of the TI000 pin is specified by bits 4 and 5 (ES000, ES001) of prescaler mode register 00  
(PRM00). The rising, falling, or both the rising and falling edges can be specified.  
When the valid edge of the TI000 pin is detected, the 16-bit timer/event counter is cleared and started, and the  
output becomes active at the count value set in advance to 16-bit timer capture/compare register 010 (CR010).  
After that, the output becomes inactive at the count value set in advance to 16-bit timer capture/compare register  
000 (CR000)Note  
.
Note The case where N < M is described here. When N > M, the output becomes active with the CR000  
register and inactive with the CR010 register.  
Caution Even if the external trigger is generated again while the one-shot pulse is output, it is ignored.  
152  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-30. Control Register Settings for One-Shot Pulse Output with External Trigger  
(a) 16-bit timer mode control register 00 (TMC00)  
TMC003 TMC002 TMC001 OVF00  
TMC00  
0
0
0
0
1
0
0
0
Clears and starts at  
valid edge of TI000 pin  
(b) Capture/compare control register 00 (CRC00)  
CRC002 CRC001 CRC000  
CRC00  
0
0
0
0
0
0
0/1  
0
CR000 used as compare register  
CR010 used as compare register  
(c) 16-bit timer output control register 00 (TOC00)  
OSPT00 OSPE00 TOC004 LVS00  
0/1  
LVR00 TOC001 TOE00  
0/1  
TOC00  
0
0
1
1
1
1
Enables TO00 output  
Inverts output upon match  
between TM00 and CR000  
Specifies initial value of  
TO00 output F/F  
Inverts output upon match  
between TM00 and CR010  
Sets one-shot pulse output mode  
Caution Do not set the CR000 and CR010 registers to 0000H.  
Remark 0/1: Setting 0 or 1 allows another function to be used simultaneously with pulse width measurement.  
For details, see Figures 6-3 and 6-4.  
153  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
Figure 6-31. Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)  
Set TMC00 to 08H  
(TM00 count starts)  
Count clock  
TM00 count value  
CR010 set value  
CR000 set value  
0000H 0001H  
0000H  
N
N
N + 1 N + 2  
M 2 M 1  
M
M + 1 M + 2  
N
N
N
M
M
M
M
TI000 pin input  
INTTM010  
INTTM000  
TO00 pin output  
Caution 16-bit timer counter 00 starts operating as soon as a value other than 00 (operation stop mode) is  
set to the TMC002 and TMC003 bits.  
Remark N < M  
154  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
6.5 Cautions for 16-Bit Timer/Event Counter 00  
(1) Timer start errors  
An error of up to one clock may occur in the time required for a match signal to be generated after timer start.  
This is because 16-bit timer counter 00 (TM00) is started asynchronously to the count clock.  
Figure 6-32. Start Timing of 16-Bit Timer Counter 00 (TM00)  
Count clock  
0000H  
0001H  
0002H  
0003H  
0004H  
TM00 count value  
Timer start  
(2) 16-bit timer capture/compare register setting (in the mode in which clear & start occurs on match  
between TM00 and CR000)  
Set 16-bit timer capture/compare registers 000, 010 (CR000, CR010) to other than 0000H. This means a 1-pulse  
count operation cannot be performed when 16-bit timer/event counter 00 is used as an event counter.  
(3) Operation after compare register change during timer count operation  
If the value after 16-bit timer capture/compare register 000 (CR000) is changed is smaller than that of 16-bit timer  
counter 00 (TM00), TM00 continues counting, overflows and then restarts counting from 0. Thus, if the value (M)  
after CR000 changes is smaller than that (N) before the change, it is necessary to restart the timer after changing  
CR000.  
Figure 6-33. Timings After Change of Compare Register During Timer Count Operation  
Count clock  
N
M
CR000  
X 1  
X
FFFFH  
0000H  
0001H  
0002H  
TM00 count value  
Remark N > X > M  
155  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(4) Capture register data retention timing  
If the valid edge of the TI000 pin is input during 16-bit timer capture/compare register 010 (CR010) read, CR010  
performs a capture operation. However, the value read at this time is not guaranteed.  
The interrupt request flag (TMIF010) is set upon detection of the valid edge.  
Figure 6-34. Capture Register Data Retention Timing  
Count clock  
TM00 count value  
Edge input  
N
N + 1  
N + 2  
M
M + 1  
M + 2  
Interrupt request flag  
Capture read signal  
CR010 interrupt value  
X
N + 2  
M + 1  
Capture  
Capture, but  
read value is  
not guaranteed  
(5) Valid edge setting  
Set the valid edge of the TI000 pin after setting bits 2 and 3 (TMC002 and TMC003) of 16-bit timer mode control  
register 00 (TMC00) to 0, 0, respectively, and then stopping timer operation. The valid edge is set using bits 4  
and 5 (ES000 and ES001) of prescaler mode register 00 (PRM00).  
(6) Re-triggering one-shot pulse  
(a) One-shot pulse output by software  
When a one-shot pulse is output, do not set the OSPT00 bit to 1. Do not output the one-shot pulse again  
until INTTM000, which occurs upon a match with the CR000 register, or INTTM010, which occurs upon a  
match with the CR010 register, occurs.  
(b) One-shot pulse output with external trigger  
If the external trigger occurs again while a one-shot pulse is output, it is ignored.  
(c) One-shot pulse output function  
When using the one-shot pulse output of 16-bit timer/event counter 00 with a software trigger, do not change  
the level of the TI000 pin or its alternate function port pin.  
Because the external trigger is valid even in this case, the timer is cleared and started even at the level of the  
TI000 pin or its alternate function port pin, resulting in the output of a pulse at an undesired timing.  
156  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(7) Operation of OVF00 flag  
<1> The OVF00 flag is set to 1 in the following case.  
When of the following modes: the mode in which clear & start occurs on a match between TM00 and  
CR000, the mode in which clear & start occurs on a TI00 valid edge, or the free-running mode, is selected  
CR000 is set to FFFFH  
TM00 is counted up from FFFFH to 0000H.  
Figure 6-35. Operation Timing of OVF00 Flag  
Count clock  
CR000  
TM00  
FFFFH  
FFFEH  
FFFFH  
0000H  
0001H  
OVF00  
INTTM000  
<2> Even if the OVF00 flag is cleared before the next count clock (before TM00 becomes 0001H) after the  
occurrence of TM00 overflow, the OVF00 flag is re-set newly and clear is disabled.  
(8) Conflicting operations  
<1> Conflict between the read period of the 16-bit timer capture/compare register (CR000/CR010) and capture  
trigger input (CR000/CR010 used as capture register)  
Capture trigger input has priority. The data read from CR000/CR010 is undefined.  
<2> Conflict between the write period of the 16-bit timer capture/compare register (CR000/CR010) and the  
match timing of 16-bit timer counter 00 (TM00) (CR000/CR010 used as a compare register)  
Match determination is not performed normally. Do not write any data to CR000/CR010 near the match  
timing.  
(9) Timer operation  
<1> Even if 16-bit timer counter 00 (TM00) is read, the value is not captured by 16-bit timer capture/compare  
register 010 (CR010).  
<2> Regardless of the CPUs operation mode, when the timer stops, the input signals to the TI000/TI010 pins  
are not acknowledged.  
<3> The one-shot pulse output mode operates correctly only in the free-running mode and the mode in which  
clear & start occurs at the TI000 valid edge. In the mode in which clear & start occurs on a match between  
the TM00 register and CR000 register, one-shot pulse output is not possible because an overflow does not  
occur.  
157  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 6 16-BIT TIMER/EVENT COUNTER 00  
(10) Capture operation  
<1> If TI000 valid edge is specified as the count clock, a capture operation by the capture register specified as  
the trigger for TI000 is not possible.  
<2> To ensure the reliability of the capture operation, the capture trigger requires a pulse two times longer than  
the count clock selected by prescaler mode register 00 (PRM00).  
<3> The capture operation is performed at the falling edge of the count clock. An interrupt request input  
(INTTM000/INTTM010), however, is generated at the rise of the next count clock.  
(11) Compare operation  
<1> When the 16-bit timer capture/compare register (CR000/CR010) is overwritten during timer operation, a  
match interrupt may be generated or a clear operation may not be performed normally if that value is close  
to or larger than the timer value.  
<2> A capture operation may not be performed for CR000/CR010 set in compare mode even if a capture trigger  
has been input.  
(12) Edge detection  
<1> If the TI000 or TI010 pin is high level immediately after system reset and the rising edge or both the rising  
and falling edges are specified as the valid edge of the TI000 or TI010 pin to enable the 16-bit timer counter  
00 (TM00) operation, a rising edge is detected immediately after the operation is enabled. Be careful  
therefore when pulling up the TI000 or TI010 pin. However, the rising edge is not detected at restart after  
the operation has been stopped once.  
<2> The sampling clock used to remove noise differs when the TI000 valid edge is used as the count clock and  
when it is used as a capture trigger. In the former case, the count clock is fX, and in the latter case the  
count clock is selected by prescaler mode register 00 (PRM00). The capture operation is started only after  
a valid edge is detected twice by sampling, thus eliminating noise with a short pulse width.  
158  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.1 Functions of 8-Bit Timer/Event Counters 50 and 51  
8-bit timer/event counters 50 and 51 have the following functions.  
Interval timer  
External event counter  
Square-wave output  
PWM output  
Figures 7-1 and 7-2 show the block diagrams of 8-bit timer/event counters 50 and 51.  
Figure 7-1. Block Diagram of 8-Bit Timer/Event Counter 50  
Internal bus  
8-bit timer compare  
register 50 (CR50)  
Selector  
INTTM50  
TI50/TO50/P17  
Match  
fX  
f /2  
X
S
INV  
/22  
Q
f
f
f
X
X
X
8-bit timer  
/26  
/28  
OVF  
TO50/TI50/P17  
counter 50 (TM50)  
R
f
X
/213  
Clear  
S
R
Invert  
level  
3
Selector  
TCE50 TMC506 LVS50 LVR50 TMC501 TOE50  
TCL502 TCL501 TCL500  
8-bit timer mode control  
register 50 (TMC50)  
Timer clock selection  
register 50 (TCL50)  
Internal bus  
159  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-2. Block Diagram of 8-Bit Timer/Event Counter 51  
Internal bus  
8-bit timer compare  
register 51 (CR51)  
Selector  
INTTM51  
TI51/TO51/P33/INTP4  
Match  
fX  
f /2  
X
S
INV  
/24  
Q
f
f
f
X
X
X
8-bit timer  
/26  
/28  
OVF  
TO51/TI51/P33/INTP4  
counter 51 (TM51)  
R
f
X
/212  
Clear  
S
R
Invert  
level  
3
Selector  
TCE51 TMC516 LVS51 LVR51 TMC511 TOE51  
TCL512 TCL511 TCL510  
8-bit timer mode control  
register 51 (TMC51)  
Timer clock selection  
register 51 (TCL51)  
Internal bus  
160  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.2 Configuration of 8-Bit Timer/Event Counters 50 and 51  
8-bit timer/event counters 50 and 51 consist of the following hardware.  
Table 7-1. Configuration of 8-Bit Timer/Event Counters 50 and 51  
Item  
Timer register  
Configuration  
8-bit timer counter 5n (TM5n)  
Register  
8-bit timer compare register 5n (CR5n)  
1 (TO5n)  
Timer output  
Control registers  
Timer clock selection register 5n (TCL5n)  
8-bit timer mode control register 5n (TMC5n)  
Port mode register 1 (PM1)Note or port mode register 3 (PM3)Note  
Note See Figure 4-9 Block Diagram of P16 and P17 and Figure 4-12 Block Diagram of P33.  
(1) 8-bit timer counter 5n (TM5n)  
TM5n is an 8-bit register that counts the count pulses and is read-only.  
The counter is incremented in synchronization with the rising edge of the count clock.  
When the count value is read during operation, count clock input is temporary stopped, and then the count value  
is read. In the following situations, the count value is cleared to 00H.  
<1> RESET input  
<2> When TCE5n is cleared  
<3> When TM5n and CR5n match in the mode in which clear & start occurs upon a match of the TM5n and  
CR5n.  
(2) 8-bit timer compare register 5n (CR5n)  
CR5n can be read and written by an 8-bit memory manipulation instruction.  
Except in PWM mode, the value set in CR5n is constantly compared with the 8-bit timer counter 5n (TM5n) count  
value, and an interrupt request (INTTM5n) is generated if they match.  
In PWM mode, when the TO5n pin becomes active due to a TM5n overflow and the values of TM5n and CR5n  
match, the TO5n pin becomes inactive.  
The value of CR5n can be set within 00H to FFH.  
Cautions 1. In the mode in which clear & start occurs on a match of TM5n and CR5n (TMC5n6 = 0), do  
not write other values to CR5n during operation.  
2. In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock  
selected by TCL5n) or more.  
Remark n = 0, 1  
161  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51  
The following three registers are used to control 8-bit timer/event counters 50 and 51.  
Timer clock selection register 5n (TCL5n)  
8-bit timer mode control register 5n (TMC5n)  
Port mode register 1 (PM1) or port mode register 3 (PM3)  
(1) Timer clock selection register 5n (TCL5n)  
This register sets the count clock of 8-bit timer/event counter 5n and the valid edge of TI5n input.  
TCL5n can be set by an 8-bit memory manipulation instruction.  
RESET input clears TCL5n to 00H.  
Remark n = 0, 1  
Figure 7-3. Format of Timer Clock Selection Register 50 (TCL50)  
Address: FF6AH After reset: 00H R/W  
Symbol  
TCL50  
7
0
6
0
5
0
4
0
3
0
2
1
0
TCL502  
TCL501  
TCL500  
TCL502  
TCL501  
TCL500  
Count clock selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
TI50 falling edge  
TI50 rising edge  
fX (10 MHz)  
fX/2 (5 MHz)  
fX/22 (2.5 MHz)  
fX/26 (156.25 kHz)  
fX/28 (39.06 kHz)  
fX/213 (1.22 kHz)  
Cautions 1. When rewriting TCL50 to other data, stop the timer operation beforehand.  
2. Be sure to set bits 3 to 7 to 0.  
Remarks 1. fX: X1 input clock oscillation frequency  
2. Figures in parentheses apply to operation at fX = 10 MHz.  
162  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-4. Format of Timer Clock Selection Register 51 (TCL51)  
Address: FF8CH After reset: 00H R/W  
Symbol  
TCL51  
7
0
6
0
5
0
4
0
3
0
2
1
0
TCL512  
TCL511  
TCL510  
TCL512  
TCL511  
TCL510  
Count clock selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
TI51 falling edge  
TI51 rising edge  
fX (10 MHz)  
fX/2 (5 MHz)  
fX/24 (625 kHz)  
fX/26 (156.25 kHz)  
fX/28 (39.06 kHz)  
fX/212 (2.44 kHz)  
Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand.  
2. Be sure to set bits 3 to 7 to 0.  
Remarks 1. fX: X1 input clock oscillation frequency  
2. Figures in parentheses apply to operation at fX = 10 MHz.  
163  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
(2) 8-bit timer mode control register 5n (TMC5n)  
TMC5n is a register that performs the following five types of settings.  
<1> 8-bit timer counter 5n (TM5n) count operation control  
<2> 8-bit timer counter 5n (TM5n) operating mode selection  
<3> Timer output F/F (flip flop) status setting  
<4> Active level selection in timer F/F control or PWM (free-running) mode.  
<5> Timer output control  
TMC5n can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Remark n = 0, 1  
Figure 7-5. Format of 8-Bit Timer Mode Control Register 50 (TMC50)  
Address: FF6BH  
Symbol  
After reset: 00H R/WNote  
7
6
5
0
4
0
3
2
1
0
TMC50  
TCE50  
TMC506  
LVS50  
LVR50  
TMC501  
TOE50  
TCE50  
TM50 count operation control  
0
1
After clearing to 0, count operation disabled (counter stopped)  
Count operation start  
TMC506  
TM50 operating mode selection  
0
1
Mode in which clear & start occurs on a match between TM50 and CR50  
PWM (free-running) mode  
LVS50  
LVR50  
Timer output F/F status setting  
0
0
1
1
0
1
0
1
No change  
Timer output F/F reset (0)  
Timer output F/F set (1)  
Setting prohibited  
TMC501  
In other modes (TMC506 = 0)  
Timer F/F control  
In PWM mode (TMC506 = 1)  
Active level selection  
0
1
Inversion operation disabled  
Inversion operation enabled  
Active-high  
Active-low  
TOE50  
Timer output control  
0
1
Output disabled (TO50 pin outputs the low level)  
Output enabled  
Note Bits 2 and 3 are write-only.  
(Refer to Caution and Remark on the page after the next.)  
164  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-6. Format of 8-Bit Timer Mode Control Register 51 (TMC51)  
Address: FF43H  
Symbol  
After reset: 00H R/WNote  
7
6
5
0
4
0
3
2
1
0
TMC51  
TCE51  
TMC516  
LVS51  
LVR51  
TMC511  
TOE51  
TCE51  
TM51 count operation control  
0
1
After clearing to 0, count operation disabled (counter stopped)  
Count operation start  
TMC516  
TM51 operating mode selection  
0
1
Mode in which clear & start occurs on a match between TM51 and CR51  
PWM (free-running) mode  
LVS51  
LVR51  
Timer output F/F status setting  
0
0
1
1
0
1
0
1
No change  
Timer output F/F reset (0)  
Timer output F/F set (1)  
Setting prohibited  
TMC511  
In other modes (TMC516 = 0)  
Timer F/F control  
In PWM mode (TMC516 = 1)  
Active level selection  
0
1
Inversion operation disabled  
Inversion operation enabled  
Active-high  
Active-low  
TOE51  
Timer output control  
0
1
Output disabled (TO51 pin outputs the low level)  
Output enabled  
Note Bits 2 and 3 are write-only.  
(Refer to Caution and Remark on the next page.)  
165  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Cautions 1. To clear TCE5n to 0, set the interrupt mask flag (TMMK5n) to 1 beforehand. Otherwise, an  
interrupt may occur when TCE5n is cleared.  
TCE5n is cleared to 0 as follows.  
TMMK5n = 1; Mask set  
TCE5n = 0;  
TMIF5n = 0;  
Timer clear  
Interrupt request flag clear  
TMMK5n = 0; Mask clear  
TCE5n = 1;  
Timer start  
2. The settings of LVS5n and LVR5n are valid in other than PWM mode.  
3. Do not rewrite TMC5n1 and TOE5n simultaneously.  
4. When switching to the PWM mode, do not rewrite TM5n6 and LVS5n or LVR5n  
simultaneously.  
5. To rewrite TMC5n6, stop operation beforehand.  
Remarks 1. In PWM mode, PWM output is made inactive by setting TCE5n to 0.  
2. If LVS5n and LVR5n are read after data is set, 0 is read.  
3. The values of the TMC5n6, LVS5n, LVR5n, TMC5n1, and TOE5n bits are reflected at the TO5n pin  
regardless of the value of TCE5n.  
4. n = 0, 1  
166  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
(3) Port mode register 1 (PM1) and 3 (PM3)  
These registers set port 1 and 3 input/output in 1-bit units.  
When using the P17/TO50/TI50 and P33/TO51/TI51 pins for timer output, set PM17 and PM33 and the output  
latches of P17 and P33 to 0.  
PM1 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
Figure 7-7. Format of Port Mode Register 1 (PM1)  
Address: FF21H After reset: FFH R/W  
Symbol  
PM1  
7
6
5
4
3
2
1
0
PM17  
PM16  
PM15  
PM14  
PM13  
PM12  
PM11  
PM10  
PM1n  
P1n pin I/O mode selection (n = 0 to 7)  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
Figure 7-8. Format of Port Mode Register 3 (PM3)  
Address: FF23H After reset: FFH R/W  
Symbol  
PM3  
7
0
6
0
5
0
4
0
3
2
1
0
PM33  
PM32  
PM31  
PM30  
PM3n  
P3n pin I/O mode selection (n = 0 to 3)  
0
1
Output mode (output buffer on)  
Input mode (output buffer off)  
167  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.4 Operations of 8-Bit Timer/Event Counters 50 and 51  
7.4.1 Operation as interval timer  
8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals  
of the count value preset to 8-bit timer compare register 5n (CR5n).  
When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the  
TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.  
The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n  
(TCL5n).  
[Setting]  
<1> Set the registers.  
TCL5n: Select the count clock.  
CR5n: Compare value  
TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n  
and CR5n.  
(TMC5n = 0000×××0B × = Dont care)  
<2> After TCE5n = 1 is set, the count operation starts.  
<3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).  
<4> INTTM5n is generated repeatedly at the same interval.  
Set TCE5n to 0 to stop the count operation.  
Caution Do not write other values to CR5n during operation.  
Figure 7-9. Interval Timer Operation Timing (1/2)  
(a) Basic operation  
t
Count clock  
TM5n count value  
CR5n  
00H 01H  
Count start  
N
N
00H 01H  
N
00H 01H  
N
N
Clear  
Clear  
N
N
TCE5n  
INTTM5n  
Interrupt acknowledged  
Interval time  
Interrupt acknowledged  
Interval time  
TO5n  
Interval time  
Remark Interval time = (N + 1) × t  
N = 00H to FFH  
n = 0, 1  
168  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-9. Interval Timer Operation Timing (2/2)  
(b) When CR5n = 00H  
t
Count clock  
TM5n 00H  
CR5n  
00H 00H  
00H 00H  
TCE5n  
INTTM5n  
TO5n  
Interval time  
(c) When CR5n = FFH  
t
Count clock  
TM5n  
01  
FE  
FF  
FF  
00  
FE  
FF  
FF  
00  
CR5n  
FF  
TCE5n  
INTTM5n  
Interrupt acknowledged  
Interval time  
Interrupt  
acknowledged  
TO5n  
Remark n = 0, 1  
169  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.4.2 Operation as external event counter  
The external event counter counts the number of external clock pulses to be input to TI5n by 8-bit timer counter 5n  
(TM5n).  
TM5n is incremented each time the valid edge specified by timer clock selection register 5n (TCL5n) is input.  
Either the rising or falling edge can be selected.  
When the TM5n count value matches the value of 8-bit timer compare register 5n (CR5n), TM5n is cleared to 0  
and an interrupt request signal (INTTM5n) is generated.  
Whenever the TM5n value matches the value of CR5n, INTTM5n is generated.  
[Setting]  
<1> Set each register.  
TCL5n: Select TI5n input edge.  
TI5n falling edge TCL5n = 00H  
TI5n rising edge TCL5n = 01H  
CR5n: Compare value  
TMC5n: Stop the count operation, select the mode in which clear & start occurs on match of TM5n and  
CR5n, disable the timer F/F inversion operation, disable timer output.  
(TMC5n = 0000××00B × = Dont care)  
<2> When TCE5n = 1 is set, the number of pulses input from TI5n is counted.  
<3> When the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).  
<4> After these settings, INTTM5n is generated each time the values of TM5n and CR5n match.  
Figure 7-10. External Event Counter Operation Timing (with Rising Edge Specified)  
TI5n  
Count start  
TM5n count value  
CR5n  
00  
01  
02  
03  
04  
05  
N 1  
N
00  
01  
02  
03  
N
INTTM5n  
Remark N = 00H to FFH  
n = 0, 1  
170  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.4.3 Square-wave output operation  
A square wave with any selected frequency is output at intervals of the value preset to 8-bit timer compare register  
5n (CR5n).  
The TO5n pin output status is inverted at intervals of the count value preset to CR5n by setting bit 0 (TOE5n) of 8-  
bit timer mode control register 5n (TMC5n) to 1. This enables a square wave with any selected frequency to be output  
(duty = 50%).  
[Setting]  
<1> Set each register.  
Set the port latches (P17 and P33)Note and port mode registers (PM17 and PM33)Note to 0.  
TCL5n: Select the count clock.  
CR5n: Compare value  
TMC5n: Stop the count operation, select the mode in which clear & start occurs on a match of TM5n and  
CR5n.  
LVS5n LVR5n  
Timer Output F/F Status Setting  
High-level output  
Low-level output  
1
0
0
1
Timer output F/F inversion enabled  
Timer output enabled  
(TMC5n = 00001011B or 00000111B)  
<2> After TCE5n = 1 is set, the count operation starts.  
<3> The timer output F/F is inverted by a match of TM5n and CR5n. After INTTM5n is generated, TM5n is  
cleared to 00H.  
<4> After these settings, the timer output F/F is inverted at the same interval and a square wave is output from  
TO5n.  
The frequency is as follows.  
Frequency = fCNT/2 (N + 1)  
(N: 00H to FFH, fCNT: Count clock)  
Note 8-bit timer/event counter 50: P17, PM17  
8-bit timer/event counter 51: P33, PM33  
Caution Do not write other values to CR5n during operation.  
Remark n = 0, 1  
171  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-11. Square-Wave Output Operation Timing  
Count clock  
TMn count value  
00H  
01H  
02H  
N 1  
N
00H  
01H  
02H  
N 1  
N
00H  
Count start  
N
CR5n  
TO5nNote  
Note The initial value of TO5n output can be set by bits 2 and 3 (LVR5n, LVS5n) of 8-bit timer mode control  
register 5n (TMC5n).  
172  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
7.4.4 PWM output operation  
8-bit timer/event counter 5n operates as a PWM output when bit 6 (TMC5n6) of 8-bit timer mode control register 5n  
(TMC5n) is set to 1.  
The duty ratio pulse determined by the value set to 8-bit timer compare register 5n (CR5n) is output from TO5n.  
Set the active level width of the PWM pulse to CR5n; the active level can be selected with bit 1 (TMC5n1) of  
TMC5n.  
The count clock can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n).  
PWM output can be enabled/disabled with bit 0 (TOE5n) of TMC5n.  
Caution In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by  
TCL5n) or more.  
(1) PWM output basic operation  
[Setting]  
<1> Set each register.  
Set the port latches (P17, P33)Note and port mode registers (PM17, PM33)Note to 0.  
TCL5n: Select the count clock.  
CR5n: Compare value  
TMC5n: Stop the count operation, select PWM mode.  
The timer output F/F is not changed.  
TMC5n1  
Active Level Selection  
0
1
Active-high  
Active-low  
Timer output enabled  
(TMC5n = 01000001B or 01000011B)  
<2> The count operation starts when TCE5n = 1.  
Set TCE5n to 0 to stop the count operation.  
Note 8-bit timer/event counter 50: P17, PM17  
8-bit timer/event counter 51: P33, PM33  
[PWM output operation]  
<1> PWM output (output from TO5n) outputs an inactive level after the count operation starts until an overflow  
occurs.  
<2> When an overflow occurs, the active level set in <1> above is output.  
The active level is output until CR5n matches the count value of 8-bit timer counter 5n (TM5n).  
<3> After the CR5n matches the count value, the inactive level is output until an overflow occurs again.  
<4> Operations <2> and <3> are repeated until the count operation stops.  
<5> When the count operation is stopped with TCE5n = 0, PWM output becomes inactive.  
Remark n = 0, 1  
173  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
Figure 7-12. PWM Output Operation Timing  
(a) Basic operation (active level = H)  
Count clock  
TM5n  
00H 01H  
N
FFH 00H 01H 02H  
N
N + 1  
FFH 00H 01H 02H  
M
00H  
CR5n  
TCE5n  
INTTM5n  
TO5n  
Active level  
Inactive level  
Active level  
(b) CR5n = 00H  
Count clock  
TM5n 00H 01H  
FFH 00H 01H 02H  
N
N + 1 N + 2  
FFH 00H 01H 02H  
M 00H  
00H  
CR5n  
TCE5n  
INTTM5n  
TO5n  
L
Inactive level  
Inactive level  
(c) CR5n = FFH  
TM5n  
CR5n  
M 00H  
00H 01H  
FFH 00H 01H 02H  
N
N + 1 N + 2  
FFH 00H 01H 02H  
FFH  
TCE5n  
INTTM5n  
TO5n  
Active level  
Inactive level  
Inactive level  
Active level  
Inactive level  
Remark n = 0, 1  
174  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 7 8-BIT TIMER/EVENT COUNTERS 50 AND 51  
(2) Operation with CR5n changed  
Figure 7-13. Timing of Operation with CR5n Changed  
(a) CR5n value is changed from N to M before clock rising edge of FFH  
Value is reloaded to CR5n at overflow immediately after change.  
Count clock  
TM5n  
CR5n  
N
N + 1 N + 2  
FFH 00H 01H 02H  
M
M + 1 M + 2  
FFH 00H 01H 02H  
M M + 1 M + 2  
N
M
TCE5n  
H
INTTM5n  
TO5n  
<2>  
<1> CR5n change (N M)  
(b) CR5n value is changed from N to M after clock rising edge of FFH  
Value is reloaded to CR5n at second overflow.  
Count clock  
TM5n  
N
N + 1 N + 2  
FFH 00H 01H 02H  
N
N + 1 N + 2  
FFH 00H 01H 02H  
M M + 1 M + 2  
CR5n  
N
N
M
TCE5n  
H
INTTM5n  
TO5n  
<2>  
<1> CR5n change (N M)  
Caution When reloading from CR5n between <1> and <2> in Figure 7-13, the value read differs from the  
actual value (read value: M, actual value of CR5n: N).  
7.5 Cautions for 8-Bit Timer/Event Counters 50 and 51  
(1) Timer start error  
An error of up to one clock may occur in the time required for a match signal to be generated after timer start.  
This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.  
Figure 7-14. 8-Bit Timer Counter 5n Start Timing  
Count clock  
TM5n count value  
00H  
Timer start  
01H  
02H  
03H  
04H  
Remark n = 0, 1  
175  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
8.1 Functions of 8-Bit Timers H0 and H1  
8-bit timers H0 and H1 have the following functions.  
8-bit-accuracy interval timer  
8-bit-accuracy PWM pulse generator mode  
8-bit-accuracy carrier generator mode (8-bit timer H1 only)  
8.2 Configuration of 8-Bit Timers H0 and H1  
8-bit timers H0 and H1 consist of the following hardware.  
Table 8-1. Configuration of 8-Bit Timers H0 and H1  
Configuration  
Item  
Timer register  
Registers  
8-bit timer counter Hn (TMHn)  
8-bit timer H compare register 0n (CMP0n)  
8-bit timer H compare register 1n (CMP1n)  
Timer output  
Two outputs (TOHn)  
Control registers  
8-bit timer H mode register n (TMHMDn)  
8-bit timer H carrier control register 1 (TMCYC1)Note  
Note 8-bit timer H1 only  
Remark n = 0, 1  
Figures 8-1 and 8-2 show the block diagrams.  
Figure 8-1. Block Diagram of 8-Bit Timer H0  
Internal bus  
8-bit timer H mode control  
register 0 (TMHMD0)  
8-bit timer H  
8-bit timer H  
TMHE0 CKS02 CKS01 CKS00 TMMD01TMMD00 TOLEV0 TOEN0  
compare register compare register  
10 (CMP10)  
00 (CMP00)  
3
2
TOH0/P15  
Decoder  
Selector  
F/F  
R
Match  
Interrupt  
generator  
Output  
controller  
Level  
inversion  
f
X
f
X
/2  
/22  
/26  
8-bit timer  
counter H0  
(TMH0)  
f
f
X
X
f
X
/210  
Clear  
TO50/TI50/P17  
PWM mode signal  
1
0
Timer H enable signal  
INTTMH0  
176  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-2. Block Diagram of 8-Bit Timer H1  
Internal bus  
8-bit timer H mode control  
register 1 (TMHMD1)  
8-bit timer H carrier  
control register 1  
(TMCYC1)  
8-bit timer H  
compare register  
11 (CMP11)  
8-bit timer H  
compare register  
01 (CMP01)  
TMHE1 CKS12 CKS11 CKS10 TMMD11TMMD10 TOLEV1 TOEN1  
RMC1 NRZB1 NRZ1  
Reload/  
interrupt  
control  
INTTM51  
3
2
TOH1/  
INTP5/  
P16  
Decoder  
Selector  
F/F  
Match Interrupt  
generator  
Output  
controller  
Level  
inversion  
R
f
X
f
f
f
X
X
X
/22  
/24  
/26  
8-bit timer  
counter H1  
(TMH1)  
f
X
/212  
f
/27  
R
Clear  
Carrier generator mode signal  
PWM mode signal  
1
0
Timer H enable signal  
INTTMH1  
(1) 8-bit timer H compare register 0n (CMP0n)  
This register can be read/written by an 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
After reset: 00H R/W Address: FF18H, FF1AH  
7
5
3
2
1
0
6
4
CMP0n  
Caution This register cannot be rewritten during timer count operation.  
(2) 8-bit timer H compare register 1n (CMP1n)  
This register can be read/written by an 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
After reset: 00H R/W Address: FF19H, FF1BH  
7
5
3
2
1
0
6
4
CMP1n  
The CMP1n register can be rewritten during timer count operation.  
In the carrier generator mode, an interrupt request signal (INTTMHn) is generated if the values of the timer counter  
and CMP1n register match after setting the CMP1n register. The timer counter value is cleared at the same time. If  
the CMP1n register value is rewritten during timer operation, reloading is performed at the timing at which the counter  
value and CMP1n register value match. If the transfer timing and writing from CPU to CMP1n register conflict,  
transfer is not performed.  
Remark n = 0, 1  
177  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
8.3 Registers Controlling 8-Bit Timers H0 and H1  
8-bit timers H0 and H1 are controlled by 8-bit timer H mode registers 0 and 1 (TMHMD0, TMHMD1) and 8-bit timer  
H carrier control register 1 (TMCYC1)Note  
.
Note 8-bit timer H1 only  
(1) 8-bit timer H mode registers 0 and 1 (TMHMD0, TMHMD1)  
These registers control the mode of timer H.  
These registers can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears these registers to 00H.  
Figure 8-3. Format of 8-Bit Timer H Mode Register 0 (TMHMD0)  
Address: FF69H After reset: 00H R/W  
7
5
3
2
1
0
6
4
TMHMD0  
TMHE0 CKS02  
CKS01 CKS00 TMMD01 TMMD00 TOLEV0 TOEN0  
TMHE0  
Timer operation enable  
0
1
Stops timer count operation  
Enables timer count operation (count operation started by inputting clock)  
CKS02  
CKS01  
CKS00  
Count clock (fCNT) selection  
(10 MHz)  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
f
f
f
f
f
X
X
X
X
X
/2  
(5 MHz)  
/22  
/26  
(2.5 MHz)  
(156.25 kHz)  
/210 (9.77 kHz)  
TO50  
Other than above  
Setting prohibited  
TMMD01 TMMD00  
Timer operation mode  
0
1
0
0
Interval timer mode  
PWM pulse generator mode  
Other than above Setting prohibited  
TOLEV0  
Timer output level control (in default mode)  
0
1
Low level  
High level  
TOEN0  
Timer output control  
0
1
Disables output  
Enables output  
Caution When TMHE0 = 1, setting the other bits of the TMHMD0 register is prohibited.  
Remarks 1. fX: X1 input clock oscillation frequency  
2. Figures in parentheses apply to operation at fX = 10 MHz  
178  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-4. Format of 8-Bit Timer H Mode Register 1 (TMHMD1)  
Address: FF6CH After reset: 00H R/W  
7
5
3
2
1
0
6
4
TMHMD1  
TMHE1 CKS12  
CKS11 CKS10 TMMD11 TMMD10 TOLEV1 TOEN1  
TMHE1  
Timer operation enable  
0
1
Stops timer count operation  
Enables timer count operation (count operation started by inputting clock)  
CKS12  
CKS11  
CKS10  
Count clock (fCNT) selection  
(10 MHz)  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
f
f
f
f
f
f
X
X
X
X
X
/22  
/24  
/26  
(2.5 MHz)  
(625 kHz)  
(156.25 kHz)  
/212 (2.44 kHz)  
/27  
(1.88 kHz (TYP.))  
R
Other than above  
Setting prohibited  
TMMD11 TMMD10  
Timer operation mode  
0
0
1
0
1
0
Interval timer mode  
Carrier generator mode  
PWM pulse generator mode  
Other than above Setting prohibited  
TOLEV1  
Timer output level control (in default mode)  
0
1
Low level  
High level  
TOEN1  
Timer output control  
0
1
Disables output  
Enables output  
Caution When TMHE1 = 1, setting the other bits of the TMHMD1 register is prohibited.  
Remarks 1. fX: X1 input clock oscillation frequency  
2. fR: Ring-OSC clock oscillation frequency  
3. Figures in parentheses apply to operation at fX = 10 MHz, fR = 240 kHz (TYP.).  
179  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
(2) 8-bit timer H carrier control register 1 (TMCYC1)  
This register controls the remote control output and carrier pulse output status of 8-bit timer H1.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 8-5. Format of 8-Bit Timer H Carrier Control Register 1 (TMCYC1)  
Address: FF6DH After reset: 00H R/WNote  
TMCYC1  
0
0
0
0
0
RMC1  
NRZB1  
NRZ1  
RMC1  
NRZB1  
Remote control output  
0
0
1
1
0
1
0
1
Low-level output  
High-level output  
Low-level output  
Carrier pulse output  
NRZ1  
Carrier pulse output status flag  
0
1
Carrier output disabled status (low-level status)  
Carrier output enabled status  
(RMC1 = 1: Carrier pulse output, RMC1 = 0: High-level status)  
Note Bit 0 is read-only.  
180  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
8.4 Operation of 8-Bit Timers H0 and H1  
8.4.1 Operation as interval timer  
When 8-bit timer counter Hn and compare register 0n (CMP0n) match, an interrupt request signal (INTTMHn) is  
generated and 8-bit timer counter Hn is cleared to 00H.  
Compare register 1n (CMP1n) is not used in interval timer mode. Since a match of 8-bit timer counter Hn and the  
CMP1n register is not detected even if the CMP1n register is set, timer output is not affected.  
(1) Usage  
Generates the INTTMHn signal repeatedly at the same interval.  
<1> Set each register.  
Figure 8-6. Register Setting in Interval Timer Mode  
(i) Setting timer H mode register n (TMHMDn)  
TMHEn  
0
CKSn2 CKSn1  
0/1 0/1  
CKSn0 TMMDn1 TMMDn0 TOLEVn TOENn  
0/1 0/1 0/1  
TMHMDn  
0
0
Timer output setting  
Timer output level inversion setting  
Interval timer mode setting  
Count clock (fCNT) selection  
Count operation stopped  
(ii) CMP0n register setting  
Compare value (N)  
<2> Count operation starts when TMHEn = 1.  
<3> When the values of 8-bit timer counter Hn and the CMP0n register match, the INTTMHn signal is generated  
and 8-bit timer counter Hn is cleared to 00H.  
Interval timer = (N +1)/fCNT  
<4> Subsequently, the INTTMHn signal is generated at the same interval. To stop the count operation, set  
TMHEn to 0.  
Remark n = 0, 1  
181  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
(2) Timing chart  
The timing in interval timer mode is shown below.  
Figure 8-7. Timing of Interval Timer Operation (1/2)  
(a) Basic operation  
Count clock  
Count start  
00H  
01H  
N
N
00H  
Clear  
01H  
N
00H 01H 00H  
Clear  
8-bit timer counter Hn  
CMP0n  
TMHEn  
INTTMHn  
TOHn  
Interval time  
<1>  
<2>  
Level inversion,  
<3>  
<2>  
Level inversion,  
match interrupt occurrence,  
8-bit timer counter Hn clear  
match interrupt occurrence,  
8-bit timer counter Hn clear  
<1> The count operation is enabled by setting the TMHEn bit to 1. The count clock starts counting no more than  
1 clock after the operation is enabled.  
<2> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn  
is cleared, the TOHn output level is inverted, and the INTTMHn signal is output.  
<3> The INTTMHn signal and TOHn output become inactive by setting the TMHEn bit to 0 during timer Hn  
operation. If these are inactive from the first, the level is retained.  
Remark n = 0, 1  
N = 00H to FFH  
182  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-7. Timing of Interval Timer Operation (2/2)  
(b) Operation when CMP0n = FFH  
Count clock  
Count start  
00H  
00H  
01H  
FEH  
FFH  
00H  
FEH  
FFH  
8-bit timer counter Hn  
Clear  
Clear  
FFH  
CMP0n  
TMHEn  
INTTMHn  
TOHn  
Interval time  
(c) Operation when CMP0n = 00H  
Count clock  
Count start  
00H  
00H  
8-bit timer counter Hn  
CMP0n  
TMHEn  
INTTMHn  
TOHn  
Interval time  
Remark n = 0, 1  
183  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
8.4.2 Operation as PWM pulse generator  
In PWM mode, a pulse with an arbitrary duty and arbitrary cycle can be output.  
8-bit timer compare register 0n (CMP0n) controls the cycle of timer output (TOHn). Rewriting the CMP0n register  
during timer operation is prohibited.  
8-bit timer compare register 1n (CMP1n) controls the duty of timer output (TOHn). Rewriting the CMP1n register  
during timer operation is possible.  
The operation in PWM mode is as follows.  
TOHn output becomes active and 8-bit timer counter Hn is cleared to 0 when 8-bit timer counter Hn and the  
CMP0n register match after the timer count is started. TOHn output becomes inactive when 8-bit timer counter Hn  
and the CMP1n register match.  
(1) Usage  
In PWM mode, a pulse for which an arbitrary duty and arbitrary cycle can be set is output.  
<1> Set each register.  
Figure 8-8. Register Setting in PWM Pulse Generator Mode  
(i) Setting timer H mode register n (TMHMDn)  
TMHEn  
0
CKSn2 CKSn1  
0/1 0/1  
CKSn0 TMMDn1 TMMDn0 TOLEVn TOENn  
0/1 0/1  
TMHMDn  
1
0
1
Timer output enabled  
Timer output level inversion setting  
PWM mode selection  
Count clock (fCNT) selection  
Count operation stopped  
(ii) Setting CMP0n register  
Compare value (N): Cycle setting  
(iii) Setting CMP1n register  
Compare value (M): Duty setting  
Remarks 1. n = 0, 1  
2. 00H CMP1n (M) < CMP0n (N) < FFH  
<2> The count operation starts when TMHEn = 1.  
<3> The CMP0n register is the compare register that is to be compared first after counter operation is enabled.  
When the values of 8-bit timer counter Hn and the CMP0n register match, 8-bit timer counter Hn is cleared,  
an interrupt request signal (INTTMHn) is generated, and TOHn output becomes active. At the same time,  
the compare register to be compared with 8-bit timer counter Hn is changed from the CMP0n register to the  
CMP1n register.  
184  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
<4> When 8-bit timer counter Hn and the CMP1n register match, TOHn output becomes inactive and the  
compare register to be compared with 8-bit timer counter Hn is changed from the CMP1n register to the  
CMP0n register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not  
generated.  
<5> By performing procedures <3> and <4> repeatedly, a pulse with an arbitrary duty ratio can be obtained.  
<6> To stop the count operation, set TMHEn = 0.  
If the setting value of the CMP0n register is N, the setting value of the CMP1n register is M, and the count clock  
frequency is fCNT, the PWM pulse output cycle and duty ratio are as follows.  
PWM pulse output cycle = (N+1)/fCNT  
Duty ratio = Inactive width : Active width = (M + 1) : (N M)  
Caution In PWM mode, three operation clocks (signal selected using the CKSn2 to CKSn0 bits of the  
TMHMDn register) are required to transfer the CMP1n register value after rewriting the register.  
185  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
(2) Timing chart  
The operation timing in PWM mode is shown below.  
Caution Make sure that the CMP1n register setting value (M) and CMP0n register setting value (N) are  
within the following range.  
00H CMP1n (M) < CMPn0 (N) < FFH  
Remark n = 0, 1  
Figure 8-9. Operation Timing in PWM Pulse Generator Mode (1/4)  
(a) Basic operation  
Count clock  
00H 01H  
A5H 00H 01H 02H  
A5H 00H 01H 02H  
A5H 00H  
8-bit timer counter Hn  
A5H  
01H  
CMP0n  
CMP1n  
TMHEn  
INTTMHn  
TOHn  
(TOLEVn = 0)  
<4>  
<2>  
<3>  
<1>  
TOHn  
(TOLEVn = 1)  
<1> The count operation is enabled by setting the TMHEn bit to 1. Start 8-bit timer counter Hn by masking one  
count clock to count up. At this time, TOHn output remains inactive (when TOLEVn = 0).  
<2> When the values of 8-bit timer counter Hn and the CMP0n register match, the TOHn output level is inverted,  
the value of 8-bit timer counter Hn is cleared, and the INTTMHn signal is output.  
<3> When the values of 8-bit timer counter Hn and the CMP1n register match, the level of the TOHn output is  
returned. At this time, the 8-bit timer counter value is not cleared and the INTTMHn signal is not output.  
<4> Setting the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.  
Remark n = 0, 1  
186  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-9. Operation Timing in PWM Pulse Generator Mode (2/4)  
(b) Operation when CMP0n = FFH, CMP1n = 00H  
Count clock  
8-bit timer counter Hn  
00H 01H  
FFH 00H 01H 02H  
FFH 00H 01H 02H  
FFH 00H  
FFH  
00H  
CMP0n  
CMP1n  
TMHEn  
INTTMHn  
TOHn  
(TOLEVn = 0)  
(c) Operation when CMP0n = FFH, CMP1n = FEH  
Count clock  
00H 01H  
FEH FFH 00H 01H  
FEH FFH 00H 01H  
FEH FFH 00H  
8-bit timer counter Hn  
FFH  
FEH  
CMP0n  
CMP1n  
TMHEn  
INTTMHn  
TOHn  
(TOLEVn = 0)  
Remark n = 0, 1  
187  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-9. Operation Timing in PWM Pulse Generator Mode (3/4)  
(d) Operation when CMP0n = 01H, CMP1n = 00H  
Count clock  
00H 01H 00H 01H 00H  
00H 01H 00H 01H  
8-bit timer counter Hn  
CMP0n  
01H  
00H  
CMP1n  
TMHEn  
INTTMHn  
TOHn  
(TOLEVn = 0)  
Remark n = 0, 1  
188  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-9. Operation Timing in PWM Pulse Generator Mode (4/4)  
(e) Operation by changing CMP1n (CMP1n = 01H 03H, CMP0n = A5H)  
Count clock  
8-bit timer counter Hn  
00H 01H 02H  
A5H 00H 01H 02H 03H  
A5H 00H 01H 02H 03H  
A5H 00H  
A5H  
03H  
CMP0n  
CMP1n  
01H  
01H (03H)  
<2>  
<2>'  
TMHEn  
INTTMHn  
TOHn  
(TOLEVn = 0)  
<3>  
<4>  
<6>  
<1>  
<5>  
<1> The count operation is enabled by setting TMHEn = 1. Start 8-bit timer counter Hn by masking one count  
clock to count up. At this time, the TOHn output remains inactive (when TOLEVn = 0).  
<2> The CMP1n register value can be changed during timer counter operation. This operation is asynchronous  
to the count clock.  
<3> When the values of 8-bit timer counter Hn and the CMP0n register match, the value of 8-bit timer counter Hn  
is cleared, the TOHn output becomes active, and the INTTMHn signal is output.  
<4> If the CMP1n register value is changed, the value is latched and not transferred to the register. When the  
values of 8-bit timer counter Hn and the CMP1n register before the change match, the value is transferred to  
the CMP1n register and the CMP1n register value is changed (<2>).  
However, three count clocks or more are required from when the CMP1n register value is changed to when  
the value is transferred to the register. If a match signal is generated within three count clocks, the changed  
value cannot be transferred to the register.  
<5> When the values of 8-bit timer counter Hn and the CMP1n register after the change match, the TOHn output  
becomes inactive. 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.  
<6> Setting the TMHEn bit to 0 during timer Hn operation makes the INTTMHn signal and TOHn output inactive.  
Remark n = 0, 1  
189  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
8.4.3 Carrier generator mode operation (8-bit timer H1 only)  
The carrier clock generated by 8-bit timer H1 is output in the cycle set by 8-bit timer/event counter 51.  
In carrier generator mode, the output of the 8-bit timer H1 carrier pulse is controlled by 8-bit timer/event counter 51,  
and the carrier pulse is output from the TOH1 output.  
In carrier generator mode, the connection between 8-bit timer H1 and 8-bit timer/event counter 51 is as shown  
below.  
Figure 8-10. Example of Connection Between 8-Bit Timer H1 and 8-Bit Timer/Event Counter 51  
INTTM51  
8-bit timer/event counter 51  
TO51  
TMMD01,  
TMMD11  
INTTM51  
Selector  
INTC  
INTTM5H1  
INTTMH1  
8-bit timer H1  
TOH1  
Prescaler  
CPU  
(1) Carrier generation  
In carrier generator mode, 8-bit timer H compare register 01 (CMP01) generates a low-level width carrier pulse  
waveform and 8-bit timer H compare register 11 (CMP11) generates a high-level width carrier pulse waveform.  
Rewriting the CMP11 register during 8-bit timer H1 operation is possible but rewriting the CMP01 register is  
prohibited.  
(2) Carrier output control  
Carrier output is controlled by the interrupt request signal (INTTM51) of 8-bit timer/event counter 51 and the  
NRZ1 and RMC1 bits of the 8-bit timer H carrier control register (TMCYC1). The relationship between the  
outputs is shown below.  
RMC1 Bit  
NRZ1 Bit  
Output  
Low-level output  
0
0
1
1
0
1
0
1
High-level output  
Low-level output  
Carrier pulse output  
190  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
To control the carrier pulse output during a count operation, the NRZ1 and NRZB1 bits of the TMCYC1 register  
have a master and slave bit configuration. The NRZ1 bit is read-only but the NRZB1 bit can be read and written.  
The INTTM51 signal is synchronized with the 8-bit timer H1 clock and output as the INTTM5H1 signal. The  
INTTM5H1 signal becomes the data transfer signal of the NRZ1 bit, and the NRZB1 bit value is transferred to the  
NRZ1 bit. The timing for transfer from the NRZB1 bit to the NRZ1 bit is as shown below.  
Figure 8-11. Transfer Timing  
TMHE1  
8-bit timer H1  
count clock  
INTTM51  
INTTM5H1  
<1>  
0
1
0
NRZ1  
NRZB1  
RMC1  
<2>  
1
0
1
191  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
(3) Usage  
Outputs an arbitrary carrier clock from the TOH1 pin.  
<1> Set each register.  
Figure 8-12. Register Setting in Carrier Generator Mode  
(i) Setting 8-bit timer H mode register 1 (TMHMD1)  
TMHE1  
0
CKS12 CKS11  
0/1 0/1  
CKS10 TMMD11 TMMD10 TOLEV1 TOEN1  
0/1 0/1 0/1  
TMHMD1  
0
1
Timer output enabled  
Timer output level inversion setting  
Carrier generator mode selection  
Count clock (fCNT) selection  
Count operation stopped  
(ii) CMP01 register setting  
Compare value  
(iii) CMP11 register setting  
Compare value  
(iv) TMCYC1 register setting  
RMC1 = 1 ... Remote control output enable bit  
NRZB1 = 0/1 ... carrier output enable bit  
(v) TCL51 and TMC51 register setting  
Refer to 7.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51.  
<2> When TMHE1 = 1, 8-bit timer H1 starts counting.  
<3> When TCE51 of 8-bit timer mode control register 51 (TMC51) is set to 1, 8-bit timer/event counter 51 starts  
counting.  
<4> After the count operation is enabled, the first compare register to be compared is the CMP01 register.  
When the count value of 8-bit timer counter H1 and the CMP01 register value match, the INTTMH1 signal  
is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared  
with 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register.  
<5> When the count value of 8-bit timer counter H1 and the CMP11 register value match, the INTTMH1 signal  
is generated, 8-bit timer counter H1 is cleared, and at the same time, the compare register to be compared  
with 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register.  
<6> By performing procedures <4> and <5> repeatedly, a carrier clock is generated.  
<7> The INTTM51 signal is synchronized with 8-bit timer H1 and output as the INTTM5H1 signal. The  
INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is  
transferred to the NRZ1 bit.  
<8> When the NRZ1 bit is high level, a carrier clock is output from the TOH1 pin.  
<9> By performing the procedures above, an arbitrary carrier clock is obtained. To stop the count operation, set  
TMHE1 to 0.  
192  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
If the setting value of the CMP01 register is 1, the setting value of the CMP11 register is M, and the count clock  
frequency is fCNT, the carrier clock output cycle and duty ratio are as follows.  
Carrier clock output cycle = (1 + M + 2)/fCNT  
Duty ratio = High-level width : Low-level width = ( M + 1) : (1 + 1)  
(4) Timing chart  
The carrier output control timing is shown below.  
