UPD68BMC-XXX-5A4 [NEC]

Microcontroller, 4-Bit, MROM, 4.5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20;
UPD68BMC-XXX-5A4
型号: UPD68BMC-XXX-5A4
厂家: NEC    NEC
描述:

Microcontroller, 4-Bit, MROM, 4.5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20

时钟 微控制器 光电二极管 外围集成电路
文件: 总72页 (文件大小:512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD67B, 68B  
4-BIT SINGLE-CHIP MICROCONTROLLERS  
FOR INFRARED REMOTE CONTROL TRANSMISSION  
DESCRIPTION  
With their 1.65 V low-voltage operation, carrier generator for infrared remote control transmission, standby  
release function through key input, and programmable timer, the µPD67B and 68B are ideal for infrared remote  
control transmitters.  
A one-time PROM product, the µPD6P9, has also been provided for the µPD67B and 68B for program evaluation  
or small-quantity production.  
FEATURES  
• Program memory (ROM)  
µPD67B:  
µPD68B:  
1,002 × 10 bits  
2,026 × 10 bits  
• Data memory (RAM): 32 × 4 bits  
• On-chip carrier generator for infrared remote control: Each high-/low-level width can be set from 250 ns to 64  
µs (@ fX = 4 MHz operation) via modulo registers  
• 9-bit programmable timer: 1 channel  
• Instruction execution time: 16 µs (@ fX = 4 MHz operation: ceramic oscillation)  
• Stack level:  
1 level (stack RAM is also used as data memory RF)  
• I/O pins (KI/O):  
8
4
• Input pins (KI):  
• Sense input pins (S0, S2): 2  
• S1/LED pin (I/O):  
• Power supply voltage:  
1 (when in output mode, this is the remote control transmission display pin)  
VDD = 1.65 to 3.6 V  
• Operating ambient temperature: TA = –40 to +85°C  
• Oscillation frequency: fX = 3.5 to 4.5 MHz  
• On-chip POC circuit and RAM retention detector  
APPLICATIONS  
Infrared remote control transmitters (for AV and household electric appliances)  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. U16792EJ1V0DS00 (1st edition)  
Date Published January 2004 N CP(K)  
Printed in Japan  
2004  
µPD67B, 68B  
ORDERING INFORMATION  
Part Number  
Package  
µPD67BMC-×××-5A4  
µPD68BMC-×××-5A4  
20-pin plastic SSOP (7.62 mm (300))  
20-pin plastic SSOP (7.62 mm (300))  
Remark ××× indicates ROM code suffix.  
PIN CONFIGURATION (TOP VIEW)  
20-pin plastic SSOP (7.62 mm (300))  
µPD67BMC-×××-5A4  
µPD68BMC-×××-5A4  
K
I/O6  
I/O7  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
K
K
K
K
K
K
K
K
K
K
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
I3  
K
S0  
S1  
/LED  
REM  
V
DD  
XOUT  
X
IN  
I2  
GND  
I1  
S
2
I0  
Caution The pin numbers of KI and KI/O are in the reverse order of those in the µPD6600A.  
Data Sheet U16792EJ1V0DS  
2
µPD67B, 68B  
BLOCK DIAGRAM  
4
8
3
4
8
3
Port K  
I
K
K
S
I0 to KI3  
Carrier  
generator  
REM  
CPU  
core  
ROM  
Port KI/O  
Port S  
I/O0 to KI/O7  
9-bit timer  
S /LED  
1
0, S1/LED, S  
2
RAM  
X
IN  
System control  
XOUT  
VDD  
GND  
LIST OF FUNCTIONS  
Item  
µPD67B  
1,002 × 10 bits  
µPD68B  
µPD6P9M1  
ROM capacity  
2,026 × 10 bits  
4,074 × 10 bits  
One-time PROM  
128 × 4 bits  
Mask ROM  
RAM capacity  
Stack  
32 × 4 bits  
1 level (also used as RF of RAM)  
I/O pins  
Key input (KI):  
4
8
3
Key I/O (KI/O):  
Key extended input (S0, S1, S2):  
Remote control transmission display output (LED): 1 (also used as S1 pin)  
Number of keys  
Clock frequency  
32  
56 (when extended by key extension input)  
Ceramic oscillation  
fX = 3.5 to 4.5 MHz  
16 µs (@ fX = 4 MHz)  
Instruction execution time  
Carrier frequency  
Each high-/low-level width can be set from 250 ns to 64 µs (@ fX = 4 MHz operation)  
via modulo registers  
Timer  
9-bit programmable timer: 1 channel, timer clock: fX/64  
POC circuit  
On-chip  
On-chip  
RAM retention detector  
Capacitor for oscillator (15 pF) Not incorporated  
Supply voltage VDD = 1.65 to 3.6 V  
Operating ambient temperature TA = 40 to +85°C  
Package 20-pin plastic SSOP (7.62 mm (300))  
VDD = 2.2 to 3.6 V  
Data Sheet U16792EJ1V0DS  
3
µPD67B, 68B  
CONTENTS  
1. PIN FUNCTIONS ............................................................................................................................  
