UPD7720AC [NEC]

QUARTERLY MICROPROCESSOR/MICROCOMPUTER RELIABILITY REPORT; 季度微处理器/微机可靠性报告
UPD7720AC
型号: UPD7720AC
厂家: NEC    NEC
描述:

QUARTERLY MICROPROCESSOR/MICROCOMPUTER RELIABILITY REPORT
季度微处理器/微机可靠性报告

微控制器和处理器 外围集成电路 微处理器 数字信号处理器 装置 光电二极管 计算机 时钟
文件: 总12页 (文件大小:60K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NEC ELECTRONICS INC.  
MAY 1999  
TRQ-99-05-323  
QUARTERLY  
MICROPROCESSOR/MICROCOMPUTER  
RELIABILITY REPORT  
This report contains reliability data on microprocessor  
and microcomputer devices fabricated at NEC Roseville and  
assembled at NEC Roseville or NEC Singapore.  
(Signatures on file)  
Prepared by  
D. Yee  
Approved by  
M. Mahal  
RQC Dept.  
Roseville Mfg.  
RQC Dept.  
Roseville Mfg.  
Please refer all inquiries to:  
NEC Electronics Inc.  
Attn: Reliability and Quality  
Assurance Department  
7501 Foothills Boulevard  
Roseville, CA 95747  
Tel. (916) 786-3900  
The information in this document is subject to change without notice. No part of this document May be copied or reproduced in any form or by any means  
without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which May appear in this document. NEC  
Corporation does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from use of a  
device described herein or any other liability arising from use of such device. No license, either express, implied, or otherwise, is granted under any patents,  
copyrights, or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making a continuous effort to enhance the  
reliability, of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property  
arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-  
containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard," "Special," and "Specific." The Specific  
quality grade applies only to devices developed based on a customer-designated "quality assurance program" for a specific application. The recommended  
applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular  
application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home  
electronic appliances, machine tools, personal electronic equipment, and industrial robots. Special: Transportation equipment (automobiles, trains, ships, etc.),  
traffic control systems, anti-disaster systems, anti-crime systems, safety equipment, and medical equipment (not specifically designed for life support). Specific:  
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, and life-support systems or medical equipment for life support, etc. The  
quality grade of NEC devices is Standard unless otherwise specified in NEC's data sheets or data books. If customers intend to use NEC devices for  
applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not  
implemented in this product.  
NEC Electronics Inc. is dedicated to the QCD principle  
of providing the highest Quality product at the lowest  
possible Cost with on-time Delivery to our customers.  
NEC Electronics Inc.  
Roseville Manufacturing  
Table of Contents  
Page  
Failure Rate Prediction..................................................................................................... 3  
Table 1. Reliability Tests ................................................................................................. 4  
Table 2. Reliability Test Results...................................................................................... 5  
Table 3. HTB Life Test Summary and Failure Rate Predictions..................................... 6  
Table 4. Other Life Test Summaries (HTSL, HHSL, T/H) ............................................. 8  