Cautions 1. Set the values of the CMP01 and CMP11 registers in a range of 01H to FFH.  
2. In the carrier generator mode, three operating clocks (signal selected by CKS12 to CKS10  
bits of TMHMD1 register) or more are required from when the CMP11 register value is  
changed to when the value is transferred to the register.  
3. Be sure to set the RMC1 bit before the count operation is started.  
193  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-13. Carrier Generator Mode Operation Timing (1/3)  
(a) Operation when CMP01 = 1, CMP11 = 1  
8-bit timer H1  
count clock  
8-bit timer counter  
H1 count value  
00H  
N
00H  
N
00H  
N
00H  
N
00H  
N
00H  
N
N
CMP01  
CMP11  
N
TMHE1  
INTTMH1  
Carrier clock  
<3>  
<4>  
<1> <2>  
00H 01H  
8-bit timer 51  
count clock  
TM51 count value  
L
00H 01H  
L
00H 01H  
L
L
00H 01H  
L
00H 01H  
CR51  
TCE51  
<5>  
INTTM51  
NRZB1  
0
1
0
1
0
<6>  
0
1
0
1
0
NRZ1  
Carrier clock  
TOH1  
<7>  
<1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer H1 operation is stopped.  
<2> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the  
inactive level.  
<3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal  
is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer  
counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to  
00H.  
<4> When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is  
generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer  
counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to  
00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty ratio fixed to 50% is  
generated.  
<5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 and output as the INTTM5H1  
signal.  
<6> The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is  
transferred to the NRZ1 bit.  
<7> When NRZ1 = 0 is set, the TOH1 output becomes low level.  
194  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-13. Carrier Generator Mode Operation Timing (2/3)  
(b) Operation when CMP01 = 1, CMP11 = M (operation when carrier clock phase is asynchronous to NRZ1 phase)  
8-bit timer H1  
count clock  
8-bit timer counter  
00H  
N
00H 01H  
M
00H  
N
00H 01H  
M
00H  
N
00H  
H1 count value  
N
CMP01  
M
CMP11  
TMHE1  
INTTMH1  
Carrier clock  
<3>  
<4>  
<1> <2>  
00H 01H  
8-bit timer 51  
count clock  
TM51 count value  
L
00H 01H  
L
00H 01H  
L
L
00H 01H  
L
00H 01H  
CR51  
TCE51  
<5>  
INTTM51  
NRZB1  
NRZ1  
0
1
0
1
0
<6>  
0
1
0
1
0
Carrier clock  
TOH1  
<7>  
<1> When TMHE1 = 0 and TCE51 = 0, 8-bit timer H1 operation is stopped.  
<2> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the  
inactive level.  
<3> When the count value of 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal  
is generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer  
counter H1 is switched from the CMP01 register to the CMP11 register. 8-bit timer counter H1 is cleared to  
00H.  
<4> When the count value of 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is  
generated, the carrier clock signal is inverted, and the compare register to be compared with 8-bit timer  
counter H1 is switched from the CMP11 register to the CMP01 register. 8-bit timer counter H1 is cleared to  
00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty ratio fixed to other than  
50% is generated.  
<5> When the INTTM51 signal is generated, it is synchronized with 8-bit timer H1 and output as the INTTM5H1  
signal.  
<6> When the carrier clock phase becomes asynchronous to the NRZ1 bit phase, a carrier signal is output at the  
first rising edge of the carrier clock if NRZ1 is set to 1.  
<7> When NRZ1 = 0, the TOH1 output is held at the high level and is not changed to low level while the carrier  
clock is high level (from <6> and <7>, the high-level width of the carrier clock waveform is guaranteed).  
195  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 8 8-BIT TIMERS H0 AND H1  
Figure 8-13. Carrier Generator Mode Operation Timing (3/3)  
(c) Operation when CMP11 is changed  
8-bit timer H1  
count clock  
8-bit timer counter  
H1 count value  
00H 01H  
N
00H 01H  
00H  
N
N
00H 01H  
L
00H  
M
CMP01  
CMP11  
TMHE1  
<3>  
<3>’  
M
L
M (L)  
INTTMH1  
<4>  
<5>  
<2>  
Carrier clock  
<1>  
<1> When TMHE1 = 1 is set, 8-bit timer H1 starts a count operation. At that time, the carrier clock is held at the  
inactive level.  
<2> When the count value of 8-bit timer counter H1 matches the CMP01 register value, 8-bit timer counter H1 is  
cleared and the INTTMH1 signal is output.  
<3> The CMP11 register can be rewritten during 8-bit timer H1 operation, however, the changed value (L) is  
latched. The CMP11 register is changed when the count value of 8-bit timer counter H1 and the CMP11  
register value before the change (M) match (<3>).  
<4> When the count value of 8-bit timer counter H1 and the CMP11 register value before the change (M) match,  
the INTTMH1 signal is output, the carrier signal is inverted, and 8-bit timer counter H1 is cleared to 00H.  
<5> The timing at which the count value of 8-bit timer counter H1 and the CMP11 register value match again is  
indicated by the value after the change (L).  
196  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
9.1 Functions of Watch Timer  
The watch timer has the following functions.  
Watch timer  
Interval timer  
The watch timer and the interval timer can be used simultaneously.  
Figure 9-1 shows the watch timer block diagram.  
Figure 9-1. Watch Timer Block Diagram  
Clear  
5-bit counter  
Clear  
INTWT  
INTWTI  
f
/27  
X
11-bit prescaler  
/25 f /26 f /27 f /28  
f
W
f
W
/24 f  
W
W
W
W
f
W
/210  
f
W
/211 f /29  
W
f
XT  
WTM7 WTM6 WTM5 WTM4  
Internal bus  
WTM3  
WTM2 WTM1 WTM0  
Watch timer operation  
mode register (WTM)  
Remark fX: X1 input clock oscillation frequency  
fXT: Subsystem clock oscillation frequency  
fW: Watch timer clock frequency  
197  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
(1) Watch timer  
When the X1 input clock or subsystem clock is used, interrupt requests (INTWT) are generated at preset  
intervals.  
Table 9-1. Watch Timer Interrupt Time  
Interrupt Time  
When Operated at fXT = 32.768 kHz  
When Operated at fX = 10 MHz  
205 µs  
24/fW  
25/fW  
213/fW  
214/fW  
488 µs  
977 µs  
0.25 s  
0.5 s  
410 µs  
0.105 s  
0.210 s  
Remark fX: X1 input clock oscillation frequency  
fXT: Subsystem clock oscillation frequency  
fW: Watch timer clock frequency  
(2) Interval timer  
Interrupt requests (INTWTI) are generated at preset time intervals.  
Table 9-2. Interval Timer Interval Time  
Interval Time  
When Operated at fXT = 32.768 kHz  
When Operated at fX = 10 MHz  
205 µs  
410 µs  
24/fW  
25/fW  
26/fW  
27/fW  
28/fW  
29/fW  
210/fW  
211/fW  
488 µs  
977 µs  
1.95 ms  
3.91 ms  
7.81 ms  
15.6 ms  
31.2 ms  
62.4 ms  
820 µs  
1.64 ms  
3.28 ms  
6.55 ms  
13.1 ms  
26.2 ms  
Remark fX: X1 input clock oscillation frequency  
fXT: Subsystem clock oscillation frequency  
fW: Watch timer clock frequency  
198  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
9.2 Configuration of Watch Timer  
The watch timer consists of the following hardware.  
Table 9-3. Watch Timer Configuration  
Configuration  
Item  
Counter  
5 bits × 1  
Prescaler  
11 bits × 1  
Control register  
Watch timer operation mode register (WTM)  
9.3 Register Controlling Watch Timer  
The watch timer is controlled by the watch timer operation mode register (WTM).  
Watch timer operation mode register (WTM)  
This register sets the watch timer count clock, enables/disables operation, prescaler interval time, and 5-bit  
counter operation control.  
WTM is set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears WTM to 00H.  
199  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
Figure 9-2. Format of Watch Timer Operation Mode Register (WTM)  
Address: FF6FH After reset: 00H R/W  
Symbol  
WTM  
7
6
5
4
3
2
<1>  
<0>  
WTM7  
WTM6  
WTM5  
WTM4  
WTM3  
WTM2  
WTM1  
WTM0  
WTM7  
Watch timer count clock selection  
0
1
fX/27 (78.125 kHz)  
fXT (32.768 kHz)  
WTM6  
WTM5  
WTM4  
Prescaler interval time selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
24/fW  
25/fW  
26/fW  
27/fW  
28/fW  
29/fW  
210/fW  
211/fW  
WTM3  
WTM2  
Interrupt time selection  
0
0
1
1
0
1
0
1
214/fW  
213/fW  
25/fW  
24/fW  
WTM1  
5-bit counter operation control  
0
1
Clear after operation stop  
Start  
WTM0  
Watch timer operation enable  
0
1
Operation stop (clear both prescaler and timer)  
Operation enable  
Caution Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM)  
during watch timer operation.  
Remarks 1. fW: Watch timer clock frequency (fX/27 or fXT)  
2. fX: X1 input clock oscillation frequency  
3. fXT: Subsystem clock oscillation frequency  
4. Figures in parentheses apply to operation with fX = 10 MHz, fXT = 32.768 kHz.  
200  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
9.4 Watch Timer Operations  
9.4.1 Watch timer operation  
The watch timer generates an interrupt request (INTWT) at a specific time interval by using the X1 input clock or  
subsystem clock.  
When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count  
operation starts. When these bits are set to 0, the 5-bit counter is cleared and the count operation stops.  
When the interval timer is simultaneously operated, zero-second start can be achieved only for the watch timer by  
setting WTM1 to 0. In this case, however, the 11-bit prescaler is not cleared. Therefore, an error up to 211 × 1/fW  
seconds occurs in the first overflow (INTWT) after zero-second start.  
The interrupt request is generated at the following time intervals.  
Table 9-4. Watch Timer Interrupt Time  
WTM3  
WTM2  
Interrupt Time Selection When Operated at fXT = 32.768 kHz  
(WTM7 = 1)  
When Operated at fX = 10 MHz  
(WTM7 = 0)  
0
0
1
1
0
1
0
1
214/fW  
213/fW  
25/fW  
24/fW  
0.5 s  
0.210 s  
0.25 s  
977 µs  
488 µs  
0.105 s  
410 µs  
205 µs  
Remark fX: X1 input clock oscillation frequency  
fXT: Subsystem clock oscillation frequency  
fW: Watch timer clock frequency  
201  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
9.4.2 Interval timer operation  
The watch timer operates as interval timer which generates interrupt requests (INTWTI) repeatedly at an interval of  
the preset count value.  
The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register  
(WTM).  
When bit 0 (WTM0) of the WTM is set to 1, the count operation starts. When this bit is set to 0, the count operation  
stops.  
Table 9-5. Interval Timer Interval Time  
WTM6  
WTM5  
WTM4  
Interval Time  
When Operated at  
When Operated at  
fXT = 32.768 kHz (WTM7 = 1)  
fX = 10 MHz (WTM7 = 0)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
24/fW  
25/fW  
26/fW  
27/fW  
28/fW  
29/fW  
210/fW  
211/fW  
488 µs  
205 µs  
977 µs  
410 µs  
1.95 ms  
3.91 ms  
7.81 ms  
15.6 ms  
31.2 ms  
62.4 ms  
820 µs  
1.64 ms  
3.28 ms  
6.55 ms  
13.1 ms  
26.2 ms  
Remark fX: X1 input clock oscillation frequency  
fXT: Subsystem clock oscillation frequency  
fW: Watch timer clock frequency  
202  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 9 WATCH TIMER  
Figure 9-3. Operation Timing of Watch Timer/Interval Timer  
5-bit counter  
0H  
Overflow  
Overflow  
Start  
Count clock  
/211  
f
W
Watch timer  
interrupt INTWT  
Interrupt time of watch timer (0.5 s) Interrupt time of watch timer (0.5 s)  
Interval timer  
interrupt INTWTI  
Interval time  
(T)  
T
n × T  
n × T  
Caution When operation of the watch timer and 5-bit counter is enabled by the watch timer mode control  
register (WTM) (by setting bits 0 (WTM0) and 1 (WTM1) of WTM to 1), the interval until the first  
interrupt request (INTWT) is generated after the register is set does not exactly match the  
specification made with bit 3 (WTM3) of WTM. This is because there is a delay of one 11-bit  
prescaler output cycle until the 5-bit counter starts counting. Subsequently, however, the INTWT  
signal is generated at the specified intervals.  
Remark fW: Watch timer clock frequency  
n: The number of times of interval timer operations  
Figures in parentheses are for operation with fW = 32.768 kHz (WTM7 = 1, WTM3, WTM2 = 0, 0)  
203  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.1 Functions of Watchdog Timer  
The watchdog timer detects an inadvertent program loop. If a program loop is detected, an internal reset signal  
(WDTRES) is generated.  
When a reset occurs due to the watchdog timer, bit 4 (WDTRF) of the reset control flag register (RESF) is set to 1.  
For details of RESF, refer to CHAPTER 18 RESET FUNCTION.  
Table 10-1. Loop Detection Time of Watchdog Timer  
Loop Detection Time  
During Ring-OSC Clock Operation  
fR/211 (8.53 ms)  
During X1 Input Clock Operation  
fXP/213 (819.2 µs)  
fR/212 (17.07 ms)  
fXP/214 (1.64 ms)  
fXP/215 (3.28 ms)  
fXP/216 (6.55 ms)  
fXP/217 (13.11 ms)  
fXP/218 (26.21 ms)  
fXP/219 (52.43 ms)  
fXP/220 (104.86 ms)  
fR/213 (34.13 ms)  
fR/214 (68.27 ms)  
fR/215 (136.53 ms)  
fR/216 (273.07 ms)  
fR/217 (546.13 ms)  
fR/218 (1.09 s)  
Remarks 1. fR: Ring-OSC clock oscillation frequency  
2. fXP: X1 input clock oscillation frequency  
3. Figures in parentheses apply to operation at fR = 240 kHz (TYP.), fXP = 10 MHz  
The operation mode of the watchdog timer (WDT) is switched according to the mask option setting of the on-chip  
Ring-OSC as shown in Table 10-2.  
204  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
Table 10-2. Mask Option Setting and Watchdog Timer Operation Mode  
Mask Option  
Ring-OSC Cannot Be Stopped  
Ring-OSC Can Be Stopped by Software  
Watchdog timer clock  
source  
Fixed to fRNote 1  
.
Selectable by software (fXP, fR or  
stopped)  
When reset is released: fR  
Operation after reset  
Operation mode selection  
Features  
Operation starts with the maximum  
interval (fR/218).  
Operation starts with maximum  
interval (fR/218).  
The interval can be changed only  
once.  
The clock selection/interval can be  
changed only once.  
The watchdog timer cannot be  
stopped.  
The watchdog timer can be stopped in  
standby modeNote 2  
.
Current in STOP mode 10 µA  
Notes 1. As long as power is being supplied, Ring-OSC oscillation cannot be stopped (except in the reset  
period).  
2. Clock supply to the watchdog timer is stopped in accordance with the watchdog timer clock  
source as follows:  
<1> When the clock source is fXP  
Clock supply to the watchdog timer is stopped while fXP is stopped, during HALT/STOP  
instruction execution, and during the oscillation stabilization time.  
<2> When the clock source is fR  
Clock supply to the watchdog timer is stopped if fR is stopped by software before STOP  
instruction execution when the CPU clock is fXP and during HALT/STOP instruction  
execution.  
Remarks 1. fR: Ring-OSC clock oscillation frequency  
2. fXP: X1 input clock oscillation frequency  
205  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.2 Configuration of Watchdog Timer  
The watchdog timer consists of following hardware.  
Table 10-3. Configuration of Watchdog Timer  
Item  
Configuration  
Control registers  
Watchdog timer mode register (WDTM)  
Watchdog timer enable register (WDTE)  
Figure 10-1. Block Diagram of Watchdog Timer  
f
f
XP/213 to  
XP/220  
f
/22  
R
Clock  
input  
controller  
Output  
controller  
WDTRES  
(internal reset signal)  
16-bit  
counter  
Selector  
or  
f
XP/24  
f
f
R
R
/211 to  
/218  
2
3
3
Clear  
Mask option  
(to set "Ring-OSC  
cannot be stopped" or  
"Ring-OSC can be  
stopped by software")  
0
1
1
WDCS4 WDCS3 WDCS2 WDCS1 WDCS0  
Watchdog timer enable  
register (WDTE)  
Watchdog timer mode  
register (WDTM)  
Internal bus  
206  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.3 Registers Controlling Watchdog Timer  
The watchdog timer is controlled by the following two registers.  
Watchdog timer mode register (WDTM)  
Watchdog timer enable register (WDTE)  
(1) Watchdog timer mode register (WDTM)  
This register sets the overflow time and operation clock of the watchdog timer.  
This register can be set by an 8-bit memory manipulation instruction and can be read many times, but can be  
written only once after reset is released.  
RESET input sets this register to 67H.  
Figure 10-2. Format of Watchdog Timer Mode Register (WDTM)  
Address: FF98H After reset: 67H R/W  
7
0
6
1
5
1
4
3
2
1
0
Symbol  
WDTM  
WDCS4  
WDCS3  
WDCS2  
WDCS1  
WDCS0  
WDCS4Note 1 WDCS3Note 1  
Operation clock selection  
0
0
1
0
1
×
Ring-OSC clock (fR)  
X1 input clock (fXP)  
Watchdog timer operation stopped  
WDCS2Note 2 WDCS1Note 2 WDCS0Note 2  
Overflow time setting  
During Ring-OSC clock  
operationNote 3  
During X1 input clock operation  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fR/211 (8.53 ms)  
fR/212 (17.07 ms)  
fR/213 (34.13 ms)  
fR/214 (68.27 ms)  
fR/215 (136.53 ms)  
fR/216 (273.07 ms)  
fR/217 (546.13 ms)  
fR/218 (1.09 s)  
fXP/213 (819.2 µs)  
fXP/214 (1.64 ms)  
fXP/215 (3.28 ms)  
fXP/216 (6.55 ms)  
fXP/217 (13.11 ms)  
fXP/218 (26.21 ms)  
fXP/219 (52.43 ms)  
fXP/220 (104.86 ms)  
Notes 1. If Ring-OSC cannot be stoppedis specified by a mask option, this cannot be set. The Ring-  
OSC clock will be selected no matter what value is written.  
2. Reset is released at the maximum cycle (WDCS2, 1, 0 = 1, 1, 1).  
3. Ring-OSC clock oscillation frequency: 120 kHz (MIN.), 240 kHz (TYP.), or 480 kHz (MAX.)  
Caution If data is written to WDTM, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
207  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
Cautions 1. Set bits 7, 6, and 5 to 0, 1, and 1, respectively (when “Ring-OSC cannot be stopped”  
is selected by a mask option, other values are ignored).  
2. After reset is released, WDTM can be written only once by an 8-bit memory  
manipulation instruction. If writing attempted a second time, an internal reset signal  
is generated.  
3. WDTM cannot be set by a 1-bit memory manipulation instruction.  
Remarks 1. fR: Ring-OSC clock oscillation frequency  
2. fXP: X1 input clock oscillation frequency  
3. ×: Dont care  
4. Figures in parentheses apply to operation at fR = 240 kHz (TYP.), fXP = 10 MHz  
(2) Watchdog timer enable register (WDTE)  
Writing ACH to WDTE clears the watchdog timer counter and starts counting again.  
This register can be set by an 8-bit memory manipulation instruction.  
RESET input sets this register to 9AH.  
Figure 10-3. Format of Watchdog Timer Enable Register (WDTE)  
Address: FF99H After reset: 9AH R/W  
7
6
5
4
3
2
1
0
Symbol  
WDTE  
Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated.  
2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset  
signal is generated (an error occurs in the assembler).  
3. The value read from WDTE is 9AH (this differs from the written value (ACH)).  
208  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.4 Operation of Watchdog Timer  
10.4.1 Watchdog timer operation when “Ring-OSC cannot be stopped” is selected by a mask option  
The operation clock of watchdog timer is fixed to the Ring-OSC.  
After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of  
the watchdog timer mode register (WDTM) = 1, 1, 1). The watchdog timer operation cannot be stopped.  
The following shows the watchdog timer operation after reset release.  
1. The status after reset release is as follows.  
Operation clock: Ring-OSC clock  
Cycle: fR/218 (1.09 seconds: At operation with fR = 240 kHz (TYP.))  
Counting starts  
2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation  
instructionNotes 1, 2  
Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)  
.
3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.  
Notes 1. The operation clock (Ring-OSC clock) cannot be changed. If any value is written to bits 3 and 4  
(WDCS3, WDCS4) of WDTM, it is ignored.  
2. As soon as WDTM is written, the counter of the watchdog timer is cleared.  
Caution In this mode, operation of the watchdog timer absolutely cannot be stopped even during STOP  
instruction execution. For 8-bit timer H1 (TMH1), a division of the Ring-OSC can be selected as  
the count source, so clear the watchdog timer using the interrupt request of TMH1 before the  
watchdog timer overflows. If this processing is not performed, an internal reset signal is  
generated when the watchdog timer overflows after STOP instruction execution.  
209  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.4.2 Watchdog timer operation when “Ring-OSC can be stopped by software” is selected by mask option  
The operation clock of the watchdog timer can be selected as either the Ring-OSC clock or the X1 input clock.  
After reset is released, operation is started at the maximum cycle (bits 2, 1, and 0 (WDCS2, WDCS1, WDCS0) of  
the watchdog timer mode register (WDTM) = 1, 1, 1).  
The following shows the watchdog timer operation after reset release.  
1. The status after reset release is as follows.  
Operation clock: Ring-OSC clock oscillation frequency (fR)  
Cycle: fR/218 (1.09 seconds: At operation with fR = 240 kHz (TYP.))  
Counting starts  
2. The following should be set in the watchdog timer mode register (WDTM) by an 8-bit memory manipulation  
instructionNotes 1, 2, 3  
.
Operation clock: Any of the following can be selected using bits 3 and 4 (WDCS3 and WDCS4).  
Ring-OSC clock (fR)  
X1 input clock (fXP)  
Watchdog timer operation stopped  
Cycle: Set using bits 2 to 0 (WDCS2 to WDCS0)  
3. After the above procedures are executed, writing ACH to WDTE clears the count to 0, enabling recounting.  
Notes 1. As soon as WDTM is written, the counter of the watchdog timer is cleared.  
2. Set bits 7, 6, and 5 to 0, 1, 1, respectively. If other values are set, the watchdog timer cannot be  
operated (an error occurs in the assembler).  
3. If the watchdog timer is stopped by setting WDCS4 and WDCS3 to 1 and ×, respectively, an internal  
reset signal is not generated even if the following processing is performed.  
WDTM is written a second time.  
A 1-bit memory manipulation instruction is executed to WDTE.  
A value other than ACH is written to WDTE.  
Caution In this mode, watchdog timer operation is stopped during HALT/STOP instruction execution.  
After HALT/STOP mode is released, counting is started again using the operation clock of the  
watchdog timer set before HALT/STOP instruction execution by WDTM. At this time, the counter  
is not cleared to 0.  
For the watchdog timer operation during STOP mode and HALT mode in each status, refer to 10.4.3 Watchdog  
timer operation in STOP mode and 10.4.4 Watchdog timer operation in HALT mode.  
210  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
10.4.3 Watchdog timer operation in STOP mode (when “Ring-OSC can be stopped by software” is selected  
by mask option)  
The watchdog timer stops counting during STOP instruction execution regardless of whether the X1 input clock or  
Ring-OSC clock is being used.  
(1) When the CPU clock and the watchdog timer operation clock are the X1 input clock (fXP) when the STOP  
instruction is executed  
When STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is released,  
counting stops for the oscillation stabilization time set by the oscillation stabilization time select register (OSTS)  
and then counting is started again using the operation clock before the operation was stopped. At this time, the  
counter is not cleared to 0.  
Figure 10-4. Operation in STOP Mode (CPU Clock and WDT Operation Clock: X1 Input Clock)  
Normal  
operation  
Oscillation stabilization time  
CPU operation  
STOP  
Normal operation  
f
XP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
fR  
Watchdog timer  
Operating  
Operation stopped  
Operating  
(2) When the CPU clock is the X1 input clock (fXP) and the watchdog timer operation clock is the Ring-OSC  
clock (fR) when the STOP instruction is executed  
When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is  
released, counting is started again using the operation clock before the operation was stopped. At this time, the  
counter is not cleared to 0.  
Figure 10-5. Operation in STOP Mode  
(CPU Clock: X1 Input Clock, WDT Operation Clock: Ring-OSC Clock)  
Normal  
operation  
Oscillation stabilization time  
Normal operation  
CPU operation  
STOP  
fXP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
fR  
Watchdog timer  
Operating Operation stopped  
Operating  
211  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
(3) When the CPU clock is the Ring-OSC clock (fR) and the watchdog timer operation clock is the X1 input  
clock (fXP) when the STOP instruction is executed  
When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is  
released, counting is stopped until the timing of <1> or <2>, whichever is earlier, and then counting is started  
using the operation clock before the operation was stopped. At this time, the counter is not cleared to 0  
<1> The oscillation stabilization time set by the oscillation stabilization time select register (OSTS) elapses.  
<2> The CPU clock is switched to the X1 input clock (fXP).  
Figure 10-6. Operation in STOP Mode  
(CPU Clock: Ring-OSC Clock, WDT Operation Clock: X1 Input Clock)  
<1> Timing when counting is started after the oscillation stabilization time set by the oscillation stabilization time  
select register (OSTS) has elapsed  
Normal operation  
(Ring-OSC clock)  
STOP  
Clock supply stopped  
Normal operation (Ring-OSC clock)  
CPU operation  
fXP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
fR  
17 clocks  
Watchdog timer  
Operating  
Operation stopped  
Operating  
<2> Timing when counting is started after the CPU clock is switched to the X1 input clock (fXP)  
Normal operation (Ring-OSC clock)  
CPU clock  
Note  
fR fXP  
Normal operation  
(Ring-OSC clock)  
Clock supply  
stopped  
STOP  
Normal operation (X1 input clock)  
CPU operation  
f
XP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
fR  
17 clocks  
Watchdog timer  
Operating  
Operation stopped  
Operating  
Note Confirm the oscillation stabilization time of fXP using the oscillation stabilization time counter status register  
(OSTC).  
212  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 10 WATCHDOG TIMER  
(4) When CPU clock and watchdog timer operation clock are the Ring-OSC clocks (fR) during STOP  
instruction execution  
When the STOP instruction is executed, operation of the watchdog timer is stopped. After STOP mode is  
released, counting is started again using the operation clock before the operation was stopped. At this time, the  
counter is not cleared to 0.  
Figure 10-7. Operation in STOP Mode (CPU Clock and WDT Operation Clock: Ring-OSC Clock)  
Normal operation  
(Ring-OSC clock)  
STOP  
Clock supply stopped  
Normal operation (Ring-OSC clock)  
CPU operation  
fXP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
fR  
17 clocks  
Operating  
Watchdog timer  
Operating  
Operation stopped  
10.4.4 Watchdog timer operation in HALT mode (when Ring-OSC can be stopped by softwareis selected by  
mask option)  
The watchdog timer stops counting during HALT instruction execution regardless of whether the CPU clock is the  
X1 input clock (fXP), Ring-OSC clock (fR), or subsystem clock (fXT), or whether the operation clock of the watchdog  
timer is the X1 input clock (fXP) or Ring-OSC clock (fR). After HALT mode is released, counting is started again using  
the operation clock before the operation was stopped. At this time, the counter is not cleared to 0.  
Figure 10-8. Operation in HALT Mode  
Normal operation  
HALT  
Normal operation  
CPU operation  
f
XP  
f
R
f
XT  
Watchdog timer  
Operating Operation stopped  
Operating  
213  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.1 Functions of A/D Converter  
The A/D converter converts an analog input signal into a digital value, and consists of up to eight channels (ANI0 to  
ANI7) with a resolution of 10 bits.  
The A/D converter has the following two functions.  
(1) 10-bit resolution A/D conversion  
10-bit resolution A/D conversion is carried out repeatedly for one channel selected from analog inputs ANI0 to  
ANI7. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.  
(2) Power-fail detection function  
This function is used to detect a voltage drop in a battery. The A/D conversion result (ADCR register value) and  
power-fail comparison threshold register (PFT) value are compared. INTAD is generated only when a  
comparative condition has been matched.  
Figure 11-1. Block Diagram of A/D Converter  
Series resistor string  
ANI0/P20  
ANI1/P21  
Sample & hold circuit  
Voltage comparator  
ANI2/P22  
AVREF  
ANI3/P23  
ANI4/P24  
ANI5/P25  
ANI6/P26  
ANI7/P27  
(Can be used as  
analog power supply)  
Successive  
approximation  
register (SAR)  
AVSS  
Controller  
INTAD  
A/D conversion result  
register (ADCR)  
3
ADS2 ADS1 ADS0  
ADCS FR2  
Internal bus  
FR1  
ADCE  
FR0  
Analog input channel  
specification register  
(ADS)  
A/D converter mode  
register (ADM)  
Preliminary User’s Manual U16227EJ1V0UD  
214  
CHAPTER 11 A/D CONVERTER  
Figure 11-2. Block Diagram of Power-Fail Detection Function  
PFCM PFEN  
ANI0/P20  
ANI1/P21  
ANI2/P22  
ANI3/P23  
ANI4/P24  
ANI5/P25  
ANI6/P26  
ANI7/P27  
INTAD  
A/D converter  
Comparator  
Power-fail comparison  
threshold register (PFT)  
ADS2 ADS1 ADS0  
PFEN PFCM  
Analog input channel  
specification register  
(ADS)  
Power-fail comparison  
mode register (PFM)  
Internal bus  
215  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.2 Configuration of A/D Converter  
The A/D converter consists of the following hardware.  
Table 11-1. Configuration of A/D Converter  
Item  
Analog input  
Registers  
Configuration  
8 channels (ANI0 to ANI7)  
Successive approximation register (SAR)  
A/D conversion result register (ADCR)  
Control registers  
A/D converter mode register (ADM)  
Analog input channel specification register (ADS)  
Power-fail comparison mode register (PFM)  
Power-fail comparison threshold register (PFT)  
(1) Successive approximation register (SAR)  
This register compares the analog input voltage value with the voltage tap (compare voltage) value applied from  
the series resistor string, and holds the result starting from the most significant bit (MSB).  
When the result up to the least significant bit (LSB) is held (end of A/D conversion), the SAR contents are  
transferred to the A/D conversion result register.  
(2) A/D conversion result register (ADCR)  
The ADCR is 16-bit register that stores the A/D conversion result. The lower six bits are fixed to 0. Each time  
A/D conversion ends, the conversion result is loaded from the successive approximation register, and is stored in  
ADCR in order starting from the most significant bit (MSB).  
ADCR can be read by a 16-bit memory manipulation instruction.  
RESET input makes ADCR undefined.  
Figure 11-3. Format of A/D Conversion Register (ADCR)  
Address: FF08H, FF09H After reset: Undefined  
FF09H  
R
FF08H  
Symbol  
ADCR  
0
0
0
0
0
0
Cautions 1. When writing to the A/D converter mode register (ADM) and analog input channel  
specification register (ADS), the contents of ADCR may become undefined. Read the  
conversion result following conversion completion before writing to ADM and ADS. Using  
timing other than the above may cause an incorrect conversion result to be read.  
2. If data is read from ADCR, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
(3) Sample & hold circuit  
The sample & hold circuit samples each analog input signal sequentially applied from the input circuit, and sends  
it to the voltage comparator. This circuit holds the sampled analog input voltage value during A/D conversion.  
216  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(4) Voltage comparator  
The voltage comparator compares the analog input with the series resistor string output voltage.  
(5) Series resistor string  
The series resistor string is connected between AVREF and AVSS, and generates a voltage to be compared with  
the analog input.  
(6) ANI0 to ANI7 pins  
These eight-channel analog input pins input analog signals to undergo A/D conversion to the A/D converter.  
ANI0 to ANI7 are alternate-function pins that can also be used for digital input.  
Cautions 1. Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AVREF or higher or  
a voltage of AVSS or lower (even if within the range of absolute maximum ratings) is input to  
an analog input channel, the converted value of that channel becomes undefined. In  
addition, the converted values of the other channels may also be affected.  
2. The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27). When  
A/D conversion is performed with any of ANI0 to ANI7 selected, do not execute the input  
instruction to port 2 while conversion is in progress; otherwise the conversion resolution  
may be degraded. If a digital pulse is applied to the pins adjacent to the pins currently used  
for A/D conversion, the expected value of the A/D conversion may not be obtained due to  
coupling noise. Therefore, do not apply a pulse to the pins adjacent to the pin undergoing  
A/D conversion.  
(7) AVREF pin  
The AVREF pin inputs the A/D converter reference voltage.  
It converts signals input to ANI0 to ANI7 into digital signals based on a voltage between AVREF and AVSS.  
In a standby mode, the current flowing into series resistor strings can be reduced by changing the input voltage of  
the AVREF pin to AVSS level.  
It can also be used as the analog power supply. When the A/D converter is used, be sure to use the AVREF pin  
for the power supply.  
Caution A series resistor string of several tens of kis connected between the AVREF and AVSS pins.  
Therefore, if the output impedance of the reference voltage source is high, this will result in  
series connection to the series resistor string between the AVREF and AVSS pins, resulting in a  
large reference voltage error.  
(8) AVSS pin  
The AVSS pin is the GND potential pin for the A/D converter. Always use the AVSS pin at the same potential as  
the EVSS or VSS pin, even when the A/D converter is not used.  
217  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.3 Registers Controlling A/D Converter  
The following four registers are used to control the A/D converter.  
A/D converter mode register (ADM)  
Analog input channel specification register (ADS)  
Power-fail comparison mode register (PFM)  
Power-fail comparison threshold register (PFT)  
(1) A/D converter mode register (ADM)  
This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.  
ADM can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 11-4. Format of A/D Converter Mode Register (ADM)  
Address: FF28H After reset: 00H R/W  
Symbol  
7
6
0
5
4
3
2
0
1
0
0
ADM ADCS  
FR2  
FR1  
FR0  
ADCE  
ADCS  
A/D conversion operation control  
0
1
Stops conversion operation  
Enables conversion operation  
Conversion time selectionNote 1  
= 10 MHz  
FR2  
FR1  
FR0  
f
fX = 8.38 MHz  
X
f
X
= 2 MHz  
144  
sNote 1  
120 sNote 1  
288/f  
240/f  
192/f  
144/f  
120/f  
X
X
X
X
X
µ
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
34.3  
28.6  
22.9  
17.2  
14.3  
µ
µ
µ
µ
µ
s
s
s
s
s
28.8  
24.0  
19.2  
14.4  
12.0  
µ
µ
µ
µ
µ
s
µ
s
96  
72  
60  
48  
s
s
s
s
µ
µ
µ
µ
s
s
sNote 1  
11.5 sNote 1  
9.6  
µ
sNote 1  
96/f  
X
µ
Other than above  
Setting prohibited  
ADCE  
Boost reference voltage generator operation controlNote 2  
Stops operation of reference voltage generator  
0
1
Enables operation of reference voltage generator  
Notes 1. Set so that the A/D conversion time is 14 µs or longer but less than 100 µs.  
2. A booster circuit is incorporated to realize low-voltage operation. The operation of the circuit that  
generates the reference voltage for boosting is controlled by ADCE, and it takes 14 µs from operation  
start to operation stabilization. Therefore, when ADCS is set to 1 after 14 µs or more has elapsed  
from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion  
result.  
218  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
Table 11-2. Settings of ADCS and ADCE  
ADCS  
ADCE  
A/D Conversion Operation  
0
0
1
1
0
1
0
1
Stop status (DC power consumption path does not exist)  
Conversion waiting mode (only reference voltage generator consumes power)  
Conversion mode (reference voltage generator operation stoppedNote  
Conversion mode (reference voltage generator operates)  
)
Note Data of first conversion cannot be used.  
Figure 11-5. Timing Chart When Boost Reference Voltage Generator Is Used  
Boost reference voltage generator: operating  
ADCE  
Boost reference voltage  
Conversion  
operation  
Conversion  
waiting  
Conversion  
operation  
Conversion stopped  
ADCS  
Note  
Note 14 µs or more is required for reference voltage stabilization.  
Cautions 1. A/D conversion must be stopped before rewriting bits FR0 to FR2 to values other than the  
identical data.  
2. For the sampling time of the A/D converter and the A/D conversion start delay time, refer to  
(11) in 11.6 Cautions for A/D Converter.  
3. If data is written to ADM, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
Remark fX: X1 input clock oscillation frequency  
219  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(2) Analog input channel specification register (ADS)  
This register specifies the input port of the analog voltage to be A/D converted.  
ADS can be set by a 1-bit or 8-bit memory manipulation.  
RESET input clears this register to 00H.  
Figure 11-6. Format of Analog Input Channel Specification Register (ADS)  
Address: FF29H After reset: 00H R/W  
Symbol  
ADS  
7
0
6
0
5
0
4
0
3
0
2
1
0
ADS2  
ADS1  
ADS0  
ADS2  
ADS1  
ADS0  
Analog input channel specification  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ANI0  
ANI1  
ANI2  
ANI3  
ANI4  
ANI5  
ANI6  
ANI7  
Cautions 1. Be sure to set bits 3 to 7 of ADS to 0.  
2. If data is written to ADS, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
220  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(3) Power-fail comparison mode register (PFM)  
The power-fail comparison mode register (PFM) is a register that controls the comparison operation.  
PFM can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 11-7. Format of Power-Fail Comparison Mode Register (PFM)  
Address: FF2AH After reset: 00H R/W  
Symbol  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
PFM PFEN  
PFCM  
PFEN  
Power-fail comparison enable  
0
1
Stops power-fail comparison (used as a normal A/D converter)  
Enables power-fail comparison (used for power-fail detection)  
PFCM  
Power-fail comparison mode selection  
Interrupt request signal (INTAD) generation  
No INTAD generation  
0
1
ADCR3 PFT3  
ADCR3 < PFT3  
ADCR3 PFT3  
ADCR3 < PFT3  
No INTAD generation  
INTAD generation  
Caution If data is written to PFM, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
(4) Power-fail comparison threshold register (PFT)  
The power-fail comparison threshold register (PFT) is a register that sets the threshold value when comparing the  
values with the A/D conversion result.  
8-bit data in PFT is compared to the higher 8 bits (FF09H) of the 10-bit A/D conversion result.  
PFT can be set by an 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 11-8. Format of Power-Fail Comparison Threshold Register (PFT)  
Address: FF2BH After reset: 00H R/W  
Symbol  
7
6
5
4
3
2
1
0
PFT PFT7  
PFT6  
PFT5  
PFT4  
PFT3  
PFT2  
PFT1  
PFT0  
Caution If data is written to PFT, a wait cycle is generated. For details, refer to CHAPTER 27 CAUTIONS  
FOR WAIT.  
221  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.4 A/D Converter Operations  
11.4.1 Basic operations of A/D converter  
<1> Select one channel for A/D conversion with analog input channel specification register (ADS).  
<2> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.  
<3> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the  
input analog voltage is held until the A/D conversion operation is ended.  
<4> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to  
(1/2) AVREF by the tap selector.  
<5> The voltage difference between the series resistor string voltage tap and analog input is compared by the  
voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set to 1. If the  
analog input is smaller than (1/2) AVREF0, the MSB is reset to 0.  
<6> Next, bit 8 of SAR is automatically set to 1, and the operation proceeds to the next comparison. The series  
resistor string voltage tap is selected according to the preset value of bit 9, as described below.  
Bit 9 = 1: (3/4) VDD  
Bit 9 = 0: (1/4) VDD  
The voltage tap and analog input voltage are compared and bit 8 of SAR is manipulated as follows.  
Analog input voltage Voltage tap: Bit 8 = 1  
Analog input voltage < Voltage tap: Bit 8 = 0  
<7> Comparison is continued in this way up to bit 0 of SAR.  
<8> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result  
value is transferred to the A/D conversion result register (ADCR) and then latched.  
At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.  
Caution The first A/D conversion value immediately after A/D conversion operations start may not fall  
within the rating.  
222  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
Figure 11-9. Basic Operation of A/D Converter  
Conversion time  
Sampling time  
Sampling  
A/D converter  
operation  
A/D conversion  
Conversion  
result  
Undefined  
SAR  
Conversion  
result  
ADCR  
INTAD  
A/D conversion operations are performed continuously until bit 7 (ADCS) of the A/D converter mode register (ADM)  
is reset (0) by software.  
If a write operation is performed to one of the ADM, analog input channel specification register (ADS), power-fail  
comparison mode register (PFM), or power-fail comparison threshold register (PFT) during an A/D conversion  
operation, the conversion operation is initialized, and if the ADCS bit is set (1), conversion starts again from the  
beginning.  
RESET input makes the A/D conversion result register (ADCR) undefined.  
223  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.4.2 Input voltage and conversion results  
The relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and the A/D  
conversion result (stored in the A/D conversion result register (ADCR)) is shown by the following expression.  
VIN  
ADCR = INT (  
× 1024 + 0.5)  
AVREF  
or  
AVREF  
AVREF  
1024  
(ADCR 0.5) ×  
VIN < (ADCR + 0.5) ×  
1024  
where, INT( ): Function which returns integer part of value in parentheses  
VIN: Analog input voltage  
AVREF: AVREF pin voltage  
ADCR: A/D conversion result register (ADCR) value  
Figure 11-10 shows the relationship between the analog input voltage and the A/D conversion result.  
Figure 11-10. Relationship Between Analog Input Voltage and A/D Conversion Result  
1023  
1022  
1021  
A/D conversion result  
(ADCR)  
3
2
1
0
1
1
3
2
5
3
2043 1022 2045 1023 2047  
2048 1024 2048 1024 2048  
1
2048 1024 2048 1024 2048 1024  
Input voltage/AVREF  
224  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.4.3 A/D converter operation mode  
The operation mode of the A/D converter is the select mode. One channel of analog input is selected from ANI0 to  
ANI7 by the analog input channel specification register (ADS) and A/D conversion is executed.  
In addition, the following two functions can be selected by setting of bit 7 (PFEN) of the power-fail comparison  
mode register (PFM).  
Normal 10-bit A/D converter (PFEN = 0)  
Power-fail detection function (PFEN = 1)  
(1) A/D conversion operation (when PFEN = 0)  
By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail  
comparison mode register (PFM) to 0, the A/D conversion operation of the voltage, which is applied to the analog  
input pin specified by the analog input channel specification register (ADS), is started.  
When A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion result  
register (ADCR), and an interrupt request signal (INTAD) is generated. Once the A/D conversion has started and  
when one A/D conversion has been completed, the next A/D conversion operation is immediately started. The  
A/D conversion operations are repeated until new data is written to ADS.  
If ADS is rewritten during A/D conversion, the A/D conversion under execution is suspended, and the A/D  
conversion of the newly selected analog input channel is started.  
If 0 is written to ADCS of ADM during A/D conversion, the conversion operation is immediately stopped.  
Figure 11-11. A/D Conversion Operation  
Rewriting ADM  
ADCS = 1  
Rewriting ADS  
ANIn  
ADCS = 0  
A/D conversion  
ANIn  
ANIn  
ANIm  
ANIm  
Conversion is stopped  
Conversion result is not retained  
Stopped  
ANIn  
ANIn  
ANIm  
ADCR  
INTAD  
(PFEN = 0)  
Remarks 1. n = 0 to 7  
2. m = 0 to 7  
225  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(2) Power-fail detection function (when PFEN = 1)  
By setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 1 and bit 7 (PFEN) of the power-fail  
comparison mode register (PFM) to 1, the A/D conversion operation of the voltage applied to the analog input pin  
specified by the analog input channel specification register (ADS) is started.  
When the A/D conversion has been completed, the result of the A/D conversion is stored in the A/D conversion  
result register (ADCR), the values are compared with power-fail comparison threshold register (PFT), and an  
interrupt request signal (INTAD) is generated under the condition specified by bit 6 (PFCM) of PFM.  
<1> When PFEN = 0  
INTAD is generated at the end of each A/D conversion.  
<2> When PFEN = 1 and PFCM = 0  
The ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when  
ADCR PFT.  
<3> When PFEN = 1 and PFCM = 1  
The ADCR and PFT values are compared when A/D conversion ends and INTAD is only generated when  
ADCR < PFT.  
Figure 11-12. Power-Fail Detection (When PFEN = 1 and PFCM = 0)  
A/D conversion  
ANIn  
ANIn  
80H  
ANIn  
7FH  
ANIn  
80H  
ADCR  
PFT  
80H  
INTAD  
(PFEN = 1)  
Note  
First conversion  
Condition match  
Note If the conversion result is not read before the end of the next conversion after INTAD is output, the result is  
replaced by the next conversion result.  
Remark n = 0 to 7  
226  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
The setting methods are described below.  
When used as A/D conversion operation  
<1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.  
<2> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel  
specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.  
<3> Set bit 7 (ADCS) of ADM to 1.  
<4> An interrupt request signal (INTAD) is generated.  
<5> Transfer the A/D conversion data to the A/D conversion result register (ADCR).  
<Change the channel>  
<6> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS.  
<7> An interrupt request signal (INTAD) is generated.  
<8> Transfer the A/D conversion data to the A/D conversion result register (ADCR).  
<Complete A/D conversion>  
<9> Clear ADCS to 0.  
<10> Clear ADCE to 0.  
Cautions 1. Make sure the period of <1> to <3> is 14 µs or more.  
2. It is no problem if the order of <1> and <2> is reversed.  
3. <1> can be omitted. However, do not use the first conversion result after <3> in this  
case.  
4. The period from <4> to <7> differs from the conversion time set using bits 5 to 3 (FR2 to  
FR0) of ADM. The period from <6> to <7> is the conversion time set using FR2 to FR0.  
When used as power-fail function  
<1> Set bit 7 (PFEN) of the power-fail comparison mode register (PFM).  
<2> Set power-fail comparison condition using bit 6 (PFCM) of PFM.  
<3> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.  
<4> Select the channel and conversion time using bits 2 to 0 (ADS2 to ADS0) of the analog input channel  
specification register (ADS) and bits 5 to 3 (FR2 to FR0) of ADM.  
<5> Set a threshold value to the power-fail comparison threshold register (PFT).  
<6> Set bit 7 (ADCS) of ADM to 1.  
<7> Transfer the A/D conversion data to the A/D conversion result register (ADCR).  
<8> ADCR and PFT are compared and an interrupt request signal (INTAD) is generated if the conditions  
match.  
<Change the channel>  
<9> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS.  
<10> Transfer the A/D conversion data to the A/D conversion result register (ADCR).  
<11> ADCR and the power-fail comparison threshold register (PFT) are compared and an interrupt request  
signal (INTAD) is generated if the conditions match.  
<Complete A/D conversion>  
<12> Clear ADCS to 0.  
<13> Clear ADCE to 0.  
Cautions 1. Make sure the period of <3> to <6> is 14 µs or more.  
2. It is no problem if order of <3>, <4>, and <5> is changed.  
3. <3> can be omitted. However, do not use the first conversion result after <6> in this  
case.  
4. The period from <7> to <11> differs from the conversion time set using bits 5 to 3 (FR2 to  
FR0) of ADM. The period from <9> to <11> is the conversion time set using FR2 to FR0.  
227  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
11.5 How to Read A/D Converter Characteristics Table  
Here, special terms unique to the A/D converter are explained.  
(1) Resolution  
This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input  
voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the  
full scale is expressed by %FSR (Full Scale Range).  
1LSB is as follows when the resolution is 10 bits.  
1LSB = 1/210 = 1/1024  
= 0.098%FSR  
Accuracy has no relation to resolution, but is determined by overall error.  
(2) Overall error  
This shows the maximum error value between the actual measured value and the theoretical value.  
Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of  
these express the overall error.  
Note that the quantization error is not included in the overall error in the characteristics table.  
(3) Quantization error  
When analog values are converted to digital values, a 1/2LSB error naturally occurs. In an A/D converter, an  
analog input voltage in a range of 1/2LSB is converted to the same digital code, so a quantization error cannot  