1.1 List of Pin Functions ............................................................................................................  
1.2 Pin I/O Circuits ......................................................................................................................  
1.3 Connection of Unused Pins.................................................................................................  
6
6
7
8
2. INTERNAL CPU FUNCTIONS .....................................................................................................  
2.1 Program Counter (PC) ..........................................................................................................  
2.2 Stack Pointer (SP) .................................................................................................................  
2.3 Address Stack Register (ASR (RF))....................................................................................  
9
9
9
9
2.4 Program Memory (ROM)....................................................................................................... 10  
2.5 Data Memory (RAM) .............................................................................................................. 10  
2.6 Data Pointer (DP)................................................................................................................... 11  
2.7 Accumulator (A) .................................................................................................................... 11  
2.8 Arithmetic and Logic Unit (ALU)......................................................................................... 12  
2.9 Flags ....................................................................................................................................... 12  
2.9.1 Status flag (F) .............................................................................................................................. 12  
2.9.2 Carry flag (CY) ............................................................................................................................ 13  
3. PORT REGISTERS (PX) .............................................................................................................. 14  
3.1 KI/O Port (P0) ........................................................................................................................... 15  
3.2 KI Port/Special Ports (P1)..................................................................................................... 15  
3.2.1 KI port (P11: bits 4 to 7 of P1) ..................................................................................................... 15  
3.2.2 S0 port (bit 2 of P1) ..................................................................................................................... 16  
3.2.3 S1/LED port (bit 3 of P1) ............................................................................................................. 16  
3.2.4 S2 port (bit 1 of P1) ..................................................................................................................... 16  
3.3 Control Register 0 (P3)......................................................................................................... 17  
3.3.1 RAM retention flag (bit 3 of P3) .................................................................................................. 18  
3.4 Control Register 1 (P4)......................................................................................................... 19  
4. TIMER .............................................................................................................................................. 20  
4.1 Timer Configuration.............................................................................................................. 20  
4.2 Timer Operation .................................................................................................................... 21  
4.3 Carrier Output........................................................................................................................ 23  
4.3.1 Carrier output generator.............................................................................................................. 23  
4.3.2 Carrier output control .................................................................................................................. 24  
4.4 Software Control of Timer Output....................................................................................... 26  
5. STANDBY FUNCTION ................................................................................................................... 27  
5.1 Outline of Standby Function ............................................................................................... 27  
5.2 Standby Mode Setting and Release ................................................................................... 28  
5.3 Standby Mode Release Timing ............................................................................................ 30  
6. RESET ............................................................................................................................................. 31  
Data Sheet U16792EJ1V0DS  
4
µPD67B, 68B  
7. POC CIRCUIT................................................................................................................................. 32  
7.1 Functions of POC Circuit ..................................................................................................... 33  
7.2 Oscillation Check at Low Power Supply Voltage .............................................................. 33  
8. SYSTEM CLOCK OSCILLATOR.................................................................................................. 34  
9. INSTRUCTION SET ....................................................................................................................... 35  