Table 5. Environmental and Mechanical Test Summaries (TS, T/C, PCT) .................... 9  
Table 6. Failure Summaries ............................................................................................. 10  
Table 7. CMOS-4 Process Family, Quarterly Reliability Data (Jan-Mar 99) ................. 11  
Table 8. CMOS-5 Process Family, Quarterly Reliability Data (Jan-Mar 99) ................. 11  
2
NEC Electronics Inc.  
Roseville Manufacturing  
Failure Rate Prediction  
This report contains reliability test results of all microprocessor  
devices assembled in NEC Roseville that were subjected to  
routine Monitor Reliability Testing (MRT). It also contains  
failure rate predictions for these devices, calculated using the  
Arrhenius method shown below.  
2
5
(2)  
L =  
X 10  
2T  
Where:  
L
Failure rate in %/1000 hours  
This report will be updated in September 1998.  
2
The tabular value of chi-squared distribution at  
a given confidence level and calculated degrees  
of freedom (2f + 2, where f = number of  
failures)  
X
When predicting the failure rate at a certain temperature from  
accelerated life test data, various values of activation energy,  
corresponding to failure mechanisms, should be considered.  
This procedure is done whenever exact causes of failures are  
known by performing failure analysis. In some cases, however,  
an average activation energy is assumed in order to accomplish  
a quick first-order approximation. NEC assumes an average  
activation energy of 0.7 eV for CMOS-4 and lesser  
technologies and 0.45 eV for CMOS-5 and greater  
technologies for such approximations. These average values  
have been assessed from extensive reliability test results and  
yield a conservative failure rate.  
T
T Number of equivalent device hours  
(Number of devices) x  
(number of test hours) x  
(acceleration factor)  
=
Another method of expressing failures is as FIT (failures in  
time). One FIT is equal to one failure in 109 hours. Since L is  
already expressed as %/1000 hours (105 failure/hr), an easy  
conversion from %/1000 hours to FIT would be to multiply the  
value of L by 104.  
Since life testing at NEC is performed under high-temperature  
ambient conditions, the Arrhenius relationship is used to  
normalize failure rate predictions at a system operation  
temperature of 55°C. The Arrhenius model includes the effects  
of temperature and activation energy of the failure mechanisms.  
This model assumes that the degradation of a performance  
parameter is linear with time. The temperature dependence is  
taken to be an exponential function that defines the probability  
of occurrence.  
Example  
A sample of 960 pieces was subjected to 1000 hours at 125°C  
burn-in. One reject was observed. Given that the acceleration  
factor was calculated to be 34.6 using equation (1), what is the  
failure rate, normalized to 55°C, using a confidence level of  
60%? Express the failure rate in FIT.  
The Arrhenius equation is:  
Solution  
For n = 2f + 2 = 2(1) + 2 = 4,  
A =  
exp  
E (T T  
)
(1)  
A
J1 J2  
2
X = 4.046.  
k(T )(T  
)
J1 J2  
X2 105  
2T  
Then L =  
(%/1000H)  
X2 105  
Where:  
A
Acceleration factor  
E
Activation energy  
=
A
2 (s.s.)(test hrs)(acc. factor)  
T
at T = 55°C  
A1  
at T = 125°C  
A2  
Junction temperature (in K)  
Junction temperature (in K)  
J1  
T
J2  
(4.046) 105  
2(960)(1000)(34.6)  
=
=
k
5  
Boltzmann's constant = 8.62 x 10 eV/K  
Because temperature dependence on power dissipation of a  
particular device type cannot be ignored, junction temperatures  