be avoided.  
Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral  
linearity error, and differential linearity error in the characteristics table.  
Figure 11-13. Overall Error  
Figure 11-14. Quantization Error  
……  
1
1
……  
1
1
Ideal line  
Overall  
error  
Quantization error  
1/2LSB  
1/2LSB  
……  
0
0
……  
0
0
0
AVREF  
0
AVREF  
Analog input  
Analog input  
228  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(4) Zero-scale error  
This shows the difference between the actual measurement value of the analog input voltage and the theoretical  
value (1/2LSB) when the digital output changes from 0......000 to 0......001.  
If the actual measurement value is greater than the theoretical value, it shows the difference between the actual  
measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output  
changes from 0……000 to 0……010.  
(5) Full-scale error  
This shows the difference between the actual measurement value of the analog input voltage and the theoretical  
value (Full-scale 3/2LSB) when the digital output changes from 1......110 to 1......111.  
(6) Integral linearity error  
This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It  
expresses the maximum value of the difference between the actual measurement value and the ideal straight line  
when the zero-scale error and full-scale error are 0.  
(7) Differential linearity error  
While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value  
and the ideal value.  
Figure 11-15. Zero-Scale Error  
Figure 11-16. Full-Scale Error  
111  
Full-scale error  
Ideal line  
011  
111  
110  
010  
001  
101  
000  
Ideal line  
Zero-scale error  
000  
0
AVREF3 AVREF2 AVREF1 AVREF  
0
1
2
3
AVREF  
Analog input (LSB)  
Analog input (LSB)  
Figure 11-17. Integral Linearity Error  
Figure 11-18. Differential Linearity Error  
……  
1
1
……  
1
1
Ideal 1LSB width  
Ideal line  
Differential  
linearity error  
Integral linearity  
error  
……  
0
……  
0
0
0
AVREF  
AVREF  
0
0
Analog input  
Analog input  
229  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(8) Conversion time  
This expresses the time since sampling has been started until digital output is obtained.  
The sampling time is included in the conversion time in the characteristics table.  
(9) Sampling time  
This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.  
Sampling  
time  
Conversion time  
11.6 Cautions for A/D Converter  
(1) Power consumption in standby mode  
The A/D converter stops operating in the standby mode. At this time, the power consumption can be reduced by  
stopping the conversion operation (by setting bit 7 (ADCS) of the A/D converter mode register (ADM) to 0).  
Figure 11-19 shows the circuit configuration of series resistor string.  
Figure 11-19. Circuit Configuration of Series Resistor String  
AVREF  
ADCS  
P-ch  
Series resistor string  
AVSS  
(2) Input range of ANI0 to ANI7  
Observe the rated range of the ANI0 to ANI7 input voltage. If a voltage of AVREF or higher and AVSS or lower  
(even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that  
channel becomes undefined. In addition, the converted values of the other channels may also be affected.  
230  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(3) Conflicting operations  
<1> Conflict between A/D conversion result register (ADCR) write and ADCR read by instruction upon the end  
of conversion  
ADCR read has priority. After the read operation, the new conversion result is written to ADCR.  
Old data can be read from ADCR at the timing of (1) and new data can be read from ADCR at the timing of  
(2) as shown in Figure 11-20. A master-slave configuration is employed for transferring the A/D conversion  
result to ADCR.  
Figure 11-20. Storing Conversion Result in ADCR and Timing of Data Read from ADCR  
(1) Timing to read old data  
Internal clock  
Conversion  
end  
INTAD  
Master write signal  
Conversion  
result N  
A/D conversion (master)  
Conversion result N + 1  
Slave write signal  
ADCR (slave)  
Read data  
Conversion result N  
Conversion result N  
(2) Timing to read new data  
Internal clock  
Conversion  
end  
INTAD  
Master write signal  
Conversion  
result N  
Conversion result N + 1  
A/D conversion (master)  
Slave write signal  
ADCR (slave)  
Read data  
Conversion result N + 1  
Conversion result N + 1  
<2> Conflict between ADCR write and A/D converter mode register (ADM) write or analog input channel  
specification register (ADS) write  
ADM or ADS write has priority. ADCR write is not performed, nor is the conversion end interrupt signal  
(INTAD) generated.  
231  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(4) Noise countermeasures  
To maintain the 10-bit resolution, attention must be paid to noise input to the AVREF pin and pins ANI0 to ANI7.  
Because the effect increases in proportion to the output impedance of the analog input source, it is recommended  
that a capacitor be connected externally, as shown in Figure 11-21, to reduce noise.  
Figure 11-21. Analog Input Pin Connection  
If there is a possibility that noise equal to or higher than AVREF or  
equal to or lower than AVSS may enter, clamp with a diode with a  
small V value (0.3 V or lower).  
F
Reference  
voltage  
input  
AVREF  
ANI0 to ANI7  
C = 100 to 1,000 pF  
AVSS  
V
SS  
(5) ANI0/P20 to ANI7/P27  
The analog input pins (ANI0 to ANI7) are also used as input port pins (P20 to P27).  
When A/D conversion is performed with any of ANI0 to ANI7 selected, do not execute the input instruction to port  
2 while conversion is in progress; otherwise the conversion resolution may be degraded.  
If a digital pulse is applied to the pins adjacent to the pins currently used for A/D conversion, the expected value  
of the A/D conversion may not be obtained due to coupling noise. Therefore, do not apply a pulse to the pins  
adjacent to the pin undergoing A/D conversion.  
(6) Input impedance of ANI0 to ANI7 pins  
In this A/D converter, the internal sampling capacitor is charged and sampling is performed for approx. one tenth  
of the conversion time.  
Since only the leakage current flows other than during sampling and the current for charging the capacitor also  
flows during sampling, the input impedance fluctuates and has no meaning.  
To perform sufficient sampling, however, it is recommended to make the output impedance of the analog input  
source 10 kor lower, or attach a capacitor of around 100 pF to the ANI0 to ANI7 pins (see Figure 11-21).  
(7) AVREF pin input impedance  
A series resistor string of several tens of 10 kis connected between the AVREF and AVSS pins.  
Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to  
the series resistor string between the AVREF and AVSS pins, resulting in a large reference voltage error.  
232  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(8) Interrupt request flag (ADIF)  
The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is  
changed.  
Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF for the  
pre-change analog input may be set just before the ADS rewrite. Caution is therefore required since, at this time,  
when ADIF is read immediately after the ADS rewrite, ADIF is set despite the fact A/D conversion for the post-  
change analog input has not ended.  
When A/D conversion is stopped and then resumed, clear ADIF before the A/D conversion operation is resumed.  
Figure 11-22. Timing of A/D Conversion End Interrupt Request Generation  
ADS rewrite  
(start of ANIn conversion)  
ADS rewrite  
(start of ANIm conversion)  
ADIF is set but ANIm conversion  
has not ended.  
A/D conversion  
ANIn  
ANIn  
ANIm  
ANIn  
ANIm  
ADCR  
INTAD  
ANIn  
ANIm  
ANIm  
Remarks 1. n = 0 to 7  
2. m = 0 to 7  
(9) Conversion results just after A/D conversion start  
The first A/D conversion value immediately after A/D conversion starts may not fall within the rating. Take  
measures such as polling the A/D conversion end interrupt request (INTAD) and removing the first conversion  
result.  
(10) A/D conversion result register (ADCR) read operation  
When a write operation is performed to the A/D converter mode register (ADM) and analog input channel  
specification register (ADS), the contents of ADCR may become undefined. Read the conversion result following  
conversion completion before writing to ADM and ADS. Using timing other than the above may cause an  
incorrect conversion result to be read.  
Do not read ADCR when the CPU is operating on the subsystem clock and oscillation of the X1 input clock is  
stopped.  
233  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 11 A/D CONVERTER  
(11) A/D converter sampling time and A/D conversion start delay time  
The A/D converter sampling time differs depending on the set value of the A/D converter mode register (ADM).  
The delay time exists until actual sampling is started after A/D converter operation is enabled.  
When using a set in which the A/D conversion time must be strictly observed, care is required for the contents  
shown in Figure 11-23 and Table 11-3.  
Figure 11-23. Timing of A/D Converter Sampling and A/D Conversion Start Delay  
ADCS 1 or ADS rewrite  
ADCS  
Sampling timing  
INTAD  
Wait  
A/D  
Sampling  
time  
period conversion  
start delay  
time  
Conversion time  
Table 11-3. A/D Converter Sampling Time and A/D Conversion Start Delay Time (ADM Set Value)  
FR2  
FR1  
FR0  
Conversion Time  
Sampling Time  
A/D Conversion Start Delay TimeNote  
MIN.  
MAX.  
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
288/fX  
240/fX  
192/fX  
144/fX  
120/fX  
96/fX  
40/fX  
32/fX  
28/fX  
24/fX  
16/fX  
14/fX  
12/fX  
36/fX  
32/fX  
28/fX  
18/fX  
16/fX  
14/fX  
32/fX  
24/fX  
20/fX  
16/fX  
12/fX  
Other than above  
Setting prohibited  
Note The A/D conversion start delay time is the time after wait period. For the wait function, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
Remark fX: X1 clock oscillation frequency  
234  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.1 Functions of Serial Interface UART0  
Serial interface UART0 has the following two modes.  
(1) Operation stop mode  
This mode is used when serial transfer is not executed and can enable a reduction in the power consumption.  
For details, refer to 12.4.1 Operation stop mode.  
(2) Asynchronous serial interface (UART) mode  
The functions of this mode are outlined below.  
Two-pin configuration TXD0: Transmit data output pin  
RXB0: Receive data input pin  
Length of transfer data can be selected from 7 or 8 bits.  
Dedicated on-chip 5-bit baud rate generator allowing any baud rate to be set  
Transmission and reception can be performed independently.  
Four operating clock inputs selectable  
Fixed to LSB-first transfer  
Cautions 1. The default value of the TXD0 pin is high level. Exercise care when using the TXD0 pin as a  
port pin.  
2. If clock supply to serial interface UART0 is not stopped (e.g., in the HALT mode), normal  
operation continues. If clock supply to serial interface UART0 is stopped (e.g., in the STOP  
mode), each register stops operating, and holds the value immediately before clock supply  
was stopped. The TXD0 pin also holds the value immediately before clock supply was  
stopped and outputs it. However, the operation is not guaranteed after clock supply is  
resumed. Therefore, reset the circuit so that POWER0 = 0, RXE0 = 0, and TXE0 = 0.  
3. Set POWER0 = 1 and then set TXE0 = 1 (transmission) or RXE0 = 1 (reception) to start  
communication.  
4. TXE0 and RXE0 are synchronized with the base clock (fXCLK) set by BRGC0. Therefore, the  
transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0  
is set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2  
clocks after RXE0 = 0 is set.  
235  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.2 Configuration of Serial Interface UART0  
Serial interface UART0 consists of the following hardware.  
Table 12-1. Configuration of Serial Interface UART0  
Configuration  
Item  
Registers  
Receive buffer register 0 (RXB0)  
Receive shift register 0 (RXS0)  
Transmit shift register 0 (TXS0)  
Control registers  
Asynchronous serial interface operation mode register 0 (ASIM0)  
Asynchronous serial interface reception error status register 0 (ASIS0)  
Baud rate generator control register 0 (BRGC0)  
236  
Preliminary User’s Manual U16227EJ1V0UD  
Figure 12-1. Block Diagram of Serial Interface UART0  
Filter  
RxD0/SI10/P11  
Receive shift register 0  
(RXS0)  
Asynchronous serial  
interface operation mode  
register 0 (ASIM0)  
Asynchronous serial  
interface reception error  
status register 0 (ASIS0)  
Reception control  
INTSR0  
Receive buffer register 0  
(RXB0)  
Baud rate  
generator  
f
X
/2  
f
f
X
X
/23  
/25  
Reception unit  
Internal bus  
TO50/TI50/P17  
(TM50 output)  
Baud rate generator  
control register 0  
(BRGC0)  
Baud rate  
generator  
Transmit shift register 0  
(TXS0)  
INTST0  
Transmission control  
TxD0/SCK10/P10  
Registers  
Transmission unit  
CHAPTER 12 SERIAL INTERFACE UART0  
(1) Receive buffer register 0 (RXB0)  
This 8-bit register stores parallel data converted by receive shift register 0 (RXS0).  
Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift  
register 0 (RXS0).  
If the data length is set to 7 bits the receive data is transferred to bits 0 to 6 of RXB0 and the MSB of RXB0 is  
always 0.  
If an overrun error (OVE0) occurs, the receive data is not transferred to RXB0.  
RESET input or POWER0 = 0 sets this register to FFH.  
RXB0 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.  
(2) Receive shift register 0 (RXS0)  
This register converts the serial data input to the RXD0 pin into parallel data.  
RXS0 cannot be directly manipulated by a program.  
(3) Transmit shift register 0 (TXS0)  
This register is used to set transmit data. Transmission is started when data is written to TXS0, and serial data is  
transmitted from the TXD0 pins.  
RESET input, POWR0 = 0, or TXE0 = 0 sets this register to FFH.  
TXS0 can be written by an 8-bit memory manipulation instruction. This register cannot be read.  
Caution Do not write the next transmit data to TXS0 before the transmission completion interrupt signal  
(INTST0) is generated.  
238  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.3 Registers Controlling Serial Interface UART0  
Serial interface UART0 is controlled by the following three registers.  
Asynchronous serial interface operation mode register 0 (ASIM0)  
Asynchronous serial interface reception error status register 0 (ASIS0)  
Baud rate generator control register 0 (BRGC0)  
(1) Asynchronous serial interface operation mode register 0 (ASIM0)  
This 8-bit register controls the serial transfer operations of serial interface UART0.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Figure 12-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (1/2)  
Address: FF70H After reset: 01H R/W  
Symbol  
ASIM0  
7
6
5
4
3
2
1
0
1
POWER0  
TXE0  
RXE0  
PS01  
PS00  
CL0  
SL0  
POWER0  
0Note  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1
Enables operation of the internal operation clock.  
TXE0  
Enables/disables transmission  
Disables transmission (synchronously resets the transmission circuit).  
Enables transmission.  
0
1
RXE0  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception.  
0
1
Note The input from the RXD0 pin is fixed to high level when POWER0 = 0.  
Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear  
POWER0 to 0.  
2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear  
POWER0 to 0.  
3. TXE0 and RXE0 are synchronized with the base clock (fXCLK) set by BRGC0. Therefore, the  
transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is  
set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks  
after RXE0 = 0 is set.  
4. Be sure to set bit 0 to 1.  
239  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
Figure 12-2. Format of Asynchronous Serial Interface Operation Mode Register 0 (ASIM0) (2/2)  
PS01  
PS00  
Transmission operation  
Does not output parity bit.  
Reception operation  
Reception without parity  
0
0
1
1
0
1
0
1
Outputs 0 parity.  
Reception as 0 parityNote  
Judges as odd parity.  
Judges as even parity.  
Outputs odd parity.  
Outputs even parity.  
CL0  
0
Specifies character length of transmit/receive data  
Character length of data = 7 bits  
Character length of data = 8 bits  
1
SL0  
0
Specifies number of stop bits of transmit data  
Number of stop bits = 1  
Number of stop bits = 2  
1
Note If reception as 0 parityis selected, the parity is not judged. Therefore, bit 2 (PE0) of asynchronous serial  
interface reception error status register 0 (ASIS0) is not set and the error interrupt does not occur.  
Cautions 1. Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.  
2. Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with  
“number of stop bits = 1”, and therefore, is not affected by the set value of the SL0 bit.  
240  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(2) Asynchronous serial interface reception error status register 0 (ASIS0)  
This register indicates an error status on completion of reception by serial interface UART0. It includes three  
error flag bits (PE0, FE0, OVE0).  
This register can be set by an 8-bit memory manipulation instruction and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER0) and bit 5 (RXE0) of ASIM0 = 0. 00H is read when this  
register is read.  
Figure 12-3. Format of Asynchronous Serial Interface Reception Error Status Register 0 (ASIS0)  
Address: FF73H After reset: 00H R  
Symbol  
ASIS0  
7
0
6
0
5
0
4
0
3
0
2
1
0
PE0  
FE0  
OVE0  
PE0  
0
Status flag indicating parity error  
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
1
If the parity of transmit data does not match the parity bit on completion of reception.  
FE0  
0
Status flag indicating framing error  
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
If the stop bit is not detected on completion of reception.  
1
OVE0  
Status flag indicating overrun error  
0
1
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
If receive data is set to the RXB register and the next reception operation is completed before the  
data is read.  
Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of  
asynchronous serial interface operation mode register 0 (ASIM0).  
2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of  
stop bits.  
3. If an overrun error occurs, the next receive data is not written to receive buffer register 0  
(RXB0) but discarded.  
4. If data is read from ASIS0, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
241  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(3) Baud rate generator control register 0 (BRGC0)  
This register selects the base clock of serial interface UART0 and controls the baud rate.  
BRGC0 can be set by an 8-bit memory manipulation instruction.  
RESET input sets this register to 1FH.  
Figure 12-4. Format of Baud Rate Generator Control Register 0 (BRGC0)  
Address: FF71H After reset: 1FH R/W  
Symbol  
BRGC0  
7
6
5
0
4
3
2
1
0
TPS01  
TPS00  
MDL04  
MDL03  
MDL02  
MDL01  
MDL00  
TPS01  
TPS00  
Base clock (fXCLK) selection  
0
0
1
1
0
1
0
1
TM50 output (TO50)  
fX/2 (5 MHz)  
fX/23 (1.25 MHz)  
fX/25 (312.5 kHz)  
MDL04  
MDL03  
MDL02  
MDL01  
MDL00  
k
Selection of 5-bit counter  
output clock  
0
0
0
0
0
1
1
1
×
0
0
0
×
0
0
1
×
0
1
0
×
8
Setting prohibited  
fXCLK/8  
9
fXCLK/9  
10  
fXCLK/10  
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
1
0
1
0
0
1
26  
27  
28  
30  
31  
fXCLK/26  
fXCLK/27  
fXCLK/28  
fXCLK/30  
fXCLK/31  
Cautions 1. Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the  
MDL04 to MDL00 bits.  
2. The baud rate is the output clock of the 5-bit counter divided by 2.  
Remarks 1. fXCLK: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits  
2. fX:  
3. k:  
4. ×:  
X1 input clock oscillation frequency  
Value set by the MDL04 to MDL00 bits (k = 8, 9, 10, ..., 31)  
Dont care  
5. Figures in parentheses apply to operation at fX = 10 MHz  
242  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.4 Operation of Serial Interface UART0  
This section explains the two modes of serial interface UART0.  
12.4.1 Operation stop mode  
In this mode, serial transfer cannot be executed, thus reducing the power consumption. In addition, the pins can  
be used as ordinary port pins in this mode.  
(1) Register setting  
The operation stop mode is set by asynchronous serial interface operation mode register 0 (ASIM0).  
ASIM0 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Address: FF70H After reset: 01H R/W  
Symbol  
ASIM0  
7
6
5
4
3
2
1
0
1
POWER0  
TXE0  
RXE0  
PS01  
PS00  
CL0  
SL0  
POWER0  
0Note  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1
Enables operation of the internal operation clock.  
TXE0  
Enables/disables transmission  
Disables transmission (synchronously resets the transmission circuit).  
Enables transmission.  
0
1
RXE0  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception.  
0
1
Note The input from the RXD0 pin is fixed to high level when POWER0 = 0.  
Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear  
POWER0 to 0.  
2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear  
POWER0 to 0.  
3. TXE0 and RXE0 are synchronized with the base clock (fXCLK) set by BRGC0. Therefore, the  
transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is  
set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks  
after RXE0 = 0 is set.  
243  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.4.2 Asynchronous serial interface (UART) mode  
In this mode, 1-byte data is transmitted/received following a start bit, and a full-duplex operation can be performed.  
A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of  
baud rates.  
(1) Register setting  
The UART mode is set by asynchronous serial interface operation mode register 0 (ASIM0) and asynchronous  
serial interface reception error status register 0 (ASIS0).  
(a) Asynchronous serial interface operation mode register 0 (ASIM0)  
This 8-bit register controls the serial transfer operations of serial interface UART0.  
ASIM0 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Address: FF70H After reset: 01H R/W  
Symbol  
ASIM0  
7
6
5
4
3
2
1
0
1
POWER0  
TXE0  
RXE0  
PS01  
PS00  
CL0  
SL0  
POWER0  
0Note  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1
Enables operation of the internal operation clock.  
TXE0  
Enables/disables transmission  
Disables transmission (synchronously resets the transmission circuit).  
Enables transmission.  
0
1
RXE0  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception  
0
1
Note The input from the RXD0 pin is fixed to high level when POWER0 = 0.  
Cautions 1. At startup, set POWER0 to 1 and then set TXE0 to 1. Clear TXE0 to 0 first, and then clear  
POWER0 to 0.  
2. At startup, set POWER0 to 1 and then set RXE0 to 1. Clear RXE0 to 0 first, and then clear  
POWER0 to 0.  
3. TXE0 and RXE0 are synchronized with the base clock (fXCLK) set by BRGC0. Therefore, the  
transmission unit may not be initialized if TXE0 = 1 is not set again 2 clocks after TXE0 = 0 is  
set. Similarly, the reception unit may not be initialized if RXE0 = 1 is not set again 2 clocks  
after RXE0 = 0 is set.  
4. Be sure to set bit 0 to 1.  
244  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
PS01  
PS00  
Transmission operation  
Reception operation  
Reception without parity  
Reception as 0 parityNote  
0
0
1
1
0
1
0
1
Does not output parity bit.  
Outputs 0 parity.  
Outputs odd parity.  
Outputs even parity.  
Judges as odd parity.  
Judges as even parity.  
CL0  
0
Specifies character length of transmit/receive data  
Character length of data = 7 bits  
Character length of data = 8 bits  
1
SL0  
0
Specifies number of stop bits of transmit data  
Number of stop bits = 1  
Number of stop bits = 2  
1
Note If reception as 0 parityis selected, the parity is not judged. Therefore, bit 2 (PE0) of asynchronous serial  
interface reception error status register 0 (ASIS0) is not set and the error interrupt does not occur.  
Cautions 1. Clear the TXE0 and RXE0 bits to 0 before rewriting the PS01, PS00, and CL0 bits.  
2. Make sure that TXE0 = 0 when rewriting the SL0 bit. Reception is always performed with  
“number of stop bits = 1”, and therefore, is not affected by the set value of the SL0 bit.  
245  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(b) Asynchronous serial interface reception error status register 0 (ASIS0)  
This register indicates an error status on completion of reception by serial interface UART0. It includes three  
error flag bits (PE0, FE0, OVE0).  
This register can be set by an 8-bit memory manipulation instruction and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER0) and bit 5 (RXE0) of ASIM0 = 0. 00H is read when  
this register is read.  
Address: FF73H After reset: 00H R  
Symbol  
ASIS0  
7
0
6
0
5
0
4
0
3
0
2
1
0
PE0  
FE0  
OVE0  
PE0  
0
Status flag indicating parity error  
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
1
If the parity of transmit data does not match the parity bit on completion of reception.  
FE0  
0
Status flag indicating framing error  
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
If the stop bit is not detected on completion of reception.  
1
OVE0  
Status flag indicating overrun error  
0
1
If POWER0 = 0 and RXE0 = 0, or if ASIS0 register is read.  
If receive data is set to the RXB register and the next reception operation is completed before the  
data is read.  
Cautions 1. The operation of the PE0 bit differs depending on the set values of the PS01 and PS00 bits of  
asynchronous serial interface operation mode register 0 (ASIM0).  
2. Only the first bit of the receive data is checked as the stop bit, regardless of the number of  
stop bits.  
3. If an overrun error occurs, the next receive data is not written to receive buffer register 0  
(RXB0) but discarded.  
4. If data is read from ASIS0, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
246  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(2) Communication operation  
(a) Normal transmit/receive data format  
Figure 12-5 shows the format of the transmit/receive data.  
Figure 12-5. Format of Normal UART Transmit/Receive Data  
1 data frame  
Start  
bit  
Parity  
bit  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop bit  
Character bits  
One data frame consists of the following bits.  
Start bit ... 1 bit  
Character bits ... 7 or 8 bits (LSB first)  
Parity bit ... Even parity, odd parity, 0 parity, or no parity  
Stop bit ... 1 or 2 bits  
The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial  
interface mode register 0 (ASIM0).  
Figure 12-6. Example of Normal UART Transmit/Receive Data Format  
1. Data length: 8 bits, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Parity  
Stop  
2. Data length: 7 bits, Parity: Odd parity, Stop bit: 2 bits, Transfer data: 36H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
Parity  
Stop  
Stop  
3. Data length: 8 bits, Parity: None, Stop bit: 1 bit, Transfer data: 87H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop  
247  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(b) Parity types and operation  
The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used  
on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error  
can be detected. With zero parity and no parity, an error cannot be detected.  
(i) Even parity  
Transmission  
Transmit data, including the parity bit, is controlled so that the number of bits that are 1is even.  
The value of the parity bit is as follows.  
If transmit data has an odd number of bits that are 1: 1  
If transmit data has an even number of bits that are 1: 0  
Reception  
The number of bits that are 1in the receive data, including the parity bit, is counted. If it is odd, a  
parity error occurs.  
(ii) Odd parity  
Transmission  
Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that  
are 1is odd.  
If transmit data has an odd number of bits that are 1: 0  
If transmit data has an even number of bits that are 1: 1  
Reception  
The number of bits that are 1in the receive data, including the parity bit, is counted. If it is even, a  
parity error occurs.  
(iii) 0 parity  
The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.  
The parity bit is not detected when the data is received. Therefore, a parity error does not occur  
regardless of whether the parity bit is 0or 1.  
(iv) No parity  
No parity bit is appended to the transmit data.  
Reception is performed assuming that there is no parity bit when data is received. Because there is no  
parity bit, a parity error does not occur.  
248  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(c) Transmission  
The TXD0 pin outputs a high level when bit 7 (POWER0) of asynchronous serial interface mode register 0  
(ASIM0) is set to 1. If bit 6 (TXE0) of ASIM0 is then set to 1, transmission is enabled. Transmission can be  
started by writing transmit data to transmit shift register 0 (TXS0). The start bit, parity bit, and stop bit are  
automatically appended to the data.  
When transmission is started, the start bit is output from the TXD0 pin, followed by the rest of the data in  
order starting from the LSB. When transmission is completed, the parity and stop bits set by ASIM0 are  
appended and a transmission completion interrupt request (INTST0) is generated.  
Transmission is stopped until the data to be transmitted next is written to TXS0.  
Figure 12-7 shows the timing of the transmission completion interrupt request (INTST0). This interrupt  
occurs as soon as the last stop bit has been output.  
Caution After transmit data is written to TXS0, do not write the next transmit data before the  
transmission completion interrupt signal (INTST0) is generated.  
Figure 12-7. Normal Transmission Completion Interrupt Request Timing  
1. Stop bit length: 1  
Parity  
STOP  
T
XD0 (output)  
START  
D0  
D1  
D2  
D6  
D7  
INTST0  
2. Stop bit length: 2  
T
XD0 (output)  
START  
D0  
D1  
D2  
D6  
D7  
Parity  
STOP  
INTST0  
249  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(d) Reception  
Reception is enabled and the RXD0 pin input is sampled when bit 7 (POWER0) of asynchronous serial  
interface operation mode register 0 (ASIM0) is set to 1 and then bit 5 (RXE0) of ASIM0 is set to 1.  
The 5-bit counter of the baud rate generator starts counting when the falling edge of the RXD0 pin input is  
detected. When the set value of baud rate generator control register 0 (BRGC0) has been counted, the  
RXD0 pin input is sampled again ( in Figure 12-8). If the RXD0 pin is low level at this time, it is recognized  
as a start bit.  
When the start bit is detected, reception is started, and serial data is sequentially stored in receive shift  
register 0 (RXS0) at the set baud rate. When the stop bit has been received, the reception completion  
interrupt (INTSR0) is generated and the data of RXS0 is written to receive buffer register 0 (RXB0). If an  
overrun error (OVE0) occurs, however, the receive data is not written to RXB0.  
Even if a parity error (PE0) or a framing error (FE0) occurs while reception is in progress, reception continues  
to the reception position of the stop bit, and an error interrupt (INTSR0) is generated after completion of  
reception.  
Figure 12-8. Reception Completion Interrupt Request Timing  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Parity  
Stop  
RX  
D0 (input)  
INTSR0  
RXB0  
Cautions 1. Be sure to read receive buffer register 0 (RXB0) even if a reception error occurs.  
Otherwise, an overrun error will occur when the next data is received, and the reception  
error status will persist.  
2. Reception is always performed with the “number of stop bits = 1”. The second stop bit  
is ignored.  
3. Be sure to read asynchronous serial interface reception error status register 0 (ASIS0)  
before reading RXB0.  
250  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(e) Reception error  
Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error  
flag of asynchronous serial interface reception error status register 0 (ASIS0) is set as a result of data  
reception, a reception error interrupt request (INTSR0) is generated.  
Which error has occurred during reception can be identified by reading the contents of ASIS0 in the reception  
error interrupt servicing (INTSR0) (refer to Table 12-2).  
The contents of ASIS0 are reset to 0 when ASIS0 is read.  
Table 12-2. Cause of Reception Error  
Reception Error  
Parity error  
Cause  
Value of ASIS0  
The parity specified for transmission does not match the parity of the 04H  
receive data.  
Framing error  
Overrun error  
Stop bit is not detected.  
02H  
01H  
Reception of the next data is completed before data is read from  
receive buffer register 0 (RXB0).  
(f) Noise filter of receive data  
The RXD0 signal is sampled using the base clock output by the prescaler block.  
If two sampled values are the same, the output of the match detector changes, and the data is sampled as  
input data.  
Because the circuit is configured as shown in Figure 12-9, the internal processing of the reception operation  
is delayed by two clocks from the external signal status.  
Figure 12-9. Noise Filter Circuit  
Base clock  
Internal signal A  
R
XD0/SI10/P11  
Internal signal B  
In  
Q
In  
Q
LD_EN  
Match detector  
251  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
12.4.3 Dedicated baud rate generator  
The dedicated baud rate generator consists of a source clock selector and an 5-bit programmable counter, and  
generates a serial clock for transmission/reception of UART0.  
Separate 5-bit counters are provided for transmission and reception.  
(1) Configuration of baud rate generator  
Base clock (Clock)  
The clock selected by bits 7 and 6 (TPS01 and TPS00) of baud rate generator control register 0 (BRGC0) is  
supplied to each module when bit 7 (POWER0) of asynchronous serial interface operation mode register 0  
(ASIM0) is 1. This clock is called the base clock Clockand its frequency is called fXCLK. Clockis fixed to  
low level when POWER0 = 0.  
Transmission counter  
This counter stops, cleared to 0, when bit 7 (POWER0) or bit 6 (TXE0) of asynchronous serial interface  
operation mode register 0 (ASIM0) is 0.  
It starts counting when POWER0 = 1 and TXE0 = 1.  
The counter is cleared to 0 when the first data transmitted is written to transmit shift register 0 (TXS0).  
Reception counter  
This counter stops operation, cleared to 0, when bit 7 (POWER0) or bit 5 (RXE0) of asynchronous serial  
interface operation mode register 0 (ASIM0) is 0.  
It starts counting when the start bit has been detected.  
The counter stops operation after one frame has been received, until the next start bit is detected.  
Figure 12-10. Configuration of Baud Rate Generator  
POWER0  
f
X/2  
POWER0, TXE0 (or RXE0)  
5-bit counter  
f
X
/23  
Clock  
(fXCLK  
Selector  
)
fX  
/25  
TO50/TI50/P17  
(TM50 output)  
Match detector  
Baud rate  
1/2  
BRGC0: TPS01, TPS00  
BRGC0: MDL04 to MDL00  
Remark POWER0: Bit 7 of asynchronous serial interface operation mode register 0 (ASIM0)  
TXE0:  
Bit 6 of ASIM0  
RXE0:  
BRGC0:  
Bit 5 of ASIM0  
Baud rate generator control register 0  
252  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(2) Generation of serial clock  
A serial clock can be generated by using baud rate generator control register 0 (BRGC0).  
Select the clock to be input to the 5-bit counter by using bits 7 and 6 (TPS01 and TPS00) of BRGC0.  
Bits 4 to 0 (MDL04 to MDL00) of BRGC0 can be used to select the division value of the 5-bit counter.  
(a) Baud rate generator control register 0 (BRGC0)  
This register selects the base clock of serial interface UART0 and controls the baud rate.  
BRGC0 can be set by an 8-bit memory manipulation instruction.  
RESET input sets this register to 1FH.  
Address: FF71H After reset: 1FH R/W  
Symbol  
BRGC0  
7
6
5
0
4
3
2
1
0
TPS01  
TPS00  
MDL04  
MDL03  
MDL02  
MDL01  
MDL00  
TPS01  
TPS00  
Base clock (fXCLK) selection  
0
0
1
1
0
1
0
1
TM50 output (TO50)  
fX/2 (5 MHz)  
fX/23 (1.25 MHz)  
fX/25 (312.5 kHz)  
MDL04  
MDL03  
MDL02  
MDL01  
MDL00  
k
Selection of 5-bit counter  
output clock  
0
0
0
0
0
1
1
1
×
0
0
0
×
0
0
1
×
0
1
0
×
8
Setting prohibited  
fXCLK/8  
9
fXCLK/9  
10  
fXCLK/10  
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
1
0
1
0
0
1
26  
27  
28  
30  
31  
fXCLK/26  
fXCLK/27  
fXCLK/28  
fXCLK/30  
fXCLK/31  
Cautions 1. Make sure that bit 6 (TXE0) and bit 5 (RXE0) of the ASIM0 register = 0 when rewriting the  
MDL04 to MDL00 bits.  
2. The baud rate value is the output clock of the 5-bit counter divided by 2.  
Remarks 1. fXCLK: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits  
2. fX:  
3. k:  
4. ×:  
X1 input clock oscillation frequency  
Value set by the MDL04 to MDL00 bits (k = 8, 9, 10, ..., 31)  
Dont care  
5. Figures in parentheses apply to operation with fX = 10 MHz  
253  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(b) Baud rate  
The baud rate can be calculated by the following expression.  
fXCLK  
Baud rate =  
[bps]  
2 × k  
fXCLK: Frequency of base clock (Clock) selected by the TPS01 and TPS00 bits of the BRGC0 register  
k: Value set by the MDL04 to MDL00 bits of the BRGC0 register (k = 8, 9, 10, ..., 31)  
(c) Error of baud rate  
The baud rate error can be calculated by the following expression.  
Actual baud rate (baud rate with error)  
Error (%) =  
1 × 100 [%]  
Desired baud rate (correct baud rate)  
Cautions 1. Keep the baud rate error during transmission to within the permissible error range at  
the reception destination.  
2. Make sure that the baud rate error during reception satisfies the range shown in (4)  
Permissible baud rate range during reception.  
Example: Frequency of base clock (Clock) = 2.5 MHz = 2,500,000 Hz  
Set value of MDL04 to MDL00 bits of BRGC0 register = 10000B (k = 16)  
Target baud rate = 76,800 bps  
Baud rate = 2.5 M/(2 × 16)  
= 2,500,000/(2 × 16) = 78,125 [bps]  
Error = (78,125/76,800 1) × 100  
= 1.725 [%]  
254  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(3) Example of setting baud rate  
Table 12-3. Set Data of Baud Rate Generator  
Baud Rate  
[bps]  
fX = 10.0 MHz  
fX = 8.38 MHz  
fX = 4.19 MHz  
TPS01,  
TPS00  
k
Calculated ERR[%] TPS01,  
k
Calculated ERR[%] TPS01,  
k
Calculated ERR[%]  
value  
TPS00  
Value  
TPS00  
Value  
2425  
4676  
9699  
10475  
18705  
2400  
4800  
3
3
3
2
2
2
1
1
1
3
3
3
2
2
2
1
1
1
1
3
3
2
2
2
2
1
1
27  
14  
27  
25  
14  
1.03  
2.58  
1.03  
0.72  
2.58  
27  
14  
13  
27  
17  
14  
27  
18  
14  
9
4850  
1.03  
9600  
16  
15  
8
9766  
1.73  
0.16  
1.73  
0
9353  
2.58  
3.15  
1.03  
10400  
19200  
31250  
38400  
76800  
115200  
153600  
230400  
10417  
19531  
31250  
39063  
78125  
113636  
156250  
227273  
10072  
19398  
30809  
38796  
77593  
116389  
149643  
232778  
20  
16  
8
1.41  
2.58  
1.03  
1.73  
1.73  
1.36  
1.73  
1.36  
27  
14  
9
38796  
74821  
116389  
1.03  
2.58  
1.03  
22  
16  
11  
1.03  
2.58  
1.03  
Remark TPS01, TPS00:  
Bits 7 and 6 of baud rate generator control register 0 (BRGC0) (setting of base clock  
(fXCLK))  
k:  
Value set by the MDL04 to MDL00 bits of BRGC0 (k = 8, 9, 10, ..., 31)  
X1 input clock oscillation frequency  
fX:  
ERR:  
Baud rate error  
255  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
(4) Permissible baud rate range during reception  
The permissible error from the baud rate at the transmission destination during reception is shown below.  
Caution Make sure that the baud rate error during reception is within the permissible error range, by  
using the calculation expression shown below.  
Figure 12-11. Permissible Baud Rate Range During Reception  
Latch timing  
Transfer rate  
Start bit  
Start bit  
Start bit  
Bit 0  
FL  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
of UART0  
1 data frame (11 × FL)  
Minimum permissible  
transfer rate  
Bit 0  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
FLmin  
Maximum permissible  
transfer rate  
Bit 0  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
FLmax  
As shown in Figure 12-11, the latch timing of the receive data is determined by the counter set by baud rate  
generator control register 0 (BRGC0) after the start bit has been detected. If the last data (stop bit) meets this  
latch timing, the data can be correctly received.  
Assuming that 14-bit data is received, the theoretical values can be calculated as follows.  
1
FL = (Brate)−  
Brate: Baud rate of UART0  
k:  
Set value of BRGC0  
1-bit data length  
FL:  
Margin of latch timing: 2 clocks  
256  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 12 SERIAL INTERFACE UART0  
21k + 2  
k 2  
Minimum permissible transfer rate: FLmin = 11 × FL −  
× FL =  
FL  
2k  
2k  
Therefore, the maximum receivable baud rate at the transmission destination is as follows.  
22k  
1
BRmax = (FLmin/11)−  
=
Brate  
21k + 2  
Similarly, the maximum permissible transfer rate can be calculated as follows.  
10  
11  
k + 2  
21k 2  
2 × k  
× FLmax = 11 × FL −  
× FL =  
FL  
2 × k  
21k × 2  
FLmax =  
FL × 11  
20k  
Therefore, the minimum receivable baud rate at the transmission destination is as follows.  
20k  
1
BRmin = (FLmax/11)−  
=
Brate  
21k 2  
The permissible baud rate error between UART0 and the transmission destination can be calculated from the  
above minimum and maximum baud rate expressions, as follows.  
Table 12-4. Maximum/Minimum Permissible Baud Rate Error  
Division Ratio (k)  
Maximum Permissible Baud Rate Error  
Minimum Permissible Baud Rate Error  
8
+3.53%  
+4.14%  
+4.34%  
+4.44%  
3.61%  
4.19%  
4.38%  
4.47%  
16  
24  
31  
Remarks 1. The accuracy of reception depends on the number of bits in one frame, input clock frequency,  
and division ratio (k). The higher the input clock frequency and the higher the division ratio (k),  
the higher the accuracy.  
2. k: Set value of BRGC0  
257  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.1 Functions of Serial Interface UART6  
Serial interface UART6 has the following two modes.  
(1) Operation stop mode  
This mode is used when serial transfer is not executed and can enable a reduction in the power consumption.  
For details, refer to 13.4.1 Operation stop mode.  
(2) Asynchronous serial interface (UART) mode  
This mode supports the LIN (Local Interconnect Network) bus. The functions of this mode are outlined below.  
Two-pin configuration TXD6: Transmit data output pin  
RXB6: Receive data input pin  
Data length of transfer data can be selected from 7 or 8 bits.  
Dedicated internal 8-bit baud rate generator allowing any baud rate to be set  
Transmission and reception can be performed independently.  
Twelve operating clock inputs selectable  
MSB- or LSB-first transfer selectable  
Inverted transmission operation  
Tuning break field transmission from 13 to 20 bits  
More than 11 bits can be identified for tuning break field reception (SBF reception flag provided).  
Cautions 1. The default value of the TXD6 pin is the high level. Exercise care when using the TXD6 pin  
as a port pin.  
2. The TXD6 output inversion function inverts only the transmission side and not the reception  
side. To use this function, the reception side must be ready for reception of inverted data (it  
must be able to recognize a low-level start bit).  
3. If clock supply to serial interface UART6 is not stopped (e.g., in the HALT mode), normal  
operation continues. If clock supply to serial interface UART6 is stopped (e.g., in the STOP  
mode), each register stops operating, and holds the value immediately before clock supply  
was stopped. The TXD6 pin also holds the value immediately before clock supply was  
stopped and outputs it. However, the operation is not guaranteed after clock supply is  
resumed. Therefore, reset the circuit so that POWER6 = 0, RXE6 = 0, and TXE6 = 0.  
4. If data is continuously transmitted, the transfer rate from the stop bit to the next start bit is  
extended two clocks. However, this does not affect the result of transfer because the  
reception side initializes the timing when it has detected a start bit. Do not use the  
continuous transmission function if the interface is incorporated in LIN.  
258  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication  
protocol intended to aid the cost reduction of an automotive network.  
LIN communication is single-master communication, and up to 15 slaves can be connected to one  
master.  
The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the  
LIN master via the LIN network.  
Normally, the LIN master is connected to a network such as CAN (Controller Area Network).  
In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that  
complies with ISO9141.  
In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and  
corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave  
is 15% or less.  
Figures 13-1 and 13-2 outline the transmission and reception operations of LIN.  
Figure 13-1. LIN Transmission Operation  
Tuning  
break field  
Checksum  
field  
Wakeup  
signal frame  
Tuning field  
Match field Data field Data field  
Sleep  
bus  
13-bitNote 2 SBF  
55H  
transmission  
Data  
Data  
Data  
Data  
8 bitsNote 3 Note 1 transmission  
transmission transmission transmission transmission  
TX6  
Note 4  
INTST6  
Notes 1. The interval between each field is controlled by software.  
2. The tuning break field is output by hardware. The output width is equal to the bit length set by bits 4 to  
2 (SBL62 to SBL60) of asynchronous serial interface control register 6 (ASICL6). If the output width  
needs to be adjusted more accurately, use baud rate generator control register 6 (BRGC6).  
3. The wakeup signal frame is substituted by 80H transfer in the 8-bit mode.  
4. INTST6 is output on completion of each transmission. It is also output when SBF is transmitted.  
259  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-2. LIN Reception Operation  
Checksum  
field  
Wakeup  
signal frame  
Tuning  
break field  
Data filed  
Tuning field  
Match field Data filed  
Sleep  
bus  
Data  
reception  
Data  
Data  
SF  
reception  
receptionNote 5  
13 bitsNote 2  
ID reception  
reception  
SBF  
reception  
RX6  
Disable  
Enable  
Note 3  
Reception interrupt  
(INTSR6)  
Note 1  
Edge detection  
(INTP0)  
Note 4  
Enable  
Capture timer  
Disable  
Notes 1. The wakeup signal is detected at the edge of the pin, and enables UART6 and sets the SBF reception  
mode.  
2. Reception continues until the STOP bit is detected. When 11 bits or more of SBF have been detected,  
it is assumed that SBF reception has been completed correctly, and an interrupt signal is output. If  
less than 11 bits of SBF have been detected, it is assumed that an SBF reception error has occurred.  
The interrupt signal is not output and the SBF reception mode is restored.  
3. If SBF reception has been completed correctly, an interrupt signal is output. This SBF reception  
completion interrupt enables the capture timer. Detection of errors OVE6, PE6, and FE6 is  
suppressed, and error detection processing of UART communication and data transfer of the shift  
register and RXB6 is not performed. The shift register holds the reset value FFH.  
4. Calculate the baud rate error from the value obtained from the capture timer, disable UART6 after SF  
reception, and then re-set baud rate generator control register 6 (BRGC6).  
5. Distinguish the checksum field by software. Also perform processing by software to initialize UART6  
after reception of the checksum field and to set the SBF reception mode again.  
To perform a LIN receive operation, use a configuration like the one shown in Figure 13-3.  
The wakeup signal transmitted from the LIN master is received by detecting the edge of the external interrupt  
(INTP0). The length of the tuning break field transmitted from the LIN master can be measured using the external  
event capture operation of 16-bit timer/event counter 00, and the baud rate error can be calculated using the time and  
number of bits of the tuning break field.  
The input signal of the reception port input (RxD6) can be input to the external interrupt (INTP0) and 16-bit  
timer/event counter 00 by port input switching control (ISC0/ISC1), without connecting RxD6 and INTP0/TI000  
externally.  
260  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-3. Port Configuration for LIN Reception Operation  
MPX  
A
P14/R D6  
X
Q
RXD6 input  
B
Port mode  
(PM14)  
Port latch  
(P14)  
MPX  
P120/INTP0  
MPX  
A
Q
A
B
Q
INTP0 input  
B
Port mode  
(PM120)  
Port input  
switch control  
(ISC0)  
Port latch  
(P120)  
<ISC0>  
0: A output  
1: B output  
MPX  
P00/TI000  
MPX  
A
Q
A
Q
B
B
TI000 input  
Port mode  
(PM00)  
Port input  
switch control  
(ISC1)  
Port latch  
(P00)  
<ISC1>  
0: A output  
1: B output  
Remark ISC0, ISC1: Bits 0 and 1 of the input switching control register (ISC) (see Figure 4-19.)  
The resources used in the LIN communication operation are shown below.  
<Resources used>  
External interrupt (INTP0); wakeup signal detection  
Use: Detects the wakeup signal edges and detects start of communication.  
16-bit timer/event counter 00 (TI000); baud rate error detection  
Use: Detects the baud rate error (measures the TI000 input edge interval in the capture mode) by detecting the  
tuning break field (SBF) length and divides it by the number of bits.  
Serial interface UART6  
261  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.2 Configuration of Serial Interface UART6  
Serial interface UART6 consists of the following hardware.  
Table 13-1. Configuration of Serial Interface UART6  
Configuration  
Item  
Registers  
Receive buffer register 6 (RXB6)  