9.1 Machine Language Output by Assembler ......................................................................... 35  
9.2 Circuit Symbol Description ................................................................................................. 36  
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table ................ 37  
9.4 Accumulator Manipulation Instructions ............................................................................ 41  
9.5 I/O Instructions ...................................................................................................................... 44  
9.6 Data Transfer Instructions ................................................................................................... 45  
9.7 Branch Instructions .............................................................................................................. 47  
9.8 Subroutine Instructions ....................................................................................................... 48  
9.9 Timer Manipulation Instructions......................................................................................... 49  
9.10 Other Instructions ................................................................................................................. 52  
10. ASSEMBLER RESERVED WORDS ............................................................................................ 54  
10.1 Mask Option Quasi-Directives ............................................................................................ 54  
10.1.1 OPTION and ENDOP quasi-directives ....................................................................................... 54  
10.1.2 Mask option definition quasi-directive ........................................................................................ 54  
11. ELECTRICAL SPECIFICATIONS.................................................................................................. 55  
12. CHARACTERISTIC CURVES (REFERENCE VALUES)............................................................ 59  
13. APPLICATION CIRCUIT EXAMPLE ............................................................................................ 60  
14. PACKAGE DRAWING .................................................................................................................... 63  
15. RECOMMENDED SOLDERING CONDITIONS........................................................................... 64  
APPENDIX A. DEVELOPMENT TOOLS ............................................................................................ 65  
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN µPD67B, 68B,  
AND OTHER PRODUCTS......................................................................................... 66  
APPENDIX C. EXAMPLE OF REMOTE CONTROL TRANSMISSION FORMAT  
(in the case of NEC transmission format in command  
one-shot transmission mode) .................................................................................. 67  
Data Sheet U16792EJ1V0DS  
5
µPD67B, 68B  
1. PIN FUNCTIONS  
1.1 List of Pin Functions  
Pin No.  
Symbol  
Function  
Output Format  
CMOS  
push-pullNote 1  
After Reset  
1
KI/O0 to KI/O7 8-bit I/O port. Input/output can be specified in 8-bit units.  
In input mode, the use of a pull-down resistor can be  
specified.  
High-level output  
2
15 to 20  
In output mode, these pins can be used as key scan  
outputs from a key matrix.  
3
4
S0  
Input port.  
High-impedance  
(OFF mode)  
Can also be used as a key return input from a key matrix.  
In input mode, the use of a pull-down resistor for the S0  
and S1 ports can be specified by software in 2-bit units.  
If input mode is canceled by software, this pin is placed  
in OFF mode and enters a high-impedance state.  
S1/LED  
I/O port.  
CMOS push-pull  
High-level output  
(LED)  
In input mode (S1), this pin can also be used as a key  
return input from a key matrix.  
The use of a pull-down resistor for the S0 and S1 ports  
can be specified by software in 2-bit units.  
In output mode (LED), this pin becomes the remote  
control transmission display output (active low). When  
the remote control carrier is output from the REM output,  
this pin outputs a low level from the LED output in  
synchronization with the REM signal.  
5
6
REM  
Infrared remote control transmission output.  
This output is active high.  
CMOS push-pull  
Low-level output  
Each carrier high-/low-level width can be freely set in  
a range of 250 ns to 64 µs (@ fX = 4 MHz) by  
software.  
VDD  
Power supply  
7
8
XOUT  
XIN  
Pins for connecting ceramic resonators for the system  
clock.  
Low level  
(oscillation stopped)  
GND  
9
GND  
10  
S2  
Input  
Input port.  
(high-impedance,  
STOP mode  
release cannot be  
used)  
The use of STOP mode release for the S2 port can be  
specified by software. When used as a key input from  
a key matrix, enable the use of STOP mode release (at  
this time, a pull-down resistor is connected internally).  
When STOP mode release is disabled, this pin can be  
used as an input port that does not release the STOP  
mode even if the release condition is established  
(at this time, a pull-down resistor is not connected internally).  
Note 2  
4-bit input port.  
11 to 14  
K
I0 to KI3  
Input (low-level)  
These pins can also be used as key return inputs  
from a key matrix. The use of a pull-down resistor  
can be specified by software in 4-bit units.  
Notes 1. Be careful about this because the drive capacity of the low-level output side is held low.  
2. In order to prevent malfunction, be sure to input a low level to one or more of pins KI0 to KI3 when  
POC is released by supply voltage rising (Can be left open. When open, leave the pull-down resistor  
connected).  
Data Sheet U16792EJ1V0DS  
6
µPD67B, 68B  
1.2 Pin I/O Circuits  
The I/O circuits of pins of the µPD67B and 68B are shown in partially simplified forms below.  