(T and T ) are used instead of ambient temperatures (T  
0.0061 %/1000H  
Therefore, FIT = (0.0061)(10 ) = 61  
4
J1 J2 A1  
and T ) . Also, thermal resistance of a particular device  
A2  
cannot be ignored. These two factors cannot be accounted for  
unless junction temperatures are used. We calculate junction  
temperatures using the following formula:  
T = T + (Thermal Resistance) x (Power Dissipation at T )  
J
A
A
From the high-temperature operating life test results, the failure  
rates can be predicted at a 60% confidence level using the  
following equation:  
3
NEC Electronics Inc.  
Roseville Manufacturing  
Table 1. Reliability Tests  
The major reliability tests performed by NEC consist of high-temperature bias (HTB), 85°C/85% relative humidity (T/H),  
high-temperature storage life (HTSL), and high-humidity storage life (HHSL) tests. Additionally, various environmental  
and mechanical tests are performed. This table shows the conditions of the various life tests, environmental tests, and  
mechanical tests.  
Test Item  
Symbol  
MIL-STD 883C Method  
Condition  
= 125°C,  
Remarks  
Note 1  
High-temperature bias  
life  
HTB  
1005  
T
A
V
= 5.5 V.  
CC  
Note 1  
High-temperature storage  
life  
Temperature and  
humidity life  
HTSL  
T/H  
1008  
T
= 150°C.  
A
Notes 1, 2  
T
= 85°C,  
A
RH = 85%.  
= 5.5 V, alternate  
V
DD  
pin bias.  
T = 85°C,  
A
Notes 1, 2  
Notes 1, 2  
High-humidity storage  
life  
HHSL  
PCT  
RH = 85%.  
T = 125°C,  
A
Pressure cooker  
RH = 100%  
P = 2.3 atm.  
Note 1  
Note 4  
Temperature cycle  
Lead fatigue  
T/C  
LI  
1010  
2004  
65° to 150°C, 1 hour/  
cycle.  
125g (DIP) 250g (QFP),  
three bends, 90°, without  
breaking.  
Note 5  
Solderability  
SD  
TS  
2003  
T = 230°C, 5 sec, rosin-  
A
based flux.  
Note 3  
°
Soldering heat  
260 C, 10 sec, rosin  
DIP  
based flux.  
215°C VPS  
PLCC  
QFP  
235°C, IR reflow  
10 cycles, 65° to 150°C.  
15 cycles, 0° to 100°C.  
Temperature cycle  
Thermal shock  
1010  
1011  
Note 1  
Notes:  
1. Electrical test per data sheet is performed. Devices that exceed the data sheet limits are considered rejects.  
2. Pretreatment as specified.  
3. MIL-STD 750A, method 2031.  
4. Broken lead is considered a reject.  
5. Less than 95% coverage is considered a reject.  
4
NEC Electronics Inc.  
Roseville Manufacturing  
Table 2. Reliability Test Results  
The reliability test results given in this report are representative of the following products fabricated in Roseville and  
assembled in Roseville or Singapore.  
Fabricated in Roseville  
Assembled in Roseville  
NMOS-4  
D7720A  
D78H11  
28-pin DIP  
D7720AC  
D77C20AC  
D77C25C  
CMOS-4 CX2  
D17003AH  
D6701  
40-pin DIP  
68-pin PLCC  
84-pin PLC  
D70108C  
D70116C  
D70108  
D77C20A  
D77C25  
D7502A  
D7503A  
D75004  
D75108A  
D75304  
D75306  
D75308  
D75312  
D75316  
D75328  
D17010  
D70208L  
D70216L  
D70320L  
D70325L  
D70335L  
64-pin QFP  
80-pin QFP  
D7502AGF  
D7503AGF  
D75304GF  
D75306GF  
D75308GF  
D75312GF  
D75316GF  
CMOS-5 CX3:  
D70208  
D70216  
D70322  
D70325  
D70335  
D78C10  
D78C11A  
D78C14  
D78213  
D78234  
D78238  
D78322  
D937LH  
Assembled in Singapore  
80-pin QFP  
75216AGF  
75308GF  
78C10AGF  
64-pin LQFP  
78352BG  
5
NEC Electronics Inc.  
Roseville Manufacturing  
Table 3. HTB Life Test Summary and Failure Rate Predictions  
This table summarizes the reliability test results of processes extensively used by most NEC microprocessor products. The  
failure rate predictions are based on both 125°C and 150°C high-temperature bias life test results. Failure rate predictions  