Receive shift register 6 (RXS6)  
Transmit buffer register 6 (TXB6)  
Transmit shift register 6 (TXS6)  
Control registers  
Asynchronous serial interface operation mode register 6 (ASIM6)  
Asynchronous serial interface reception error status register 6 (ASIS6)  
Asynchronous serial interface transmission status register 6 (ASIF6)  
Clock selection register 6 (CKSR6)  
Baud rate generator control register 6 (BRGC6)  
Asynchronous serial interface control register 6 (ASICL6)  
262  
Preliminary Users Manual U16227EJ1V0UD  
Figure 13-4. Block Diagram of Serial Interface UART6  
Filter  
RXD6/P14  
INTSR6  
Reception control  
INTSRE6  
Receive shift register 6  
(RXS6)  
Asynchronous serial  
interface reception error  
status register 6 (ASIS6)  
Asynchronous serial  
interface operation mode  
register 6 (ASIM6)  
Asynchronous serial interface  
control register 6 (ASICL6)  
Baud rate  
generator  
Receive buffer register 6  
(RXB6)  
fX-fX  
/210  
Reception unit  
Internal bus  
TO50/TI50/P17  
(TM50 output)  
Baud rate generator  
control register 6  
(BRGC6)  
Asynchronous serial  
interface transmission  
status register 6 (ASIF6)  
Asynchronous serial interface  
control register 6 (ASICL6)  
Clock selection  
register 6 (CKSR6)  
Baud rate  
generator  
Transmit buffer register 6  
(TXB6)  
Transmit shift register 6  
(TXS6)  
Transmission control  
INTST6  
TXD6/P13  
Registers  
Transmission unit  
CHAPTER 13 SERIAL INTERFACE UART6  
(1) Receive buffer register 6 (RXB6)  
This 8-bit register stores parallel data converted by the receive shift register.  
Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift  
register 6 (RXS6). If the data length is set to 7 bits, data is transferred as follows.  
In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is always 0.  
In MSB-first reception, the receive data is transferred to bits 1 to 7 of RXB6 and the LSB of RXB6 is always 0.  
If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.  
RXB6 can be read by an 8-bit memory manipulation instruction. No data can be written to this register.  
RESET input sets this register to FFH.  
(2) Receive shift register 6 (RXS6)  
This register converts the serial data input to the RXD6 pin into parallel data.  
RXS6 cannot be directly manipulated by a program.  
(3) Transmit buffer register 6 (TXB6)  
This buffer register is used to set transmit data. Transmission is started when data is written to TXB6.  
This register can be read or written by an 8-bit memory manipulation instruction.  
RESET input sets this register to FFH.  
Cautions 1. Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission  
status register 6 (ASIF6) is 1.  
2. Do not refresh (write the same value to) TXB6 by software during a communication  
operation (when bit 7 (POWER6) and bit 6 (TXE6) of asynchronous serial interface operation  
mode register 6 (ASIM6) are 1 or when bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 are 1).  
However, if the same value is continuously transmitted in the transmission mode (POWER6  
= 1 and TXE6 = 1), the same value can be written.  
(4) Transmit shift register 6 (TXS6)  
This register transmits the data transferred from TXB6 from the TXD6 pin as serial data. Data is transferred from  
TXB6 immediately after TXB6 is written for the first transmission, or immediately before INTST6 occurs after one  
frame was transmitted for continuous transmission. Data is transferred from TXB6 and transmitted from the TXD6  
pin at the falling edge of the internal clock.  
TXS6 cannot be directly manipulated by a program.  
264  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.3 Registers Controlling Serial Interface UART6  
Serial interface UART6 is controlled by the following six registers.  
Asynchronous serial interface operation mode register 6 (ASIM6)  
Asynchronous serial interface reception error status register 6 (ASIS6)  
Asynchronous serial interface transmission status register 6 (ASIF6)  
Clock selection register 6 (CKSR6)  
Baud rate generator control register 6 (BRGC6)  
Asynchronous serial interface control register 6 (ASICL6)  
(1) Asynchronous serial interface operation mode register 6 (ASIM6)  
This 8-bit register controls the serial transfer operations of serial interface UART6.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6  
= 1).  
Figure 13-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)  
Address: FF50H After reset: 01H R/W  
Symbol  
ASIM6  
7
6
5
4
3
2
1
0
POWER6  
TXE6  
RXE6  
PS61  
PS60  
CL6  
SL6  
ISRM6  
POWER6  
0Note 1  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1Note 2  
Enables operation of the internal operation clock  
TXE6  
Enables/disables transmission  
Disables transmission (synchronously resets the transmission circuit).  
Enables transmission  
0
1
Notes 1. The output of the TXD6 pin goes high and the input from the RXD6 pin is fixed to the high level when  
POWER6 = 0.  
2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the  
POWER6 bit.  
Caution At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear  
POWER6 to 0.  
265  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-5. Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (2/2)  
RXE6  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception  
0
1
PS61  
PS60  
Transmission operation  
Does not output parity bit.  
Reception operation  
Reception without parity  
0
0
1
1
0
1
0
1
Outputs 0 parity.  
Reception as 0 parityNote  
Judges as odd parity.  
Judges as even parity.  
Outputs odd parity.  
Outputs even parity.  
CL6  
0
Specifies character length of transmit/receive data  
Character length of data = 7 bits  
Character length of data = 8 bits  
1
SL6  
0
Specifies number of stop bits of transmit data  
Number of stop bits = 1  
Number of stop bits = 2  
1
ISRM6  
Enables/disables occurrence of reception completion interrupt in case of error  
INTSRE6occurs in case of error (at this time, INTSR6 does not occur).  
INTSR6occurs in case of error (at this time, INTSRE6 does not occur).  
0
1
Note If reception as 0 parityis selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial  
interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.  
Cautions 1. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear  
POWER6 to 0.  
2. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.  
3. Fix the PS61 and PS60 bits to 0 when mounting the device on LIN.  
4. Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with “the  
number of stop bits = 1”, and therefore, is not affected by the set value of the SL6 bit.  
5. Make sure that RXE6 = 0 when rewriting the ISRM6 bit.  
266  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(2) Asynchronous serial interface reception error status register 6 (ASIS6)  
This register indicates an error status on completion of reception by serial interface UART6. It includes three  
error flag bits (PE6, FE6, OVE6).  
This register can be set by an 8-bit memory manipulation instruction and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 0. 00H is read when this  
register is read.  
Figure 13-6. Format of Asynchronous Serial Interface Reception Error Status Register 6 (ASIS6)  
Address: FF53H After reset: 00H R  
Symbol  
ASIS6  
7
0
6
0
5
0
4
0
3
0
2
1
0
PE6  
FE6  
OVE6  
PE6  
0
Status flag indicating parity error  
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
1
If the parity of transmit data does not match the parity bit on completion of reception  
FE6  
0
Status flag indicating framing error  
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
If the stop bit is not detected on completion of reception  
1
OVE6  
Status flag indicating overrun error  
0
1
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
If receive data is set to the RXB register and the next reception operation is completed before the  
data is read.  
Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of  
asynchronous serial interface operation mode register 6 (ASIM6).  
2. The first bit of the receive data is checked as the stop bit, regardless of the number of stop  
bits.  
3. If an overrun error occurs, the next receive data is not written to receive buffer register 6  
(RXB6) but discarded.  
4. If data is read from ASIS6, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
267  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(3) Asynchronous serial interface transmission status register 6 (ASIF6)  
This register indicates the status of transmission by serial interface UART6. It includes two status flag bits  
(TXBF6 and TXSF6).  
Transmission can be continued without disruption even during an interrupt period, by writing the next data to the  
TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.  
This register can be set by an 8-bit memory manipulation instruction, and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 0.  
Figure 13-7. Format of Asynchronous Serial Interface Transmission Status Register 6 (ASIF6)  
Address: FF55H After reset: 00H R  
Symbol  
ASIF6  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TXBF6  
TXSF6  
TXBF6  
Transmit buffer data flag  
0
1
If POWER6 = 0 or TXE6 = 0, or if data is transferred to transmit shift register 6 (TXS6)  
If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)  
TXSF6  
0
Transmit shift register data flag  
If POWER6 = 0 or TXE6 = 0, or if the next data is not transferred from transmit buffer register 6  
(TXB6) after completion of transfer  
1
If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)  
Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the value of  
the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The operation is not  
guaranteed if data is written to TXB6 while the TXBF6 flag is 1.  
2. While continuous transmission is being executed, check the value of the TXSF6 flag after the  
transmission completion interrupt to determine the subsequent write processing to TXB6.  
If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.  
If TXSF6 is 0: Continuous transmission is complete. Data of 2 bytes can be written. When  
doing so, observe Caution 1 above.  
3. While continuous transmission is in progress, check that TXSF6 is 0 after the transmission  
completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 = 0). If clearing is  
executed while the TXSF6 flag is 1, the transmit data cannot be guaranteed.  
268  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(4) Clock selection register 6 (CKSR6)  
This register selects the base clock of serial interface UART6.  
CKSR6 can be set by an 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6  
= 1).  
Figure 13-8. Format of Clock Selection Register 6 (CKSR6)  
Address: FF56H After reset: 00H R/W  
Symbol  
CKSR6  
7
0
6
0
5
0
4
0
3
2
1
0
TPS63  
TPS62  
TPS61  
TPS60  
TPS63  
TPS62  
TPS61  
TPS60  
Base clock (fXCLK)  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
fX (10 MHz)  
fX/2 (5 MHz)  
fX/22 (2.5 MHz)  
fX/23 (1.25 MHz)  
fX/24 (625 kHz)  
fX/25 (312.5 kHz)  
fX/26 (156.25 kHz)  
fX/27 (78.13 kHz)  
fX/28 (39.06 kHz)  
fX/29 (19.53 kHz)  
fX/210 (9.77 kHz)  
TM50 output (TO50)  
Setting prohibited  
Other  
Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.  
Remarks 1. Figures in parentheses are for operation with fX = 10 MHz  
2. fX: X1 input clock oscillation frequency  
269  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(5) Baud rate generator control register 6 (BRGC6)  
This register selects the base clock of serial interface UART6.  
BRGC6 can be set by an 8-bit memory manipulation instruction.  
RESET input sets this register to FFH.  
Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6  
= 1).  
Figure 13-9. Format of Baud Rate Generator Control Register 6 (BRGC6)  
Address: FF57H After reset: FFH R/W  
Symbol  
BRGC6  
7
6
5
4
3
2
1
0
MDL67 MDL66 MDL65 MDL64 MDL63 MDL62 MDL61 MDL60  
MDL67 MDL66 MDL65 MDL64 MDL63 MDL62 MDL61 MDL60  
k
Output clock selection of  
8-bit counter  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
×
0
0
0
×
0
0
1
×
0
1
0
×
8
Setting prohibited  
fXCLK/8  
9
fXCLK/9  
10  
fXCLK/10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 fXCLK/252  
253 fXCLK/253  
254 fXCLK/254  
255 fXCLK/255  
Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the  
MDL67 to MDL60 bits.  
2. The baud rate is the output clock of the 8-bit counter divided by 2.  
Remarks 1. fXCLK: Frequency of base clock (Clock) selected by the TPS63 to TPS60 bits of CKSR6 register  
2. k:  
3. ×:  
Value set by MDL67 to MDL60 bits (k = 8, 9, 10, ..., 255)  
Dont care  
270  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(6) Asynchronous serial interface control register 6 (ASICL6)  
This register controls the serial transfer operations of serial interface UART6.  
ASICL6 can be set by a 1-bit transfer instruction or an 8-bit memory manipulation instruction.  
RESET input sets this register to 16H.  
Remark ASICL6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 =  
1). However, transfer is started by refresh because bit 6 (SBRT6) and bit 5 (SBTT6) of ASICL6 are  
cleared to 0 when communication is complete (when an interrupt signal is generated).  
Figure 13-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (1/2)  
Address: FF58H After reset: 16H R/WNote  
Symbol  
ASICL6  
7
6
5
4
3
2
1
0
SBRF6  
SBRT6  
SBTT6  
SBL62  
SBL61  
SBL60  
DIR6  
TXDLV6  
SBRF6  
SBF reception status flag  
0
1
If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly  
SBF reception in progress  
SBRT6  
SBF reception trigger  
0
1
SBF reception trigger  
SBTT6  
SBF transmission trigger  
0
1
SBF transmission trigger  
Note Bit 7 is read-only.  
Cautions 1. In the case of an SBF reception error, return the mode to the SBF reception mode and hold  
the status of the SBRF6 flag.  
2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.  
3. The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF  
reception has been correctly completed.  
4. Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 =  
1.  
5. The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of  
SBF transmission.  
271  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-10. Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)  
SBL62  
SBL61  
SBL60  
SBF transmission output width control  
SBF is output with 13-bits length.  
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
SBF is output with 14-bits length.  
SBF is output with 15-bits length.  
SBF is output with 16-bits length.  
SBF is output with 17-bits length.  
SBF is output with 18-bits length.  
SBF is output with 19-bits length.  
SBF is output with 20-bits length.  
DIR6  
MSB/LSB-first transfer  
0
1
MSB-first transfer  
LSB-first transfer  
TXDLV6  
Enables/disables inverting TXD6 output  
0
1
Normal output of TXD6  
Inverted output of TXD6  
Caution Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.  
272  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.4 Operation of Serial Interface UART6  
This section explains the two modes of serial interface UART6.  
13.4.1 Operation stop mode  
In this mode, serial transfer cannot be executed; therefore, the power consumption can be reduced. In addition,  
the pins can be used as ordinary port pins in this mode.  
(1) Register setting  
The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6).  
ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of ASIM6  
= 1).  
Address: FF50H After reset: 01H R/W  
Symbol  
ASIM6  
7
6
5
4
3
2
1
0
POWER6  
TXE6  
RXE6  
PS61  
PS60  
CL  
SL6  
ISRM6  
POWER6  
0Note 1  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1Note 2  
Enables operation of the internal operation clock.  
TXE6  
Enables/disables transmission  
Disables transmission operation (synchronously resets the transmission circuit).  
Enables transmission  
0
1
RXE6  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception  
0
1
Notes 1. The output of the TXD6 pin goes high and the input from the RXD6 pin is fixed to the high level when  
POWER6 = 0.  
2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the  
POWER6 bit.  
Cautions 1. At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear  
POWER6 to 0.  
2. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear  
POWER6 to 0.  
273  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.4.2 Asynchronous serial interface (UART) mode  
In this mode, data of 1 byte is transmitted/received following a start bit, and a full-duplex operation can be  
performed.  
A dedicated UART baud rate generator is incorporated, so that communication can be executed at a wide range of  
baud rates.  
(1) Register setting  
The UART mode is set by asynchronous serial interface operation mode register 6 (ASIM6), asynchronous serial  
interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6  
(ASIF6), and asynchronous serial interface control register 6 (ASICL6).  
(a) Asynchronous serial interface operation mode register 6 (ASIM6)  
This 8-bit register controls the serial transfer operations of serial interface UART6.  
ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input sets this register to 01H.  
Remark ASIM6 can be refreshed (the same value is written) by software during a communication operation  
(when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5 (RXE6) of  
ASIM6 = 1).  
Address: FF50H After reset: 01H R/W  
Symbol  
ASIM6  
7
6
5
4
3
2
1
0
POWER6  
TXE6  
RXE6  
PS61  
PS60  
CL6  
SL6  
ISRM6  
POWER6  
0Note 1  
Enables/disables operation of internal operation clock  
Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously  
resets the internal circuit.  
1Note 2  
Enables operation of the internal operation clock.  
TXE6  
Enables/disables transmission  
Disables transmission (synchronously resets the transmission circuit).  
Enables transmission  
0
1
Notes 1. The output of the TXD6 pin goes high and the input from the RXD6 pin is fixed to the high level when  
POWER6 = 0.  
2. Operation of the internal operation clock is enabled at the second input clock after 1 is written to the  
POWER6 bit.  
Caution At startup, set POWER6 to 1 and then set TXE6 to 1. Clear TXE6 to 0 first, and then clear  
POWER6 to 0.  
274  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
RXE6  
Enables/disables reception  
Disables reception (synchronously resets the reception circuit).  
Enables reception  
0
1
PS61  
PS60  
Transmission operation  
Does not output parity bit.  
Reception operation  
Reception without parity  
0
0
1
1
0
1
0
1
Outputs 0 parity.  
Reception as 0 parityNote  
Judges as odd parity.  
Judges as even parity.  
Outputs odd parity.  
Outputs even parity.  
CL6  
0
Specifies character length of transmit/receive data  
Character length of data = 7 bits  
Character length of data = 8 bits  
1
SL6  
0
Specifies number of stop bits of transmit data  
Number of stop bits = 1  
Number of stop bits = 2  
1
ISRM6  
Enables/disables occurrence of reception completion interrupt in case of error  
INTSRE6occurs in case of error (at this time, INTSR6 does not occur).  
INTSR6occurs in case of error (at this time, INTSRE6 does not occur).  
0
1
Note If reception as 0 parityis selected, the parity is not judged. Therefore, bit 2 (PE6) of asynchronous serial  
interface reception error status register 6 (ASIS6) is not set and the error interrupt does not occur.  
Cautions 1. At startup, set POWER6 to 1 and then set RXE6 to 1. Clear RXE6 to 0 first, and then clear  
POWER6 to 0.  
2. Clear the TXE6 and RXE6 bits to 0 before rewriting the PS61, PS60, and CL6 bits.  
3. Fix the PS61 and PS60 bits to 0 when mounting the device on LIN.  
4. Make sure that TXE6 = 0 when rewriting the SL6 bit. Reception is always performed with “the  
number of stop bits = 1”, and therefore, is not affected by the set value of the SL6 bit.  
5. Make sure that RXE6 = 0 when rewriting the ISRM6 bit.  
275  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(b) Asynchronous serial interface reception error status register 6 (ASIS6)  
This register indicates an error status on completion of reception by serial interface UART6. It includes three  
error flag bits (PE6, FE6, OVE6).  
This register can be set by an 8-bit memory manipulation instruction and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 0. 00H is read when  
this register is read.  
Address: FF53H After reset: 00H R  
Symbol  
ASIS6  
7
0
6
0
5
0
4
0
3
0
2
1
0
PE6  
FE6  
OVE6  
PE6  
0
Status flag indicating parity error  
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
1
If the parity of transmit data does not match the parity bit on completion of reception  
FE6  
0
Status flag indicating framing error  
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
If the stop bit is not detected on completion of reception  
1
OVE6  
Status flag indicating overrun error  
0
1
If POWER6 = 0 and RXE6 = 0, or if ASIS6 register is read  
If receive data is set to the RXB register and the next reception operation is completed before the  
data is read.  
Cautions 1. The operation of the PE6 bit differs depending on the set values of the PS61 and PS60 bits of  
asynchronous serial interface operation mode register 6 (ASIM6).  
2. The first bit of the receive data is checked as the stop bit, regardless of the number of stop  
bits.  
3. If an overrun error occurs, the next receive data is not written to receive buffer register 6  
(RXB6) but discarded.  
4. If data is read from ASIS6, a wait cycle is generated. For details, refer to CHAPTER 27  
CAUTIONS FOR WAIT.  
276  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(c) Asynchronous serial interface transmission status register 6 (ASIF6)  
This register indicates the status of transmission by serial interface UART6. It includes two status flag bits  
(TXBF6 and TXSF6).  
Transmission can be continued without disruption even during an interrupt period, by writing the next data to  
the TXB6 register after data has been transferred from the TXB6 register to the TXS6 register.  
This register can be set by an 8-bit memory manipulation instruction, and is read-only.  
RESET input clears this register to 00H if bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 0.  
Address: FF55H After reset: 00H R  
Symbol  
ASIF6  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TXBF6  
TXSF6  
TXBF6  
Transmit buffer data flag  
0
1
If POWER6 = 0 or TXE6 = 0, or if data is transferred to transmit shift register 6 (TXS6)  
If data is written to transmit buffer register 6 (TXB6) (if data exists in TXB6)  
TXSF6  
0
Transmit shift register data flag  
If POWER6 = 0 or TXE6 = 0, or if the next data is not transferred from transmit buffer register 6  
(TXB6) after completion of transfer  
1
If data is transferred from transmit buffer register 6 (TXB6) (if data transmission is in progress)  
Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the value of  
the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The operation is not  
guaranteed if data is written to TXB6 while the TXBF6 flag is 1.  
2. While continuous transmission is being executed, check the value of the TXSF6 flag after the  
transmission completion interrupt to determine the subsequent write processing to TXB6.  
If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.  
If TXSF6 is 0: Continuous transmission is complete. Data of 2 bytes can be written. When  
doing so, observe Caution 1 above.  
3. While continuous transmission is in progress, check that TXSF6 is 0 after the transmission  
completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 = 0). If clearing is  
executed while the TXSF6 flag is 1, the transmit data cannot be guaranteed.  
277  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(d) Asynchronous serial interface control register 6 (ASICL6)  
This register controls the serial transfer operations of serial interface UART6.  
ASICL6 can be set by a 1-bit transfer instruction or an 8-bit memory manipulation instruction.  
RESET input sets this register to 16H.  
Remark ASICL6 can be refreshed (the same value is written) by software during a communication  
operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5  
(RXE6) of ASIM6 = 1). However, transfer is started by refresh because bit 6 (SBRT6) and bit 5  
(SBTT6) of ASICL6 are cleared to 0 when communication is complete (when an interrupt signal is  
generated).  
Address: FF58H After reset: 16H R/WNote  
Symbol  
ASICL6  
7
6
5
4
3
2
1
0
SBRF6  
SBRT6  
SBTT6  
SBL62  
SBL61  
SBL60  
DIR6  
TXDLV6  
SBRF6  
SBF reception status flag  
0
1
If POWER6 = 0 and RXE6 = 0 or if SBF reception has been completed correctly  
SBF reception in progress  
SBRT6  
SBF reception trigger  
0
1
SBF reception trigger  
SBTT6  
SBF transmission trigger  
0
1
SBF transmission trigger  
Note Bit 7 is read-only.  
Cautions 1. In the case of an SBF reception error, return the mode to the SBF reception mode and hold  
the status of the SBRF6 flag.  
2. Before setting the SBRT6 bit, make sure that bit 7 (POWER6) and bit 5 (RXE6) of ASIM6 = 1.  
3. The read value of the SBRT6 bit is always 0. SBRT6 is automatically cleared to 0 after SBF  
reception has been correctly completed.  
4. Before setting the SBTT6 bit to 1, make sure that bit 7 (POWER6) and bit 6 (TXE6) of ASIM6  
= 1.  
5. The read value of the SBTT6 bit is always 0. SBTT6 is automatically cleared to 0 at the end of  
SBF transmission.  
278  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
SBL62  
SBL61  
SBL60  
SBF transmission output width control  
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
SBF is output with 13-bit length.  
SBF is output with 14-bit length.  
SBF is output with 15-bit length.  
SBF is output with 16-bit length.  
SBF is output with 17-bit length.  
SBF is output with 18-bit length.  
SBF is output with 19-bit length.  
SBF is output with 20-bit length.  
DIR6  
MSB/LSB-first transfer  
0
1
MSB-first transfer  
LSB-first transfer  
TXDLV6  
Enables/disables inverting TXD6 output  
0
1
Normal output of TXD6  
Inverted output of TXD6  
Caution Before rewriting the DIR6 and TXDLV6 bits, clear the TXE6 and RXE6 bits to 0.  
279  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(2) Communication operation  
(a) Normal transmit/receive data format  
Figure 13-11 shows the format of the transmit/receive data.  
Figure 13-11. Format of Normal UART Transmit/Receive Data  
1. LSB-first transmission/reception  
1 data frame  
Start  
bit  
Parity  
bit  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop bit  
Character bits  
2. MSB-first transmission/reception  
1 data frame  
Start  
bit  
Parity  
bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Stop bit  
Character bits  
One data frame consists of the following bits.  
Start bit ... 1 bit  
Character bits ... 7 or 8 bits  
Parity bit ... Even parity, odd parity, 0 parity, or no parity  
Stop bit ... 1 or 2 bits  
The character bit length, parity, and stop bit length in one data frame are specified by asynchronous serial  
interface mode register 6 (ASIM6).  
Whether data is transferred with the LSB or MSB first is specified by bit 1 (DIR6) of asynchronous serial  
interface control register 6 (ASICL6).  
Whether the TXD6 pin outputs normal or inverted data is specified by bit 0 (TXDLV6) of ASICL6.  
280  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-12. Example of Normal UART Transmit/Receive Data Format  
1. Data length: 8 bits, LSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Parity  
Stop  
2. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H  
1 data frame  
Start  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Parity  
Stop  
3. Data length: 8 bits, MSB first, Parity: Even parity, Stop bit: 1 bit, Transfer data: 55H, TXD6 pin inverted  
output  
1 data frame  
Start  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Parity  
Stop  
4. Data length: 7 bits, LSB first, Parity: Odd parity, Stop bit: 2 bits, Transfer data: 36H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
Parity  
Stop  
Stop  
5. Data length: 8 bits, LSB first, Parity: None, Stop bit: 1 bit, Transfer data: 87H  
1 data frame  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Stop  
281  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(b) Parity types and operation  
The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used  
on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error  
can be detected. With zero parity and no parity, an error cannot be detected.  
Caution Fix the PS61 and PS60 bits to 0 when the device is incorporated in LIN.  
(i) Even parity  
Transmission  
Transmit data, including the parity bit, is controlled so that the number of bits that are 1is even.  
The value of the parity bit is as follows.  
If transmit data has an odd number of bits that are 1: 1  
If transmit data has an even number of bits that are 1: 0  
Reception  
The number of bits that are 1in the receive data, including the parity bit, is counted. If it is odd, a  
parity error occurs.  
(ii) Odd parity  
Transmission  
Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that  
are 1is odd.  
If transmit data has an odd number of bits that are 1: 0  
If transmit data has an even number of bits that are 1: 1  
Reception  
The number of bits that are 1in the receive data, including the parity bit, is counted. If it is even, a  
parity error occurs.  
(iii) 0 parity  
The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.  
The parity bit is not detected when the data is received. Therefore, a parity error does not occur  
regardless of whether the parity bit is 0or 1.  
(iv) No parity  
No parity bit is appended to the transmit data.  
Reception is performed assuming that there is no parity bit when data is received. Because there is no  
parity bit, a parity error does not occur.  
282  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(c) Normal transmission  
The TXD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface operation mode  
register 6 (ASIM6) is set to 1. If bit 6 (TXE6) of ASIM6 is then set to 1, transmission is enabled.  
Transmission can be started by writing transmit data to transmit buffer register 6 (TXB6). The start bit, parity  
bit, and stop bit are automatically appended to the data.  
When transmission is started, the data in TXB6 is transferred to transmit shift register 6 (TXS6). After that,  
the data is sequentially output from TXS6 to the TXD6 pin, starting from the LSB. When transmission is  
completed, a transmission completion interrupt request (INTST6) is generated.  
Transmission is stopped until the data to be transmitted next is written to TXB6.  
Figure 13-13 shows the timing of the transmission completion interrupt request (INTST6). This interrupt  
occurs as soon as the last stop bit has been output.  
Figure 13-13. Normal Transmission Completion Interrupt Request Timing  
1. Stop bit length: 1  
T
XD6 (output)  
START  
D0  
D1  
D2  
D6  
D7  
Parity  
STOP  
INTST6  
2. Stop bit length: 2  
Parity  
STOP  
T
XD6 (output)  
START  
D0  
D1  
D2  
D6  
D7  
INTST6  
283  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(d) Continuous transmission  
When transmit shift register 6 (TXS6) has started the shift operation, the next transmit data can be written to  
transmit buffer register 6 (TXB6). As a result, data can be transmitted without intermission even while an  
interrupt that has occurred after transmission of one data frame is being serviced, thus realizing an efficient  
communication rate. To transmit data continuously, however, transmission processing must be executed  
while referencing bits 1 (TXBF6) and 0 (TXSF6) of asynchronous serial interface transmission status register  
6 (ASIF6).  
Caution When the device is incorporated in LIN, the continuous transmission function cannot be  
used. Make sure that asynchronous serial interface transmission status register 6 (ASIF6)  
is 00H before writing transmit data to transmit buffer register 6 (TXB6).  
Table 13-2. Write Processing and Writing to TXB6 During Execution of Continuous Transmission  
TXBF6  
TXSF6  
Write Processing During Execution of  
Continuous Transmission  
Writing to TXB6 During Execution of  
Continuous Transmission  
0
0
Enables writing 2 bytes or  
Enables writing  
transmission completion processing  
0
1
1
0
Enables writing 1 byte  
Enables writing  
Disables writing  
Enables writing 2 bytes or  
transmission completion processing  
1
1
Enables writing 1 byte  
Disables writing  
Cautions 1. To continuously transmit data, write the data of the first byte to TXB6, check that the  
value of the TXBF6 flag is 0, and then write the data of the second byte to TXB6. The  
operation is not guaranteed if data is written to TXB6 while the TXBF6 flag is 1.  
2. While continuous transmission is being executed, check the value of the TXSF6 flag  
after the transmission completion interrupt to determine the subsequent write  
processing to TXB6.  
If TXSF6 is 1: Continuous transmission is in progress. Data of 1 byte can be written.  
If TXSF6 is 0: Continuous transmission is completed. Data of 2 bytes can be written.  
To do so, observe Caution 1 above.  
3. While continuous transmission is in progress, check that TXSF6 is 0 after the  
transmission completion interrupt, and then execute clearing (POWER6 = 0 or TXE6 =  
0). If clearing is executed while the TXSF6 flag is 1, the transmit data cannot be  
guaranteed.  
284  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-14 shows the processing flow of continuous transmission.  
Figure 13-14. Processing Flow of Continuous Transmission  
Set registers.  
Write transmit data to  
TXB6 register.  
Read ASIF6  
No  
register.  
TXBF6 = 0?  
Yes  
Interrupt occurs.  
Transfer executed  
necessary number  
of times?  
Yes  
No  
Read ASIF6  
register.  
TXSF6 = 1?  
Read ASIF6  
register.  
TXSF6 = 0?  
No  
No  
Yes  
Yes  
Write transmit data to  
TXB6 register.  
Completion of  
transmission processing  
Wait for interrupt.  
Remark TXB6: Transmit buffer register 6  
ASIF6: Asynchronous serial interface transmission status register 6  
TXBF6: Bit 1 of ASIF6 (transmit buffer data flag)  
TXSF6: Bit 0 of ASIF6 (transmit shift register data flag)  
285  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-15 shows the timing of starting continuous transmission, and Figure 13-16 shows the timing of  
ending continuous transmission.  
Figure 13-15. Timing of Starting Continuous Transmission  
Start  
Start  
Start  
T
XD6  
Data (1)  
Parity Stop  
Data (2)  
Parity  
Stop  
INTST6  
TXB6  
FF  
FF  
Data (1)  
Data (2)  
Data (3)  
TXS6  
Data (1)  
Data (2)  
Data (3)  
TXBF6  
TXSF6  
Note  
Note When ASIF6 is read, there is a period in which TXBF6 and TXSF6 = 1, 1. Therefore, judge whether  
writing is enabled using only the TXBF6 bit.  
Remark TXD6:  
TXD6 pin (output)  
INTST6: Interrupt request signal  
TXB6:  
TXS6:  
Transmit buffer register 6  
Transmit shift register 6  
ASIF6: Asynchronous serial interface transmission status register 6  
TXBF6: Bit 1 of ASIF6  
TXSF6: Bit 0 of ASIF6  
286  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-16. Timing of Ending Continuous Transmission  
Start  
Start  
TXD6  
Data (n)  
Parity  
Stop  
Data (n1)  
Parity  
Stop  
Stop  
INTST6  
TXB6  
TXS6  
Data (n1)  
Data (n)  
FF  
Data (n1)  
Data (n)  
TXBF6  
TXSF6  
POWER6 or TXE6  
Remark TXD6:  
INTST6:  
TXD6 pin (output)  
Interrupt request signal  
Transmit buffer register 6  
Transmit shift register 6  
TXB6:  
TXS6:  
ASIF6:  
TXBF6:  
TXSF6:  
Asynchronous serial interface transmission status register 6  
Bit 1 of ASIF6  
Bit 0 of ASIF6  
POWER6: Bit 7 of asynchronous serial interface operation mode register (ASIM6)  
TXE6:  
Bit 6 of asynchronous serial interface operation mode register (ASIM6)  
287  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(e) Normal reception  
Reception is enabled and the RXD6 pin input is sampled when bit 7 (POWER6) of asynchronous serial  
interface operation mode register 6 (ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1.  
The 8-bit counter of the baud rate generator starts counting when the falling edge of the RXD6 pin input is  
detected. When the set value of baud rate generator control register 6 (BRGC6) has been counted, the  
RXD6 pin input is sampled again ( in Figure 13-17). If the RXD6 pin is low level at this time, it is recognized  
as a start bit.  
When the start bit is detected, reception is started, and serial data is sequentially stored in the receive shift  
register (RXS6) at the set baud rate. When the stop bit has been received, the reception completion interrupt  
(INTSR6) is generated and the data of RXS6 is written to receive buffer register 6 (RXB6). If an overrun  
error (OVE6) occurs, however, the receive data is not written to RXB6.  
Even if a parity error (PE6) or a framing error (FE6) occurs while reception is in progress, reception continues  
to the reception position of the stop bit, and an error interrupt (INTSR6/INTSRE6) is generated on completion  
of reception.  
Figure 13-17. Reception Completion Interrupt Request Timing  
Start  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Parity  
Stop  
RX  
D6 (input)  
INTSR6  
RXB6  
Cautions 1. Be sure to read receive buffer register 6 (RXB6) even if a reception error occurs.  
Otherwise, an overrun error will occur when the next data is received, and the reception  
error status will persist.  
2. Reception is always performed with the number of stop bits = 1. The second stop bit  
is ignored.  
3. Be sure to read asynchronous serial interface reception error status register 6 (ASIS6)  
before reading RXB6.  
288  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(f) Reception error  
Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error  
flag of asynchronous serial interface reception error status register 6 (ASIS6) is set as a result of data  
reception, a reception error interrupt request (INTSR6/INTSRE6) is generated.  
Which error has occurred during reception can be identified by reading the contents of ASIS6 in the reception  
error interrupt servicing (INTSR6/INTSRE6) (refer to Table 13-3).  
The contents of ASIS6 are reset to 0 when ASIS6 is read.  
Table 13-3. Cause of Reception Error  
Reception Error  
Parity error  
Cause  
Value of ASIS6  
The parity specified for transmission does not match the parity of the 04H  
receive data.  
Framing error  
Overrun error  
Stop bit is not detected.  
02H  
01H  
Reception of the next data is completed before data is read from  
receive buffer register 6 (RXB6).  
The error interrupt can be separated into INTSR6 and INTSRE6 by clearing bit 0 (ISRM6) of asynchronous  
serial interface operation mode register 6 (ASIM6) to 0.  
Figure 13-18. Reception Error Interrupt  
1. If ISRM6 is cleared to 0 (INTSR6 and INTSRE6 are separated)  
(a) No error during reception  
(b) Error during reception  
INTSR6  
INTSR6  
INTSRE6  
INTSRE6  
2. If ISRM6 is set to 1 (error interrupt is included in INTSR6)  
(a) No error during reception  
(b) Error during reception  
INTSR6  
INTSR6  
INTSRE6  
INTSRE6  
289  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(g) Noise filter of receive data  
The RXD6 signal is sampled with the base clock output by the prescaler block.  
If two sampled values are the same, the output of the match detector changes, and the data is sampled as  
input data.  
Because the circuit is configured as shown in Figure 13-19, the internal processing of the reception operation  
is delayed by two clocks from the external signal status.  
Figure 13-19. Noise Filter Circuit  
Base clock  
Internal signal A  
R
XD6/P14  
Internal signal B  
In  
Q
In  
Q
LD_EN  
Match detector  
(h) SBF transmission  
When the device is incorporated in LIN, the SBF (Synchronous Break Field) transmission control function is  
used for transmission. For the transmission operation of LIN, refer to Figure 13-1 LIN Transmission  
Operation.  
The TXD6 pin outputs a high level when bit 7 (POWER6) of asynchronous serial interface operation mode  
register 6 (ASIM6) is set to 1. Transmission is enabled when bit 6 (TXE6) of ASIM6 is set to 1 next time, and  
SBF transmission operation is started when bit 5 (SBTT6) of asynchronous serial interface control register 6  
(ASICL6) is set to 1.  
After transmission has been started, the low levels of bits 13 to 20 (set by bits 4 to 2 (SBL62 to SBL60) of  
ASICL6) are output. When SBF transmission has been completed, a transmission completion interrupt  
request (INTST6) is generated, and SBTT6 is automatically cleared. After SBF transmission has been  
completed, the normal transmission mode is restored.  
Transmission is stopped until the data to be transmitted next is written to transmit buffer register 6 (TXB6) or  
SBTT6 is set to 1.  
Figure 13-20. SBF Transmission  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13 Stop  
TXD6  
INTST6  
SBTT6  
Remark TXD6:  
TXD6 pin (output)  
INTST6: Transmission completion interrupt request  
SBTT6: Bit 5 of asynchronous serial interface control register 6 (ASICL6)  
290  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(i) SBF reception  
When the device is incorporated in LIN, the SBF (Synchronous Break Field) reception control function is  
used for reception. For the reception operation of LIN, refer to Figure 13-2 LIN Reception Operation.  
Reception is enabled when bit 7 (POWER6) of asynchronous serial interface operation mode register 6  
(ASIM6) is set to 1 and then bit 5 (RXE6) of ASIM6 is set to 1. SBF reception is enabled when bit 6 (SBRT6)  
of asynchronous serial interface control register 6 (ASICL6) is set to 1. In the SBF reception enabled status,  
the RXD6 pin is sampled and the start bit is detected in the same manner as the normal reception enable  
status.  
When the start bit has been detected, reception is started, and serial data is sequentially stored in the  
receive shift register 6 (RXS6) at the set baud rate. When the stop bit is received and if the width of SBF is  
11 bits or more, a reception completion interrupt request (INTSR6) is generated as normal processing. At  
this time, the SBRF6 and SBRT6 bits are automatically cleared, and SBF reception ends. Detection of  
errors, such as OVE6, PE6, and FE6 (bits 0 to 2 of asynchronous serial interface reception error status  
register 6 (ASIS6)) is suppressed, and error detection processing of UART communication is not performed.  
In addition, data transfer between receive shift register 6 (RXS6) and receive buffer register 6 (RXB6) is not  
performed, and the reset value of FFH is retained. If the width of SBF is 10 bits or less, an interrupt does not  
occur as error processing after the stop bit has been received, and the SBF reception mode is restored. In  
this case, the SBRF6 and SBRT6 bits are not cleared.  
Figure 13-21. SBF Reception  
1. Normal SBF reception (stop bit is detected with a width of more than 10.5 bits)  
1
2
3
4
5
6
7
8
9
10  
11  
RXD6  
SBRT6  
/SBRF6  
INTSR6  
2. SBF reception error (stop bit is detected with a width of 10.5 bits or less)  
1
2
3
4
5
6
7
8
9
10  
RXD6  
SBRT6  
/SBRF6  
INTSR6  
0”  
Remark RXD6:  
RXD6 pin (input)  
SBRT6: Bit 6 of asynchronous serial interface control register 6 (ASICL6)  
SBRF6: Bit 7 of ASICL6  
INTSR6: Reception completion interrupt request  
291  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
13.4.3 Dedicated baud rate generator  
The dedicated baud rate generator consists of a source clock selector and an 8-bit programmable counter, and  
generates a serial clock for transmission/reception of UART6.  
Separate 8-bit counters are provided for transmission and reception.  
(1) Configuration of baud rate generator  
Base clock (Clock)  
The clock selected by bits 3 to 0 (TPS63 to TPS60) of clock selection register 6 (CKSR6) is supplied to  
each module when bit 7 (POWER6) of asynchronous serial interface operation mode register 6 (ASIM6) is  
1. This clock is called the base clock (Clock) and its frequency is called fXCLK. Clock is fixed to the low level  
when POWER6 = 0.  
Transmission counter  
This counter stops, cleared to 0, when bit 7 (POWER6) or bit 6 (TXE6) of asynchronous serial interface  
operation mode register 6 (ASIM6) is 0.  
It starts counting when POWER6 = 1 and TXE6 = 1.  
The counter is cleared to 0 when the first data transmitted is written to transmit buffer register 6 (TXB6).  
If data are continuously transmitted, the counter is cleared to 0 again when one frame of data has been  
completely transmitted. If there is no data to be transmitted next, the counter is not cleared to 0 and continues  
counting until POWER6 or TXE6 is cleared to 0.  
Reception counter  
This counter stops operation, cleared to 0, when bit 7 (POWER6) or bit 5 (RXE6) of asynchronous serial  
interface operation mode register 6 (ASIM6) is 0.  
It starts counting when the start bit has been detected.  
The counter stops operation after one frame has been received, until the next start bit is detected.  
292  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Figure 13-22. Configuration of Baud Rate Generator  
POWER6  
f
X
f
X
/2  
f
f
f
f
f
f
f
f
X
X
X
X
X
X
X
X
/22  
POWER6, TXE6 (or RXE6)  
Clock  
/23  
/24  
/25  
/26  
/27  
/28  
/29  
Selector  
8-bit counter  
(fXCLK  
)
fX  
/210  
Match detector  
Baud rate  
1/2  
TO50/TI50/P17  
(TM50 output)  
CKSR6: TPS63 to TPS60  
BRGC6: MDL67 to MDL60  
Remark POWER6: Bit 7 of asynchronous serial interface operation mode register 6 (ASIM6)  
TXE6:  
Bit 6 of ASIM6  
RXE6:  
Bit 5 of ASIM6  
CKSR6:  
BRGC6:  
Clock selection register 6  
Baud rate generator control register 6  
293  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(2) Generation of serial clock  
A serial clock can be generated by using clock selection register 6 (CKSR6) and baud rate generator control  
register 6 (BRGC6).  
Select the clock to be input to the 8-bit counter by using bits 3 to 0 (TPS63 to TPS60) of CKSR6.  
Bits 7 to 0 (MDL67 to MDL60) of BRGC6 can be used to select the division value of the 8-bit counter.  
(a) Clock selection register 6 (CKSR6)  
This register selects the base clock of serial interface UART6.  
CKSR6 can be set by an 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Remark CKSR6 can be refreshed (the same value is written) by software during a communication  
operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5  
(RXE6) of ASIM6 = 1).  
Address: FF56H After reset: 00H R/W  
Symbol  
CKSR6  
7
0
6
0
5
0
4
0
3
2
1
0
TPS63  
TPS62  
TPS61  
TPS60  
TPS63  
TPS62  
TPS61  
TPS60  
Base clock (fXCLK)  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
fX (10 MHz)  
fX/2 (5 MHz)  
fX/22 (2.5 MHz)  
fX/23 (1.25 MHz)  
fX/24 (625 kHz)  
fX/25 (312.5 kHz)  
fX/26 (156.25 kHz)  
fX/27 (78.13 kHz)  
fX/28 (39.06 kHz)  
fX/29 (19.53 kHz)  
fX/210 (9.77 kHz)  
TM50 output  
Other  
Setting prohibited  
Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.  
Remarks 1. Figures in parentheses are for operation with fX = 10 MHz  
2. fX: X1 input clock oscillation frequency  
294  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(b) Baud rate generator control register 6 (BRGC6)  
This register selects the base clock of serial interface UART6.  
BRGC6 can be set by an 8-bit memory manipulation instruction.  
RESET input sets this register to FFH.  
Remark BRGC6 can be refreshed (the same value is written) by software during a communication  
operation (when bit 7 (POWER6) and bit 6 (TXE6) of ASIM6 = 1 or bit 7 (POWER6) and bit 5  
(RXE6) of ASIM6 = 1).  
Address: FF57H After reset: FFH R/W  
Symbol  
BRGC6  
7
6
5
4
3
2
1
0
MDL67 MDL66 MDL65 MDL64 MDL63 MDL62 MDL61 MDL60  
MDL67 MDL66 MDL65 MDL64 MDL63 MDL62 MDL61 MDL60  
k
Output clock selection of  
8-bit counter  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
×
0
0
0
×
0
0
1
×
0
1
0
×
8
Setting prohibited  
fXCLK/8  
9
fXCLK/9  
10  
fXCLK/10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
252 fXCLK/252  
253 fXCLK/253  
254 fXCLK/254  
255 fXCLK/255  
Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the  
MDL67 to MDL60 bits.  
2. The baud rate is the output clock of the 8-bit counter divided by 2.  
Remarks 1. fXCLK: Frequency of base clock (Clock) selected by the TPS63 to TPS60 bits of CKSR6 register  
2. k: Value set by MDL67 to MDL60 bits (k = 8, 9, 10, ..., 255)  
3. ×: Dont care  
295  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(c) Baud rate  
The baud rate can be calculated by the following expression.  
fXCLK  
Baud rate =  
[bps]  
2 × k  
fXCLK: Frequency of base clock (Clock) selected by TPS63 to TPS60 bits of CKSR6 register  
k: Value set by MDL67 to MDL60 bits of BRGC6 register (k = 8, 9, 10, ..., 255)  
(d) Error of baud rate  
The baud rate error can be calculated by the following expression.  
Actual baud rate (baud rate with error)  
Error (%) =  
1 × 100 [%]  
Desired baud rate (correct baud rate)  
Cautions 1. Keep the baud rate error during transmission to within the permissible error range at  
the reception destination.  
2. Make sure that the baud rate error during reception satisfies the range shown in (4)  
Permissible baud rate range during reception.  
Example: Frequency of base clock (Clock) = 20 MHz = 20,000,000 Hz  
Set value of MDL67 to MDL60 bits of BRGC6 register = 01000001B (k = 65)  
Target baud rate = 153,600 bps  
Baud rate = 20 M/(2 × 65)  
= 20,000,000/(2 × 65) = 153,846 [bps]  
Error = (153,846/153,600 1) × 100  
= 0.160 [%]  
296  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(3) Example of setting baud rate  
Table 13-4. Set Data of Baud Rate Generator  
Baud Rate  
[bps]  
fX = 10.0 MHz  
fX = 8.38 MHz  
fX = 4.19 MHz  
TPS63 to  
TPS60  
k
Calculated ERR[%] TPS63 to  
k
Calculated ERR[%] TPS63 to  
k
Calculated ERR[%]  
value  
TPS60  
value  
TPS60  
value  
600  
1200  
6H  
5H  
4H  
3H  
2H  
2H  
1H  
1H  
0H  
0H  
0H  
0H  
0H  
130  
130  
130  
130  
130  
120  
130  
80  
601  
1202  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