(1) KI/O0 to KI/O7  
(4) S0  
V
DD  
Input buffer  
OFF mode  
Output  
Data  
latch  
P-ch  
N-chNote  
Output  
disable  
Standby  
release  
N-ch  
Pull-down flag  
Input buffer  
N-ch  
(5) S1/LED  
V
DD  
Note The drive capacity is held low.  
REM  
output latch  
P-ch  
(2) KI0 to KI3  
Standby  
release  
Output  
disable  
N-ch  
Input buffer  
Standby  
release  
Input buffer  
Pull-down flag  
N-ch  
N-ch  
Pull-down flag  
(3) REM  
(6) S2  
V
DD  
Standby  
release  
Input buffer  
P-ch  
Output  
latch  
Data  
N-ch  
STOP release  
ON/OFF  
N-ch  
Carrier  
generator  
Data Sheet U16792EJ1V0DS  
7
µPD67B, 68B  
1.3 Connection of Unused Pins  
The following connections are recommended for unused pins.  
Table 1-1. Connection of Unused Pins  
Pin  
Connection  
Inside the Microcontroller  
Outside the Microcontroller  
Leave open.  
KI/O  
Input mode  
Output mode  
High-level output  
REM  
S1/LED  
S0  
Output mode (LED) setting  
OFF mode setting  
Connect directly to GND.  
S2  
KI  
Caution The I/O mode and the pin output level are recommended to be fixed by setting them  
repeatedly in each loop of the program.  
Data Sheet U16792EJ1V0DS  
8
µPD67B, 68B  
2. INTERNAL CPU FUNCTIONS  
2.1 Program Counter (PC): 11 Bits  
The program counter (PC) is a binary counter that holds the address information of the program memory.  
Figure 2-1. Program Counter Configuration  
PC PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0  
The PC contains the address of the instruction that should be executed next. Normally, the counter contents  
are automatically incremented in accordance with the instruction length (byte count) each time an instruction is  
executed.  
However, when executing jump instructions (JMP, JC, JNC, JF, JNF), the PC contains the jump destination  
address written in the operand.  
When executing the subroutine call instruction (CALL), the call destination address written in the operand is  
entered in the PC after the PC contents at the time are saved in the address stack register (ASR). If the return  
instruction (RET) is executed after the CALL instruction is executed, the address saved in the ASR is restored to  
the PC.  
After reset, the value of the PC becomes 000H.  
2.2 Stack Pointer (SP): 1 Bit  
This is a 1-bit register that holds the status of the address stack register.  
The stack pointer contents are incremented when the call instruction (CALL) is executed and decremented when  
the return instruction (RET) is executed.  
After reset, the stack pointer contents are cleared to 0.  
When the stack pointer overflows (stack level 2 or more) or underflows, the CPU is defined as hung up, a system  
reset signal is generated, and the PC becomes 000H.  
As no instruction is available to set a value directly for the stack pointer, it is not possible to operate the pointer  
by means of a program.  
2.3 Address Stack Register (ASR (RF)): 11 Bits  
The address stack register saves the return address of the program after a subroutine call instruction is executed.  
The lower 8 bits are allocated in RF of the data memory as a alternate-function RAM. The register holds the  
ASR value even after the RET instruction is executed.  
After reset, it holds the previous data (undefined when turning on the power).  
Caution If RF is accessed as the data memory, the higher 3 bits of the ASR become undefined.  
Figure 2-2. Address Stack Register Configuration  
RF  
ASR ASR10 ASR9 ASR8 ASR7 ASR6 ASR5 ASR4 ASR3 ASR2 ASR1 ASR0  
Data Sheet U16792EJ1V0DS  
9
µPD67B, 68B  
2.4 Program Memory (ROM): 1,002 Steps × 10 Bits (µPD67B)  
2,026 Steps × 10 Bits (µPD68B)  
The ROM consists of 10 bits per step, and is addressed by the program counter.  
The program memory stores programs and table data, etc.  
The 22 steps from 7EAH to 7FFH cannot be used in the test program area.  
Figure 2-3. Program Memory Map  
(a)  
µ
PD67B  
µ
(b) PD68B  
10 bits  
10 bits  
0
000  
H
0 0H  
Page 0  
Page 0  
3
3
3
4
E9H  
EAH  
F H  
F
0 0H  
Unmounted areaNote  
Test program areaNote  
Page 1  
7
7
7
7
E9H  
EAH  
E9H  
EAH  
Test program areaNote  
7
7
FFH  
FFH  
Note The unmounted area and test program area are designed so that a program or data placed in either of  
them by mistake is returned to the 000H address.  