are shown for the current period of available data and for past periods of cumulative data.  
µPD7720AC  
(28-pin DIP)  
Process Type  
Jan 88–Dec 98  
(cumulative)  
Process Period  
(125°C)  
448  
520,000  
0
17.9  
6
9.3 x 10  
Ambient  
Temp.  
Number Accum,.  
of  
Devices  
448  
No. of  
Failures  
Accel.  
Factor  
(Note 1)  
17.9  
Equiv.  
Device  
Hours  
Failure Rate, 55 C  
°
Device  
Hours  
520,000  
and 60% Confidence  
Level (Note 2)  
0.0098 %/1000  
= 98.0 FIT  
NMOS-4  
Total  
°
Jan 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jan 97– Mar 99  
(cumulative)  
Apr 92– Mar 99  
(cumulative)  
Apr 92– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 94– Mar 99  
(cumulative)  
Jul 94– Mar 99  
(cumulative)  
Oct 94– Mar 99  
(cumulative)  
Jan 92– Mar 99  
(cumulative)  
(125 C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
0
0
0
0
0
0
0
0
1
0
0
0
6
9.3 x 10  
µPD77C20AC  
(28-pin DIP)  
µPD77C25C  
(28-pin DIP)  
µPD70108C  
(40-pin DIP)  
µPD7503A  
(64-pin QFP)  
µPD75304  
(80-pin QFP)  
µPD75306  
(80-pin QFP)  
µPD75308  
(80-pin QFP)  
µPD75312  
(80-pin QFP)  
µPD75316  
(80-pin QFP)  
µPD17010  
(80-pin QFP)  
µPD78C10  
(80-pin QFP)  
432  
96  
432,000  
96,000  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
32.6  
7
6
5
6
7
6
6
6
7
6
5
1.41 x 10  
3.13 x 10  
7.82 x 10  
5.48 x 10  
1.25 x 10  
2.35 x 10  
8.61 x 10  
9.39 x 10  
1.80 x 10  
2.35 x 10  
7.82 x 10  
24  
24,000  
168  
384  
120  
360  
312  
552  
72  
168,000  
384,000  
120,000  
360,000  
311,168  
552,000  
72,000  
24  
24,000  
Singapore Assembly  
µPD75216  
(80-pin QFP)  
Singapore Assembly  
µPD75308  
Jan 92– Mar 99  
(cumulative)  
(125°C)  
(125°C)  
144  
120  
144,000  
120,000  
0
0
32.6  
32.6  
6
6
4.69 x 10  
3.91 x 10  
Jan 92– Mar 99  
(cumulative)  
(80-pin QFP)  
Singapore Assembly  
CMOS-4  
Total  
µPD70208  
(68-pin PLCC) (cumulative)  
PD70216 Apr 93– Mar 99  
(68-pin PLCC) (cumulative)  
µPD70320  
Jul 91– Mar 99  
(84-pin PLCC) (cumulative)  
µPD70325  
Jan 92– Mar 99  
(84-pin PLCC) (cumulative)  
°
Jan 89– Mar 99  
(cumulative)  
Jan 92– Mar 99  
(125 C)  
(125°C)  
(125°C)  
(125°C)  
(125°C)  
2808  
748  
936  
508  
644  
2,812,168  
736,000  
936,000  
508,000  
644,000  
1
0
0
0
1
32.6  
11.3  
11.3  
11.3  
11.3  
7
0.0022%/1000  
= 22FIT  
9.17 x10  
805. x 10  
1.06 x 10  
3.30 x 10  
5.65 x 10  
6
7
6
6
6
NEC Electronics Inc.  
Roseville Manufacturing  
Table 3. HTB Life Test Summary and Failure Rate Predictions (continued)  
Process Type  
Process Period  
Ambient  
Temp.  
Number Accum,.  
No. of  
Failures  
Accel.  
Factor  
(Note 1)  
11.3  
Equiv.  
Device  
Hours  
Failure Rate, 55 C  
and 60% Confidence  
Level (Note 2)  
°
of  
Devices  
532  
Device  
Hours  
532,000  
µPD70335  
(84-pin PLCC) (cumulative)  
CMOS-5  
Total  
µPD78352  
(64-pin LQFP) (cumulative)  
CMOS-8  
Total  
Jan 94- Mar 99  
(125°C)  
0
1
0
0
6
7
6.01 x 10  
Apr 88– Mar 99  
(cumulative)  
Oct 94– Mar 99  
(125 C)  
°
3368  
192  
3,356,000  
192,000  
192,000  
11.3  
_
0.0053%/1000H  
= 53FIT  
3.79 x 10  
_
(125°C)  
°
192  
_
_
Note 3  
Oct 94– Mar 99  
(cumulative)  
(125 C)  
Notes  
:
1. The acceleration factor was calculated using the Arrhenius mathematical model.  
2. FIT was derived from HTB data for all available time periods.  
3. Some of the above FIT rates were not calculated. Due to small sample sizes in these cases, the FIT rates would not be  
meaningful. NEC expects a FIT rate of less than 100 for micro device types (target not to exceed 150).  