0.00  
0.16  
0.16  
0.94  
1.36  
1.36  
6H  
109  
109  
109  
109  
109  
101  
109  
134  
109  
55  
601  
0.11  
0.11  
0.11  
0.11  
0.11  
0.28  
0.11  
0.06  
0.11  
0.80  
1.03  
1.03  
1.03  
5H  
109  
109  
109  
109  
109  
101  
109  
67  
601  
0.11  
0.11  
0.11  
0.11  
0.11  
0.28  
0.11  
0.06  
0.80  
1.03  
1.03  
2.58  
1.03  
5H  
1201  
4H  
1201  
2400  
2404  
4H  
2403  
3H  
2403  
4800  
4808  
3H  
4805  
2H  
4805  
9600  
9615  
2H  
9610  
1H  
9610  
10400  
19200  
31250  
38400  
76800  
115200  
153600  
230400  
10417  
19231  
31250  
38462  
76923  
116279  
151515  
227272  
2H  
10371  
19200  
31268  
38440  
76182  
116388  
155185  
232777  
1H  
10475  
19220  
31268  
38090  
77593  
116389  
149643  
232778  
1H  
0H  
0H  
0H  
130  
65  
0H  
0H  
55  
0H  
0H  
27  
43  
0H  
36  
0H  
18  
33  
0H  
27  
0H  
14  
22  
0H  
18  
0H  
9
Caution The maximum permissible frequency (fXCLK) of the base clock is 25 MHz.  
Remark TPS63 to TPS60: Bits 3 to 0 of clock selection register 6 (CKSR6) (setting of base clock (fXCLK))  
k:  
Value set by MDL67 to MDL60 bits of baud rate generator control register 6  
(BRGC6) (k = 8, 9, 10, ..., 255)  
fX:  
X1 input clock oscillation frequency  
ERR:  
Baud rate error  
297  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(4) Permissible baud rate range during reception  
The permissible error from the baud rate at the transmission destination during reception is shown below.  
Caution Make sure that the baud rate error during reception is within the permissible error range, by  
using the calculation expression shown below.  
Figure 13-23. Permissible Baud Rate Range During Reception  
Latch timing  
Transfer rate  
Start bit  
Start bit  
Start bit  
Bit 0  
FL  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
of UART6  
1 data frame (11 × FL)  
Minimum permissible  
transfer rate  
Bit 0  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
FLmin  
Maximum permissible  
transfer rate  
Bit 0  
Bit 1  
Bit 7  
Parity bit  
Stop bit  
FLmax  
As shown in Figure 13-23, the latch timing of the receive data is determined by the counter set by baud rate  
generator control register 6 (BRGC6) after the start bit has been detected. If the last data (stop bit) meets this  
latch timing, the data can be correctly received.  
Assuming that 11-bit data is received, the theoretical values can be calculated as follows.  
1
FL = (Brate)−  
Brate: Baud rate of UART6  
k:  
Set value of BRGC6  
1-bit data length  
FL:  
Margin of latch timing: 2 clocks  
21k + 2  
2k  
k 2  
2k  
Minimum permissible transfer rate: FLmin = 11 × FL −  
× FL =  
FL  
298  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
Therefore, the maximum receivable baud rate at the transmission destination is as follows.  
22k  
1
BRmax = (Flmin/11)−  
=
Brate  
21k + 2  
Similarly, the maximum permissible transfer rate can be calculated as follows.  
10  
11  
k + 2  
21k 2  
2 × k  
× FLmax = 11 × FL −  
× FL =  
FL  
2 × k  
21k × 2  
FLmax =  
FL × 11  
20k  
Therefore, the minimum receivable baud rate at the transmission destination is as follows.  
20k  
1
BRmin = (FLmax/11)−  
=
Brate  
21k 2  
The permissible baud rate error between UART6 and the transmission destination can be calculated from the  
above minimum and maximum baud rate expressions, as follows.  
Table 13-5. Maximum/Minimum Permissible Baud Rate Error  
Division Ratio (k)  
Maximum Permissible Baud Rate Error  
Minimum Permissible Baud Rate Error  
8
+3.53%  
+4.26%  
+4.56%  
+4.66%  
+4.72%  
3.61%  
4.31%  
4.58%  
4.67%  
4.73%  
20  
50  
100  
255  
Remarks 1. The accuracy of reception depends on the number of bits in one frame, input clock frequency,  
and division ratio (k). The higher the input clock frequency and the higher the division ratio (k),  
the higher the accuracy.  
2. k: Set value of BRGC6  
299  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 13 SERIAL INTERFACE UART6  
(5) Transfer rate during continuous transmission  
When data is continuously transmitted, the transfer rate from a stop bit to the next start bit is extended by two  
clocks from the normal value. However, the result of transfer is not affected because the timing is initialized on  
the reception side when the start bit is detected.  
Figure 13-24. Transfer Rate During Continuous Transmission  
Start bit of  
1 data frame  
second byte  
Bit 0  
FL  
Bit 1  
FL  
Bit 7  
FL  
Bit 0  
FL  
Start bit  
FL  
Start bit  
FL  
Parity bit  
FL  
Stop bit  
FLstp  
Where the 1-bit data length is FL, the stop bit length is FLstp, and base clock frequency is fXCLK, the following  
expression is satisfied.  
FLstp = FL + 2/fXCLK  
Therefore, the transfer rate during continuous transmission is:  
Transfer rate = 11 × FL + 2/fXCLK  
300  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
14.1 Functions of Serial Interface CSI10  
Serial interface CSI10 has the following two modes.  
Operation stop mode  
3-wire serial I/O mode  
(1) Operation stop mode  
This mode is used when serial transfer is not performed and can enable a reduction in the power consumption.  
(2) 3-wire serial I/O mode (MSB/LSB-first selectable)  
This mode is used to transfer 8-bit data using three lines: a serial clock line (SCK10) and two serial data lines  
(SI10 and SO10).  
The processing time of data transfer can be shortened in the 3-wire serial I/O mode because transmission and  
reception can be simultaneously executed.  
In addition, whether 8-bit data is transferred with the MSB or LSB first can be specified, so this interface can be  
connected to any device.  
The 3-wire serial I/O mode is useful for connecting peripheral ICs and display controllers with a clocked serial  
interface.  
14.2 Configuration of Serial Interface CSI10  
Serial interface CSI10 consists of the following hardware.  
Table 14-1. Configuration of Serial Interface CSI10  
Item  
Configuration  
Registers  
Transmit buffer register 10 (SOTB10)  
Serial I/O shift register 10 (SIO10)  
Control registers  
Serial operation mode register 10 (CSIM10)  
Serial clock selection register 10 (CSIC10)  
301  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
Figure 14-1. Block Diagram of Serial Interface CSI10  
Internal bus  
8
8
Serial I/O shift  
register 10 (SIO10)  
Transmit buffer  
register 10 (SOTB10)  
Output  
selector  
SI10/P11/R D0  
X
SO10/P12  
Transmit data  
controller  
Output latch  
Transmit controller  
f
X
/2 to f  
X
/27  
D0  
Clock start/stop controller &  
clock phase controller  
Selector  
INTCSI10  
SCK10/P10/T  
X
(1) Transmit buffer register 10 (SOTB10)  
This register sets the transmit data.  
Transmission/reception is started by writing data to SOTB10 when bit 6 (TRMD10) of serial operation mode  
register 10 (CSIM10) is 1.  
The data written to SOTB10 is converted from parallel data into serial data by serial I/O shift register 10, and  
output to the serial output pin (SO10).  
SOTB10 can be written or read by an 8-bit memory manipulation instruction.  
RESET input makes this register undefined.  
Caution Do not access SOTB10 when CSOT10 = 1 (during serial communication).  
(2) Serial I/O shift register 10 (SIO10)  
This is an 8-bit register that converts data from parallel data into serial data and vice versa.  
This register can be read by an 8-bit memory manipulation instruction.  
Reception is started by reading data from SIO10 if bit 6 (TRMD10) of serial operation mode register 10 (CSIM10)  
is 0.  
During reception, the data is read from the serial input pin (SI10) to SIO10.  
RESET input clears this register to 00H.  
Caution Do not access SIO10 when CSOT10 = 1 (during serial communication).  
302  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
14.3 Registers Controlling Serial Interface CSI10  
Serial interface CSI10 is controlled by the following two registers.  
Serial operation mode register 10 (CSIM10)  
Serial clock selection register 10 (CSIC10)  
(1) Serial operation mode register 10 (CSIM10)  
CSIM10 is used to select the operation mode and enable or disable operation.  
CSIM10 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 14-2. Format of Serial Operation Mode Register 10 (CSIM10)  
Address: FF80H After reset: 00H R/WNote 1  
Symbol  
CSIM10  
7
6
5
0
4
3
0
2
0
1
0
0
CSIE10  
TRMD10  
DIR10  
CSOT10  
CSIE10  
0
Operation control in 3-wire serial I/O mode  
Stops operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins can be used as general-  
purpose port pins).  
1
Enables operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins are at active level).  
TRMD10Note 2  
Transmit/receive mode control  
Receive mode (transmission disabled).  
Transmit/receive mode  
0Note 3  
1
DIR10Note 4  
First bit specification  
0
1
MSB  
LSB  
CSOT10Note 5  
Operation mode flag  
Communication is stopped.  
0
1
Communication is in progress.  
Notes 1. Bit 0 is read-only.  
2. Do not rewrite TRMD10 when CSOT10 = 1 (during serial communication).  
3. The SO10 pin is fixed to the low level when TRMD10 is 0. Reception is started when data is read from  
SIO10.  
4. Do not rewrite DIR10 when CSOT10 = 1 (during serial communication).  
5. CSOT10 is cleared if CSIE10 is set to 0 (operation stopped).  
Caution Be sure to set bit 5 to 0.  
303  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(2) Serial clock selection register 10 (CSIC10)  
CSIC10 is used to select the phase of the data clock and set the count clock.  
CSIC10 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 14-3. Format of Serial Clock Selection Register 10 (CSIC10)  
Address: FF81H After reset: 00H R/W  
Symbol  
CSIC10  
7
0
6
0
5
0
4
3
2
1
0
CKP10  
DAP10  
CKS102  
CKS101  
CKS100  
CKP10  
0
DAP10  
0
Data clock phase selection  
Type  
1
SCK10  
SO10  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
SI10 input timing  
0
1
1
1
0
1
2
3
4
SCK10  
SO10  
SI10 input timing  
SCK10  
SO10  
SI10 input timing  
SCK10  
SO10  
D7 D6 D5 D4 D3 D2 D1 D0  
SI10 input timing  
CKS102  
CKS101  
CKS100  
CSI10 count clock selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fX/2 (5 MHz)  
fX/22 (2.5 MHz)  
fX/23 (1.25 MHz)  
fX/24 (625 kHz)  
fX/25 (312.5 kHz)  
fX/26 (156.25 kHz)  
fX/27 (78.13 kHz)  
External clock input to SCK10  
Cautions 1. Do not write CSIC10 during a communication operation or when using P10/SCK10/TXD0,  
P11/SI10/RXD0, and P12/SO10 as general-purpose port pins.  
2. The phase type of the data clock is type 1 after reset.  
Remarks 1. Figures in parentheses are for operation with fX = 10 MHz  
2. fX: X1 input clock oscillation frequency  
304  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
14.4 Operation of Serial Interface CSI10  
Serial interface CSI10 can be used in the following two modes.  
Operation stop mode  
3-wire serial I/O mode  
14.4.1 Operation stop mode  
Serial transfer is not executed in this mode. Therefore, the power consumption can be reduced. In addition, the  
P10/SCK10/TXD0, P11/SI10/RXD0, and P12/SO10 pins can be used as ordinary I/O port pins in this mode.  
(1) Register setting  
The operation stop mode is set by serial operation mode register 10 (CSIM10).  
(a) Serial operation mode register 10 (CSIM10)  
CSIM10 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears CSIM10 to 00H.  
Address: FF80H After reset: 00H R/W  
Symbol  
CSIM10  
7
6
5
0
4
3
0
2
0
1
0
0
CSIE10  
TRMD10  
DIR10  
CSOT10  
CSIE10  
0
Operation control in 3-wire serial I/O mode  
Stops operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins can be used as general-  
purpose port pins).  
1
Enables operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins are at active level).  
305  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
14.4.2 3-wire serial I/O mode  
The 3-wire serial I/O mode is useful for connecting peripheral ICs and display controllers that have a clocked serial  
interface.  
In this mode, communication is executed by using three lines: the serial clock (SCK10), serial output (SO10), and  
serial input (SI10) lines.  
(1) Register setting  
The 3-wire serial I/O mode is set by serial operation mode register 10 (CSIM10) and serial clock selection register  
10 (CSIC10).  
(a) Serial operation mode register 10 (CSIM10)  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Address: FF80H After reset: 00H R/WNote 1  
Symbol  
CSIM10  
7
6
5
0
4
3
0
2
0
1
0
0
CSIE10  
TRMD10  
DIR10  
CSOT10  
CSIE10  
0
Operation control in 3-wire serial I/O mode  
Stops operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins can be used as general-  
purpose port pins).  
1
Enables operation (SI10/P11/RXD0, SO10/P12, and SCK10/P10/TXD0 pins are at active level).  
TRMD10Note 2  
Transmit/receive mode control  
Receive mode (transmission disabled).  
Transmit/receive mode  
0Note 3  
1
DIR10Note 4  
First bit specification  
0
1
MSB  
LSB  
CSOT10Note 5  
Operation mode flag  
Communication is stopped.  
0
1
Communication is in progress.  
Notes 1. Bit 0 is read-only.  
2. Do not rewrite TRMD10 when CSOT10 = 1 (during serial communication).  
3. The SO10 pin is fixed to the low level when TRMD10 is 0. Reception is started when data is read from  
SIO10.  
4. Do not rewrite DIR10 when CSOT10 = 1 (during serial communication).  
5. CSOT10 is cleared if CSIE10 is set to 0 (operation stopped).  
Caution Be sure to set bit 5 to 0.  
306  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(b) Serial clock selection register 10 (CSIC10)  
CSIC10 can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Address: FF81H After reset: 00H R/W  
Symbol  
CSIC10  
7
0
6
0
5
0
4
3
2
1
0
CKP10  
DAP10  
CKS102  
CKS101  
CKS100  
CKP10  
0
DAP10  
0
Data clock phase selection  
Type  
1
SCK10  
SO10  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
SI10 input timing  
0
1
1
1
0
1
2
3
4
SCK10  
SO10  
SI10 input timing  
SCK10  
SO10  
SI10 input timing  
SCK10  
SO10  
D7 D6 D5 D4 D3 D2 D1 D0  
SI10 input timing  
CKS102  
CKS101  
CKS100  
CSI10 count clock selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fX/2 (5 MHz)  
fX/22 (2.5 MHz)  
fX/23 (1.25 MHz)  
fX/24 (625 kHz)  
fX/25 (312.5 kHz)  
fX/26 (156.25 kHz)  
fX/27 (78.13 kHz)  
External clock input to SCK10  
Cautions 1. Do not write CSIC10 during a communication operation or when using P10/SCK10/TXD0,  
P11/SI10/RXD0, and P12/SO10 as general-purpose port pins.  
2. The phase type of the data clock is type 1 after reset.  
Remarks 1. Figures in parentheses are for operation with fX = 10 MHz  
2. fX: X1 input clock oscillation frequency  
307  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(2) Setting of ports  
<1> Transmit/receive mode  
(a) To use externally input clock as system clock (SCK10)  
Bit 1 (PM11) of port mode register 1: Set to 1  
Bit 2 (PM12) of port mode register 1: Cleared to 0  
Bit 0 (PM10) of port mode register 1: Set to 1  
Bit 2 (P12) of port 1: Cleared to 0  
(b) To use internal clock as system clock (SCK10)  
Bit 1 (PM11) of port mode register 1: Set to 1  
Bit 2 (PM12) of port mode register 1: Cleared to 0  
Bit 0 (PM10) of port mode register 1: Cleared to 0  
Bit 2 (P12) of port 1: Cleared to 0  
Bit 0 (P10) of port 1: Set to 1  
<2> Receive mode (with transmission disabled)  
(a) To use externally input clock as system clock (SCK10)  
Bit 1 (PM11) of port mode register 1: Set to 1  
Bit 0 (PM10) of port mode register 1: Set to 1  
(b) To use internal clock as system clock (SCK10)  
Bit 1 (PM11) of port mode register 1: Set to 1  
Bit 0 (PM10) of port mode register 1: Cleared to 0  
Bit 0 (P10) of port 1: Set to 1  
Remark The transmit/receive mode or receive mode is selected by using bit 6 (TRMD10) of serial operation  
mode register 10 (CSIM10).  
308  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(3) Communication operation  
In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or  
received in synchronization with the serial clock.  
Data can be transmitted or received if bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 1.  
Transmission/reception is started when a value is written to transmit buffer register 10 (SOTB10). In addition,  
data can be received when bit 6 (TRMD10) of serial operation mode register 10 (CSIM10) is 0.  
Reception is started when data is read from serial I/O shift register 10 (SIO10).  
After communication has been started, bit 0 (CSOT10) of CSIM10 is set to 1. When communication of 8-bit data  
has been completed, a communication completion interrupt request flag (CSIIF10) is set, and CSOT10 is cleared  
to 0. Then the next communication is enabled.  
Caution Do not access the control register and data register when CSOT10 = 1 (during serial  
communication).  
Figure 14-4. Timing in 3-Wire Serial I/O Mode (1/2)  
(1) Transmission/reception timing (Type 1; TRMD10 = 1, DIR10 = 0, CKP10 = 0, DAP10 = 0)  
SCK10  
Read/write trigger  
SOTB10  
SIO10  
55H (communication data)  
ABH  
56H  
ADH  
5AH  
B5H  
6AH  
D5H AAH  
CSOT10  
INTCSI10  
CSIIF10  
SI10 (receive AAH)  
SO10  
55H is written to SOTB10.  
309  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
Figure 14-4. Timing in 3-Wire Serial I/O Mode (2/2)  
(2) Transmission/reception timing (Type 2; TRMD10 = 1, DIR10 = 0, CKP10 = 0, DAP10 = 1)  
SCK10  
Read/write trigger  
SOTB10  
SIO10  
55H (communication data)  
ABH  
56H  
ADH  
5AH  
B5H  
6AH  
D5H  
AAH  
CSOT10  
INTCSI10  
CSIIF10  
SI10 (receives AAH)  
SO10  
55H is written to SOTB10.  
310  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
Figure 14-5. Timing of Clock/Data Phase  
(a) Type 1; CKP10 = 0, DAP10 = 0  
SCK10  
SI10 capture  
SO10  
Writing to SOTB10 or  
reading from SIO10  
CSIIF10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CSOT10  
(b) Type 2; CKP10 = 0, DAP10 = 1  
SCK10  
SI10 capture  
SO10  
Writing to SOTB10 or  
reading from SIO10  
CSIIF10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CSOT10  
(c) Type 3; CKP10 = 1, DAP10 = 0  
SCK10  
SI10 capture  
SO10  
Writing to SOTB10 or  
reading from SIO10  
CSIIF10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CSOT10  
(d) Type 4; CKP10 = 1, DAP10 = 1  
SCK10  
SI10 capture  
SO10  
Writing to SOTB10 or  
reading from SIO10  
CSIIF10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CSOT10  
311  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(4) Timing of output to SO10 pin (first bit)  
When communication is started, the value of transmit buffer register 10 (SOTB10) is output from the SO10 pin.  
The output operation of the first bit at this time is described below.  
Figure 14-6. Output Operation of First Bit  
(1) When CKP10 = 0, DAP10 = 0 (or CKP10 = 1, DAP10 = 0)  
SCK10  
Writing to SOTB10 or  
reading from SIO10  
SOTB10  
SIO10  
Output latch  
First bit  
2nd bit  
SO10  
The first bit is directly latched by the SOTB10 register to the output latch at the falling (or rising) edge of SCK10,  
and output from the SO10 pin via an output selector. Then, the value of the SOTB10 register is transferred to the  
SIO10 register at the next rising (or falling) edge of SCK10, and shifted one bit. At the same time, the first bit of  
the receive data is stored in the SIO10 register via the SI10 pin.  
The second and subsequent bits are latched by the SIO10 register to the output latch at the next falling (or rising)  
edge of SCK10, and the data is output from the SO10 pin.  
(2) When CKP10 = 0, DAP10 = 1 (or CKP10 = 1, DAP10 = 1)  
SCK10  
Writing to SOTB10 or  
reading from SIO10  
SOTB10  
SIO10  
Output latch  
First bit  
2nd bit  
3rd bit  
SO10  
The first bit is directly latched by the SOTB10 register at the falling edge of the write signal of the SOTB10  
register or the read signal of the SIO10 register, and output from the SO10 pin via an output selector. Then, the  
value of the SOTB10 register is transferred to the SIO10 register at the next rising (or falling) edge of SCK10, and  
shifted one bit. At the same time, the first bit of the receive data is stored in the SIO10 register via the SI10 pin.  
The second and subsequent bits are latched by the SIO10 register to the output latch at the next falling (or rising)  
edge of SCK10, and the data is output from the SO10 pin.  
312  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 14 SERIAL INTERFACE CSI10  
(5) Output value of SO10 pin (last bit)  
After communication has been completed, the SO10 pin holds the output value of the last bit.  
Figure 14-7. Output Value of SO10 Pin (Last Bit)  
(1) Type 1; when CKP10 = 0 and DAP10 = 0 (or CKP10 = 1, DAP10 = 0)  
SCK10  
Writing to SOTB10 or  
reading from SIO10  
( Next request is issued.)  
SOTB10  
SIO10  
Output latch  
Last bit  
SO10  
(2) Type 2; when CKP10 = 0 and DAP10 = 1 (or CKP10 = 1, DAP10 = 1)  
SCK10  
Writing to SOTB10 or  
reading from SIO10  
( Next request is issued.)  
SOTB10  
SIO10  
Output latch  
SO10  
Last bit  
313  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.1 Interrupt Function Types  
The following two types of interrupt functions are used.  
(1) Maskable interrupts  
These interrupts undergo mask control. Maskable interrupts can be divided into a high interrupt priority group  
and a low interrupt priority group by setting the priority specification flag registers (PR0L, PR0H, PR1L).  
Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If  
two or more interrupts with the same priority are generated simultaneously, each interrupt is serviced according to  
its predetermined priority (see Table 15-1).  
A standby release signal is generated.  
Seven external interrupt requests and 15 internal interrupt requests are provided as maskable interrupts.  
(2) Software interrupt  
This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts  
are disabled. The software interrupt does not undergo interrupt priority control.  
15.2 Interrupt Sources and Configuration  
A total of 23 interrupt sources exist for maskable and software interrupts (see Table 15-1).  
314  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Table 15-1. Interrupt Source List  
Interrupt  
Type  
Default  
Interrupt Source  
Trigger  
Internal/  
External  
Vector  
Table  
Basic  
PriorityNote 1  
Configuration  
TypeNote 2  
Name  
INTLVI  
Address  
Maskable  
0
1
Low-voltage detection  
Internal  
External  
0004H  
0006H  
0008H  
000AH  
000CH  
000EH  
0010H  
0012H  
0014H  
0016H  
0018H  
(A)  
(B)  
INTP0  
Pin input edge detection  
2
INTP1  
3
INTP2  
4
INTP3  
5
INTP4  
6
INTP5  
7
INTSRE6  
INTSR6  
INTST6  
UART6 reception error generation  
End of UART6 reception  
Internal  
(A)  
8
9
End of UART6 transmission  
10  
INTCSI10/  
INTST0  
End of CSI10 transfer/end of UART0  
transmission  
11  
12  
13  
14  
INTTMH1  
INTTMH0  
INTTM50  
INTTM000  
Match between TMH1 and CRH1  
(when compare register is specified)  
001AH  
001CH  
001EH  
0020H  
Match between TMH0 and CRH0  
(when compare register is specified)  
Match between TM50 and CR50  
(when compare register is specified)  
Match between TM00 and CR000  
(when compare register is specified),  
TI010 pin valid edge detection  
(when capture register is specified)  
15  
INTTM010  
Match between TM00 and CR010  
(when compare register is specified),  
TI000 pin valid edge detection  
0022H  
(when capture register is specified)  
16  
17  
INTAD  
End of A/D conversion  
0024H  
0026H  
INTSR0  
End of UART0 reception or reception error  
generation  
18  
19  
INTWTI  
Watch timer reference time interval signal  
0028H  
002AH  
INTTM51  
Match between TM51 and CR51  
(when compare register is specified)  
20  
21  
INTKR  
INTWT  
BRK  
Key interrupt detection  
Watch timer overflow  
BRK instruction execution  
Reset input  
External  
002CH  
002EH  
003EH  
0000H  
(C)  
(A)  
(D)  
Internal  
Software  
Reset  
RESET  
POC  
Power-on reset  
LVI  
Low-voltage detection  
Clock monitor X1 oscillation stop detection  
WDT WDT overflow  
Notes 1. The default priority is the priority applicable when two or more maskable interrupt are generated  
simultaneously. 0 is the highest priority, and 21 is the lowest.  
2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 15-1.  
315  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-1. Basic Configuration of Interrupt Function (1/2)  
(A) Internal maskable interrupt  
Internal bus  
IE  
MK  
PR  
ISP  
Vector table  
address generator  
Priority controller  
Interrupt  
request  
IF  
Standby release signal  
(B) External maskable interrupt (INTP0 to INTP5)  
Internal bus  
External interrupt edge  
enable register  
(EGP, EGN)  
MK  
IE  
PR  
ISP  
Vector table  
address generator  
Priority controller  
Interrupt  
request  
Edge  
detector  
IF  
Standby release signal  
IF:  
IE:  
Interrupt request flag  
Interrupt enable flag  
ISP: In-service priority flag  
MK:  
PR:  
Interrupt mask flag  
Priority specification flag  
316  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-1. Basic Configuration of Interrupt Function (2/2)  
(C) External maskable interrupt (INTKR)  
Internal bus  
MK  
IE  
PR  
ISP  
Interrupt  
request  
Vector table  
address generator  
Key  
interrupt  
detector  
Priority controller  
IF  
1 when KRMn = 1 (n = 0 to 7)  
Standby release signal  
(D) Software interrupt  
Internal bus  
Interrupt  
request  
Vector table  
address generator  
IF:  
IE:  
Interrupt request flag  
Interrupt enable flag  
ISP: In-service priority flag  
MK:  
PR:  
Interrupt mask flag  
Priority specification flag  
KRM: Key return mode register  
15.3 Registers Controlling Interrupt Functions  
The following 6 types of registers are used to control the interrupt functions.  
Interrupt request flag register (IF0L, IF0H, IF1L)  
Interrupt mask flag register (MK0L, MK0H, MK1L)  
Priority specification flag register (PR0L, PR0H, PR1L)  
External interrupt rising edge enable register (EGP)  
External interrupt falling edge enable register (EGN)  
Program status word (PSW)  
Table 15-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding  
to interrupt request sources.  
317  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Table 15-2. Flags Corresponding to Interrupt Request Sources  
Interrupt  
Request  
Interrupt Request Flag  
Register  
IF0L  
Interrupt Mask Flag  
Register  
MK0L  
Priority Specification Flag  
Register  
INTLVI  
LVIIF  
LVIMK  
PMK0  
LVIPR  
PR0L  
INTP0  
PIF0  
PPR0  
INTP1  
PIF1  
PMK1  
PPR1  
INTP2  
PIF2  
PMK2  
PPR2  
INTP3  
PIF3  
PMK3  
PPR3  
INTP4  
PIF4  
PMK4  
PPR4  
INTP5  
PIF5  
PMK5  
PPR5  
INTSRE6  
INTSR6  
INTST6  
INTCSI10  
INTST0  
INTTMH1  
INTTMH0  
INTTM50  
INTTM000  
INTTM010  
INTAD  
SREIF6  
SRIF6  
STIF6  
DUALIF0Note  
SREMK6  
SRMK6  
STMK6  
DUALMK0  
SREPR6  
SRPR6  
STPR6  
DUALPR0  
IF0H  
MK0H  
PR0H  
TMIFH1  
TMIFH0  
TMIF50  
TMIF000  
TMIF010  
ADIF  
TMMKH1  
TMMKH0  
TMMK50  
TMMK000  
TMMK010  
ADMK  
TMPRH1  
TMPRH0  
TMPR50  
TMPR000  
TMPR010  
ADPR  
IF1L  
MK1L  
PR1L  
INTSR0  
INTWTI  
INTTM51  
INTKR  
SRIF0  
SRMK0  
WTIMK  
SRPR0  
WTIPR  
WTIIF  
TMIF51  
KRIF  
TMMK51  
KRMK  
TMPR51  
KRPR  
INTWT  
WTIF  
WTMK  
WTPR  
Note If either of the two types of interrupt sources is generated, these flags are set (1).  
318  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(1) Interrupt request flag registers (IF0L, IF0H, IF1L)  
The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is  
executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or  
upon RESET input.  
IF0L, IF0H, and IF1L are set by a 1-bit or 8-bit memory manipulation instruction. When IF0L and IF0H are  
combined to form 16-bit register IF0, they are read with a 16-bit memory manipulation instruction.  
RESET input clears these registers to 00H.  
Figure 15-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L)  
Address: FFE0H After reset: 00H R/W  
Symbol  
IF0L  
7
6
5
4
3
2
1
0
SREIF6  
PIF5  
PIF4  
PIF3  
PIF2  
PIF1  
PIF0  
LVIIF  
Address: FFE1H After reset: 00H R/W  
Symbol  
IF0H  
7
6
5
4
3
2
1
0
TMIF010  
TMIF000  
TMIF50  
TMIFH0  
TMIFH1  
DUALIF0  
STIF6  
SRIF6  
Address: FFE2H After reset: 00H R/W  
Symbol  
IF1L  
7
6
5
4
3
2
1
0
0Note  
0Note  
WTIF  
KRIF  
TMIF51  
WTIIF  
SRIF0  
ADIF  
XXIFX  
Interrupt request flag  
0
1
No interrupt request signal is generated  
Interrupt request is generated, interrupt request status  
Note Be sure to set bits 6 and 7 of IF1L to 0.  
Cautions 1. When operating a timer, serial interface, or A/D converter after standby release, operate it  
once after clearing the interrupt request flag. An interrupt request flag may be set by noise.  
2. When an interrupt is acknowledged, the interrupt request flag is automatically cleared and  
then the interrupt routine is entered.  
319  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(2) Interrupt mask flag registers (MK0L, MK0H, MK1L)  
The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.  
MK0L, MK0H, and MK1L are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H are  
combined to form 16-bit register MK0, they are set with a 16-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
Figure 15-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L)  
Address: FFE4H After reset: FFH R/W  
Symbol  
MK0L  
7
6
5
4
3
2
1
0
SREMK6  
PMK5  
PMK4  
PMK3  
PMK2  
PMK1  
PMK0  
LVIMK  
Address: FFE5H After reset: FFH R/W  
Symbol  
MK0H  
7
6
5
4
3
2
1
0
TMMK010 TMMK000  
TMMK50  
TMMKH0  
TMMKH1  
DUALMK0  
STMK6  
SRMK6  
Address: FFE6H After reset: FFH R/W  
Symbol  
MK1L  
7
6
5
4
3
2
1
0
1Note  
1Note  
WTMK  
KRMK  
TMMK51  
WTIMK  
SRMK0  
ADMK  
XXMKX  
Interrupt servicing control  
0
1
Interrupt servicing enabled  
Interrupt servicing disabled  
Note Be sure to set bits 6 and 7 of MK1L to 1.  
320  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(3) Priority specification flag registers (PR0L, PR0H, PR1L)  
The priority specification flag registers are used to set the corresponding maskable interrupt priority order.  
PR0L, PR0H, and PR1L are set by a 1-bit or 8-bit memory manipulation instruction. If PR0L and PR0H are  
combined to form 16-bit register PR0, they are set with a 16-bit memory manipulation instruction.  
RESET input sets these registers to FFH.  
Figure 15-4. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L)  
Address: FFE8H After reset: FFH R/W  
Symbol  
PR0L  
7
6
5
4
3
2
1
0
SREPR6  
PPR5  
PPR4  
PPR3  
PPR2  
PPR1  
PPR0  
LVIPR  
Address: FFE9H After reset: FFH R/W  
Symbol  
PR0H  
7
6
5
4
3
2
1
0
TMPR010 TMPR000  
TMPR50  
TMPRH0  
TMPRH1  
DUALPRO  
STPR6  
SRPR6  
Address: FFEAH After reset: FFH R/W  
Symbol  
PR1L  
7
6
5
4
3
2
1
0
1Note  
1Note  
WTPR  
KRPR  
TMPR51  
WTIPR  
SRPR0  
ADPR  
XXPRX  
Priority level selection  
0
1
High priority level  
Low priority level  
Note Be sure to set bits 6 and 7 of PR1L to 1.  
321  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(4) External interrupt rising edge enable register (EGP), external interrupt falling edge enable register (EGN)  
These registers specify the valid edge for INTP0 to INTP5.  
EGP and EGN are set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears these registers to 00H.  
Figure 15-5. Format of External Interrupt Rising Edge Enable Register (EGP)  
and External Interrupt Falling Edge Enable Register (EGN)  
Address: FF48H After reset: 00H R/W  
Symbol  
EGP  
7
0
6
0
5
4
3
2
1
0
EGP5  
EGP4  
EGP3  
EGP2  
EGP1  
EGP0  
Address: FF49H After reset: 00H R/W  
Symbol  
EGN  
7
0
6
0
5
4
3
2
1
0
EGN5  
EGN4  
EGN3  
EGN2  
EGN1  
EGN0  
EGPn  
EGNn  
INTPn pin valid edge selection (n = 0 to 5)  
0
0
1
1
0
1
0
1
Interrupt disabled  
Falling edge  
Rising edge  
Both rising and falling edges  
Table 15-3 shows the ports corresponding to EGPn and EGNn.  
Table 15-3. Ports Corresponding to EGPn and EGNn  
Detection Enable Register  
Edge Detection Port  
External Request Signal  
INTP0  
EGP0  
EGP1  
EGP2  
EGP3  
EGP4  
EGP5  
EGN0  
EGN1  
EGN2  
EGN3  
EGN4  
EGN5  
P120  
P30  
P31  
P32  
P33  
P16  
INTP1  
INTP2  
INTP3  
INTP4  
INTP5  
322  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
(5) Program status word (PSW)  
The program status word is a register used to hold the instruction execution result and the current status for an  
interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP flag that controls multiple  
interrupt servicing are mapped to the PSW.  
Besides 8-bit read/write, this register can carry out operations using bit manipulation instructions and dedicated  
instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed,  
the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0. If a maskable interrupt  
request is acknowledged, the contents of the priority specification flag of the acknowledged interrupt are  
transferred to the ISP flag. The PSW contents are also saved into the stack with the PUSH PSW instruction.  
They are restored from the stack with the RETI, RETB, and POP PSW instructions.  
RESET input sets PSW to 02H.  
Figure 15-6. Format of Program Status Word  
After reset  
02H  
7
6
Z
5
4
3
2
0
1
0
PSW IE  
RBS1 AC RBS0  
ISP  
CY  
Used when normal instruction is executed  
ISP  
Priority of interrupt currently being serviced  
0
High-priority interrupt servicing (low-priority  
interrupt disabled)  
Interrupt request not acknowledged, or low-  
priority interrupt servicing (all maskable  
interrupts enabled)  
1
IE  
0
Interrupt request acknowledgement enable/disable  
Disabled  
Enabled  
1
323  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4 Interrupt Servicing Operations  
15.4.1 Maskable interrupt acknowledgement  
A maskable interrupt becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag  
corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are  
in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not  
acknowledged during servicing of a higher priority interrupt request (when the ISP flag is reset to 0). The times from  
generation of a maskable interrupt request until interrupt servicing is performed are listed in Table 15-4 below.  
For the interrupt request acknowledgement timing, see Figures 15-8 and 15-9.  
Table 15-4. Time from Generation of Maskable Interrupt Until Servicing  
Minimum Time  
7 clocks  
8 clocks  
Maximum TimeNote  
32 clocks  
33 clocks  
When ××PR = 0  
When ××PR = 1  
Note If an interrupt request is generated just before a divide instruction, the wait time becomes longer.  
Remark 1 clock: 1/fCPU (fCPU: CPU clock)  
If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level  
specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same  
priority level, the request with the highest default priority is acknowledged first.  
An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.  
Figure 15-7 shows the interrupt request acknowledgement algorithm.  
If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then  
PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged  
interrupt are transferred to the ISP flag. The vector table data determined for each interrupt request is the loaded into  
the PC and branched.  
Restoring from an interrupt is possible by using the RETI instruction.  
324  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-7. Interrupt Request Acknowledgement Processing Algorithm  
Start  
No  
××IF = 1?  
Yes (interrupt request generation)  
No  
××MK = 0?  
Yes  
Interrupt request held pending  
Yes (High priority)  
××PR = 0?  
No (Low priority)  
Any high-priority  
Yes  
Any high-priority  
interrupt request among those  
simultaneously generated  
with ××PR = 0?  
Yes  
interrupt request among  
those simultaneously generated  
with ××PR = 0?  
Interrupt request held pending  
No  
Interrupt request held pending  
Yes  
No  
No  
IE = 1?  
Yes  
Any high-priority  
interrupt request among  
those simultaneously  
generated?  
Interrupt request held pending  
Interrupt request held pending  
No  
No  
IE = 1?  
Yes  
Vectored interrupt servicing  
Interrupt request held pending  
No  
ISP = 1?  
Yes  
Interrupt request held pending  
Vectored interrupt servicing  
××IF: Interrupt request flag  
××MK: Interrupt mask flag  
××PR: Priority specification flag  
IE:  
Flag that controls acknowledgement of maskable interrupt request (1 = Enable, 0 = Disable)  
ISP: Flag that indicates the priority level of the interrupt currently being serviced (0 = high-priority interrupt  
servicing, 1 = No interrupt request acknowledged, or low-priority interrupt servicing)  
325  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-8. Interrupt Request Acknowledgement Timing (Minimum Time)  
6 clocks  
PSW and PC saved,  
jump to interrupt  
servicing  
Interrupt servicing  
program  
CPU processing  
Instruction  
Instruction  
××IF  
(××PR = 1)  
8 clocks  
××IF  
(××PR = 0)  
7 clocks  
Remark 1 clock: 1/fCPU (fCPU: CPU clock)  
Figure 15-9. Interrupt Request Acknowledgement Timing (Maximum Time)  
25 clocks  
6 clocks  
PSW and PC saved,  
jump to interrupt  
servicing  
Interrupt servicing  
program  
CPU processing  
Instruction  
Divide instruction  
××IF  
(××PR = 1)  
33 clocks  
××IF  
(××PR = 0)  
32 clocks  
Remark 1 clock: 1/fCPU (fCPU: CPU clock)  
15.4.2 Software interrupt request acknowledgement  
A software interrupt acknowledge is acknowledged by BRK instruction execution. Software interrupts cannot be  
disabled.  
If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program  
status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (003EH,  
003FH) are loaded into the PC and branched.  
Restoring from a software interrupt is possible by using the RETB instruction.  
Caution Do not use the RETI instruction for restoring from the software interrupt.  
326  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4.3 Multiple interrupt servicing  
Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt.  
Multiple interrupt servicing does not occur unless the interrupt request acknowledgement enabled state is selected  
(IE = 1). Also, when an interrupt request is acknowledged, interrupt request acknowledgement becomes disabled (IE  
= 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during  
interrupt servicing to enable interrupt acknowledgement.  
Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to  
interrupt priority control. Two types of priority control are available: default priority control and programmable priority  
control. Programmable priority control is used for multiple interrupt servicing.  
In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt  
currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority  
lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged  
for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled  
state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the  
pending interrupt request is acknowledged following execution of at least one main processing instruction execution.  
Table 15-5 shows interrupt requests enabled for multiple interrupt servicing and Figure 15-10 shows multiple  
interrupt servicing examples.  
Table 15-5. Interrupt Request Enabled for Multiple Interrupt Servicing During Interrupt Servicing  
Multiple Interrupt Request  
Maskable Interrupt Request  
PR = 0 PR = 1  
Interrupt Being Serviced  
IE = 1  
IE = 0  
IE = 1  
IE = 0  
Maskable interrupt  
ISP = 0  
ISP = 1  
×
×
×
×
×
×
×
Software interrupt  
Remarks 1. : Multiple interrupt servicing enabled  
2. ×: Multiple interrupt servicing disabled  
3. ISP and IE are flags contained in the PSW.  
ISP = 0: An interrupt with higher priority is being serviced.  
ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower  
priority is being serviced.  
IE = 0: Interrupt request acknowledgement is disabled.  
IE = 1: Interrupt request acknowledgement is enabled.  
4. PR is a flag contained in PR0L, PR0H, and PR1L.  
PR = 0: Higher priority level  
PR = 1: Lower priority level  
327  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-10. Examples of Multiple Interrupt Servicing (1/2)  
Example 1. Multiple interrupt servicing occurs twice  
Main processing  
INTxx servicing  
INTyy servicing  
INTzz servicing  
IE = 0  
IE = 0  
IE = 0  
EI  
EI  
EI  
INTxx  
(PR = 1)  
INTyy  
(PR = 0)  
INTzz  
(PR = 0)  
RETI  
IE = 1  
RETI  
RETI  
IE = 1  
IE = 1  
During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple  
interrupt servicing takes place. Before each interrupt request is acknowledged, the EI instruction must always be  
issued to enable interrupt request acknowledgement.  
Example 2. Multiple interrupt servicing does not occur due to priority control  
Main processing  
INTxx servicing  
INTyy servicing  
EI  
IE = 0  
INTyy  
EI  
INTxx  
(PR = 0)  
(PR = 1)  
RETI  
IE = 1  
1 instruction execution  
IE = 0  
RETI  
IE = 1  
Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower  
than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending,  
and is acknowledged following execution of one main processing instruction.  
PR = 0: Higher priority level  
PR = 1: Lower priority level  
IE = 0: Interrupt request acknowledgement disabled  
328  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
Figure 15-10. Examples of Multiple Interrupt Servicing (2/2)  
Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled  
Main processing  
INTxx servicing INTyy servicing  
IE = 0  
EI  
INTyy  
(PR = 0)  
INTxx  
RETI  
(PR = 0)  
IE = 1  
IE = 0  
1 instruction execution  
RETI  
IE = 1  
Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt  
request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request  
is held pending, and is acknowledged following execution of one main processing instruction.  
PR = 0: Higher priority level  
IE = 0: Interrupt request acknowledgement disabled  
329  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 15 INTERRUPT FUNCTIONS  
15.4.4 Interrupt request hold  
There are instructions where, even if an interrupt request is issued for them while another instruction is being  
executed, request acknowledgement is held pending until the end of execution of the next instruction. These  
instructions (interrupt request hold instructions) are listed below.  
MOV PSW, #byte  
MOV A, PSW  
MOV PSW, A  
MOV1 PSW. bit, CY  
MOV1 CY, PSW. bit  
AND1 CY, PSW. bit  
OR1 CY, PSW. bit  
XOR1 CY, PSW. bit  
SET1 PSW. bit  
CLR1 PSW. bit  
RETB  
RETI  
PUSH PSW  
POP PSW  
BT PSW. bit, $addr16  
BF PSW. bit, $addr16  
BTCLR PSW. bit, $addr16  
EI  
DI  
Manipulation instructions for the IF0L, IF0H, IF1L, MK0L, MK0H, MK1L, PR0L, PR0H, and PR1L registers.  
Caution The BRK instruction is not one of the above-listed interrupt request hold instructions. However,  
the software interrupt activated by executing the BRK instruction causes the IE flag to be  
cleared. Therefore, even if a maskable interrupt request is generated during execution of the  
BRK instruction, the interrupt request is not acknowledged.  
Figure 15-11 shows the timing at which interrupt requests are held pending.  
Figure 15-11. Interrupt Request Hold  
PSW and PC saved, jump Interrupt servicing  
CPU processing  
Instruction N  
Instruction M  
to interrupt servicing  
program  
××IF  
Remarks 1. Instruction N: Interrupt request hold instruction  
2. Instruction M: Instruction other than interrupt request hold instruction  
3. The ××PR (priority level) values do not affect the operation of ××IF (instruction request).  
330  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 16 KEY INTERRUPT FUNCTION  
16.1 Functions of Key Interrupt  
A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a rising  
edge to the key interrupt input pins (KR0 to KR3).  
Table 16-1. Assignment of Key Interrupt Detection Pins  
Flag  
Description  
KRM0  
KRM1  
KRM2  
KRM3  
Controls KR0 signal in 1-bit units.  
Controls KR1 signal in 1-bit units.  
Controls KR2 signal in 1-bit units.  
Controls KR3 signal in 1-bit units.  
16.2 Configuration of Key Interrupt  
The key interrupt consists of the following hardware.  
Table 16-2. Configuration of Key Interrupt  
Item  
Configuration  
Control register  
Key return mode register (KRM)  
Figure 16-1. Block Diagram of Key Interrupt  
KR3  
KR2  
KR1  
KR0  
INTKR  
0
0
0
0
KRM3 KRM2 KRM1 KRM0  
Key return mode register (KRM)  
331  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 16 KEY INTERRUPT FUNCTION  
16.3 Register Controlling Key Interrupt  
(1) Key return mode register (KRM)  
This register controls the KRM0 to KRM3 bits using the KR0 to KR3 signals, respectively.  
This register is set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 16-2. Format of Key Return Mode Register (KRM)  
Address: FF6EH After reset: 00H R/W  
Symbol  
KRM  
7
0
6
0
5
0
4
0
3
2
0
KRM3  
KRM2  
KRM1  
KRM0  
KRMn  
Key interrupt mode control  
0
1
Does not detect key interrupt signal  
Detects key interrupt signal  
Cautions 1. If any of the KRM0 to KRM3 bits used is set to 1, set bits 0 to 3 (PU70 to PU73) of the  
corresponding pull-up resistor register 7 (PU7) to 1.  
2. If KRM is changed, the interrupt request flag may be set. Therefore, disable interrupts and  
then change the KRM register. Clear the interrupt request flag and enable interrupts.  
3. The bits not used in the key interrupt mode can be used as normal ports.  
332  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
17.1 Standby Function and Configuration  
17.1.1 Standby function  
Table 17-1. Relationship Between HALT Mode, STOP Mode, and Clock  
X1 Input Clock  
Oscillation continues  
Oscillation stopped  
Ring-OSC Clock  
Oscillation continues  
Oscillation continues  
Subsystem Clock  
Oscillation continues  
Oscillation continues  
CPU Clock  
Operation stopped  
Operation stopped  
HALT mode  
STOP mode  
The standby function is designed to reduce the power consumption of the system. The following two modes are  
available.  
(1) HALT mode  
HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped, but the  
system clock oscillator continues oscillating. In this mode, power consumption is not decreased as much as in  
the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request  
generation and carrying out intermittent operations.  
(2) STOP mode  
STOP instruction execution sets the STOP mode. In the STOP mode, the X1 input clock oscillator stops,  
stopping the whole system, thereby considerably reducing the CPU power consumption.  
Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out.  
However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is  
released, select the HALT mode if it is necessary to start processing immediately upon interrupt request  
generation.  
In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is  
set are held. The I/O port output latches and output buffer statuses are also held.  
Cautions 1. STOP mode can be used only when operating on the X1 input clock or Ring-OSC clock.  
HALT mode can be used when operating on the X1 input clock, Ring-OSC clock, or  
subsystem clock. However, when the STOP instruction is executed during Ring-OSC clock  
operation, the X1 oscillator stops, but Ring-OSC oscillator does not stop.  
2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation before  
executing STOP instruction.  
3. The following sequence is recommended for power consumption reduction of the A/D  
converter when the standby function is used: First clear bit 7 (ADCS) of the A/D converter  
mode register (ADM) to 0 to stop the A/D conversion operation, and then execute the HALT or  
STOP instruction.  
4. Ring-OSC clock oscillation cannot be stopped in the STOP mode. However, when the Ring-  
OSC clock is used as the CPU clock, the CPU operation is stopped for 17/fR (s) after STOP  
mode is released.  
333  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
Figure 17-1. Operation Timing When STOP Mode Is Released  
STOP mode release  
STOP mode  
X1 input clock  
Ring-OSC clock  
X1 input clock is  
selected as CPU clock  
when STOP instruction  
is executed  
HALT status  
(oscillation stabilization time set by OSTS)  
X1 input clock  
X1 input clock  
Ring-OSC clock is  
selected as CPU clock  
when STOP instruction  
is executed  
Ring-OSC clock  
Operation stopped  
Clock switched  
by software  
(17/f )  
R
334  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
17.1.2 Registers controlling standby function  
The standby function is controlled by the following two registers.  
Oscillation stabilization time counter status register (OSTC)  
Oscillation stabilization time select register (OSTS)  
(1) Oscillation stabilization time counter status register (OSTC)  
This is the status register of the X1 input clock oscillation stabilization time counter. If the Ring-OSC clock is used  
as the CPU clock, the X1 input clock oscillation stabilization time can be checked.  
OSTC can be read by a 1-bit or 8-bit memory manipulation instruction.  
RESET input, STOP instruction, MSTOP = 1, and MCC = 1 clear OSTC to 00H.  
Figure 17-2. Format of Oscillation Stabilization Time Counter Status Register (OSTC)  
Address: FFA3H After reset: 00H  
R
Symbol  
OSTC  
7
0
6
0
5
0
4
3
2
1
0
MOST11  
MOST13  
MOST14  
MOST15  
MOST16  
MOST11  
MOST13  
MOST14  
MOST15  
MOST16  
Oscillation stabilization time status  
211/fX min. (204.8 µs min.)  
213/fX min. (819.2 µs min.)  
214/fX min. (1.64 ms min.)  
215/fX min. (3.27 ms min.)  
216/fX min. (6.55 ms min.)  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
Caution After the above time has elapsed, the bits are set to 1 in order from MOST11 and  
remain 1.  
Remarks 1. Values in parentheses are for operation with fX = 10 MHz.  
2. fX: X1 input clock oscillation frequency  
335  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
(2) Oscillation stabilization time select register (OSTS)  
This register is used to select the X1 oscillation stabilization wait time when STOP mode is released. The wait  
time set by OSTS is valid only after STOP mode is released when the X1 input clock is selected as the CPU  
clock. After STOP mode is released when the Ring-OSC clock is selected, check the oscillation stabilization time  
using OSTC.  