2.5 Data Memory (RAM): 32 × 4 Bits  
The data memory, which is a static RAM consisting of 32 × 4 bits, is used to retain processed data. The data  
memory is sometimes processed in 8-bit units. R0 can be used as the ROM data pointer.  
RF is also used as the ASR.  
After reset, R0 is cleared to 00H and R1 to RF retain the previous data (undefined when turning on the power).  
Data Sheet U16792EJ1V0DS  
10  
µPD67B, 68B  
Figure 2-4. Data Memory Configuration  
Page 0  
R1n (higher 4 bits) R0n (lower 4 bits)  
DP (refer to 2.6 Data Pointer (DP))  
R0  
R
R
R
R
R
R
R
R
R
R
R
R
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
R
R
R
R
R
R
R
R
R
R
R
R
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
RA  
RB  
RC  
RD  
RE  
RF  
R1C  
R1D  
R1E  
R1F  
R0C  
R0D  
R0E  
R0F  
ASR (refer to 2.3 Address Stack Register (ASR (RF)))  
2.6 Data Pointer (DP): 12 Bits  
The ROM data table can be referenced by setting the ROM address in the data pointer to call the ROM contents.  
The lower 8 bits of the ROM address are specified by R0 of the data memory; and the higher 4 bits by bits 4  
to 7 of the P3 register (CR0).  
After reset, the pointer contents become 000H.  
Figure 2-5. Data Pointer Configuration  
P3 register  
b7  
b6  
b5  
b
4
R10  
R00  
Note  
Note  
P3  
DP11  
DP10  
DP9  
DP8  
DP7  
DP6  
DP5  
DP4  
DP3  
DP2  
DP1  
DP0  
R0  
Note Set DP10 and DP11 to 0 in the case of the µPD67B and set DP10 to 0 in the case of the µPD68B.  
2.7 Accumulator (A): 4 Bits  
The accumulator, which refers to a register consisting of 4 bits, plays a leading role in performing various  
operations.  
After reset, the accumulator contents are left undefined.  
Figure 2-6. Accumulator Configuration  
A3  
A2  
A
1
A
0
A
Data Sheet U16792EJ1V0DS  
11  
µPD67B, 68B  
2.8 Arithmetic and Logic Unit (ALU): 4 Bits  
The arithmetic and logic unit (ALU), which refers to an arithmetic circuit consisting of 4 bits, executes simple  
(mainly logical) operations.  
2.9 Flags  
2.9.1 Status flag (F)  
Pin and timer statuses can be checked by executing the STTS instruction to check the status flag.  
The status flag is set (to 1) in the following cases.  
If the condition specified with the operand is met when the STTS instruction is executed  
When standby mode is released.  
When the release condition is met at the point of executing the HALT instruction. (In this case, the system  
does not enter the standby mode.)  
Conversely, the status flag is cleared (to 0) in the following cases.  
If the condition specified with the operand is not met when the STTS instruction is executed.  
When the status flag has been set (to 1), the HALT instruction executed, but the release condition is not met  
at the point of executing the HALT instruction. (In this case, the system does not enter the standby mode.)  
Table 2-1. Conditions for Status Flag (F) to Be Set by STTS Instruction  
Operand Value of STTS Instruction  
Condition for Status Flag (F) to Be Set  
b3  
b2  
0
b1  
0
b0  
0
0
High level is input to at least one of KI pins.  
0
1
1
High level is input to at least one of KI pins.  
High level is input to at least one of KI pins.  
The down counter of the timer is 0.  
1
1
0
1
0
1
1
Either of the combinations  
of b2, b1, and b0 above.  
[The following condition is added in addition to the above.]  
High level is input to at least one of S0Note 1, S1Note 1, or S2Note 2  
pins.  
Notes 1. The S0 and S1 pins must be set to input mode (bit 2 and bit 0 of the P4 register are set to 0 and 1,  
respectively).  
2. The use of STOP mode release for the S2 pin must be enabled (bit 3 of the P4 register is set to 1).  
Data Sheet U16792EJ1V0DS  
12  
µPD67B, 68B  
2.9.2 Carry flag (CY)  
The carry flag is set (to 1) in the following cases.  