7
NEC Electronics Inc.  
Roseville Manufacturing  
Table 4. Other Life Test Summaries (HTSL, HHSL, T/H)  
This table summarizes the reliability test results of the different process types during 150°C/175°C/200°C storage and  
85°C/85% RH storage and bias tests. The data is summarized for the current period of available data and for past periods  
of cumulative data.  
HTSL Failures  
Hours  
HHSL Failures  
Hours  
T/H Failures  
Hours  
Process  
Process  
Type  
Period  
Qty  
168 500  
1000  
Qty  
168  
500  
1000  
Qty  
168  
500  
1000  
µPD7720AC  
(28-pin DIP)  
NMOS-4 Total  
Jan 88– Mar 99  
(cumulative)  
Jan 88– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
380  
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
448  
0
0
0
0
0
0
0
0
0
2
0
0
1
0
0
0
0
0
4
0
0
0
0
0
0
0
380  
360  
80  
0
0
0
0
0
0
0
0
0
0
1
0
-
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
448  
432  
96  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
µPD77C20AC  
(28-pin DIP)  
µPD77C25C  
(28-pin DIP)  
µPD70108C  
(40-pin DIP)  
µPD70116C  
(40-pin QFP)  
µPD7503A  
(64-pin QFP)  
µPD75304  
(80-pin QFP)  
µPD75306  
(80-pin QFP)  
µPD75308  
(80-pin QFP)  
µPD75312  
(80-pin QFP)  
µPD75316  
(80-pin QFP)  
µPD17010  
20  
24  
100  
180  
324  
80  
120  
216  
380  
96  
300  
260  
500  
40  
384  
312  
520  
72  
(80-pin QFP)  
µPD78C10  
(80-pin QFP)  
µPD75216  
(80-pin QFP)  
µPD75308  
(80-pin QFP)  
CMOS-4 Total  
0
204  
260  
220  
3336  
620  
912  
528  
692  
528  
3280  
192  
0
-
-
-
0
-
-
-
2244  
604  
804  
476  
584  
516  
2984  
0
0
0
0
0
0
0
0
-
0
0
0
0
0
0
0
-
1
0
0
0
0
0
0
-
µPD70208  
(68-pin PLCC)  
µPD70216  
(68-pin PLCC)  
µPD70320  
(84-pin PLCC)  
µPD70325  
(84-pin PLCC)  
µPD70335  
(84-pin PLCC)  
CMOS-5 Total  
µPD78352  
(64-pin LQFP)  
8
NEC Electronics Inc.  
Roseville Manufacturing  
CMOS-8 Total  
Jan 90– Mar 99  
(cumulative)  
0
-
-
-
0
-
-
-
192  
0
0
0
9
NEC Electronics Inc.  
Roseville Manufacturing  
Table 5. Environmental and Mechanical Test Summaries (TS, T/C, PCT)  
Process  
Type  
Process  
Period  
T/C Failures  
100 Cycles 300 Cycles Qty  
PCT Failures  
96 Hours  
0
Qty  
TS Failures  
Qty  
102 Hours  
µPD7720AC  
(28-pin DIP)  
NMOS-4  
Jan 88– Mar 99  
(cumulative)  
Jan 88- Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
(cumulative)  
Jan 90– Mar 99  
(cumulative)  
Jul 88– Mar 99  
261  
0
380  
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
0
0
0
0
0
0
0
0
0
1
0
1
-
380  
380  
360  
100  
20  
0
261  
342  
72  
0
0
0
0
0
0
0
2
0
0
0
0
-
460  
450  
100  
24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
Total  
µPD77C20AC  
(28-pin DIP)  
µPD77C25C  
(28-pin DIP)  
µPD70108C  
(40-pin DIP)  
µPD70116C  
(40-pin DIP)  
µPD7503A  
(64-pin QFP)  
µPD75304  
(80-pin QFP)  
µPD75306  
(80-pin QFP)  
µPD75308  
(80-pin QFP)  
µPD75312  
(80-pin QFP)  
µPD75316  
(80-pin QFP)  
µPD17010  
(80-pin QFP)  
µPD78C10  
(80-pin QFP)  
µPD75216  
(80-pin QFP)  
µPD75308  
(80-pin QFP)  
CMOS-4  
18  
54  
125  
225  
400  
125  
350  
300  
500  
75  
100  
180  
320  
100  
300  
240  
400  
60  
90  
234  
54  
224  
162  
332  
54  
0
0
180  
120  
100  
2580  
600  
820  
419  
580  
460  
2879  
180  
180  
0
-
0
-
-
0
-
0
-
-
1636  
324  
468  
180  
144  
306  
1422  
0
2
1
0
1
0
0
2
0
0
2674  
800  
975  
525  
675  
600  
3575  
60  
0
0
0
0
0
0
0
0
0
2
1
0
3
1
1
6
0
0
Total  
µPD70208  
(68-pin PLCC) (cumulative)  
µPD70216 Jul 90– Mar 99  
(68-pin PLCC) (cumulative)  
µPD70320 Jan 90– Mar 99  