OSTS can be set by an 8-bit memory manipulation instruction.  
RESET input sets OSTS to 05H.  
Figure 17-3. Format of Oscillation Stabilization Time Select Register (OSTS)  
Address: FFA4H After reset: 05H R/W  
Symbol  
OSTS  
7
0
6
0
5
0
4
0
3
0
2
1
0
OSTS2  
OSTS1  
OSTS0  
OSTS2  
OSTS1  
OSTS0  
Oscillation stabilization time selection  
0
0
0
1
1
0
1
0
1
0
1
211/fX (204.8 µs)  
213/fX (819.2 µs)  
214/fX (1.64 ms)  
215/fX (3.27 ms)  
216/fX (6.55 ms)  
Setting prohibited  
1
1
0
0
Other than above  
Cautions 1. If the STOP mode is entered and then released while the Ring-OSC is being  
used as the CPU clock, set the oscillation stabilization time as follows.  
Desired OSTC oscillation stabilization time Oscillation stabilization time  
set by OSTS  
The X1 oscillation stabilization time counter counts only during the oscillation  
stabilization time set by OSTS. Therefore, note that only the statuses during the  
oscillation stabilization time set by OSTS are set to OSTC after STOP mode has  
been released.  
2. The wait time when STOP mode is released does not include the time after  
STOP mode release until clock oscillation starts (“a” below) regardless of  
whether STOP mode is released by RESET input or interrupt generation.  
STOP mode release  
X1 pin voltage  
waveform  
a
VSS  
Remarks 1. Values in parentheses are for operation with fX = 10 MHz.  
2. fX: X1 input clock oscillation frequency  
336  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
17.2 Standby Function Operation  
17.2.1 HALT mode  
(1) HALT mode  
The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU  
clock before the setting was the X1 input clock, Ring-OSC clock, or subsystem clock.  
The operating statuses in the HALT mode are shown below.  
Table 17-2. Operating Statuses in HALT Mode (1/2)  
HALT Mode Setting  
When HALT Instruction Is Executed While CPU Is  
Operating on X1 Input Clock  
When HALT Instruction Is Executed While CPU Is  
Operating on Ring-OSC Clock  
When Ring-OSC  
When Ring-OSC  
Oscillation StoppedNote 1  
When X1 Input Clock  
Oscillation Continues  
When X1 Input Clock  
Oscillation Stopped  
Oscillation Continues  
When  
When  
When  
When  
When  
When  
When  
When  
Subsystem Subsystem Subsystem Subsystem Subsystem Subsystem Subsystem Subsystem  
Clock Used  
Clock Not  
Used  
Clock Used  
Clock Not  
Used  
Clock Used  
Clock Not  
Used  
Clock Used  
Clock Not  
Used  
Item  
System clock  
The X1 oscillator, Ring-OSC oscillator, and subsystem clock oscillator are able to oscillate. Clock supply to the  
CPU is stopped.  
CPU  
Operation stopped  
Port (latch)  
Status before HALT mode was set is retained  
16-bit timer/event counter 00  
8-bit timer/event counter 50  
8-bit timer/event counter 51  
8-bit timer H0  
Operable  
Operable  
Operable  
Operable  
Operation stopped  
Operable only when TI50 is selected as the count clock  
Operable only when TI51 is selected as the count clock  
Operable only when TO50 is selected as the count  
clock during 8-bit timer/event counter 50 operation  
8-bit timer H1  
Watch timer  
Operable  
Operable  
Operable  
Operable only when f  
/27 is selected as the count clock  
R
OperableNote 2 Operable  
OperableNote 2 OperableNote 3 Not operable OperableNote 3 Not operable  
Watchdog  
timer  
Ring-OSC cannot  
be stoppedNote 4  
Operable  
Ring-OSC can be  
stoppedNote 4  
Operation stopped  
A/D converter  
Operable  
Operable  
Operable  
Operable  
Not operable  
Serial  
UART0  
UART6  
CSI10  
Operable only when TO50 is selected as the serial  
clock during TM50 operation  
interface  
Operable only when external SCK10 is selected as the  
serial clock  
Clock monitor  
Operable  
Operable  
Operable  
Operable  
Operation stopped  
Operable  
Operation stopped  
Power-on-clear functionNote 5  
Low-voltage detection function  
External interrupt  
Notes 1. When Stopped by softwareis selected for Ring-OSC by a mask option and Ring-OSC is stopped by  
software (for mask options, see CHAPTER 22 MASK OPTIONS).  
2. Operable when the X1 input clock is selected.  
3. Operable when the subsystem clock is selected.  
4. Ring-OSC cannot be stoppedor Ring-OSC can be stopped by softwarecan be selected by a mask  
option.  
5. When POC usedis selected by a mask option.  
337  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
Table 17-2. Operating Statuses in HALT Mode (2/2)  
HALT Mode Setting  
When HALT Instruction Is Executed While CPU Is Operating on Subsystem Clock  
When X1 Input Clock Oscillation Continues  
When X1 Input Clock Oscillation Stopped  
When Ring-OSC  
When Ring-OSC  
Oscillation StoppedNote 1  
When Ring-OSC  
When Ring-OSC  
Oscillation StoppedNote 1  
Item  
Oscillation Continues  
Oscillation Continues  
System clock  
The X1 oscillator, Ring-OSC oscillator, and subsystem clock oscillator are able to oscillate. Clock supply to the  
CPU is stopped.  
CPU  
Operation stopped  
Port (latch)  
Status before HALT mode was set is retained  
16-bit timer/event counter 00  
8-bit timer/event counter 50  
8-bit timer/event counter 51  
8-bit timer H0  
Operable  
Operable  
Operable  
Operable  
Operation stopped  
Operable only when TI50 is selected as the count clock  
Operable only when TI51 is selected as the count clock  
Operable only when TO50 is selected as the count  
clock during 8-bit timer/event counter 50 operation  
8-bit timer H1  
Operable  
Operable only when the  
X1 input clock is selected  
as the count clock  
Operable only when f  
R
/27  
Operation stopped  
is selected as the count  
clock  
Watch timer  
Operable  
Operable  
Operable only when subsystem clock is selected  
Ring-OSC cannot  
be stoppedNote 2  
Operable  
Watchdog  
timer  
Ring-OSC can be  
stoppedNote 2  
Operation stopped  
A/D converter  
Operable  
Operable  
Operable  
Operable  
Not operable  
Serial  
UART0  
UART6  
CSI10  
Operable only when TO50 is selected as the serial  
clock during TM50 operation  
interface  
Operable only when external clock is selected as the  
serial clock  
Clock monitor  
Operable  
Operable  
Operable  
Operable  
Operation stopped  
Power-on-clear functionNote 3  
Low-voltage detection function  
External interrupt  
Notes 1. When Stopped by softwareis selected for Ring-OSC by a mask option and Ring-OSC is stopped by  
software (for mask options, see CHAPTER 22 MASK OPTIONS).  
2. Ring-OSC cannot be stoppedor Ring-OSC can be stopped by softwarecan be selected by a mask  
option.  
3. When POC usedis selected by a mask option.  
338  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
(2) HALT mode release  
The HALT mode can be released by the following two sources.  
(a) Release by unmasked interrupt request  
When an unmasked interrupt request is generated, the HALT mode is released. If interrupt  
acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is  
disabled, the next address instruction is executed.  
Figure 17-4. HALT Mode Release by Interrupt Request Generation  
Interrupt  
request  
HALT  
instruction  
Wait  
Wait  
Standby  
release signal  
Operating mode  
HALT mode  
Operating mode  
CPU clock  
Oscillation  
X1 input clock,  
Ring-OSC clock,  
or subsystem clock  
Remarks 1. The broken lines indicate the case when the interrupt request which has released the standby  
mode is acknowledged.  
2. The wait time is as follows:  
When vectored interrupt servicing is carried out: 8 or 9 clocks  
When vectored interrupt servicing is not carried out: 2 or 3 clocks  
339  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
(b) Release by RESET input  
When the RESET signal is input, HALT mode is released, and then, as in the case with a normal reset  
operation, the program is executed after branching to the reset vector address.  
Figure 17-5. HALT Mode Release by RESET Input  
(1) When X1 input clock is used as CPU clock  
HALT  
instruction  
RESET signal  
Operation  
stopped  
Reset  
period  
CPU clock  
Operating mode  
(X1 input clock)  
HALT mode  
Oscillates  
Operating mode  
(Ring-OSC clock)  
(17/f )  
R
Oscillation  
stopped  
Oscillates  
X1 input clock  
Oscillation stabilization time  
(211/f to 216/f  
X
X
)
(2) When Ring-OSC clock or subsystem clock is used as CPU clock  
HALT  
instruction  
RESET signal  
Reset Operation  
Operating mode  
CPU clock  
HALT mode  
Oscillates  
Operating mode  
(Ring-OSC clock)  
period  
stopped  
Ring-OSC clock  
or  
(17/f )  
R
Ring-OSC clock  
or  
subsystem clock  
Oscillation  
stopped  
Oscillates  
subsystem clock  
Remarks 1. fX: X1 input clock oscillation frequency  
2. fR: Ring-OSC clock oscillation frequency  
Table 17-3. Operation After HALT Mode Release  
Release Source  
MK××  
PR××  
IE  
0
ISP  
Operation  
Next address  
Maskable interrupt  
request  
0
0
×
instruction execution  
0
0
1
×
Interrupt servicing  
execution  
0
0
0
1
1
1
0
×
1
1
0
1
Next address  
instruction execution  
Interrupt servicing  
execution  
1
×
×
×
×
×
HALT mode held  
Reset processing  
RESET input  
×: Dont care  
340  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
17.2.2 STOP mode  
(1) STOP mode setting and operating statuses  
The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the  
setting was the X1 input clock or Ring-OSC clock.  
Caution Because the interrupt request signal is used to clear the standby mode, if there is an interrupt  
source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is  
immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after  
execution of the STOP instruction and the system returns to the operating mode as soon as the  
wait time set using the oscillation stabilization time select register (OSTS) has elapsed.  
The operating statuses in the STOP mode are shown below.  
Table 17-4. Operating Statuses in STOP Mode  
STOP Mode Setting When STOP Instruction Is Executed While CPU Is Operating on X1 Input Clock When STOP Instruction Is Executed  
While CPU Is Operating on Ring-  
When Ring-OSC Oscillation  
Continues  
When Ring-OSC Oscillation  
StoppedNote 1  
OSC Clock  
When Subsystem When Subsystem When Subsystem When Subsystem When Subsystem When Subsystem  
Clock Used Clock Not Used Clock Used Clock Not Used Clock Used Clock Not Used  
Item  
System clock  
Only X1 oscillator oscillation is stopped. Clock supply to the CPU is stopped.  
Operation stopped  
CPU  
Port (latch)  
Status before STOP mode was set is retained  
Operation stopped  
16-bit timer/event counter 00  
8-bit timer/event counter 50  
8-bit timer/event counter 51  
8-bit timer H0  
Operable only when TI50 is selected as the count clock  
Operable only when TI51 is selected as the count clock  
Operable only when TO50 is selected as the count clock during 8-bit timer/event counter 50 operation  
8-bit timer H1  
OperableNote 2  
OperableNote 3  
Operable  
Operation stopped  
Operation stopped OperableNote 3  
OperableNote 2  
Operation stopped OperableNote 3  
Operable  
Watch timer  
Operation stopped  
Watchdog Ring-OSC cannot  
timer  
be stoppedNote 4  
Ring-OSC can be  
stoppedNote 4  
Operation stopped  
A/D converter  
Operation stopped  
Serial interface  
UART0  
UART6  
CSI10  
Operable only when TO50 is selected as the serial clock during TM50 operation  
Operable only when external SCK10 is selected as the serial clock  
Clock monitor  
Operation stopped  
Operable  
Power-on-clear functionNote 5  
Low-voltage detection function  
External interrupt  
Operable  
Operable  
Notes 1. When Stopped by softwareis selected for Ring-OSC by a mask option and Ring-OSC is stopped by  
software (for mask options, see CHAPTER 22 MASK OPTIONS).  
2. Operation continues only when fR/27 is selected as the count clock.  
3. Operable when the subsystem clock is selected.  
4. Ring-OSC cannot be stoppedor Ring-OSC can be stopped by softwarecan be selected by a mask  
option.  
5. When POC usedis selected by a mask option.  
341  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
(2) STOP mode release  
The STOP mode can be released by the following two sources.  
(a) Release by unmasked interrupt request  
When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation  
stabilization time has elapsed, if interrupt acknowledgement is enabled, vectored interrupt servicing is carried  
out. If interrupt acknowledgement is disabled, the next address instruction is executed.  
Figure 17-6. STOP Mode Release by Interrupt Request Generation  
(1) When X1 input clock is used as CPU clock  
Wait  
(set by OSTS)  
STOP  
instruction  
Standby release signal  
Oscillation stabilization  
CPU clock  
Operating mode  
(X1 input clock)  
Operating mode  
wait status  
STOP mode  
(X1 input clock)  
Oscillates  
Oscillates  
Oscillation stopped  
X1 input clock  
Oscillation stabilization time (set by OSTS)  
(2) When Ring-OSC clock is used as CPU clock  
STOP  
instruction  
Standby release signal  
Operation  
Operating mode  
Operating mode  
(Ring-OSC clock)  
stopped  
STOP mode  
CPU clock  
(Ring-OSC clock)  
(17/ f )  
R
Oscillates  
Ring-OSC clock  
Remark The broken lines indicate the case when the interrupt request that has released the standby mode  
is acknowledged.  
342  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 17 STANDBY FUNCTION  
(b) Release by RESET input  
When the RESET signal is input, STOP mode is released and a reset operation is performed after the  
oscillation stabilization time has elapsed.  
Figure 17-7. STOP Mode Release by RESET Input  
(1) When X1 input clock is used as CPU clock  
STOP  
instruction  
RESET signal  
Reset  
period  
Operation  
stopped  
CPU clock  
Operating mode  
(X1 input clock)  
Oscillates  
STOP mode  
Operating mode  
(Ring-OSC clock)  
(17/f  
R
)
Oscillation  
stopped  
Oscillation stopped  
Oscillates  
X1 input clock  
Oscillation stabilization time (211/  
f
X
to 216/f  
)
X
(2) When Ring-OSC clock is used as CPU clock  
STOP  
instruction  
RESET signal  
Reset  
period  
Operation  
stopped  
CPU clock  
Operating mode  
(Ring-OSC clock)  
STOP mode  
Oscillates  
Operating mode  
(Ring-OSC clock)  
(17/f )  
R
Oscillation  
stopped  
Oscillates  
Ring-OSC clock  
Table 17-5. Operation After STOP Mode Release  
Release Source  
MK××  
PR××  
IE  
0
ISP  
Operation  
Next address  
Maskable interrupt  
request  
0
0
×
instruction execution  
0
0
1
×
Interrupt servicing  
execution  
0
0
0
1
1
1
0
×
1
1
0
1
Next address  
instruction execution  
Interrupt servicing  
execution  
1
×
×
×
×
×
STOP mode held  
Reset processing  
RESET input  
×: Dont care  
343  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
The following five operations are available to generate a reset signal.  
(1) External reset input via RESET pin  
(2) Internal reset by watchdog timer program loop detection  
(3) Internal reset by clock monitor X1 clock oscillation stop detection  
(4) Internal reset by comparison of supply voltage and detection voltage of power-on-clear (POC) circuit  
(5) Internal reset by comparison of supply voltage and detection voltage of low-power-supply detector (LVI)  
External and internal resets have no functional differences. In both cases, program execution starts at the address  
at 0000H and 0001H when the reset signal is input.  
A reset is applied when a low level is input to the RESET pin, the watchdog timer overflows, X1 clock oscillation  
stop is detected by the clock monitor, or by POC and LVI circuit voltage detection, and each item of hardware is set to  
the status shown in Table 18-1. Each pin is high impedance during reset input or during the oscillation stabilization  
time just after reset release, except for P130, which is low-level output.  
When a high level is input to the RESET pin, the reset is released and program execution starts using the Ring-  
OSC clock after the CPU clock operation has stopped for 17/fR (s). A reset generated by the watchdog timer and  
clock monitor sources is automatically released after the reset, and program execution starts using the Ring-OSC  
clock after the CPU clock operation has stopped for 17/fR (s) (see Figures 18-2 to 18-4). Reset by POC and LVI  
circuit power supply detection is automatically released when VDD > VPOC or VDD > VLVI after the reset, and program  
execution starts using the Ring-OSC clock after the CPU clock operation has stopped for 17/fR (s) (see CHAPTER 20  
POWER-ON-CLEAR CIRCUIT and CHAPTER 21 LOW-VOLTAGE DETECTOR).  
Cautions 1. For an external reset, input a low level for 10 µs or more to the RESET pin.  
2. During reset input, the X1 input clock and Ring-OSC clock stop oscillating.  
3. When the STOP mode is released by a reset, the STOP mode contents are held during reset  
input. However, the port pins become high-impedance, except for P130, which is set to low-  
level output.  
344  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
Figure 18-1. Block Diagram of Reset Function  
Internal bus  
Reset control flag register (RESF)  
WDTRF  
Set  
CLMRF  
Set  
LVIRF  
Set  
WDTRES  
(Watchdog timer reset signal)  
Clear  
Clear  
Clear  
CLMRESB  
(Clock monitor reset signal)  
Reset signal  
RESET  
Reset signal to LVIM/LVIS register  
Reset signal  
POCRESB  
(Power-on-clear circuit reset signal)  
LVIRESB  
(Low-voltage detector reset signal)  
Caution An LVI circuit internal reset does not reset the LVI circuit.  
Remarks 1. LVIM: Low-voltage detection register  
2. LVIS: Low-voltage detection level selection register  
345  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
Figure 18-2. Timing of Reset by RESET Input  
X1  
Normal operation  
(Reset processing,  
Ring-OSC clock)  
Operation stop  
(17/f  
Reset period  
(Oscillation stop)  
CPU clock  
RESET  
Normal operation  
R
)
Internal  
reset signal  
Delay  
Delay  
Hi-ZNote  
Port pin  
Figure 18-3. Timing of Reset Due to Watchdog Timer Overflow  
X1  
Normal operation  
(Reset processing,  
Ring-OSC clock)  
Operation stop  
(17/f  
Reset period  
(Oscillation stop)  
Normal operation  
CPU clock  
R
)
Watchdog  
timer  
overflow  
Internal  
reset signal  
Hi-ZNote  
Port pin  
Caution A watchdog timer internal reset resets the watchdog timer.  
Figure 18-4. Timing of Reset in STOP Mode by RESET Input  
X1  
STOP instruction execution  
Normal operation  
(Reset processing,  
Ring-OSC clock)  
Operation stop  
(17/f  
Stop status  
(Oscillation stop)  
Reset period  
(Oscillation stop)  
CPU clock Normal operation  
RESET  
R
)
Internal  
reset signal  
Delay  
Delay  
Hi-ZNote  
Port pin  
Note The port pins become high impedance, except for P130, which is set to low-level output.  
Remark For the reset timing of the power-on-clear circuit and low-voltage detector, see CHAPTER 20 POWER-  
ON-CLEAR CIRCUIT and CHAPTER 21 LOW-VOLTAGE DETECTOR.  
346  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
Table 18-1. Hardware Statuses After Reset (1/2)  
Hardware  
Status After Reset  
Program counter (PC)Note 1  
The contents of the  
reset vector table  
(0000H, 0001H) are  
set.  
Stack pointer (SP)  
Undefined  
02H  
Program status word (PSW)  
RAM  
Data memory  
General-purpose registers  
UndefinedNote 2  
UndefinedNote 2  
00H  
Ports (P0 to P3, P6, P7, P12, P13) (output latches)  
Port mode registers (PM0, PM1, PM3, PM6, PM7, PM12)  
Pull-up resistor option registers (PU0, PU1, PU3 to PU7, PU12)  
Input switch control register (ISC)  
FFH  
00H  
00H  
Internal memory size switching register (IMS)  
Processor clock control register (PCC)  
CFH  
00H  
Ring-OSC mode register (RCM)  
00H  
Main clock mode register (MCM)  
00H  
Main OSC control register (MOC)  
00H  
Oscillation stabilization time select register (OSTS)  
Oscillation stabilization time counter status register (OSTC)  
05H  
00H  
16-bit timer/event  
counter 00  
Timer counter 00 (TM00)  
0000H  
0000H  
00H  
Capture/compare registers 000, 010 (CR000, CR010)  
Mode control register 00 (TMC00)  
Prescaler mode register 00 (PRM00)  
Capture/compare control register 00 (CRC00)  
Timer output control register 00 (TOC00)  
Timer counters 50, 51 (TM50, TM51)  
Compare registers 50, 51 (CR50, CR51)  
Timer clock selection registers 50, 51 (TCL50, TCL51)  
Mode control registers 50, 51 (TMC50, TMC51)  
Compare registers 00, 10, 01, 11 (CMP00, CMP10, CMP01, CMP11)  
Mode registers (TMHMD0, TMHMD1)  
Carrier control register 1 (TMCYC1)Note 3  
Operation mode register (WTM)  
00H  
00H  
00H  
8-bit timer/event  
counters 50, 51  
00H  
00H  
00H  
00H  
8-bit timers H0, H1  
00H  
00H  
00H  
Watch timer  
00H  
Watchdog timer  
Mode register (WDTM)  
67H  
Enable register (WDTE)  
9AH  
Notes 1. During reset input or oscillation stabilization time wait, only the PC contents among the hardware statuses  
become undefined. All other hardware statuses remain unchanged after reset.  
2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.  
3. 8-bit timer H1 only.  
347  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
Table 18-1. Hardware Statuses After Reset (2/2)  
Hardware  
Status After Reset  
Undefined  
00H  
A/D converter  
Conversion result register (ADCR)  
Mode register (ADM)  
Analog input channel specification register (ADS)  
Power-fail comparison mode register (PFM)  
Power-fail comparison threshold register (PFT)  
Receive buffer register 0 (RXB0)  
00H  
00H  
00H  
Serial interface UART0  
Serial interface UART6  
FFH  
Transmit shift register 0 (TXS0)  
FFH  
Asynchronous serial interface operation mode register 0 (ASIM0)  
Baud rate generator control register 0 (BRGC0)  
Receive buffer register 6 (RXB6)  
01H  
1FH  
FFH  
Transmit buffer register 6 (TXB6)  
FFH  
Asynchronous serial interface operation mode register 6 (ASIM6)  
Asynchronous serial interface reception error status register 6 (ASIS6)  
Asynchronous serial interface transmission status register 6 (ASIF6)  
Clock selection register 6 (CKSR6)  
01H  
00H  
00H  
00H  
Baud rate generator control register 6 (BRGC6)  
Asynchronous serial interface control register 6 (ASICL6)  
Transmit buffer register 10 (SOTB10)  
FFH  
16H  
Serial interface CSI10  
Undefined  
00H  
Serial I/O shift register 10 (SIO10)  
Serial operation mode register 10 (CSIM10)  
Serial clock selection register 10 (CSIC10)  
Key return mode register (KRM)  
00H  
00H  
Key interrupt  
00H  
Clock monitor  
Mode register (CLM)  
00H  
Reset function  
Low-voltage detector  
Reset control flag register (RESF)  
00HNote  
00HNote  
00HNote  
00H  
Low-voltage detection register (LVIM)  
Low-voltage detection level selection register (LVIS)  
Request flag registers 0L, 0H, 1L (IF0L, IF0H, IF1L)  
Mask flag registers 0L, 0H, 1L (MK0L, MK0H, MK1L)  
Priority specification flag registers 0L, 0H, 1L (PR0L, PR0H, PR1L)  
External interrupt rising edge enable register (EGP)  
External interrupt falling edge enable register (EGN)  
Interrupt  
FFH  
FFH  
00H  
00H  
Note These values vary depending on the reset source.  
Reset Source  
RESET Input  
Reset by POC  
Cleared (00H)  
Reset by WDT  
Cleared (00H)  
Reset by CLM  
Cleared (00H)  
Reset by LVI  
Register  
RESF  
LVIM  
See Table 18-2.  
Cleared (00H)  
Held  
LVIS  
348  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 18 RESET FUNCTION  
18.1 Register for Confirming Reset Source  
Many internal reset generation sources exist in the 78K0/KC1 Series. The reset control flag register (RESF) is  
used to store which source has generated the reset request.  
RESF can be read by an 8-bit memory manipulation instruction.  
RESET input, reset input by power-on-clear (POC) circuit, and reading RESF clear RESF to 00H.  
Figure 18-5. Format of Reset Control Flag Register (RESF)  
Address: FFACH After reset: 00HNote  
R
Symbol  
RESF  
7
0
6
0
5
0
4
3
0
2
0
1
0
WDTRF  
CLMRF  
LVIRF  
WDTRF  
Internal reset request by watchdog timer (WDT)  
0
1
Internal reset request is not generated, or RESF is cleared.  
Internal reset request is generated.  
CLMRF  
Internal reset request by clock monitor (CLM)  
Internal reset request is not generated, or RESF is cleared.  
Internal reset request is generated.  
0
1
LVIRF  
Internal reset request by low-voltage detector (LVI)  
Internal reset request is not generated, or RESF is cleared.  
Internal reset request is generated.  
0
1
Note The value after reset varies depending on the reset source.  
Caution Do not read data by a 1-bit memory manipulation instruction.  
The status of RESF when a reset request is generated is shown in Table 18-2.  
Table 18-2. RESF Status When Reset Request Is Generated  
Reset Source  
RESET input  
Reset by POC  
Reset by WDT  
Reset by CLM  
Reset by LVI  
Flag  
WDTRF  
CLMRF  
LVIRF  
Cleared (0)  
Cleared (0)  
Set (1)  
Held  
Held  
Held  
Set (1)  
Held  
Held  
Held  
Set (1)  
349  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
19.1 Functions of Clock Monitor  
The clock monitor samples the X1 input clock using the on-chip Ring-OSC, and generates an internal reset signal  
when the X1 input clock is stopped.  
When a reset signal is generated by the clock monitor, bit 1 (CLMRF) of the reset control flag register (RESF) is set  
to 1. For details of RESF, refer to CHAPTER 18 RESET FUNCTION.  
The clock monitor automatically stops under the following conditions.  
In STOP mode and during the oscillation stabilization time  
When the X1 input clock is stopped by software (when MSTOP = 1 or MCC = 1)  
During the oscillation stabilization time after reset is released  
When the Ring-OSC clock is stopped  
Remark MSTOP: Bit 7 of the main OSC control register (MOC)  
19.2 Configuration of Clock Monitor  
Clock monitor consists of the following hardware.  
Table 19-1. Configuration of Clock Monitor  
Configuration  
Item  
Control register  
Clock monitor mode register (CLM)  
Figure 19-1. Block Diagram of Clock Monitor  
X1 input clock  
Internal reset signal  
Ring-OSC clock  
Enable/disable  
CLME  
Clock monitor mode register (CLM)  
350  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
19.3 Registers Controlling Clock Monitor  
Clock monitor is controlled by the clock monitor mode register (CLM).  
(1) Clock monitor mode register (CLM)  
This register sets the operation mode of the clock monitor.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears this register to 00H.  
Figure 19-2. Format of Clock Monitor Mode Register (CLM)  
Address: FFA9H After reset: 00H R/W  
Symbol  
CLM  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CLME  
Enables/disables clock monitor operation  
CLME  
0
1
Disables clock monitor operation  
Enables clock monitor operation  
Cautions 1. Once bit 0 (CLME) is set to 1, it cannot be cleared to 0 except by RESET input or the internal  
reset signal.  
2. If the reset signal is generated by the clock monitor, CLME is cleared to 0 and bit 1 (CLMRF)  
of the reset control flag register (RESF) is set to 1. CLMRF is read by software and then  
automatically cleared to 0. CLMRF is cleared under the following conditions.  
RESET input  
Internal reset signal generation by POC  
After read by software  
351  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
19.4 Operation of Clock Monitor  
This section explains the functions of the clock monitor. The start and stop conditions are as follows.  
<Start condition>  
When bit 0 (CLME) of the clock monitor mode register (CLM) is set to operation enabled (1).  
<Stop condition>  
In STOP mode and during the oscillation stabilization time  
When the X1 input clock is stopped by software (when MSTOP = 1 or MCC = 1)  
During the oscillation stabilization time after reset is released  
When the Ring-OSC clock is stopped  
Remark MSTOP: Bit 7 of the main OSC control register (MOC)  
Table 19-2. Operation Status of Clock Monitor (When CLME = 1)  
CPU Operation Clock Operation Mode  
X1 Input Clock Status  
Stopped  
Ring-OSC Clock Status  
Oscillating  
Clock Monitor Status  
Stopped  
X1 input clock  
STOP mode  
RESET input  
HALT mode  
StoppedNote  
Oscillating  
StoppedNote  
Oscillating  
Stopped  
Oscillating  
Operating  
Stopped  
Stopped  
StoppedNote  
Ring-OSC clock  
STOP mode  
RESET input  
HALT mode  
Oscillating  
Oscillating  
Stopped  
Operating  
Stopped  
Note The Ring-OSC clock is stopped only when the Ring-OSC can be stopped by softwareis selected by a  
mask option. If Ring-OSC cannot be stoppedis selected, the Ring-OSC clock cannot be stopped.  
The clock monitor timing is as shown in Figure 19-3.  
352  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
Figure 19-3. Timing of Clock Monitor (1/3)  
(1) When internal reset is executed by oscillation stop of X1 input clock  
4 clocks of Ring-OSC clock  
X1 input clock  
Ring-OSC clock  
Internal reset signal  
CLME  
CLMRFNote  
Note CLMRF is read by software and then automatically cleared to 0. CLMRF is cleared under the following  
conditions.  
RESET input  
Internal reset signal generation by POC  
After read by software  
(2) Clock monitor status after STOP mode is released  
(CLME = 1 is set when CPU clock operates on X1 input clock and before entering STOP mode)  
Normal  
operation  
Normal operation  
Oscillation stabilization time  
CPU operation  
X1 input clock  
STOP  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
Ring-OSC clock  
CLME  
Clock monitor status  
Monitoring  
Monitoring stopped  
Monitoring  
When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring  
automatically starts at the end of the X1 input clock oscillation stabilization time. Monitoring is stopped in STOP mode  
and during the oscillation stabilization time.  
353  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
Figure 19-3. Timing of Clock Monitor (2/3)  
(3) Clock monitor status after STOP mode is released  
(CLME = 1 is set when CPU clock operates on Ring-OSC clock and before entering STOP mode)  
Clock supply  
stopped  
Normal  
operation  
Normal operation (Ring-OSC clock)  
STOP  
CPU operation  
X1 input clock  
Oscillation  
stopped  
Oscillation stabilization time  
(set by OSTS register)  
Ring-OSC clock  
17 clocks  
CLME  
Clock monitor status  
Monitoring  
Monitoring  
stopped  
Monitoring stopped  
Monitoring  
When bit 0 (CLME) of the clock monitor mode register (CLM) is set to 1 before entering STOP mode, monitoring  
automatically starts at the end of the X1 input clock oscillation stabilization time. Monitoring is stopped in STOP mode  
and during the oscillation stabilization time.  
(4) Clock monitor status after RESET input  
(CLME = 1 is set after RESET input and during X1 input clock oscillation stabilization time)  
Clock supply  
stopped  
Normal  
operation  
Normal operation (Ring-OSC clock)  
CPU operation  
X1 input clock  
Reset  
Oscillation  
stopped  
Oscillation stabilization time  
Ring-OSC clock  
RESET  
Oscillation  
stopped  
17 clocks  
Set to 1 by software  
CLME  
Clock monitor status  
Monitoring  
Monitoring stopped  
Monitoring  
Waiting for end  
of oscillation  
stabilization time  
RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor  
operation. Even if CLME is set to 1 by software during the oscillation stabilization time of the X1 input clock,  
monitoring is not performed until the oscillation stabilization time of the X1 input clock ends. Monitoring is  
automatically started at the end of the oscillation stabilization time.  
354  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 19 CLOCK MONITOR  
Figure 19-3. Timing of Clock Monitor (3/3)  
(5) Clock monitor status after RESET input  
(CLME = 1 is set after RESET input and at the end of X1 input clock oscillation stabilization time)  
Normal  
operation  
Clock supply  
stopped  
CPU operation  
X1 input clock  
Normal operation (Ring-OSC clock)  
Reset  
Oscillation stabilization time  
Ring-OSC clock  
RESET  
17 clocks  
Set to 1 by software  
CLME  
Clock monitor status  
Monitoring  
Monitoring stopped  
Monitoring  
RESET input clears bit 0 (CLME) of the clock monitor mode register (CLM) to 0 and stops the clock monitor  
operation. When CLME is set to 1 by software at the end of the oscillation stabilization time of the X1 input clock,  
monitoring is started.  
355  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 20 POWER-ON-CLEAR CIRCUIT  
20.1 Functions of Power-on-Clear Circuit  
The power-on-clear circuit (POC) has the following functions.  
Generates internal reset signal at power on.  
Compares supply voltage (VDD) and detection voltage (VPOC), and generates internal reset signal when VDD <  
VPOC.  
The following can be selected by a mask option.  
POC disabled  
POC used (detection voltage: VPOC = 2.85 V 0.15 V)  
POC used (detection voltage: VPOC = 3.5 V 0.2 V)  
Caution If an internal reset signal is generated in the POC circuit, the reset control flag register (RESF) is  
cleared to 00H.  
Remark This product incorporates multiple hardware functions that generate an internal reset signal. A flag that  
indicates the reset cause is located in the reset control flag register (RESF) for when an internal reset  
signal is generated by the watchdog timer (WDT), low-voltage-detection (LVI) circuit, or clock monitor.  
RESF is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by WDT,  
LVI, or the clock monitor.  
For details of the RESF, refer to CHAPTER 18 RESET FUNCTION.  
356  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 20 POWER-ON-CLEAR CIRCUIT  
20.2 Configuration of Power-on-Clear Circuit  
The block diagram of the power-on-clear circuit is shown in Figure 20-1.  
Figure 20-1. Block Diagram of Power-on-Clear Circuit  
V
DD  
V
DD  
+
Internal reset signal  
Detection  
voltage source  
(VPOC  
)
20.3 Operation of Power-on-Clear Circuit  
In the power-on-clear circuit, the supply voltage (VDD) and detection voltage (VPOC) are compared, and when VDD <  
VPOC, an internal reset signal is generated.  
Figure 20-2. Timing of Internal Reset Signal Generation in Power-on-Clear Circuit  
Supply voltage (VDD  
)
POC detection voltage  
(VPOC  
)
2.7 V  
Time  
Internal reset signal  
357  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 20 POWER-ON-CLEAR CIRCUIT  
20.4 Cautions for Power-on-Clear Circuit  
In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the POC detection  
voltage (VPOC), the system may be repeatedly reset and released from the reset status. In this case, the time from  
release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.  
<Action>  
After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a  
software counter that uses a timer, and then initialize the ports.  
Figure 20-3. Example of Software Processing After Release of Reset (1/2)  
If supply voltage fluctuation is 50 ms or less in vicinity of POC detection voltage  
; The Ring-OSC clock is set as the CPU clock when the reset signal is generated  
Reset  
Checking cause  
of resetNote 2  
; The cause of reset (power-on-clear, WDT, LVI, or clock monitor)  
can be identified by the RESF register.  
Power-on-clear  
; 8-bit timer H1 can operate with the Ring-OSC clock.  
Start timer  
(set to 50 ms)  
Source: f  
R
(240 kHz)/27 × compare 100 = 53 ms  
(fR: Ring-OSC clock oscillation frequency)  
Checking stabilization  
of oscillation  
; Check the stabilization of oscillation of the X1 input clock by using the  
OSTC register.  
Note 1  
; Change the CPU clock from the Ring-OSC clock to the X1 input clock.  
Change CPU clock  
No  
50 ms has passed?  
(TMIFH1 = 1?)  
; TMIFH1 = 1: Interrupt request is generated.  
Yes  
Initialization  
processing  
; Initialization of ports  
Notes 1. If reset is generated again during this period, initialization processing is not started.  
2. A flowchart is shown on the next page.  
358  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 20 POWER-ON-CLEAR CIRCUIT  
Figure 20-3. Example of Software Processing After Release of Reset (2/2)  
Checking cause of reset  
Check cause of reset  
Yes  
Yes  
Yes  
WDTRF of RESF  
register = 1?  
No  
Reset processing by  
watchdog timer  
CLMRF of RESF  
register = 1?  
No  
Reset processing by  
clock monitor  
LVIRF of RESF  
register = 1?  
No  
Reset processing by  
low-voltage detector  
Power-on-clear/external  
reset generated  
359  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
21.1 Functions of Low-Voltage Detector  
The low-voltage detector (LVI) has following functions.  
Compares supply voltage (VDD) and detection voltage (VLVI), and generates an internal interrupt signal or  
internal reset signal when VDD < VLVI.  
Detection levels (seven levels) of supply voltage can be changed by software.  
Interrupt or reset function can be selected by software.  
Operable in STOP mode.  
When the low-voltage detector is used to reset, bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if  
reset occurs. For details of RESF, refer to CHAPTER 18 RESET FUNCTION.  
21.2 Configuration of Low-Voltage Detector  
The block diagram of the low-voltage detector is shown below.  
Figure 21-1. Block Diagram of Low-Voltage Detector  
V
DD  
V
DD  
N-ch  
Internal reset signal  
+
INTLVI  
Detection  
voltage source  
(VLVI  
)
3
LVIF  
LVIMD  
LVIS1 LVIS0  
LVION LVIE  
LVIS2  
Low-voltage detection level  
selection register (LVIS)  
Low-voltage detection register  
(LVIM)  
Internal bus  
360  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
21.3 Registers Controlling Low-Voltage Detector  
The low-voltage detector is controlled by the following registers.  
Low-voltage detection register (LVIM)  
Low-voltage detection level selection register (LVIS)  
361  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
(1) Low-voltage detection register (LVIM)  
This register sets low-voltage detection and the operation mode.  
This register can be set by a 1-bit or 8-bit memory manipulation instruction.  
RESET input clears LVIM to 00H.  
Figure 21-2. Format of Low-Voltage Detection Register (LVIM)  
Address: FFBEH After reset: 00H R/WNote 1  
7
6
0
5
0
4
3
0
2
0
1
0
Symbol  
LVIM  
LVION  
LVIE  
LVIMD  
LVIF  
LVIONNotes 2, 3  
Enables low-voltage detection operation  
Specifies reference voltage generator  
0
1
Disables operation  
Enables operation  
LVIENotes 2, 4, 5  
0
1
Disables operation  
Enables operation  
LVIMDNote 2  
Low-voltage detection operation mode selection  
Generates interrupt signal when supply voltage (VDD) < detection voltage (VLVI)  
0
1
Generates internal reset signal when supply voltage (VDD) < detection voltage (VLVI)  
LVIFNote 6  
Low-voltage detection flag  
Supply voltage (VDD) > detection voltage (VLVI), or when operation is disabled  
Supply voltage (VDD) < detection voltage (VLVI)  
0
1
Notes 1. Bit 0 is read-only.  
2. LVION, LVIE, and LVIMD are cleared to 0 at a reset other than an LVI reset. These are not  
cleared to 0 at an LVI reset.  
3. When LVION is set to 1, operation of the comparator in the LVI circuit is started. Use  
software to instigate a wait of at least 0.2 ms from when LVION is set to 1 until the voltage is  
confirmed at LVIF.  
4. When LVIE is set to 1, a reference voltage generator operation in the LVI circuit is started.  
Use software to instigate a wait of at least 2 ms from when LVIE is set to 1 until LVION is set  
to 1.  
5. If use POCis selected by a mask option, leave LVIE as 0. A wait time (2 ms) until LVION is  
set to 1 is not necessary.  
6. The value of LVIF is output as the interrupt request signal INTLVI when LVION = 1 and  
LVIMD = 0.  
Caution To stop LVI, follow either of the procedures below.  
When using 8-bit manipulation instruction: Write 00H to LVIM.  
When using 1-bit memory manipulation instruction: Clear LVION to 0 first and then  
clear LVIE to 0.  
362  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
(2) Low-voltage detection level selection register (LVIS)  
This register selects the low-voltage detection level.  
This register can be set by an 8-bit memory manipulation instruction.  
RESET input clears LVIS to 00H.  
Figure 21-3. Format of Low-Voltage Detection Level Selection Register (LVIS)  
Address: FFBFH After reset: 00H R/W  
7
0
6
0
5
0
4
0
3
0
2
1
0
Symbol  
LVIS  
LVIS2  
LVIS1  
LVIS0  
LVIS2  
LVIS1  
LVIS0  
Detection level  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VLVI0 (4.3 V 0.2 V)  
VLVI1 (4.1 V 0.2 V)  
VLVI2 (3.9 V 0.2 V)  
VLVI3 (3.7 V 0.2 V)  
VLVI4 (3.5 V 0.2 V)Note  
VLVI5 (3.3 V 0.2 V)Note  
VLVI6 (3.1 V 0.15 V)Note  
Setting prohibited  
Note When the detection voltage of the POC circuit is specified as VPOC = 3.5 V 0.2 V by a mask  
option, do not select VLVI4 to VLVI6 as the LVI detection voltage. Even if VLVI4 to VLVI6 are selected,  
POC circuit has priority.  
363  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
21.4 Operation of Low-Voltage Detector  
The low-voltage detector can be used in the following two modes.  
Used as reset  
Compares the supply voltage (VDD) and detection voltage (VLVI), and generates an internal reset signal when  
VDD < VLVI.  
Used as interrupt  
Compares the supply voltage (VDD) and detection voltage (VLVI), and generates an interrupt signal (INTLVI)  
when VDD < VLVI.  
The operation is set as follows.  
(1) When used as reset  
When starting operation  
<1> Mask the LVI interrupt (LVIMK = 1).  
<2> Set the detection voltage using bits 2 to 0 (LVIS2 to LVIS0) of the low-voltage detection level selection  
register (LVIS).  
<3> Set bit 4 (LVIE) of the low-voltage detection register (LVIM) to 1 (enables reference voltage generator  
operation).  
<4> Use software to instigate a wait of at least 2 ms.  
<5> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).  
<6> Use software to instigate a wait of at least 0.2 ms.  
<7> Confirm that supply voltage (VDD) > detection voltage (VLVI)at bit 0 (LVIF) of LVIM.  
<8> Set bit 1 (LVIMD) of LVIM to 1 (generates internal reset signal when supply voltage (VDD) < detection  
voltage (VLVI)).  
Cautions 1. <1> must always be executed. When LVIMK = 0, an interrupt may occur immediately  
after the processing in <5>.  
2. If "use POC" is selected by a mask option, procedures <3> and <4> are not required.  
3. If supply voltage (VDD) > detection voltage (VLVI) when LVIM is set to 1, an internal reset  
signal is not generated.  
When stopping operation  
Either of the following procedures must be executed.  
When using 8-bit memory manipulation instruction:  
Write 00H to LVIM.  
When using 1-bit memory manipulation instruction:  
Clear LVIMD to 0, LVION to 0, and LVIE to 0 in that order.  
364  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
Figure 21-4. Timing of Low-Voltage Detector Internal Reset Signal Generation  
Supply voltage (VDD  
)
LVI detection voltage  
(VLVI  
POC detection voltage  
(VPOC  
)
)
2.7 V  
Time  
<2>  
LVIMK flag  
(set by software)  
<1>  
LVIE flag  
(set by software)  
Not cleared  
Not cleared  
Not cleared  
<3>  
Clear  
Clear  
<4> 2 ms or longer  
Not cleared  
LVION flag  
(set by software)  
<5>  
<6> 0.2 ms or longer  
LVIF flag  
<7>  
Clear  
Clear  
LVIMD flag  
(set by software)  
Not cleared  
Not cleared  
<8>  
LVIRF flagNote  
LVI reset signal  
POC reset signal  
Cleared by  
software  
Cleared by  
software  
Internal reset signal  
Note LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, refer to CHAPTER 18 RESET  
FUCNTION.  
Remark <1> to <8> in Figure 21-4 above correspond to <1> to <8> in the description of "when starting operation"  
in 21.4 (1) When used as reset.  
365  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
(2) When used as interrupt  
When starting operation  
<1> Mask the LVI interrupt (LVIMK = 1).  
<2> Set the detection voltage using bits 2 to 0 (LVIS2 to LVIS0) of the low-voltage detection level selection  
register (LVIS).  
<3> Set bit 4 (LVIE) of the low-voltage detection register (LVIM) to 1 (enables reference voltage generator  
operation).  
<4> Use software to instigate a wait of at least 2 ms.  
<5> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).  
<6> Use software to instigate a wait of at least 0.2 ms.  
<7> Confirm that supply voltage (VDD) > detection voltage (VLVI)at bit 0 (LVIF) of LVIM.  
<8> Clear the interrupt request flag of LVI (LVIIF) to 0.  
<9> Release the interrupt mask flag of LVI (LVIMK).  
<10> Execute the EI instruction (when vector interrupts are used).  
Caution If “use POC” is selected by a mask option, procedures <3> and <4> are not required.  
When stopping operation  
Either of the following procedures must be executed.  
When using 8-bit memory manipulation instruction:  
Write 00H to LVIM.  
When using 1-bit memory manipulation instruction:  
Clear LVION to 0 first, and then clear LVIE to 0.  
366  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
Figure 21-5. Timing of Low-Voltage Detector Interrupt Signal Generation  
Supply voltage (VDD)  
LVI detection voltage  
(VLVI)  
POC detection voltage  
(VPOC)  
2.7 V  
Time  
<2>  
LVIMK flag  
(set by software)  
<1>  
<9> Cleared by software  
LVIE flag  
(set by software)  
<3>  
<4> 2 ms or longer  
LVION flag  
(set by software)  
<5>  
<6> 0.2 ms or longer  
LVIF flag  
INTLVI  
<7>  
LVIIF flag  
<8>  
Cleared by software  
Internal reset signal  
Remark <1> to <9> in Figure 21-5 above correspond to <1> to <9> in the description of when starting operation”  
in 21.4 (2) When used as interrupt.  
367  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
21.5 Cautions for Low-Voltage Detector  
In a system where the supply voltage (VDD) fluctuates for a certain period in the vicinity of the LVI detection voltage  
(VLVI), the operation is as follows depending on how the low-voltage detector is used.  
(1) When used as reset  
The system may be repeatedly reset and released from the reset status.  
In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set  
by taking action (1) below.  
(2) When used as interrupt  
Interrupt requests may be frequently generated. Take action (2) below.  
In this system, take the following actions.  
<Action>  
(1) When used as reset  
After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a  
software counter that uses a timer, and then initialize the ports.  
368  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
Figure 21-6. Example of Software Processing After Release of Reset (1/2)  
If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage  
;
The Ring-OSC clock is set as the CPU clock when the reset signal is generated  
Reset  
Checking cause  
of resetNote 2  
;
The cause of reset (power-on-clear, WDT, LVI, or clock monitor)  
can be identified by the RESF register.  
LVI  
;
8-bit timer H1 can operate with the Ring-OSC clock.  
Start timer  
(set to 50 ms)  
Source: f  
R
(240 kHz)/27 × compare 100 = 53 ms  
(fR: Ring-OSC clock oscillation frequency)  
Checking stabilization  
of oscillation  
;
;
Check the stabilization of oscillation of the X1 input clock by using the  
OSTC register.  
Note 1  
Change the CPU clock from the Ring-OSC clock to the X1 input clock.  
Change CPU clock  
No  
50 ms has passed?  
(TMIFH1 = 1?)  
;
;
TMIFH1 = 1: Interrupt request is generated.  
Yes  
Initialization  
processing  
Initialization of ports  
Notes 1. If reset is generated again during this period, initialization processing is not started.  
2. A flowchart is shown on the next page.  
369  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
Figure 21-6. Example of Software Processing After Release of Reset (2/2)  
Checking cause of reset  
Check cause of reset  
Yes  
Yes  
No  
WDTRF of RESF  
register = 1?  
No  
Reset processing by  
watchdog timer  
CLMRF of RESF  
register = 1?  
No  
Reset processing by  
clock monitor  
LVIRF of RESF  
register = 1?  
Yes  
Power-on-clear/external  
reset generated  
Reset processing by  
low-voltage detector  
370  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 21 LOW-VOLTAGE DETECTOR  
(2) When used as interrupt  
Disable interrupts (DI) in the servicing routine of the LVI interrupt, and check to see if supply voltage (VDD) >  
detection voltage (VLVI), by using bit 0 (LVIF) of the low-voltage detection register (LVIM). Then enable interrupts  
(EI).  
In a system where the supply voltage fluctuation period is long in the vicinity of the LVI detection voltage, disable  
interrupts (DI), wait for the supply voltage fluctuation period, check that supply voltage (VDD) > detection voltage  
(VLVI)with the LVIF flag, and then enable interrupts (EI).  
Figure 21-7. Example of Software Processing of LVI Interrupt  
If supply voltage fluctuation is 50 ms or less in vicinity of LVI detection voltage  
LVI interrupt  
DI  
; Disable interrupts.  
Start timer  
(set to 50 ms)  
LVI interrupt servicing  
No  
50 ms has passed?  
(TMIFH1 = 1?)  
; TMIFH1 = 1: Interrupt request is generated  
Yes  
No  
LVIF1 of LVIM  
register = 0?  
; Check that supply voltage (VDD) > detection voltage (VLVI).  
Yes  
EI  
; Enable interrupts.  
371  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 22 MASK OPTIONS  
Mask ROM versions are provided with the following mask options.  
1. Power-on-clear (POC) circuit  
POC cannot be used  
POC used (detection voltage: VPOC = 2.85 V 0.15 V)  
POC used (detection voltage: VPOC = 3.5 V 0.2 V)  
2. Ring-OSC  
Cannot be stopped  
Can be stopped by software  
3. Pull-up resistor of P60 to P63 pins  
Pull-up resistor can be incorporated in 1-bit units  
(Pull-up resistors are not available for the flash memory versions.)  
Flash memory versions that support the mask options of the mask ROM versions are as follows.  
Table 22-1. Flash Memory Versions Supporting Mask Options of Mask ROM Versions  
Mask Option  
Flash Memory Version  
POC Circuit  
POC cannot be used  
Ring-OSC  
Cannot be stopped  
µPD78F0114M1  
Can be stopped by software  
Cannot be stopped  
µPD78F0114M2  
µPD78F0114M3  
µPD78F0114M4  
µPD78F0114M5  
µPD78F0114M6  
POC used (VPOC = 2.85 V 0.15 V)  
POC used (VPOC = 3.5 V 0.2 V)  
Can be stopped by software  
Cannot be stopped  
Can be stopped by software  
372  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
                                                       