If the ANL instruction or the XRL instruction is executed when bit 3 of the accumulator is 1 and bit 3 of the  
operand is 1.  
If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 1.  
If the INC instruction or the SCAF instruction is executed when the value of the accumulator is 0FH.  
The carry flag is cleared (to 0) in the following cases.  
If the ANL instruction or the XRL instruction is executed when at least either bit 3 of the accumulator or bit  
3 of the operand is 0.  
If the RL instruction or the RLZ instruction is executed when bit 3 of the accumulator is 0.  
If the INC instruction or the SCAF instruction is executed when the value of the accumulator is other than 0FH.  
If the ORL instruction is executed.  
When data is written to the accumulator by the MOV instruction or the IN instruction.  
Data Sheet U16792EJ1V0DS  
13  
µPD67B, 68B  
3. PORT REGISTERS (PX)  
The KI/O port, the KI port, the special ports (S0, S1/LED, S2), and the control registers are treated as port registers.  
After reset, the port register values are as shown below.  
Figure 3-1. Port Register Configuration  
Port register  
P0  
After reset  
FFH  
P10  
P11  
P13  
P14  
P00  
P01  
P03  
P04  
K
I/O7  
K
I/O6  
K
I/O5  
K
I/O4  
K
I/O3  
K
I/O2  
K
I/O1  
K
I/O0  
P1  
××××11×1BNote 1  
0000×000BNote 2  
26H  
K
I3  
K
I2  
K
I1  
K
I0  
S
1/LED  
S
0
S
2
P3 (control register 0)  
RAM  
retention  
flag  
DP11  
DP10  
DP  
9
DP  
8
ID0  
P4 (control register 1)  
K
I
S
0
/S  
1
S
2
0
0
S1/LED mode  
KI/O mode  
S
0
mode  
Pull-down Pull-down  
STOP release  
Notes 1. ×: Refers to the value based on the KI and S2 pin state.  
2. ×: Refers to the value based on decrease of power supply voltage (0 when VDD VID)  
Remarks 1. VID: RAM retention detection voltage  
2. For details of the RAM retention flag, refer to 3.3.1 RAM retention flag (bit 3 of P3).  
Table 3-1. Relationship Between Ports and Reading/Writing  
Input Mode  
Write  
Output Mode  
Port Name  
Read  
Pin state  
Pin state  
Pin state  
Pin state  
Pin state  
Read  
Write  
KI/O  
Output latch  
Output latch  
Output latch  
KI  
Note  
S0  
S1/LED  
S2  
Pin state  
Note When in OFF mode, 1is always read.  
Data Sheet U16792EJ1V0DS  
14  
µPD67B, 68B  
3.1 KI/O Port (P0)  
The KI/O port is an 8-bit I/O port for key scan output.  
I/O mode is set by bit 1 of the P4 register.  
If a read instruction is executed, the pin state can be read in input mode, whereas the output latch contents can  
be read in output mode.  
If a write instruction is executed, data can be written to the output latch regardless of input or output mode.  
After reset, the port is placed in output mode and the value of the output latch (P0) becomes 1111 1111B.  
The KI/O port incorporates a pull-down resistor, allowing pull-down in input mode only.  
Caution When a key is double-pressed, a high-level output and a low-level output may conflict at the  
KI/O port. To avoid this, the low-level output current of the KI/O port is held low. Therefore, be  
careful when using the KI/O port for purposes other than key scan output.  
The KI/O port is designed so that even when connected directly to VDD within the normal supply  
voltage range (VDD = 1.65 to 3.6 V), no problem occurs.  
Table 3-2. KI/O Port (P0)  
Bit  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Name  
KI/O7  
KI/O6  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
KI/O0  
b0 to b7: When reading: In input mode, the KI/O pins state is read.  
In output mode, the KI/O pins output latch contents are read.  
When writing: Data is written to the KI/O pins output latch regardless of input or output mode.  
3.2 KI Port/Special Ports (P1)  
3.2.1 KI port (P11: bits 4 to 7 of P1)  
The KI port is a 4-bit input port for key input. The pin state can be read.  
The use of a pull-down resistor for the KI port can be specified in 4-bit units by software using bit 5 of the P4  
register. After reset, a pull-down resistor is connected.  