(84-pin PLCC) (cumulative)  
µPD70325 Jul 88– Mar 99  
(84-pin PLCC) (cumulative)  
µPD70335 Jul 90– Mar 99  
(84-pin PLCC) (cumulative)  
CMOS-5  
Total  
Jul 88– Mar 99  
(cumulative)  
Jul 90– Mar 99  
µPD78352  
(64-pin LQFP) (cumulative)  
CMOS-8  
Total  
Jan 90– Mar 99  
(cumulative)  
0
60  
10  
NEC Electronics Inc.  
Roseville Manufacturing  
Table 6. Failure Summaries  
CMOS-4  
Test Item  
T/C  
T/C  
PCT  
HTB  
T/H  
T/H  
T/H  
HTSL  
HHBT  
TS  
Duration  
Period  
Failure  
300 cyc.  
300 cyc.  
192 hrs.  
168 hrs.  
1000 hrs.  
1000 hrs.  
1000 hrs.  
1000 hrs.  
1000 hrs.  
-
Jul 94–Oct 94  
Jan 95–Mar 95  
Jan 92–Apr 92  
Oct 95–Dec 95  
Jan 96–Mar 96  
Oct 95–Dec 95  
Jan 92–Apr 92  
Apr 96–Jun 96  
Oct-Dec 96  
1 PC DC Failure  
1 PC DC Failure  
1 PC DC Failure  
1 PC FUN Failure  
1 PC DC Failure  
1 PC FUN Failure  
1 PC FUN Failure  
1 PC DC Failure  
1 PC FUN Failure  
2PC DC Failure  
1 PC DC Failure  
1 PC DC Failure  
Jul-Sep 97  
Apr-Jun 98  
Sep-Dec 98  
T/H  
HTSL  
168 hrs.  
1000 hrs  
CMOS-5  
Test Item  
HTB  
T/C  
Duration  
1000 hrs.  
300 cyc.  
300 cyc.  
15 cyc.  
Period  
Failure  
Jul 92–Sep 92  
Apr 92–Jun 92  
Jul 95–Sep 95  
Apr 96–Jun 96  
Jan 97–Jun 97  
Apr 97–Jun 97  
Apr 97–Jun 97  
Jul–Sep 97  
1 PC DC Failure  
1 PC DC Failure  
1 PC FUN Failure  
1 PC FUN Failure  
1 PC DC Failure  
1 PC DC Failure  
1 PC DC Failure  
1PC DC Failure  
T/C  
T/S  
HTB  
T/C  
168 hrs.  
300 cyc.  
300 cyc.  
300 cyc.  
T/C  
T/C  
11  
NEC Electronics Inc.  
Roseville Manufacturing  
Table 7. CMOS-4 Process Family, Quarterly Reliability Data (Jan-Mar 99)  
Life Tests  
HTB Failures  
Hours  
T/H Failures  
Hours  
HTSL Failures/  
Hours  
Assembly  
Device Type Month  
Qty 168  
500  
1000  
Qty  
168  
500  
1000  
Qty  
168  
500  
1000  
µPD7503A  
Jan- Mar 99  
24  
0
0
0
24  
0
0
0
20  
0
0
1
(80-pin QFP)  
Environmental Tests  
T/C Failures  
Cycles  
PCT Failures  
Assembly  
Device Type Month  
Hours  
192  
0
TS  
Qty Failures  
18  
Qty  
100  
300  
Qty  
96  
288  
µPD75312  
Jan-Mar 99  
25  
0
0
20  
0
0
-
(80-pin QFP)  
Table 8. CMOS-5 Process Family, Quarterly Reliability Data (Jan-Mar 99)  
Life Tests  
HTB Failures  
T/H Failures  
HTSL Failures  
Hours  
Assembly  
Month  
Hours  
Hours  
Device Type  
Qty 168  
500  
1000  
Qty  
168  
500  
1000  
Qty  
168  
500  
1000  
µPD70216  
Jan– Mar 99  
24  
0
0
0
24  
0
0
0
20  
0
0
0
(68-pin PLCC)  
µPD70335  
Jan– Mar 99  
24  
0
0
0
24  
0
0
0
20  
0
0
0
(84-pin PLCC)  
Environmental Tests  
T/C Failures  
Cycles  
PCT Failures  
Hours  
192  
Assembly  
Month  
TS  
Failures  
Device Type  
µPD70216  
Qty  
100  
300  
Qty  
96  
288  
Qty  
Jan– Mar 99  
25  
0
0
20  
0
0
0
18  
0
(68-pin PLCC)  
µPD70335  
Jan– Mar 99  
25  
0
0
20  
0
0
0
18  
0
(84-pin PLCC)  
12  

相关型号:

UPD7720ACXXX

Digital Signal Processor, 8-Ext Bit, 8.33MHz, NMOS, PDIP28, PLASTIC, DIP-28
NEC

UPD7720AD

16-Bit Digital Signal Processor
ETC

UPD77210

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR
NEC

UPD77210F1-DA2

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR
NEC

UPD77210GJ-8EN

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR
NEC

UPD77213

UPD77210.77213 Data Sheet | Data Sheet[11/2001]
ETC

UPD77213F1-XXX-DA2

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR
NEC

UPD77213GJ-XXX-8EN

16-BIT FIXED-POINT DIGITAL SIGNAL PROCESSOR
NEC

UPD77220L

24-Bit Digital Signal Processor
ETC

UPD77220L-10

24-Bit Digital Signal Processor
ETC

UPD77220R

24-Bit Digital Signal Processor
ETC

UPD77220R-10

24-Bit Digital Signal Processor
ETC