The µPD78F0114 is provided as the flash memory version of the 78K0/KC1 Series.  
The µPD78F0114 replaces the internal mask ROM of the µPD780114 with flash memory to which a program can  
be written, erased, and overwritten while mounted on the board. Table 23-1 lists the differences between the  
µPD78F0114 and the mask ROM versions.  
Table 23-1. Differences Between µPD78F0114 and Mask ROM Versions  
Item  
µPD78F0114  
Flash memory  
Mask ROM Versions  
Mask ROM  
Internal ROM configuration  
Internal ROM capacity  
32 KBNote  
µPD780111: 8 KB  
µPD780112: 16 KB  
µPD780113: 24 KB  
µPD780114: 32 KB  
Internal high-speed RAM capacity  
1024 bytesNote  
µPD780111: 512 bytes  
µPD780112: 512 bytes  
µPD780113: 1024 bytes  
µPD780114: 1024 bytes  
IC pin  
None  
Available  
None  
VPP pin  
Available  
Electrical specifications  
Refer to CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES).  
Note The same capacity as the mask ROM versions can be specified by means of the internal memory size  
switching register (IMS).  
Caution There are differences in noise immunity and noise radiation between the flash memory and  
mask ROM versions. When pre-producing an application set with the flash memory version  
and then mass-producing it with the mask ROM version, be sure to conduct sufficient  
evaluations for the commercial samples (not engineering samples) of the mask ROM versions.  
373  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
23.1 Internal Memory Size Switching Register  
The µPD78F0114 allows users to select the internal memory capacity using the internal memory size switching  
register (IMS) so that the same memory map as that of the mask ROM versions with a different internal memory  
capacity can be achieved.  
IMS is set by an 8-bit memory manipulation instruction.  
RESET input sets IMS to CFH.  
Caution Be sure to set the value of the relevant mask ROM version at initialization.  
Figure 23-1. Format of Internal Memory Size Switching Register (IMS)  
Address: FFF0H After reset: CFH R/W  
Symbol  
IMS  
7
6
5
4
0
3
2
1
0
RAM2  
RAM1  
RAM0  
ROM3  
ROM2  
ROM1  
ROM0  
RAM2  
RAM1  
RAM0  
Internal high-speed RAM capacity selection  
0
1
1
0
0
512 bytes  
1
1024 bytes  
Other than above  
Setting prohibited  
ROM3  
ROM2  
ROM1  
ROM0  
Internal ROM capacity selection  
0
0
0
1
0
1
1
0
1
0
1
0
0
0
0
0
8 KB  
16 KB  
24 KB  
32 KB  
Other than above  
Setting prohibited  
The IMS settings required to obtain the same memory map as mask ROM versions are shown in Table 23-2.  
Table 23-2. Internal Memory Size Switching Register Settings  
Target Mask ROM Versions  
µPD780111  
IMS Setting  
42H  
µPD780112  
44H  
µPD780113  
C6H  
µPD780114  
C8H  
Caution When using a mask ROM version, be sure to set the value indicated in Table 23-2 to IMS.  
374  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
23.2 Flash Memory Programming  
On-board writing of flash memory (with device mounted on target system) is supported.  
On-board writing is performed after connecting a dedicated flash programmer (Flashpro III (FL-PR3, PG-  
FP3)/Flashpro IV (FL-PR4, PG-FP4)) to the host machine and target system.  
Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to  
Flashpro III/Flashpro IV.  
Remarks 1. FL-PR3 and FL-PR4 are products of Naito Densei Machida Mfg. Co., Ltd.  
2. USB is supported only by Flashpro IV.  
23.2.1 Selection of communication mode  
Writing to flash memory is performed using Flashpro III/Flashpro IV and serial communication. Select the  
communication mode for writing from Table 23-3. For the selection of the communication mode, a format like the one  
shown in Figure 23-2 is used. The communication mode are selected according to the number of VPP pulses shown in  
Table 23-3.  
Table 23-3. Communication Mode List  
Communication Mode  
3-wire serial I/O  
Number of Channels  
1
Pin UsedNote  
Number of VPP Pulses  
0
SCK10/TxD0/P10  
SI10/RxD0/P11  
SO10/P12  
SCK10/TxD0/P10  
SI10/RxD0/P11  
SO10/P12  
3
HS/P15/TOH0  
UART (UART0)  
UART (UART6)  
1
1
TxD0/SCK10/P10  
RxD0/SI10/P11  
8
TxD0/SCK10/P10  
RxD0/SI10/P11  
HS/P15/TOH0  
11  
TxD6/P13  
RxD6/P14  
9
Note After shifting to flash memory programming mode, all pins not used for flash memory programming are set  
to the same state as after reset. Therefore, since all ports become output high-impedance, pin processing,  
such as connecting to VDD or VSS via a resistor is required if the output high-impedance state is not  
acknowledged by external devices.  
Cautions 1. Be sure to select the number of VPP pulses shown in Table 23-3 for the communication mode.  
2. When writing to flash memory using the UART communication mode, set the X1 input clock  
oscillation frequency to 3 MHz or higher.  
375  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-2. Communication Mode Selection Format  
VPP pulses  
10 V  
VDD  
VPP  
VSS  
VDD  
RESET  
Flash memory write mode  
VSS  
23.2.2 Flash memory programming function  
Flash memory writing is performed via command and data transmit/receive operations using the selected  
communication mode. The main functions are listed in Table 23-4.  
Table 23-4. Main Functions of Flash Memory Programming  
Function  
Description  
Used to detect write stop and transmission synchronization.  
Compares entire memory contents and input data.  
Erases the entire memory contents.  
Reset  
Batch verify  
Batch erase  
Batch blank check  
High-speed write  
Checks the erase status of the entire memory.  
Performs writing to flash memory according to write start address and number of write data  
(bytes).  
Continuous write  
Status  
Performs successive write operations using the data input with high-speed write operation.  
Checks the current operation mode and operation end.  
Oscillation frequency setting  
Delete time setting  
Baud rate setting  
Silicon signature read  
Inputs the resonator oscillation frequency information.  
Inputs the memory delete time.  
Sets the communication rate when the UART method is used.  
Outputs the device name, memory capacity, and device block information.  
376  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
23.2.3 Connecting Flashpro III/Flashpro IV  
The connection between Flashpro III/Flashpro IV and the µPD78F0114 differs depending on the communication  
mode (3-wire serial I/O or UART). Figures 23-3 to 23-7 show the connection diagrams of each case.  
Figure 23-3. Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode  
Flashpro III/Flashpro IV  
µ
PD78F0114  
VPP  
VDD  
V
PP  
V
DD/EVDD/AVREF  
RESET  
RESET  
SCK  
SO  
SCK10  
SI10  
SI  
SO10  
GND  
VSS/EVSS/AVSS  
Figure 23-4. Connection of Flashpro III/Flashpro IV in 3-Wire Serial I/O Mode (Using Handshake)  
Flashpro III/Flashpro IV  
µ
PD78F0114  
VPP  
VDD  
V
PP  
V
DD/EVDD/AVREF  
RESET  
RESET  
SCK  
SO  
SCK10  
SI10  
SI  
SO10  
HS  
HS (P15)  
GND  
VSS/EVSS/AVSS  
377  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-5. Connection of Flashpro III/Flashpro IV in UART (UART0) Mode  
Flashpro III/Flashpro IV  
µ
PD78F0114  
VPP  
VDD  
RESET  
SO  
V
V
PP  
DD/EVDD/AVREF  
RESET  
RxD0  
TxD0  
SI  
GND  
VSS/EVSS/AVSS  
Figure 23-6. Connection of Flashpro III/Flashpro IV in UART (UART0) Mode (Using Handshake)  
Flashpro III/Flashpro IV  
µ
PD78F0114  
VPP  
VDD  
RESET  
SO  
V
V
PP  
DD/EVDD/AVREF  
RESET  
RxD0  
SI  
TxD0  
HS  
HS (P15)  
GND  
VSS/EVSS/AVSS  
Figure 23-7. Connection of Flashpro III/Flashpro IV in UART (UART6) Mode  
Flashpro III/Flashpro IV  
PD78F0114  
µ
VPP  
VDD  
RESET  
SO  
V
V
PP  
DD/EVDD/AVREF  
RESET  
RxD6  
TxD6  
SI  
GND  
VSS/EVSS/AVSS  
378  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
23.2.4 Connection on adapter for flash memory writing  
Examples of the recommended connection when using the adapter for flash memory writing are shown below.  
Figure 23-8. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode  
VDD (2.7 to 5.5 V)  
GND  
VDD2 (LVDD)  
VDD  
GND  
44 43 42 41 40 39 38  
37  
36  
34  
35  
1
33  
32  
31  
30  
29  
28  
27  
2
3
4
5
6
7
8
µ
PD78F0114  
26  
25  
24  
23  
9
10  
11  
13 14 15 16 17 18 19 20 21 22  
12  
SI  
SO SCK CLKOUT RESET VPP RESERVE/HS  
WRITER INTERFACE  
379  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-9. Example of Wiring Adapter for Flash Memory Writing in 3-Wire Serial I/O Mode  
(Using Handshake)  
VDD (2.7 to 5.5 V)  
GND  
VDD2 (LVDD)  
VDD  
GND  
44 43 42 41 40 39 38  
37  
36  
34  
35  
1
33  
32  
31  
30  
29  
28  
27  
2
3
4
5
6
7
8
µPD78F0114  
26  
25  
24  
23  
9
10  
11  
13 14 15 16 17 18 19 20 21 22  
12  
SI  
SO SCK CLKOUT RESET VPP RESERVE/HS  
WRITER INTERFACE  
380  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-10. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode  
VDD (2.7 to 5.5 V)  
GND  
VDD2 (LVDD)  
VDD  
GND  
44 43 42 41 40 39 38  
37  
36  
34  
35  
1
33  
32  
31  
30  
29  
28  
27  
2
3
4
5
6
7
8
µPD78F0114  
26  
25  
24  
23  
9
10  
11  
13 14 15 16 17 18 19 20 21 22  
12  
SI  
SO SCK CLKOUT RESET VPP RESERVE/HS  
WRITER INTERFACE  
381  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-11. Example of Wiring Adapter for Flash Memory Writing in UART (UART0) Mode  
(Using Handshake)  
VDD (2.7 to 5.5 V)  
GND  
VDD2 (LVDD)  
VDD  
GND  
44 43 42 41 40 39 38  
37  
36  
34  
35  
1
33  
32  
31  
30  
29  
28  
27  
2
3
4
5
6
7
8
µPD78F0114  
26  
25  
24  
23  
9
10  
11  
13 14 15 16 17 18 19 20 21 22  
12  
SI  
SO SCK CLKOUT RESET VPP RESERVE/HS  
WRITER INTERFACE  
382  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 23 µPD78F0114  
Figure 23-12. Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode  
VDD (2.7 to 5.5 V)  
GND  
VDD2 (LVDD)  
VDD  
GND  
44 43 42 41 40 39 38  
37  
36  
34  
35  
1
33  
32  
31  
30  
29  
28  
27  
2
3
4
5
6
7
8
µ
PD78F0114  
26  
25  
24  
23  
9
10  
11  
13 14 15 16 17 18 19 20 21 22  
12  
SI  
SO SCK CLKOUT RESET VPP RESERVE/HS  
WRITER INTERFACE  
383  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
This chapter lists each instruction set of the 78K0/KC1 Series in table form. For details of each operation and  
operation code, refer to the separate document 78K/0 Series Instruction User’s Manual (U12326E).  
24.1 Conventions Used in Operation List  
24.1.1 Operand identifiers and specification methods  
Operands are written in the “Operand” column of each instruction in accordance with the specification method of  
the instruction operand identifier (refer to the assembler specifications for details). When there are two or more  
methods, select one of them. Upper case letters and the symbols #, !, $ and [ ] are keywords and must be written as  
they are. Each symbol has the following meaning.  
#: Immediate data specification  
!: Absolute address specification  
$: Relative address specification  
[ ]: Indirect address specification  
In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to  
write the #, !, $, and [ ] symbols.  
For operand register identifiers r and rp, either function names (X, A, C, etc.) or absolute names (names in  
parentheses in the table below, R0, R1, R2, etc.) can be used for specification.  
Table 24-1. Operand Identifiers and Specification Methods  
Identifier  
Specification Method  
r
X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7),  
AX (RP0), BC (RP1), DE (RP2), HL (RP3)  
rp  
sfr  
sfrp  
Special function register symbolNote  
Special function register symbol (16-bit manipulatable register even addresses only)Note  
saddr  
FE20H to FF1FH Immediate data or labels  
saddrp  
FE20H to FF1FH Immediate data or labels (even address only)  
addr16  
0000H to FFFFH Immediate data or labels  
(Only even addresses for 16-bit data transfer instructions)  
0800H to 0FFFH Immediate data or labels  
addr11  
addr5  
0040H to 007FH Immediate data or labels (even address only)  
word  
byte  
bit  
16-bit immediate data or label  
8-bit immediate data or label  
3-bit immediate data or label  
RBn  
RB0 to RB3  
Note Addresses from FFD0H to FFDFH cannot be accessed with these operands.  
Remark For special function register symbols, refer to Table 3-5 Special Function Register List.  
384  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
24.1.2 Description of operation column  
A:  
A register; 8-bit accumulator  
X register  
X:  
B:  
B register  
C:  
C register  
D:  
D register  
E:  
E register  
H:  
H register  
L:  
L register  
AX:  
BC:  
DE:  
HL:  
PC:  
SP:  
AX register pair; 16-bit accumulator  
BC register pair  
DE register pair  
HL register pair  
Program counter  
Stack pointer  
PSW: Program status word  
CY:  
AC:  
Z:  
Carry flag  
Auxiliary carry flag  
Zero flag  
RBS:  
IE:  
Register bank select flag  
Interrupt request enable flag  
NMIS: Non-maskable interrupt servicing flag  
( ): Memory contents indicated by address or register contents in parentheses  
XH, XL: Higher 8 bits and lower 8 bits of 16-bit register  
:  
:  
Logical product (AND)  
Logical sum (OR)  
:  
  
Exclusive logical sum (exclusive OR)  
Inverted data  
:
addr16: 16-bit immediate data or label  
jdisp8: Signed 8-bit data (displacement value)  
24.1.3 Description of flag operation column  
(Blank): Not affected  
0:  
1:  
×:  
R:  
Cleared to 0  
Set to 1  
Set/cleared according to the result  
Previously saved value is restored  
385  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
24.2 Operation List  
Clocks  
Bytes  
Flag  
Instruction  
Mnemonic  
Group  
Operands  
r, #byte  
Operation  
Z AC CY  
Note 1 Note 2  
8-bit data  
transfer  
MOV  
2
3
3
1
1
2
2
2
2
3
3
3
2
2
1
1
1
1
2
2
1
1
1
1
1
2
2
3
1
1
2
2
2
4
6
2
2
4
4
8
8
4
4
4
4
8
8
6
6
6
6
2
4
8
4
4
8
8
8
7
7
5
5
5
5
r byte  
saddr, #byte  
sfr, #byte  
A, r  
(saddr) byte  
sfr byte  
A r  
Note 3  
Note 3  
r, A  
r A  
A, saddr  
saddr, A  
A, sfr  
A (saddr)  
(saddr) A  
A sfr  
sfr, A  
sfr A  
A, !addr16  
!addr16, A  
PSW, #byte  
A, PSW  
9 + n A (addr16)  
9 + m (addr16) A  
7
5
5
PSW byte  
A PSW  
PSW A  
×
×
×
×
×
×
PSW, A  
A, [DE]  
5 + n A (DE)  
[DE], A  
5 + m (DE) A  
A, [HL]  
5 + n A (HL)  
[HL], A  
5 + m (HL) A  
A, [HL + byte]  
[HL + byte], A  
A, [HL + B]  
[HL + B], A  
A, [HL + C]  
[HL + C], A  
A, r  
9 + n A (HL + byte)  
9 + m (HL + byte) A  
7 + n A (HL + B)  
7 + m (HL + B) A  
7 + n A (HL + C)  
7 + m (HL + C) A  
Note 3  
XCH  
6
6
A r  
A, saddr  
A, sfr  
A (saddr)  
A (sfr)  
A, !addr16  
A, [DE]  
10 + n + m A (addr16)  
6 + n + m A (DE)  
A, [HL]  
6 + n + m A (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
10 + n + m A (HL + byte)  
10 + n + m A (HL + B)  
10 + n + m A (HL + C)  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
3. Except “r = A”  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
4. m is the number of waits when the external memory expansion area is written.  
386  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
rp, #word  
Operation  
Z AC CY  
Note 1 Note 2  
16-bit data MOVW  
3
4
4
2
2
2
2
1
1
3
3
1
2
3
2
2
2
3
1
2
2
2
2
3
2
2
2
3
1
2
2
2
6
8
6
6
4
4
10  
10  
8
rp word  
transfer  
saddrp, #word  
sfrp, #word  
AX, saddrp  
saddrp, AX  
AX, sfrp  
(saddrp) word  
sfrp word  
AX (saddrp)  
(saddrp) AX  
AX sfrp  
8
8
sfrp, AX  
8
sfrp AX  
Note 3  
Note 3  
AX, rp  
AX rp  
rp, AX  
rp AX  
AX, !addr16  
!addr16, AX  
AX, rp  
10 12 + 2n AX (addr16)  
10 12 + 2m (addr16) AX  
Note 3  
XCHW  
4
4
6
4
4
4
8
4
8
8
8
4
6
4
4
4
8
4
8
8
8
8
5
AX rp  
8-bit  
ADD  
A, #byte  
A, CY A + byte  
(saddr), CY (saddr) + byte  
A, CY A + r  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
operation  
saddr, #byte  
A, r  
Note 4  
r, A  
r, CY r + A  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A + (saddr)  
9 + n A, CY A + (addr16)  
5 + n A, CY A + (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
A, #byte  
9 + n A, CY A + (HL + byte)  
9 + n A, CY A + (HL + B)  
9 + n A, CY A + (HL + C)  
ADDC  
8
5
A, CY A + byte + CY  
(saddr), CY (saddr) + byte + CY  
A, CY A + r + CY  
saddr, #byte  
A, r  
Note 4  
r, A  
r, CY r + A + CY  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A + (saddr) + CY  
9 + n A, CY A + (addr16) + C  
5 + n A, CY A + (HL) + CY  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
9 + n A, CY A + (HL + byte) + CY  
9 + n A, CY A + (HL + B) + CY  
9 + n A, CY A + (HL + C) + CY  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
3. Only when rp = BC, DE or HL  
4. Except “r = A”  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
4. m is the number of waits when the external memory expansion area is written.  
387  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
A, #byte  
Operation  
A, CY A byte  
Z AC CY  
Note 1 Note 2  
8-bit  
SUB  
2
3
2
2
2
3
1
2
2
2
2
3
2
2
2
3
1
2
2
2
2
3
2
2
2
3
1
2
2
2
4
6
4
4
4
8
4
8
8
8
4
6
4
4
4
8
4
8
8
8
4
6
4
4
4
8
4
8
8
8
8
5
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
operation  
saddr, #byte  
A, r  
(saddr), CY (saddr) byte  
A, CY A r  
Note 3  
Note 3  
Note 3  
r, A  
r, CY r A  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A (saddr)  
9 + n A, CY A (addr16)  
5 + n A, CY A (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
A, #byte  
saddr, #byte  
A, r  
9 + n A, CY A (HL + byte)  
9 + n A, CY A (HL + B)  
9 + n A, CY A (HL + C)  
SUBC  
8
5
A, CY A byte CY  
(saddr), CY (saddr) byte CY  
A, CY A r CY  
r, A  
r, CY r A CY  
A, saddr  
A, !addr16  
A, [HL]  
A, CY A (saddr) CY  
9 + n A, CY A (addr16) CY  
5 + n A, CY A (HL) CY  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
A, #byte  
saddr, #byte  
A, r  
9 + n A, CY A (HL + byte) CY  
9 + n A, CY A (HL + B) CY  
9 + n A, CY A (HL + C) CY  
AND  
8
5
A A byte  
(saddr) (saddr) byte  
A A r  
r, A  
r r A  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
9 + n A A (addr16)  
5 + n A A [HL]  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
9 + n A A [HL + byte]  
9 + n A A [HL + B]  
9 + n A A [HL + C]  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
3. Except “r = A”  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
388  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
A, #byte  
Operation  
Z AC CY  
Note 1 Note 2  
8-bit  
OR  
2
3
2
2
2
3
1
2
2
2
2
3
2
2
2
3
1
2
2
2
2
3
2
2
2
3
1
2
2
2
4
6
4
4
4
8
4
8
8
8
4
6
4
4
4
8
4
8
8
8
4
6
4
4
4
8
4
8
8
8
8
5
A A byte  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
operation  
saddr, #byte  
A, r  
(saddr) (saddr) byte  
A A r  
Note 3  
Note 3  
Note 3  
r, A  
r r A  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
9 + n A A (addr16)  
5 + n A A (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
A, #byte  
saddr, #byte  
A, r  
9 + n A A (HL + byte)  
9 + n A A (HL + B)  
9 + n A A (HL + C)  
XOR  
8
5
A A byte  
(saddr) (saddr) byte  
A A r  
r, A  
r r A  
A, saddr  
A, !addr16  
A, [HL]  
A A (saddr)  
9 + n A A (addr16)  
5 + n A A (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
A, #byte  
saddr, #byte  
A, r  
9 + n A A (HL + byte)  
9 + n A A (HL + B)  
9 + n A A (HL + C)  
CMP  
8
5
A byte  
(saddr) byte  
A r  
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
r, A  
r A  
A, saddr  
A, !addr16  
A, [HL]  
A (saddr)  
9 + n A (addr16)  
5 + n A (HL)  
A, [HL + byte]  
A, [HL + B]  
A, [HL + C]  
9 + n A (HL + byte)  
9 + n A (HL + B)  
9 + n A (HL + C)  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
3. Except “r = A”  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
389  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
AX, #word  
Operation  
AX, CY AX + word  
Z AC CY  
Note 1 Note 2  
16-bit  
ADDW  
SUBW  
CMPW  
MULU  
DIVUW  
3
3
3
2
2
1
2
1
2
1
1
1
1
1
1
2
6
6
6
6
×
×
×
×
×
×
×
×
×
operation  
AX, #word  
AX, CY AX word  
AX word  
AX, #word  
6
Multiply/  
divide  
X
16  
25  
2
AX A × X  
C
AX (Quotient), C (Remainder) AX ÷ C  
r r + 1  
Increment/ INC  
r
×
×
×
×
×
×
×
×
decrement  
saddr  
r
4
(saddr) (saddr) + 1  
r r 1  
DEC  
2
saddr  
rp  
4
(saddr) (saddr) 1  
rp rp + 1  
INCW  
4
DECW  
rp  
4
rp rp 1  
Rotate  
ROR  
A, 1  
A, 1  
A, 1  
A, 1  
[HL]  
2
(CY, A7 A0, Am 1 Am) × 1 time  
(CY, A0 A7, Am + 1 Am) × 1 time  
(CY A0, A7 CY, Am 1 Am) × 1 time  
(CY A7, A0 CY, Am + 1 Am) × 1 time  
×
×
×
×
ROL  
2
RORC  
ROLC  
ROR4  
2
2
10 12 + n + m A3 0 (HL)3 0, (HL)7 4 A3 0,  
(HL)3 0 (HL)7 4  
ROL4  
[HL]  
2
10 12 + n + m A3 0 (HL)7 4, (HL)3 0 A3 0,  
(HL)7 4 (HL)3 0  
BCD  
ADJBA  
ADJBS  
MOV1  
2
2
3
3
2
3
2
3
3
2
3
2
4
4
6
4
6
6
4
6
7
7
7
Decimal Adjust Accumulator after Addition  
Decimal Adjust Accumulator after Subtract  
CY (saddr.bit)  
×
×
×
×
×
×
×
×
×
×
×
adjustment  
Bit  
CY, saddr.bit  
CY, sfr.bit  
manipulate  
CY sfr.bit  
CY, A.bit  
CY A.bit  
CY, PSW.bit  
CY, [HL].bit  
saddr.bit, CY  
sfr.bit, CY  
CY PSW.bit  
7 + n CY (HL).bit  
8
8
8
(saddr.bit) CY  
sfr.bit CY  
A.bit, CY  
A.bit CY  
PSW.bit, CY  
[HL].bit, CY  
PSW.bit CY  
×
×
8 + n + m (HL).bit CY  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
4. m is the number of waits when the external memory expansion area is written.  
390  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
CY, saddr.bit  
Operation  
CY CY saddr.bit)  
Z AC CY  
Note 1 Note 2  
Bit  
manipulate  
AND1  
3
3
2
3
2
3
3
2
3
2
3
3
2
3
2
2
3
2
2
2
2
3
2
2
2
1
1
1
6
4
6
6
4
6
6
4
6
4
4
6
4
4
6
2
2
2
7
7
7
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
CY, sfr.bit  
CY, A.bit  
CY, PSW.bit  
CY, [HL].bit  
CY, saddr.bit  
CY, sfr.bit  
CY, A.bit  
CY, PSW.bit  
CY, [HL].bit  
CY, saddr.bit  
CY, sfr.bit  
CY, A.bit  
CY, PSW. bit  
CY, [HL].bit  
saddr.bit  
sfr.bit  
CY CY sfr.bit  
CY CY A.bit  
CY CY PSW.bit  
7 + n CY CY (HL).bit  
OR1  
7
7
7
CY CY (saddr.bit)  
CY CY sfr.bit  
CY CY A.bit  
CY CY PSW.bit  
7 + n CY CY (HL).bit  
XOR1  
SET1  
CLR1  
7
7
7
CY CY (saddr.bit)  
CY CY sfr.bit  
CY CY A.bit  
CY CY PSW.bit  
7 + n CY CY (HL).bit  
6
8
6
(saddr.bit) 1  
sfr.bit 1  
A.bit  
A.bit 1  
PSW.bit  
[HL].bit  
PSW.bit 1  
×
×
×
×
×
8 + n + m (HL).bit 1  
saddr.bit  
sfr.bit  
6
8
6
(saddr.bit) 0  
sfr.bit 0  
A.bit  
A.bit 0  
PSW.bit  
[HL].bit  
PSW.bit 0  
×
8 + n + m (HL).bit 0  
SET1  
CLR1  
NOT1  
CY  
CY 1  
CY 0  
CY CY  
1
0
×
CY  
CY  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
4. m is the number of waits when the external memory expansion area is written.  
391  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
!addr16  
Operation  
Z AC CY  
Note 1 Note 2  
Call/return CALL  
3
2
7
5
(SP 1) (PC + 3)H, (SP 2) (PC + 3)L,  
PC addr16, SP SP 2  
CALLF  
!addr11  
[addr5]  
(SP 1) (PC + 2)H, (SP 2) (PC + 2)L,  
PC15 11 00001, PC10 0 addr11,  
SP SP 2  
CALLT  
BRK  
1
1
6
6
(SP 1) (PC + 1)H, (SP 2) (PC + 1)L,  
PCH (00000000, addr5 + 1),  
PCL (00000000, addr5),  
SP SP 2  
(SP 1) PSW, (SP 2) (PC + 1)H,  
(SP 3) (PC + 1)L, PCH (003FH),  
PCL (003EH), SP SP 3, IE 0  
RET  
1
1
6
6
PCH (SP + 1), PCL (SP),  
SP SP + 2  
RETI  
PCH (SP + 1), PCL (SP),  
PSW (SP + 2), SP SP + 3,  
NMIS 0  
R
R
R
R
R
R
RETB  
1
6
PCH (SP + 1), PCL (SP),  
PSW (SP + 2), SP SP + 3  
Stack  
PUSH  
POP  
PSW  
rp  
1
1
2
4
(SP 1) PSW, SP SP 1  
manipulate  
(SP 1) rpH, (SP 2) rpL,  
SP SP 2  
PSW  
rp  
1
1
2
4
PSW (SP), SP SP + 1  
R
R
R
rpH (SP + 1), rpL (SP),  
SP SP + 2  
6
6
8
6
6
6
6
MOVW  
SP, #word  
SP, AX  
AX, SP  
!addr16  
$addr16  
AX  
4
2
2
3
2
2
2
2
2
2
10  
8
8
SP word  
SP AX  
AX SP  
Unconditional BR  
PC addr16  
branch  
PC PC + 2 + jdisp8  
PCH A, PCL X  
PC PC + 2 + jdisp8 if CY = 1  
PC PC + 2 + jdisp8 if CY = 0  
PC PC + 2 + jdisp8 if Z = 1  
PC PC + 2 + jdisp8 if Z = 0  
Conditional BC  
$addr16  
$addr16  
$addr16  
$addr16  
branch  
BNC  
BZ  
BNZ  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
392  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
Clocks  
Bytes  
Flag  
Instruction  
Group  
Mnemonic  
Operands  
Operation  
Z AC CY  
Note 1 Note 2  
Conditional BT  
saddr.bit, $addr16  
sfr.bit, $addr16  
A.bit, $addr16  
3
4
3
3
3
4
4
3
4
3
4
8
9
11  
PC PC + 3 + jdisp8 if(saddr.bit) = 1  
PC PC + 4 + jdisp8 if sfr.bit = 1  
PC PC + 3 + jdisp8 if A.bit = 1  
PC PC + 3 + jdisp8 if PSW.bit = 1  
branch  
8
PSW.bit, $addr16  
[HL].bit, $addr16  
saddr.bit, $addr16  
sfr.bit, $addr16  
A.bit, $addr16  
9
10  
10  
11 + n PC PC + 3 + jdisp8 if (HL).bit = 1  
BF  
11  
11  
PC PC + 4 + jdisp8 if(saddr.bit) = 0  
PC PC + 4 + jdisp8 if sfr.bit = 0  
PC PC + 3 + jdisp8 if A.bit = 0  
PC PC + 4 + jdisp8 if PSW. bit = 0  
8
PSW.bit, $addr16  
[HL].bit, $addr16  
saddr.bit, $addr16  
11  
10  
10  
11 + n PC PC + 3 + jdisp8 if (HL).bit = 0  
BTCLR  
12  
PC PC + 4 + jdisp8  
if(saddr.bit) = 1  
then reset(saddr.bit)  
sfr.bit, $addr16  
A.bit, $addr16  
PSW.bit, $addr16  
[HL].bit, $addr16  
B, $addr16  
4
3
4
3
2
2
3
8
12  
PC PC + 4 + jdisp8 if sfr.bit = 1  
then reset sfr.bit  
PC PC + 3 + jdisp8 if A.bit = 1  
then reset A.bit  
12  
PC PC + 4 + jdisp8 if PSW.bit = 1  
then reset PSW.bit  
×
×
×
10 12 + n + m PC PC + 3 + jdisp8 if (HL).bit = 1  
then reset (HL).bit  
DBNZ  
6
6
8
B B 1, then  
PC PC + 2 + jdisp8 if B 0  
C, $addr16  
C C 1, then  
PC PC + 2 + jdisp8 if C 0  
saddr, $addr16  
RBn  
10  
(saddr) (saddr) 1, then  
PC PC + 3 + jdisp8 if(saddr) 0  
CPU  
SEL  
NOP  
EI  
2
1
2
2
2
2
4
2
6
6
6
6
RBS1, 0 n  
control  
No Operation  
IE 1(Enable Interrupt)  
IE 0(Disable Interrupt)  
Set HALT Mode  
DI  
HALT  
STOP  
Set STOP Mode  
Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access  
2. When an area except the internal high-speed RAM area is accessed  
Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fCPU) selected by the processor clock  
control register (PCC).  
2. This clock cycle applies to the internal ROM program.  
3. n is the number of waits when the external memory expansion area is read.  
4. m is the number of waits when the external memory expansion area is written.  
393  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
24.3 Instructions Listed by Addressing Type  
(1) 8-bit instructions  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,  
ROLC, ROR4, ROL4, PUSH, POP, DBNZ  
Second Operand  
#byte  
A
rNote  
sfr  
saddr !addr16 PSW  
[DE]  
[HL] [HL+byte] $addr16  
[HL + B]  
1
None  
First Operand  
[HL + C]  
MOV MOV MOV MOV  
ROR  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV MOV MOV MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
XCH  
XCH  
ADD  
XCH  
ADD  
XCH  
XCH  
ADD  
XCH  
ADD  
ROL  
RORC  
ROLC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
ADDC ADDC  
SUB SUB  
SUBC SUBC  
XOR  
CMP  
AND  
OR  
AND  
OR  
AND  
OR  
AND  
OR  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV MOV  
ADD  
INC  
DEC  
ADDC  
SUB  
SUBC  
AND  
OR  
XOR  
CMP  
B, C  
sfr  
DBNZ  
DBNZ  
MOV MOV  
saddr  
MOV MOV  
ADD  
INC  
DEC  
ADDC  
SUB  
SUBC  
AND  
OR  
XOR  
CMP  
!addr16  
PSW  
MOV  
MOV MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL + byte]  
[HL + B]  
MOV  
[HL + C]  
X
C
MULU  
DIVUW  
Note Except r = A  
394  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
(2) 16-bit instructions  
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
Second Operand  
First Operand  
#word  
AX  
rpNote  
sfrp  
saddrp  
!addr16  
SP  
None  
AX  
ADDW  
MOVW  
XCHW  
MOVW  
MOVW  
MOVW  
MOVW  
SUBW  
CMPW  
rp  
MOVW  
MOVWNote  
INCW  
DECW  
PUSH  
POP  
sfrp  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
MOVW  
saddrp  
!addr16  
SP  
MOVW  
Note Only when rp = BC, DE, HL  
(3) Bit manipulation instructions  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
Second Operand  
First Operand  
A.bit  
sfr.bit  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
MOV1  
MOV1  
MOV1  
MOV1  
MOV1  
$addr16  
None  
A.bit  
BT  
SET1  
CLR1  
BF  
BTCLR  
sfr.bit  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
MOV1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
SET1  
CLR1  
NOT1  
AND1  
OR1  
AND1  
OR1  
AND1  
OR1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
395  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 24 INSTRUCTION SET  
(4) Call instructions/branch instructions  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ  
Second Operand  
First Operand  
AX  
!addr16  
!addr11  
[addr5]  
$addr16  
Basic instruction  
BR  
CALL  
BR  
CALLF  
CALLT  
BR  
BC  
BNC  
BZ  
BNZ  
Compound  
instruction  
BT  
BF  
BTCLR  
DBNZ  
(5) Other instructions  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
396  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
These specifications are only target values, and may not be satisfied by mass-produced products.  
The electrical specifications (target values) of (A1) products are under evaluation.  
Absolute Maximum Ratings (TA = 25°C)  
Parameter  
Supply voltage  
Symbol  
VDD  
Conditions  
Ratings  
0.3 to +6.5  
Unit  
V
EVDD  
VSS  
0.3 to +6.5  
V
0.3 to +0.3  
V
EVSS  
AVREF  
AVSS  
VPP  
0.3 to +0.3  
0.3 to VDD + 0.3Note 1  
V
V
0.3 to +0.3  
V
µPD78F0114 only Note 2  
0.3 to +10.5  
0.3 to VDD + 0.3Note 1  
V
Input voltage  
VI1  
P00, P01, P10 to P17, P20 to P27, P30 to P33,  
P60, P61, P70 to P73, P120, P130, X1, X2,  
XT1, XT2, RESET  
V
VI2  
VI3  
P62, P63  
N-ch open drain  
0.3 to +13  
0.3 to VDD + 0.3Note 1  
0.3 to +10.5  
V
V
On-chip pull-up resistor  
VPP in flash programming mode  
(µPD78F0114 only)  
Output voltage  
VO  
0.3 to VDD + 0.3Note 1  
V
V
Analog input voltage  
VAN  
AVSS 0.3 to AVREF + 0.3Note 1  
and 0.3 to VDD + 0.3Note 1  
Output current, high  
Output current, low  
IOH  
Per pin  
10  
30  
30  
20  
mA  
mA  
mA  
mA  
Total of all  
P00, P01, P10 to P16, P70 to P73  
pins 60 mA  
P17, P30 to P33, P120, P130  
IOL  
Per pin  
P00, P01, P10 to P17, P30 to  
P33, P70 to P73, P120, P130  
P60 to P63  
30  
35  
35  
mA  
mA  
mA  
Total of all  
pins 70 mA  
P00, P01, P10 to P16, P70 to P73  
P17, P30 to P33, P60 to P63,  
P120, P130  
Operating ambient  
temperature  
TA  
In normal operation mode  
40 to +85  
°C  
°C  
Storage temperature  
Tstg  
µPD780111, 780112, 780113, 780114  
µPD78F0114  
65 to +150  
40 to +125  
Notes 1. Must be 6.5 V or lower.  
(Refer to Note 2 on the next page.)  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
397  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
Notes 2. Make sure that the following conditions of the VPP voltage application timing are satisfied when the flash  
memory is written.  
When supply voltage rises  
VPP must exceed VDD 10 µs or more after VDD has reached the lower-limit value (2.7 V) of the operating  
voltage range (see a in the figure below).  
When supply voltage drops  
VDD must be lowered 10 µs or more after VPP falls below the lower-limit value (2.7 V) of the operating  
voltage range of VDD (see b in the figure below).  
2.7 V  
V
DD  
0 V  
a
b
VPP  
2.7 V  
0 V  
398  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
X1 Oscillator Characteristics  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Resonator Recommended Circuit  
Parameter  
Conditions  
4.0 V VDD 5.5 V  
MIN.  
2.0  
TYP. MAX.  
Unit  
IC  
Ceramic  
Oscillation  
frequency (fXP)Note  
10  
8.38  
5.0  
MHz  
X1  
)
X2  
(VPP  
resonator  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
2.0  
2.0  
C2  
C1  
IC  
Crystal  
Oscillation  
4.0 V VDD 5.5 V  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
2.0  
2.0  
2.0  
10  
8.38  
5.0  
MHz  
X1  
)
X2  
(VPP  
resonator  
frequency (fXP)Note  
C2  
C1  
X1  
External  
clock  
X1 input  
frequency (fXP)Note  
4.0 V VDD 5.5 V  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
4.0 V VDD 5.5 V  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
2.0  
2.0  
2.0  
46  
10  
8.38  
5.0  
MHz  
ns  
X2  
X1 input high-  
/low-level width  
(tXPH, tXPL)  
500  
500  
500  
56  
96  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the  
above figures to avoid an adverse effect from wiring capacitance.  
• Keep the wiring length as short as possible.  
• Do not cross the wiring with the other signal lines.  
• Do not route the wiring near a signal line through which a high fluctuating current flows.  
• Always make the ground point of the oscillator capacitor the same potential as VSS.  
• Do not ground the capacitor to a ground pattern through which a high current flows.  
• Do not fetch signals from the oscillator.  
2. Since the CPU is started by the Ring-OSC after reset, check the oscillation stabilization time of  
the X1 input clock using the oscillation stabilization time status register (OSTC). Determine the  
oscillation stabilization time of the OSTC register and oscillation stabilization time select  
register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator  
to be used.  
Remark For the resonator selection and oscillator constant, users are required to either evaluate the oscillation  
themselves or apply to the resonator manufacturer for evaluation.  
Ring-OSC Oscillator Characteristics  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Resonator  
Parameter  
Conditions  
MIN.  
120  
TYP. MAX.  
240 480  
Unit  
kHz  
On-chip Ring-OSC oscillator  
Oscillation frequency (fR)  
399  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
Subsystem Clock Oscillator Characteristics  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Resonator  
Crystal  
Recommended Circuit  
IC  
Parameter  
Conditions  
MIN.  
32  
TYP. MAX.  
Unit  
kHz  
Oscillation frequency  
(fXT)Note  
32.768  
35  
(VPP  
)
XT2 XT1  
resonator  
Rd  
C4  
C3  
XT2  
XT1  
External clock  
XT1 input frequency  
(fXT)Note  
32  
12  
38.5  
15  
kHz  
XT1 input high-/low-level  
width (tXTH, tXTL)  
µs  
Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.  
Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken  
lines in the above figures to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines.  
Do not route the wiring near a signal line through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as VSS.  
Do not ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current  
consumption, and is more prone to malfunction due to noise than the main system clock  
oscillator. Particular care is therefore required with the wiring method when the subsystem  
clock is used.  
Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the  
oscillation themselves or apply to the resonator manufacturer for evaluation.  
400  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
DC Characteristics (1/4)  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Symbol  
IOH  
Conditions  
MIN.  
TYP.  
MAX.  
5  
Unit  
mA  
mA  
Output current, high  
Per pin  
4.0 V VDD 5.5 V  
4.0 V VDD 5.5 V  
Total of P00, P01, P10 to  
P16, P70 to P73  
25  
Total of P17, P30 to P33,  
P120, P130  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
25  
mA  
All pins  
10  
mA  
mA  
Output current, low  
IOL  
Per pin for P00, P01, P10 to 4.0 V VDD 5.5 V  
P17, P30 to P33, P70 to  
10  
P73, P120, P130  
Per pin for P60 to P63  
4.0 V VDD 5.5 V  
4.0 V VDD 5.5 V  
15  
30  
mA  
mA  
Total of P00, P01, P10 to  
P16, P70 to P73  
Total of P17, P30 to P33,  
P60 to P63, P120, P130  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
30  
mA  
All pins  
10  
mA  
V
Input voltage, high  
VIH1  
VIH2  
P12, P13, P15  
0.7VDD  
0.8VDD  
VDD  
VDD  
P00, P01, P10, P11, P14, P16, P17, P30 to  
P33, P70 to P73, P120, RESET  
V
VIH3  
VIH4  
VIH5  
VIH6  
VIL1  
VIL2  
P20 to P27Note  
0.7AVREF  
0.7VDD  
0.7VDD  
VDD 0.5  
0
AVREF  
VDD  
V
V
V
V
V
V
P60, P61  
P62, P63  
12  
X1, X2, XT1, XT2  
P12, P13, P15  
VDD  
Input voltage, low  
0.3VDD  
0.2VDD  
P00, P01, P10, P11, P14, P16, P17, P30 to  
P33, P70 to P73, P120, RESET  
0
VIL3  
VIL4  
VIL5  
VIL6  
P20 to P27Note  
0
0
0
0
0.3AVREF  
0.3VDD  
0.3VDD  
0.4  
V
V
V
V
P60, P61  
P62, P63  
X1, X2, XT1, XT2  
Note When used as A/D converter analog input pins, set AVREF = VDD.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
401  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
DC Characteristics (2/4)  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Symbol  
VOH  
Conditions  
4.0 V VDD 5.5 V,  
MIN.  
TYP.  
MAX.  
Unit  
V
Output voltage, high  
P00, P01, P10 to  
P16, P70 to P73  
Total IOH = 25 mA  
VDD 1.0  
IOH = 5 mA  
P17, P30 to P33,  
P120, P130  
4.0 V VDD 5.5 V,  
IOH = 5 mA  
VDD 1.0  
VDD 0.5  
V
Total IOH = 25 mA  
IOH = 100 µA  
2.7 V VDD < 4.0 V  
V
V
Output voltage, low  
VOL1  
P00, P01, P10 to  
P16, P70 to P73  
Total IOL = 30 mA  
4.0 V VDD 5.5 V,  
IOL = 10 mA  
1.3  
1.3  
P17, P30 to P33, P60 4.0 V VDD 5.5 V,  
V
to P63, P120, P130  
Total IOL = 30 mA  
IOL = 10 mA  
IOL = 400 µA  
P60 to P63  
VI = VDD  
2.7 V VDD < 4.0 V  
0.4  
2.0  
3
V
V
VOL2  
ILIH1  
IOL = 15 mA  
Input leakage current,  
high  
P00, P01, P10 to P17, P30  
to P33, P60, P61, P70 to  
P73, P120, P130, RESET  
µA  
VI = AVREF  
VI = VDD  
VI = 12 V  
VI = 0 V  
P20 to P27  
3
20  
3
µA  
µA  
µA  
µA  
ILIH2  
ILIH3  
ILIL1  
X1, X2, XT1, XT2  
P62, P63 (N-ch open drain)  
Input leakage current,  
low  
P00, P01, P10 to P17, P20  
to P27, P30 to P33, P60,  
P61, P70 to P73, P120,  
P130, RESET  
3  
ILIL2  
ILIL3  
X1, X2, XT1, XT2  
20  
3Note  
3
µA  
µA  
µA  
P62, P63 (N-ch open drain)  
Output leakage current, ILOH  
high  
VO = VDD  
VO = 0 V  
VI = 0 V  
Output leakage current, ILOL  
low  
3  
µA  
Pull-up resistor  
RL  
10  
0
30  
100  
kΩ  
VPP supply voltage  
VPP1  
In normal operation mode  
0.2VDD  
V
(µPD78F0114 only)  
Note If there is no on-chip pull-up resistor for P62 and P63 (specified by a mask option) and if port 6 has been set to  
input mode when a read instruction is executed to read from port 6, a low-level input leakage current of up to  
45 µA flows during only one cycle. At all other times, the maximum leakage current is 3 µA.  
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.  
402  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
DC Characteristics (3/4): µPD78F0114  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Supply  
currentNote 1  
Symbol  
IDD1  
Conditions  
MIN. TYP. MAX. Unit  
11.5 24.2 mA  
X1 crystal  
oscillation  
operating  
modeNote 2  
fXP = 10 MHz  
When A/D converter is stopped  
VDD = 5.0 V 10%Note 3  
When A/D converter is  
operatingNote 4  
12.5 26.3 mA  
fXP = 5 MHz  
When A/D converter is stopped  
5.5 11.6 mA  
6.5 13.7 mA  
VDD = 3.0 V 10%Note 3  
When A/D converter is  
operatingNote 4  
IDD2  
X1 crystal  
fXP = 10 MHz  
1.6  
0.9  
3.2  
6.4  
1.8  
3.6  
2.1  
1.2  
mA  
mA  
mA  
mA  
mA  
mA  
When peripheral functions are stopped  
When peripheral functions are operating  
When peripheral functions are stopped  
When peripheral functions are operating  
oscillation HALT VDD = 5.0 V 10%Note 3  
mode  
fXP = 5 MHz  
VDD = 3.0 V 10%Note 3  
IDD3  
Ring-OSC  
operating  
modeNote 5  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
0.7  
0.4  
IDD4  
32.768 kHz  
crystal oscillation  
operating  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
120 240  
100 200  
µA  
µA  
modeNotes 5, 7  
IDD5  
32.768 kHz  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
35  
7
70  
21  
µA  
µA  
crystal oscillation  
HALT modeNotes 5, 7  
IDD6  
STOP mode  
VDD = 5.0 V 10%  
POC: OFF, RING: OFF  
POC: OFF, RING: ON  
POC: ONNote 6, RING: OFF  
POC: ONNote 6, RING: ON  
POC: OFF, RING: OFF  
POC: OFF, RING: ON  
POC: ONNote 6, RING: OFF  
POC: ONNote 6, RING: ON  
0.1  
14  
30  
58  
µA  
µA  
3.5 35.5 µA  
17.5 63.5 µA  
VDD = 3.0 V 10%  
0.05 10  
7.5 25  
µA  
µA  
3.5 15.5 µA  
11 30.5 µA  
Notes 1. Total current flowing through the internal power supply (VDD). Peripheral operation current is included  
(however, the current that flows through the pull-up resistors of ports is not included).  
2. IDD1 includes peripheral operation current.  
3. When PCC = 00H.  
4. Including the current that flows through the AVREF pin.  
5. When main system clock is stopped.  
6. Including when LVIE (bit 4 of LVIM) = 1 with POC-OFF selected by a mask option.  
7. When POC-OFF (including LVIE = 0) is selected by a mask option and Ring-OSC oscillation is stopped.  
403  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
DC Characteristics (4/4): µPD780111, 780112, 780113, and 780114  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Supply  
currentNote 1  
Symbol  
IDD1  
Conditions  
MIN. TYP. MAX. Unit  
5.8 13.3 mA  
X1 crystal  
oscillation  
operating  
modeNote 2  
fXP = 10 MHz  
When A/D converter is stopped  
VDD = 5.0 V 10%Note 3  
When A/D converter is  
operatingNote 4  
6.8 15.5 mA  
fXP = 5 MHz  
When A/D converter is stopped  
1.8  
2.8  
4.2  
6.5  
mA  
mA  
VDD = 3.0 V 10%Note 3  
When A/D converter is  
operatingNote 4  
IDD2  
X1 crystal  
fXP = 10 MHz  
1.2  
0.7  
0.3  
2.4  
4.8  
1.4  
2.8  
0.9  
mA  
mA  
mA  
mA  
mA  
When peripheral functions are stopped  
When peripheral functions are operating  
When peripheral functions are stopped  
When peripheral functions are operating  
oscillation HALT VDD = 5.0 V 10%Note 3  
mode  
fXP = 5 MHz  
VDD = 3.0 V 10%Note 3  
IDD3  
Ring-OSC  
operating  
modeNote 5  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
0.19 0.57 mA  
IDD4  
32.768 kHz  
crystal oscillation  
operating  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
45  
25  
90  
50  
µA  
µA  
modeNotes 5, 7  
IDD5  
32.768 kHz  
VDD = 5.0 V 10%  
VDD = 3.0 V 10%  
30  
7
60  
21  
µA  
µA  
crystal oscillation  
HALT modeNotes 5, 7  
IDD6  
STOP mode  
VDD = 5.0 V 10%  
POC: OFF, RING: OFF  
POC: OFF, RING: ON  
POC: ONNote 6, RING: OFF  
POC: ONNote 6, RING: ON  
POC: OFF, RING: OFF  
POC: OFF, RING: ON  
POC: ONNote 6, RING: OFF  
POC: ONNote 6, RING: ON  
0.1  
14  
30  
58  
µA  
µA  
3.5 35.5 µA  
17.5 63.5 µA  
VDD = 3.0 V 10%  
0.05 10  
7.5 25  
µA  
µA  
3.5 15.5 µA  
11 30.5 µA  
Notes 1. Total current flowing through the internal power supply (VDD). Peripheral operation current is included  
(however, the current that flows through the pull-up resistors of ports is not included).  
2. IDD1 includes peripheral operation current.  
3. When PCC = 00H.  
4. Including the current that flows through the AVREF pin.  
5. When main system clock is stopped.  
6. Including when LVIE (bit 4 of LVIM) = 1 with POC-OFF selected by a mask option.  
7. When POC-OFF (including LVIE = 0) is selected by a mask option and Ring-OSC oscillation is stopped.  
404  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
AC Characteristics  
(1) Basic operation (TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Symbol  
TCY  
Conditions  
Main system X1 input  
4.0 V VDD 5.5 V  
MIN.  
0.2  
TYP. MAX.  
Unit  
µs  
Instruction cycle (minimum  
instruction execution time)  
16  
16  
16  
clock  
clock  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
0.238  
µs  
operation  
0.4  
µs  
Ring-OSC clock  
4.17  
8.33  
122  
16.67  
125  
µs  
Subsystem clock operation  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
114  
µs  
TI000, TI010 input high-level  
width, low-level width  
tTIH0,  
tTIL0  
2/fsam + 0.1Note  
2/fsam + 0.2Note  
µs  
µs  
TI50, TI51 input frequency  
fTI5  
10  
5
MHz  
TI50, TI51 input high-level width, tTIH5,  
50  
100  
1
ns  
ns  
µs  
low-level width  
tTIL5  
Interrupt input high-level width,  
low-level width  
tINTH,  
tINTL  
Key return input low-level width tKR  
4.0 V VDD 5.5 V  
2.7 V VDD < 4.0 V  
50  
100  
10  
ns  
ns  
µs  
RESET low-level width  
tRST  
Note Selection of fsam = fXP, fXP/4, or fXP/256 is possible using bits 0 and 1 (PRM000, PRM001) of prescaler mode  
register 00 (PRM00). Note that when selecting the TI000 or TI010 valid edge as the count clock, fsam = fXP.  
TCY vs. VDD (X1 Input Clock Operation)  
20.0  
16.0  
10.0  
µ
5.0  
Guaranteed  
operation range  
2.0  
1.0  
0.4  
0.238  
0.2  
0.1  
5.5  
6.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
2.7 3.3  
Supply voltage VDD [V]  
405  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
(2) Serial interface (TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
(a) UART mode (UART6, dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MIN.  
MIN.  
TYP.  
TYP.  
TYP.  
MAX.  
312.5  
Unit  
kbps  
(b) UART mode (UART0, dedicated baud rate generator output)  
Parameter  
Transfer rate  
Symbol  
Conditions  
MAX.  
312.5  
Unit  
kbps  
(c) 3-wire serial I/O mode (master mode, SCK10... internal clock output)  
Parameter  
SCK10 cycle time  
Symbol  
tKCY1  
Conditions  
4.0 V VDD 5.5 V  
3.3 V VDD < 4.0 V  
2.7 V VDD < 3.3 V  
MIN.  
200  
MAX.  
Unit  
ns  
240  
ns  
400  
ns  
SCK10 high-/low-level width  
tKH1,  
tKL1  
tKCY1/2 10  
ns  
SI10 setup time (to SCK10)  
SI10 hold time (from SCK10)  
tSIK1  
tKSI1  
tKSO1  
30  
30  
ns  
ns  
ns  
Delay time from SCK10to  
SO10 output  
C = 100 pFNote  
30  
MAX.  
120  
Note C is the load capacitance of the SCK10 and SO10 output lines.  
(d) 3-wire serial I/O mode (slave mode, SCK10... external clock input)  
Parameter  
SCK10 cycle time  
Symbol  
tKCY2  
Conditions  
MIN.  
400  
TYP.  
Unit  
ns  
SCK10 high-/low-level width  
tKH2,  
tKL2  
tKCY2/2  
ns  
SI10 setup time (to SCK10)  
SI10 hold time (from SCK10)  
tSIK2  
tKSI2  
tKSO2  
80  
50  
ns  
ns  
ns  
Delay time from SCK10to  
C = 100 pFNote  
SO10 output  
Note C is the load capacitance of the SO10 output line.  
406  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
AC Timing Test Points (Excluding X1 Input)  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
Test points  
Clock Timing  
1/fXP  
t
XPL  
t
XPH  
V
IH6 (MIN.)  
IL6 (MAX.)  
X1 input  
V
1/fXT  
t
XTL  
tXTH  
V
IH6 (MIN.)  
XT1 input  
VIL6 (MAX.)  
TI Timing  
t
TIL0  
t
TIH0  
TI00, TI010  
1/fTI5  
t
TIL5  
t
TIH5  
TI50, TI51  
Interrupt Request Input Timing  
t
INTL  
t
INTH  
INTP0 to INTP5  
407  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
RESET Input Timing  
t
RSL  
RESET  
Serial Transfer Timing  
3-wire serial I/O mode:  
t
KCYm  
t
KLm  
t
KHm  
SCK10  
t
SIKm  
t
KSIm  
SI10  
Input data  
t
KSOm  
SO10  
Output data  
Remark m = 1, 2  
408  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
A/D Converter Characteristics  
(TA = 40 to +85°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
10  
TYP.  
10  
MAX.  
10  
Unit  
bit  
Resolution  
Overall errorNotes 1, 2  
4.0 V AVREF 5.5 V  
0.2  
0.3  
0.4  
%FSR  
%FSR  
µs  
2.7 V AVREF < 4.0 V  
4.0 V AVREF 5.5 V  
2.7 V AVREF < 4.0 V  
4.0 V AVREF 5.5 V  
2.7 V AVREF < 4.0 V  
4.0 V AVREF 5.5 V  
2.7 V AVREF < 4.0 V  
4.0 V AVREF 5.5 V  
2.7 V AVREF < 4.0 V  
4.0 V AVREF 5.5 V  
2.7 V AVREF < 4.0 V  
0.6  
Conversion time  
tCONV  
14  
17  
100  
100  
0.4  
µs  
Zero-scale errorNotes 1, 2  
Full-scale errorNotes 1, 2  
%FSR  
%FSR  
%FSR  
%FSR  
LSB  
LSB  
LSB  
LSB  
V
0.6  
0.4  
0.6  
Integral non-linearity errorNote 1  
Differential non-linearity errorNote 1  
Analog input voltage  
2.5  
4.5  
1.5  
2.0  
VIAN  
AVSS  
AVREF  
Notes 1. Excludes quantization error ( 1/2 LSB).  
2. This value is indicated as a ratio (%FSR) to the full-scale value.  
POC Circuit Characteristics (TA = 40 to +85°C)  
Parameter  
Detection voltage  
Symbol  
VPOC0  
VPOC1  
tPTH  
Conditions  
Mask option = 3.5 V  
MIN.  
3.3  
TYP.  
3.5  
MAX.  
3.7  
Unit  
V
Mask option = 2.85 V  
VDD: 0 V 2.7 V  
VDD: 0 V 3.3 V  
2.7  
2.85  
3.0  
V
Power supply rise time  
0.0015  
0.002  
1500  
1800  
3.0  
ms  
ms  
ms  
Response delay time 1Note  
tPTHD  
When power supply rises, after reaching  
detection voltage (MAX.)  
Response delay time 2Note  
Minimum pulse width  
tPD  
When power supply falls, VDD = 1.7 V  
1.0  
ms  
ms  
tPW  
0.2  
Note Time required from voltage detection to reset release.  
POC Circuit Timing  
Supply voltage  
(VDD  
)
Detection voltage (MAX.)  
Detection voltage (TYP.)  
Detection voltage (MIN.)  
tPW  
tPTH  
tPTHD  
tPD  
Time  
409  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
LVI Circuit Characteristics (TA = 40 to +85°C)  
Parameter  
Detection voltage  
Symbol  
VLVI0  
VLVI1  
VLVI2  
VLVI3  
VLVI4  
VLVI5  
VLVI6  
tLD  
Conditions  
MIN.  
4.1  
TYP.  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
0.2  
MAX.  
4.5  
Unit  
V
3.9  
4.3  
V
3.7  
4.1  
V
3.5  
3.9  
V
3.3  
3.7  
V
3.15  
2.95  
3.45  
3.25  
2.0  
V
V
Response timeNote 1  
ms  
ms  
ms  
Minimum pulse width  
tLW  
0.2  
Reference voltage stabilization wait tLWAIT0  
timeNote 2  
0.5  
0.1  
2.0  
0.2  
Operation stabilization wait timeNote 3 tLWAIT1  
ms  
Notes 1. Time required from voltage detection to interrupt output or RESET output.  
2. Time required from setting LVIE to 1 to reference voltage stabilization when POC = OFF is selected by  
the POC mask option.  
3. Time required from setting LVION to 1 to operation stabilization.  
Remarks 1. VLVI0 > VLVI1 > VLVI2 > VLVI3 > VLVI4 > VLVI5 > VLVI6  
2. VPOCn < VLVm (n = 0, 1, m = 0 to 6)  
LVI Circuit Timing  
Supply voltage  
(VDD  
)
Detection voltage (MAX.)  
Detection voltage (TYP.)  
Detection voltage (MIN.)  
tLW  
tWAIT0  
tWAIT1  
tLD  
LVIE 1 LVION 1  
Time  
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = 40 to +85°C)  
Parameter  
Symbol  
VDDDR  
tSREL  
Conditions  
MIN.  
1.6  
0
TYP.  
MAX.  
5.5  
Unit  
V
Data retention supply voltage  
Release signal set time  
µs  
410  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
Flash Memory Programming Characteristics: µPD78F0114  
(TA = +10 to +60°C, 2.7 V VDD = EVDD 5.5 V, 2.7 V AVREF VDD, VSS = EVSS = AVSS = 0 V)  
(1) Write erase characteristics  
Parameter  
VPP supply voltage  
Symbol  
VPP2  
IDD  
Conditions  
During flash memory programming  
When VPP = VPP2, fXP = 10 MHz, VDD = 5.5 V  
VPP = VPP2  
MIN.  
9.7  
TYP.  
10.0  
MAX.  
10.3  
37  
Unit  
V
VDD supply current  
VPP supply current  
Step erase timeNote 1  
Overall erase timeNote 2  
Writeback timeNote 3  
mA  
mA  
s
IPP  
100  
0.201  
20  
Ter  
0.199  
49.4  
0.2  
50  
Tera  
Twb  
When step erase time = 0.2 s  
When writeback time = 50 ms  
s/chip  
ms  
50.6  
60  
Number of writebacks per  
writeback commandNote 4  
Cwb  
Times  
Number of erases/writebacks  
Step write timeNote 5  
Cerwb  
Twr  
16  
52  
Times  
µs  
48  
48  
50  
Overall write time per wordNote 6  
Twrw  
When step write time = 50 µs (1 word = 1  
520  
µs  
byte)  
Number of rewrites per chipNote 7  
Cerwr  
1 erase + 1 write after erase = 1 rewrite  
20  
Times  
Notes 1. The recommended setting value of the step erase time is 0.2 s.  
2. The prewrite time before erasure and the erase verify time (writeback time) are not included.  
3. The recommended setting value of the writeback time is 50 ms.  
4. Writeback is executed once by the issuance of the writeback command. Therefore, the number of retries  
must be the maximum value minus the number of commands issued.  
5. The recommended setting value of the step write time is 50 µs.  
6. The actual write time per word is 100 µs longer. The internal verify time during or after a write is not  
included.  
7. When a product is first written after shipment, erase writeand write onlyare both taken as one  
rewrite.  
Example: P: Write, E: Erase  
Shipped product  
P E P E P: 3 rewrites  
Shipped product E P E P E P: 3 rewrites  
Remark The range of the operating clock during flash memory programming is the same as the range during normal  
operation.  
411  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 25 ELECTRICAL SPECIFICATIONS (TARGET VALUES)  
(2) Serial write operation characteristics  
Parameter  
Symbol  
tDP  
tPR  
Conditions  
MIN.  
10  
10  
2
TYP.  
MAX.  
Unit  
µs  
µs  
ms  
µs  
ms  
V
Set time from VDDto VPP↑  
Release time from VPPto RESET↑  
VPP pulse input start time from RESETtRP  
VPP pulse high-/low-level width  
tPW  
8
VPP pulse input end time from RESET↑  
VPP pulse low-level input voltage  
VPP pulse high-level input voltage  
tRPE  
VPPL  
VPPH  
20  
0.8VDD  
9.7  
1.2VDD  
10.3  
10.0  
V
Flash Write Mode Setting Timing  
VDD  
VDD  
0 V  
tDP  
tRP  
tPW  
VPPH  
VPP  
VPP  
VPPL  
tPW  
tPR  
tRPE  
VDD  
RESET (input)  
0 V  
412  
Preliminary Users Manual U16227EJ1V0UD  
CHAPTER 26 PACKAGE DRAWING  
44 PIN PLASTIC LQFP (10x10)  
A
B
detail of lead end  
23  
22  
33  
34  
S
P
T
C
D
R
L
12  
11  
44  
U
1
Q
F
J
M
G
H
I
K
M
N
S
S
ITEM MILLIMETERS  
NOTE  
Each lead centerline is located within 0.20 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
D
F
12.0 0.2  
10.0 0.2  
10.0 0.2  
12.0 0.2  
1.0  
G
1.0  
+0.08  
H
0.37  
0.07  
I
0.20  
J
K
L
0.8 (T.P.)  
1.0 0.2  
0.5  
+0.03  
0.17  
M
0.06  
N
P
Q
0.10  
1.4 0.05  
0.1 0.05  
+4°  
3°  
R
3°  
S
T
1.6 MAX.  
0.25 (T.P.)  
0.6 0.15  
U
S44GB-80-8ES-2  
413  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 27 CAUTIONS FOR WAIT  
27.1 Cautions for Wait  
This product has two internal system buses.  
One is a CPU bus and the other is a peripheral bus that interfaces with the low-speed peripheral hardware.  
Because the clock of the CPU bus and the clock of the peripheral bus are asynchronous, unexpected illegal data  
may be passed if an access to the CPU conflicts with an access to the peripheral hardware.  
When accessing the peripheral hardware that may cause a conflict, therefore, the CPU repeatedly executes  
processing, until the correct data is passed.  
As a result, the CPU does not start the next instruction processing but waits. If this happens, the number of  
execution clocks of an instruction increases by the number of wait clocks (for the number of wait clocks, refer to Table  
27-1). This must be noted when real-time processing is performed.  
414  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 27 CAUTIONS FOR WAIT  
27.2 Peripheral Hardware That Generates Wait  
Table 27-1 lists the registers that issue a wait when accessed by the CPU, and the number of CPU wait clocks.  
Table 27-1. Registers That Generate Wait and Number of CPU Wait Clocks  
Peripheral Hardware  
Watchdog timer  
Register  
Access  
Number of Wait Clocks  
3 clocks (fixed)  
WDTM  
ASIS0  
ASIS6  
ADM  
Write  
Read  
Read  
Write  
Write  
Write  
Write  
Read  
Serial interface UART0  
Serial interface UART6  
A/D converter  
1 clock (fixed)  
1 clock (fixed)  
2 to 5 clocksNote  
(when ADM.5 flag = “1”)  
2 to 9 clocksNote  
ADS  
PFM  
(when ADM.5 flag = “0”)  
PFT  
ADCR  
1 to 5 clocks  
(when ADM.5 flag = “1”)  
1 to 9 clocks  
(when ADM.5 flag = “0”)  
<Calculating maximum number of wait clocks>  
{(1/fMACRO) × 2/(1/fCPU)} + 1  
*The result after the decimal point is truncated if it is less than tCPUL after it has been multiplied by  
(1/fCPU), and is rounded up if it exceeds tCPUL.  
fMACRO:  
Macro operating frequency  
(When bit 5 (FR2) of ADM = “1”: fX/2, when bit 5 (FR2) of ADM = “0”: fX/22)  
fCPU:  
CPU clock frequency  
tCPUL:  
Low-level width of CPU clock  
Note No wait cycle is generated for the CPU if the number of wait clocks calculated by the above expression is 1.  
Remark The clock is the CPU clock (fCPU).  
415  
Preliminary User’s Manual U16227EJ1V0UD  
CHAPTER 27 CAUTIONS FOR WAIT  
27.3 Example of Wait Occurrence  
<1> Watchdog timer  
<On execution of MOV WDTM, A>  
Number of execution clocks: 8  
(5 clocks when data is written to a register that does not issue a wait (MOV sfr, A).)  
<On execution of MOV WDTM, #byte>  
Number of execution clocks: 10  
(7 clocks when data is written to a register that does not issue a wait (MOV sfr, #byte).)  
<2> Serial interface UART6  
<On execution of MOV A, ASIS6>  
Number of execution clocks: 6  
(5 clocks when data is read from a register that does not issue a wait (MOV A, sfr).)  
<3> A/D converter  
Table 27-2. Number of Wait Clocks and Number of Execution Clocks on Occurrence of Wait (A/D Converter)  
<On execution of MOV ADM, A; MOV ADS, A; or MOV A, ADCR>  
When fX = 10 MHz, tCPUL = 50 ns  
Value of Bit 5 (FR2)  
fCPU  
Number of Wait Clocks  
9 clocks  
Number of Execution Clocks  
14 clocks  
of ADM Register  
0
1
fX  
fX/2  
fX/22  
fX/23  
fX/24  
fX  
5 clocks  
10 clocks  
3 clocks  
8 clocks  
2 clocks  
7 clocks  
0 clocks (1 clockNote  
)
5 clocks (6 clocksNote  
)
5 clocks  
10 clocks  
fX/2  
fX/22  
fX/23  
fX/24  
3 clocks  
8 clocks  
2 clocks  
7 clocks  
0 clocks (1 clockNote  
0 clocks (1 clockNote  
)
)
5 clocks (6 clocksNote  
5 clocks (6 clocksNote  
)
)
Note On execution of MOV A, ADCR  
Remark The clock is the CPU clock (fCPU).  
fX: X1 input clock frequency  
tCPUL: Low-level width of CPU clock  
416  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
The following development tools are available for the development of systems that employ the 78K0/KC1 Series.  
Figure A-1 shows the development tool configuration.  
Support for PC98-NX series  
Unless otherwise specified, products supported by IBM PC/ATTM compatibles are compatible with PC98-NX  
series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.  
Windows  
Unless otherwise specified, “Windows” means the following OSs.  
Windows 3.1  
Windows 95, 98, 2000  
Windows NTTM Ver 4.0  
417  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
Figure A-1. Development Tool Configuration  
Language Processing Software  
Assembler package  
C compiler package  
C library source file  
Device file  
Debugging Tool  
System simulator  
Integrated debugger  
Device file  
Embedded Software  
Real-time OS  
Host Machine (PC)  
Interface adapter,  
PC card interface, etc.  
Flash Memory  
Write Environment  
In-Circuit Emulator  
Flash programmer  
Emulation board  
Power supply unit  
Flash memory  
write adapter  
Performance board  
On-chip flash  
memory version  
Emulation probe  
Conversion socket or  
conversion adapter  
Target system  
Remark The item in the broken-line box differs according to the development environment. See A.4.1  
Hardware.  
418  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.1 Software Package  
SP78K0  
Development tools (software) common to the 78K/0 Series are combined in this package.  
78K/0 Series software package  
Part number: µS××××SP78K0  
Remark ×××× in the part number differs depending on the host machine and OS used.  
µS××××SP78K0  
××××  
AB17  
BB17  
Host Machine  
PC-9800 series,  
IBM PC/AT compatibles  
OS  
Supply Medium  
Windows (Japanese version) CD-ROM  
Windows (English version)  
419  
Preliminary Users Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.2 Language Processing Software  
RA78K0  
This assembler converts programs written in mnemonics into object codes executable  
with a microcontroller.  
Assembler package  
This assembler is also provided with functions capable of automatically creating symbol  
tables and branch instruction optimization.  
This assembler should be used in combination with a device file (DF780114) (sold  
separately).  
<Precaution when using RA78K0 in PC environment>  
This assembler package is a DOS-based application. It can also be used in Windows,  
however, by using the Project Manager (included in assembler package) on Windows.  
Part number: µS××××RA78K0  
CC78K0  
This compiler converts programs written in C language into object codes executable with  
a microcontroller.  
C compiler package  
This compiler should be used in combination with an assembler package and device file  
(both sold separately).  
<Precaution when using CC78K0 in PC environment>  
This C compiler package is a DOS-based application. It can also be used in Windows,  
however, by using the Project Manager (included in assembler package) on Windows.  
Part number: µS××××CC78K0  
DF780114Notes 1, 2  
Device file  
This file contains information peculiar to the device.  
This device file should be used in combination with a tool (RA78K0, CC78K0, SM78K0,  
ID78K0-NS, and ID78K0) (all sold separately).  
The corresponding OS and host machine differ depending on the tool to be used (all sold  
separately).  
Part number: µS××××DF780114  
CC78K/0-LNote 3  
This is a source file of the functions that configure the object library included in the C  
compiler package (CC78K0).  
C library source file  
This file is required to match the object library included in the C compiler package to the  
users specifications.  
Part number: µS××××CC78K0-L  
Notes 1. The DF780114 can be used in common with the RA78K0, CC78K0, SM78K0, ID78K0-NS, and  
ID78K0.  
2. Under development  
3. The CC78K0-L is not included in the software package (SP78K0).  
420  
Preliminary Users Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
Remark ×××× in the part number differs depending on the host machine and OS used.  
µS××××RA78K0  
µS××××CC78K0  
××××  
AB13  
Host Machine  
PC-9800 series,  
OS  
Supply Medium  
Windows (Japanese version) 3.5-inch 2HD FD  
Windows (English version)  
IBM PC/AT compatibles  
BB13  
AB17  
BB17  
3P17  
3K17  
Windows (Japanese version) CD-ROM  
Windows (English version)  
HP9000 series 700TM  
SPARCstationTM  
HP-UXTM (Rel. 10.10)  
SunOSTM (Rel. 4.1.4)  
SolarisTM (Rel. 2.5.1)  
µS××××DF780114  
µS××××CC78K0-L  
××××  
Host Machine  
OS  
Supply Medium  
AB13  
BB13  
3P16  
3K13  
3K15  
PC-9800 series,  
Windows (Japanese version) 3.5-inch 2HD FD  
Windows (English version)  
IBM PC/AT compatibles  
HP9000 series 700  
SPARCstation  
HP-UX (Rel. 10.10)  
DAT  
SunOS (Rel. 4.1.4)  
Solaris (Rel. 2.5.1)  
3.5-inch 2HD FD  
1/4-inch CGMT  
A.3 Flash Memory Writing Tools  
Flashpro III  
Flash programmer dedicated to microcontrollers with on-chip flash memory.  
(part number: FL-PR3, PG-FP3)  
Flashpro IV  
(part number: FL-PR4, PG-FP4)  
Flash programmer  
FA-44GB-8ES  
Flash memory writing adapter used connected to the Flashpro III/Flashpro IV.  
Flash memory writing adapter  
FA-44GB-8ES: For 44-pin plastic LQFP (GB-8ES type)  
Remark FL-PR3, FL-PR4, and FA-44GB-8ES are products of Naito Densei Machida Mfg. Co., Ltd.  
TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.  
421  
Preliminary Users Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.4 Debugging Tools  
A.4.1 Hardware  
IE-78K0-NS  
The in-circuit emulator serves to debug hardware and software when developing  
application systems using a 78K/0 Series product. It corresponds to the integrated  
debugger (ID78K0-NS). This emulator should be used in combination with a power  
supply unit, emulation probe, and the interface adapter required to connect this emulator  
to the host machine.  
In-circuit emulator  
IE-78K0-NS-PA  
This board is connected to the IE-78K0-NS to expand its functions. Adding this board  
adds a coverage function and enhances debugging functions such as tracer and timer  
functions.  
Performance board  
IE-78K0-NS-A  
Product that combines the IE-78K0-NS and IE-78K0-NS-PA  
In-circuit emulator  
IE-70000-MC-PS-B  
Power supply unit  
This adapter is used for supplying power from a 100 V to 240 V AC outlet.  
IE-70000-98-IF-C  
Interface adapter  
This adapter is required when using a PC-9800 series computer (except notebook type)  
as the IE-78K0-NS(-A) host machine (C bus compatible).  
IE-70000-CD-IF-A  
PC card interface  
This is PC card and interface cable required when using a notebook-type computer as  
the IE-78K0-NS(-A) host machine (PCMCIA socket compatible).  
IE-70000-PC-IF-C  
Interface adapter  
This adapter is required when using an IBM PC compatible computer as the IE-78K0-  
NS(-A) host machine (ISA bus compatible).  
IE-70000-PCI-IF-A  
Interface adapter  
This adapter is required when using a computer with a PCI bus as the IE-78K0-NS(-A)  
host machine.  
IE-780148-NS-EM1Note  
Emulation board  
This board emulates the operations of the peripheral hardware peculiar to a device. It  
should be used in combination with an in-circuit emulator.  
NP-44GB-TQ  
This probe is used to connect the in-circuit emulator to a target system and is designed  
for use with 44-pin plastic LQFP (GB-8ES type).  
Emulation probe  
TGB-044SAP  
This conversion socket connects the NP-44BG-TQ to a target system board designed for  
Conversion adapter a 44-pin plastic LQFP (GB-8ES type).  
Note Under development  
Remarks 1. NP-44GB-TQ is a product of Naito Densei Machida Mfg. Co., Ltd.  
TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.  
2. TGB-044SAP is a product made by TOKYO ELETECH CORPORATION.  
For further information, contact: Daimaru Kogyo, Ltd.  
Tokyo Electronics Department (TEL +81-3-3820-7112)  
Osaka Electronics Department (TEL +81-6-6244-6672)  
422  
Preliminary Users Manual U16227EJ1V0UD  
APPENDIX A DEVELOPMENT TOOLS  
A.4.2 Software  
SM78K0  
This system simulator is used to perform debugging at C source level or assembler level  
while simulating the operation of the target system on a host machine.  
This simulator runs on Windows.  
System simulator  
Use of the SM78K0 allows the execution of application logical testing and performance  
testing on an independent basis from hardware development without having to use an in-  
circuit emulator, thereby providing higher development efficiency and software quality.  
The SM78K0 should be used in combination with a device file (DF780114) (sold  
separately).  
Part number: µS××××SM78K0  
ID78K0-NS  
This debugger is a control program used to debug 78K/0 Series microcontrollers.  
It adopts a graphical user interface, which is equivalent visually and operationally to  
Windows or OSF/MotifTM. It also has an enhanced debugging function for C language  
programs, and thus trace results can be displayed on screen at C-language level by  
using the windows integration function which links a trace result with its source program,  
disassembled display, and memory display. In addition, by incorporating function  
modules such as a task debugger and system performance analyzer, the efficiency of  
debugging programs that run on real-time OSs can be improved.  
Integrated debugger  
(supporting in-circuit emulator  
IE-78K0-NS(-A))  
It should be used in combination with a device file (sold separately).  
Part number: µS××××ID78K0-NS  
Remark ×××× in the part number differs depending on the host machine and OS used.  
µS××××SM78K0  
µS××××ID78K0-NS  
××××  
AB13  
Host Machine  
PC-9800 series,  
IBM PC/AT compatibles  
OS  
Supply Medium  
Windows (Japanese version) 3.5-inch 2HD FD  
Windows (English version)  
BB13  
AB17  
BB17  
Windows (Japanese version) CD-ROM  
Windows (English version)  
423  
Preliminary Users Manual U16227EJ1V0UD  
APPENDIX B EMBEDDED SOFTWARE  
The following embedded products are available for efficient development and maintenance of the 78K0/KC1  
Series.  
Real-Time OS  
RX78K0  
The RX78K0 is a real-time OS conforming to the µITRON specifications.  
A tool (configurator) for generating the nucleus of the RX78K0 and multiple information  
tables is supplied.  
Real-time OS  
Used in combination with an assembler package (RA78K0) and device file (DF780114)  
(both sold separately).  
<Precaution when using RX78K0 in PC environment>  
The real-time OS is a DOS-based application. It should be used in the DOS prompt when  
using it in Windows.  
Part number: µS××××RX78013-∆∆∆∆  
Caution To purchase the RX78K0, first fill in the purchase application form and sign the user agreement.  
Remark ×××× and ∆∆∆∆ in the part number differ depending on the host machine and OS used.  
µS××××RX78013-∆∆∆∆  
∆∆∆∆  
001  
Product Outline  
Evaluation object  
Maximum Number for Use in Mass Production  
Do not use for mass-produced product.  
0.1 million units  
100K  
001M  
010M  
S01  
Mass-production object  
1 million units  
10 million units  
Source program  
Host Machine  
Object source program for mass production  
∆∆∆∆  
AA13  
AB13  
BB13  
3P16  
3K13  
3K15  
OS  
Supply Medium  
3.5-inch 2HD FD  
PC-9800 series  
Windows (Japanese version)Note  
Windows (Japanese version)Note  
Windows (English version)Note  
HP-UX (Rel. 10.10)  
IBM PC/AT compatibles  
3.5-inch 2HD FD  
HP9000 series 700  
SPARCstation  
DAT  
SunOS (Rel. 4.1.4),  
Solaris (Rel. 2.5.1)  
3.5-inch 2HD FD  
1/4-inch CGMT  
Note Can also be operated in DOS environment.  
424  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
C.1 Register Index (In Alphabetical Order with Respect to Register Names)  
[A]  
A/D conversion result register (ADCR) .......................................................................................................................216  
A/D converter mode register (ADM)............................................................................................................................218  
Analog input channel specification register (ADS)......................................................................................................220  
Asynchronous serial interface control register 6 (ASICL6)..................................................................................271, 278  
Asynchronous serial interface operation mode register 0 (ASIM0).............................................................239, 243, 244  
Asynchronous serial interface operation mode register 6 (ASIM6).............................................................265, 273, 274  
Asynchronous serial interface reception error status register 0 (ASIS0).............................................................241, 246  
Asynchronous serial interface reception error status register 6 (ASIS6).............................................................267, 276  
Asynchronous serial interface transmission status register 6 (ASIF6) ................................................................268, 277  
[B]  
Baud rate generator control register 0 (BRGC0).................................................................................................242, 253  
Baud rate generator control register 6 (BRGC6).................................................................................................270, 295  
[C]  
Capture/compare control register 00 (CRC00) ...........................................................................................................132  
Clock monitor mode register (CLM) ............................................................................................................................351  
Clock selection register 6 (CKSR6).....................................................................................................................269, 294  
[E]  
8-bit timer compare register 50 (CR50).......................................................................................................................161  
8-bit timer compare register 51 (CR51).......................................................................................................................161  
8-bit timer counter 50 (TM50) .....................................................................................................................................161  
8-bit timer counter 51 (TM51) .....................................................................................................................................161  
8-bit timer H carrier control register 1 (TMCYC1)........................................................................................................180  
8-bit timer H compare register 00 (CMP00) ................................................................................................................177  
8-bit timer H compare register 01 (CMP01) ................................................................................................................177  
8-bit timer H compare register 10 (CMP10) ................................................................................................................177  
8-bit timer H compare register 11 (CMP11) ................................................................................................................177  
8-bit timer H mode register 0 (TMHMD0)....................................................................................................................178  
8-bit timer H mode register 1 (TMHMD1)....................................................................................................................178  
8-bit timer mode control register 50 (TMC50) .............................................................................................................164  
8-bit timer mode control register 51 (TMC51) .............................................................................................................164  
External interrupt falling edge enable register (EGN)..................................................................................................322  
External interrupt rising edge enable register (EGP)...................................................................................................322  
[I]  
Input switch control register (ISC).................................................................................................................................99  
Internal memory size switching register (IMS) ............................................................................................................374  
Interrupt mask flag register 0H (MK0H) ......................................................................................................................320  
Interrupt mask flag register 0L (MK0L)........................................................................................................................320  
Interrupt mask flag register 1L (MK1L)........................................................................................................................320  
425  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
Interrupt request flag register 0H (IF0H) .................................................................................................................... 319  
Interrupt request flag register 0L (IF0L)...................................................................................................................... 319  
Interrupt request flag register 1L (IF1L)...................................................................................................................... 319  
[K]  
Key return mode register (KRM) ................................................................................................................................ 332  
[L]  
Low-voltage detection level selection register (LVIS)................................................................................................. 363  
Low-voltage detection register (LVIM)........................................................................................................................ 362  
[M]  
Main clock mode register (MCM) ............................................................................................................................... 106  
Main OSC control register (MOC) .............................................................................................................................. 107  
[O]  
Oscillation stabilization time counter status register (OSTC) ..............................................................................107, 335  
Oscillation stabilization time select register (OSTS)............................................................................................108, 336  
[P]  
Port 0 (P0).................................................................................................................................................................... 81  
Port 1 (P1).................................................................................................................................................................... 83  
Port 12 (P12)................................................................................................................................................................ 94  
Port 13 (P13)................................................................................................................................................................ 95  
Port 2 (P2).................................................................................................................................................................... 89  
Port 3 (P3).................................................................................................................................................................... 90  
Port 6 (P6).................................................................................................................................................................... 92  
Port 7 (P7).................................................................................................................................................................... 93  
Port mode register 0 (PM0)...................................................................................................................................96, 135  
Port mode register 1 (PM1)...................................................................................................................................96, 167  
Port mode register 12 (PM12)...................................................................................................................................... 96  
Port mode register 3 (PM3)...................................................................................................................................96, 167  
Port mode register 6 (PM6).......................................................................................................................................... 96  
Port mode register 7 (PM7).......................................................................................................................................... 96  
Power-fail comparison mode register (PFM).............................................................................................................. 221  
Power-fail comparison threshold register (PFT)......................................................................................................... 221  
Prescaler mode register 00 (PRM00)......................................................................................................................... 134  
Priority specification flag register 0H (PR0H)............................................................................................................. 321  
Priority specification flag register 0L (PR0L) .............................................................................................................. 321  
Priority specification flag register 1L (PR1L) .............................................................................................................. 321  
Processor clock control register (PCC) ...................................................................................................................... 103  
Pull-up resistor option register 0 (PU0) ........................................................................................................................ 98  
Pull-up resistor option register 1 (PU1) ........................................................................................................................ 98  
Pull-up resistor option register 12 (PU12) .................................................................................................................... 98  
Pull-up resistor option register 3 (PU3) ........................................................................................................................ 98  
Pull-up resistor option register 7 (PU7) ........................................................................................................................ 98  
[R]  
Receive buffer register 0 (RXB0) ............................................................................................................................... 238  
426  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
Receive buffer register 6 (RXB6)................................................................................................................................264  
Reset control flag register (RESF) ..............................................................................................................................349  
Ring-OSC mode register (RCM) .................................................................................................................................105  
[S]  
Serial clock selection register 10 (CSIC10).........................................................................................................304, 307  
Serial I/O shift register 10 (SIO10)..............................................................................................................................302  
Serial operation mode register 10 (CSIM10)...............................................................................................303, 305, 306  
16-bit timer capture/compare register 000 (CR000)....................................................................................................128  
16-bit timer capture/compare register 010 (CR010)....................................................................................................129  
16-bit timer counter 00 (TM00) ...................................................................................................................................128  
16-bit timer mode control register 00 (TMC00) ...........................................................................................................130  
16-bit timer output control register 00 (TOC00) ..........................................................................................................132  
[T]  
Timer clock selection register 50 (TCL50) ..................................................................................................................162  
Timer clock selection register 51 (TCL51) ..................................................................................................................162  
Transmit buffer register 10 (SOTB10).........................................................................................................................302  
Transmit buffer register 6 (TXB6)................................................................................................................................264  
Transmit shift register 0 (TXS0)..................................................................................................................................238  
[W]  
Watch timer operation mode register (WTM)..............................................................................................................199  
Watchdog timer enable register (WDTE) ....................................................................................................................208  
Watchdog timer mode register (WDTM) .....................................................................................................................207  
427  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
C.2 Register Index (In Alphabetical Order with Respect to Register Symbol)  
[A]  
ADCR:  
ADM:  
A/D conversion result register ................................................................................................................ 216  
A/D converter mode register................................................................................................................... 218  
Analog input channel specification register ............................................................................................ 220  
Asynchronous serial interface control register 6..............................................................................271, 278  
Asynchronous serial interface transmission status register 6..........................................................268, 277  
Asynchronous serial interface operation mode register 0........................................................239, 243, 244  
Asynchronous serial interface operation mode register 6........................................................265, 273, 274  
Asynchronous serial interface reception error status register 0.......................................................241, 246  
Asynchronous serial interface reception error status register 6.......................................................267, 276  
ADS:  
ASICL6:  
ASIF6:  
ASIM0:  
ASIM6:  
ASIS0:  
ASIS6:  
[B]  
BRGC0:  
BRGC6:  
Baud rate generator control register 0.............................................................................................242, 253  
Baud rate generator control register 6.............................................................................................270, 295  
[C]  
CKSR6:  
CLM:  
Clock selection register 6 ................................................................................................................269, 294  
Clock monitor mode register................................................................................................................... 351  
8-bit timer H compare register 00........................................................................................................... 177  
8-bit timer H compare register 01........................................................................................................... 177  
8-bit timer H compare register 10........................................................................................................... 177  
8-bit timer H compare register 11........................................................................................................... 177  
16-bit timer capture/compare register 000.............................................................................................. 128  
16-bit timer capture/compare register 010.............................................................................................. 129  
8-bit timer compare register 50............................................................................................................... 161  
8-bit timer compare register 51............................................................................................................... 161  
Capture/compare control register 00...................................................................................................... 132  
Serial clock selection register 10.....................................................................................................304, 307  
Serial operation mode register 10 ...........................................................................................303, 305, 306  
CMP00:  
CMP01:  
CMP10:  
CMP11:  
CR000:  
CR010:  
CR50:  
CR51:  
CRC00:  
CSIC10:  
CSIM10:  
[E]  
EGN:  
EGP:  
External interrupt falling edge enable register ........................................................................................ 322  
External interrupt rising edge enable register......................................................................................... 322  
[I]  
IF0H:  
IF0L:  
IF1L:  
IMS:  
ISC:  
Interrupt request flag register 0H............................................................................................................ 319  
Interrupt request flag register 0L ............................................................................................................ 319  
Interrupt request flag register 1L ............................................................................................................ 319  
Internal memory size switching register.................................................................................................. 374  
Input switch control register...................................................................................................................... 99  
[K]  
KRM:  
Key return mode register........................................................................................................................ 332  
[L]  
LVIM:  
LVIS:  
428  
Low-voltage detection register................................................................................................................ 362  
Low-voltage detection level selection register ........................................................................................ 363  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
[M]  
MCM:  
MK0H:  
MK0L:  
MK1L:  
MOC:  
Main clock mode register ........................................................................................................................106  
Interrupt mask flag register 0H................................................................................................................320  
Interrupt mask flag register 0L.................................................................................................................320  
Interrupt mask flag register 1L.................................................................................................................320  
Main OSC control register.......................................................................................................................107  
[O]  
OSTC:  
OSTS:  
Oscillation stabilization time counter status register........................................................................107, 335  
Oscillation stabilization time select register.....................................................................................108, 336  
[P]  
P0:  
Port 0 ........................................................................................................................................................81  
Port 1 ........................................................................................................................................................83  
Port 12 ......................................................................................................................................................94  
Port 13 ......................................................................................................................................................95  
Port 2 ........................................................................................................................................................89  
Port 3 ........................................................................................................................................................90  
Port 6 ........................................................................................................................................................92  
Port 7 ........................................................................................................................................................93  
Processor clock control register ..............................................................................................................103  
Power-fail comparison mode register......................................................................................................221  
Power-fail comparison threshold register................................................................................................221  
Port mode register 0..........................................................................................................................96, 135  
Port mode register 1..........................................................................................................................96, 167  
Port mode register 12................................................................................................................................96  
Port mode register 3..........................................................................................................................96, 167  
Port mode register 6..................................................................................................................................96  
Port mode register 7..................................................................................................................................96  
Priority specification flag register 0H.......................................................................................................321  
Priority specification flag register 0L........................................................................................................321  
Priority specification flag register 1L........................................................................................................321  
Prescaler mode register 00 .....................................................................................................................134  
Pull-up resistor option register 0................................................................................................................98  
Pull-up resistor option register 1................................................................................................................98  
Pull-up resistor option register 12..............................................................................................................98  
Pull-up resistor option register 3................................................................................................................98  
Pull-up resistor option register 7................................................................................................................98  
P1:  
P12:  
P13:  
P2:  
P3:  
P6:  
P7:  
PCC:  
PFM:  
PFT:  
PM0:  
PM1:  
PM12:  
PM3:  
PM6:  
PM7:  
PR0H:  
PR0L:  
PR1L:  
PRM00:  
PU0:  
PU1:  
PU12:  
PU3:  
PU7:  
[R]  
RCM:  
RESF:  
RXB0:  
RXB6:  
Ring-OSC mode register.........................................................................................................................105  
Reset control flag register .......................................................................................................................349  
Receive buffer register 0.........................................................................................................................238  
Receive buffer register 6.........................................................................................................................264  
[S]  
SIO10:  
Serial I/O shift register 10........................................................................................................................302  
SOTB10: Transmit buffer register 10 ......................................................................................................................302  
429  
Preliminary User’s Manual U16227EJ1V0UD  
APPENDIX C REGISTER INDEX  
[T]  
TCL50:  
TCL51:  
TM00:  
TM50:  
TM51:  
TMC00:  
TMC50:  
TMC51:  
Timer clock selection register 50............................................................................................................ 162  
Timer clock selection register 51............................................................................................................ 162  
16-bit timer counter 00............................................................................................................................ 128  
8-bit timer counter 50 ............................................................................................................................. 161  
8-bit timer counter 51 ............................................................................................................................. 161  
16-bit timer mode control register 00...................................................................................................... 130  
8-bit timer mode control register 50........................................................................................................ 164  
8-bit timer mode control register 51........................................................................................................ 164  
TMCYC1: 8-bit timer H carrier control register 1..................................................................................................... 180  
TMHMD0: 8-bit timer H mode register 0.................................................................................................................. 178  
TMHMD1: 8-bit timer H mode register 1.................................................................................................................. 178  
TOC00:  
TXB6:  
TXS0:  
16-bit timer output control register 00..................................................................................................... 132  
Transmit buffer register 6 ....................................................................................................................... 264  
Transmit shift register 0.......................................................................................................................... 238  
[W]  
WDTE:  
WDTM:  
WTM:  
Watchdog timer enable register.............................................................................................................. 208  
Watchdog timer mode register ............................................................................................................... 207  
Watch timer operation mode register ..................................................................................................... 199  
430  
Preliminary User’s Manual U16227EJ1V0UD  
AlthoughNEChastakenallpossiblesteps  
toensurethatthedocumentationsupplied  
to our customers is complete, bug free  
and up-to-date, we readily accept that  
errorsmayoccur. Despiteallthecareand  
precautions we've taken, you may  
encounterproblemsinthedocumentation.  
Please complete this form whenever  
you'd like to report errors or suggest  
improvements to us.  
Facsimile Message  
From:  
Name  
Company  
Tel.  
FAX  
Address  
Thank you for your kind support.  
North America  
Hong Kong, Philippines, Oceania Taiwan  
NEC Electronics Inc.  
Corporate Communications Dept.  
Fax: +1-800-729-9288  
+1-408-588-6130  
NEC Electronics Hong Kong Ltd.  
Fax: +852-2886-9022/9044  
NEC Electronics Taiwan Ltd.  
Fax: +886-2-2719-5951  
Korea  
Asian Nations except Philippines  
NEC Electronics Singapore Pte. Ltd.  
Fax: +65-250-3583  
Europe  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Fax: +82-2-528-4411  
NEC Electronics (Europe) GmbH  
Market Communication Dept.  
Fax: +49-211-6503-274  
South America  
P.R. China  
Japan  
NEC do Brasil S.A.  
Fax: +55-11-6462-6829  
NEC Electronics Shanghai, Ltd.  
Fax: +86-21-6841-1137  
NEC Semiconductor Technical Hotline  
Fax: +81- 44-435-9608  
I would like to report the following error/make the following suggestion:  
Document title:  
Document number:  
Page number:  
If possible, please fax the referenced page or drawing.  
Document Rating  
Clarity  
Excellent  
Good  
Acceptable  
Poor  
Technical Accuracy  
Organization  
CS 02.3  

相关型号:

UPD780114GB(A2)-XXX-8ES

UPD780114GB(A2)-XXX-8ES
RENESAS

UPD780114GB-XXX-8ES-A

Compact, Low-power 8-bit Microcontrollers for General Purpose Applications (Non Promotion), LQFP, /
RENESAS

UPD78011BCW(A)-XXX

8-Bit Microcontroller
ETC

UPD78011BCW-XXX

8-Bit Microcontroller
ETC

UPD78011BGC(A)-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011BGC-XXX-AB8

8-Bit Microcontroller
ETC

UPD78011BYCW

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PDIP64, SHRINK, PLASTIC, DIP-64
NEC

UPD78011BYCW-XXX

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SHRINK, DIP-64
NEC

UPD78011BYGC-XXX-AB8

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PQFP64, 14 X 14 MM, PLASTIC, QFP-64
NEC

UPD78011FCW(A)-XXX

Microcontroller, 8-Bit, MROM, 10MHz, MOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64
NEC

UPD78011FCW-XXX

8-Bit Microcontroller
ETC

UPD78011FCWA-XXX

8-BIT, MROM, MICROCONTROLLER, PDIP64, 0.750 INCH, SHRINK, PLASTIC, DIP-64
NEC