Table 3-3. KI/Special Port Register (P1)  
Bit  
b7  
b6  
b5  
b4  
b3  
/LED  
b2  
b1  
b0  
Name  
K
I3  
K
I2  
K
I1  
K
I0  
S
1
S
0
S
2
Fixed to 1”  
b1:  
b2:  
The state of the S2 pin is read (read only).  
In input mode, state of the S0 pin is read (read only).  
In OFF mode, this bit is fixed to 1.  
b3:  
The state of the S1/LED pin is read regardless of input or output mode (read only).  
b4 to b7: The state of the KI pin is read (read only).  
Caution In order to prevent malfunction, be sure to input a low level to one or more of pins KI0 to KI3  
when POC is released by supply voltage rising (Can be left open. When open, leave the pull-  
down resistor connected).  
Data Sheet U16792EJ1V0DS  
15  
µPD67B, 68B  
3.2.2 S0 port (bit 2 of P1)  
The S0 port is an input/OFF mode port.  
The pin state can be read by setting this port to input mode using bit 0 of the P4 register.  
In input mode, the use of a pull-down resistor for the S0 and S1/LED ports can be specified in 2-bit units by software  
using bit 4 of the P4 register.  
If input mode is released (thus set to OFF mode), the pin becomes high-impedance but is configured so that  
through current does not flow internally. In OFF mode, 1 can be read regardless of the pin state.  
After reset, S0 is set to OFF mode, thus becoming high-impedance.  
3.2.3 S1/LED port (bit 3 of P1)  
The S1/LED port is an I/O port.  
Input or output mode can be set using bit 2 of the P4 register. The pin state can be read in both input mode  
and output mode.  
When in input mode, the use of a pull-down resistor for the S0 and S1/LED ports can be specified in 2-bit units  
by software using bit 4 of the P4 register.  
When in output mode, the pull-down resistor is automatically disconnected and this pin becomes the remote  
control transmission display pin (refer to 4. TIMER).  
After reset, S1/LED is placed in output mode, and a high level is output.  
3.2.4 S2 port (bit 1 of P1)  
The S2 port is an input port.  
Use of STOP mode release for the S2 port can be specified by bit 3 of the P4 register.  
When using the pin as a key input from a key matrix, enable (bit 3 of the P4 register is set to 1) the use of STOP  
mode release (at this time, a pull-down resistor is connected internally). When STOP mode release is disabled  
(bit 3 of the P4 register is set to 0), it can be used as an input port that does not release the STOP mode even if  
the release condition is met (at this time, a pull-down resistor is not connected internally).  
The state of the pin can be read in both cases.  
After reset, S2 is set to input mode where the STOP mode release is disabled, and enters a high-impedance  
state.  
Data Sheet U16792EJ1V0DS  
16  
µPD67B, 68B  
3.3 Control Register 0 (P3)  
Control register 0 consists of 8 bits. The contents that can be controlled are as shown below.  
After reset, the register becomes 0000 ×000BNote  
.
Note ×: Refers to the value based on a decrease of power supply voltage (0 when VDD VID)  
Remark VID: RAM retention detection voltage  
Table 3-4. Control Register 0 (P3)  
Note  
Note  
Bit  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RAM  
retention  
flag  
Name  
DP (Data Pointer)  
ID0  
DP11  
DP10  
DP9  
0
DP8  
0
Setting  
0
1
0
1
0
0
1
0
Not retainable Fixed to 0  
Retainable  
1
1
After reset  
0
0
0
0
0
0
b3:  
RAM retention flag. For function details, refer to 3.3.1 RAM retention flag (bit 3 of P3).  
b4 to b7: Specify the higher bits of the ROM data pointer (DP8 to DP11).  
Note Set b7 and b6 to 0 in the case of the µPD67B and set b7 to 0 in the case of the µPD68B.  
Data Sheet U16792EJ1V0DS  
17  
µPD67B, 68B  
3.3.1 RAM retention flag (bit 3 of P3)  
The RAM retention flag indicates whether the supply voltage has fallen below the level at which the contents  
of the RAM are lost while the battery is being exchanged or when the battery voltage has dropped.  
This flag is at bit 3 of control register 0 (P3).  
It is cleared to 0 if the supply voltage drops below the RAM retention detection voltage (approx. 1.5 V TYP.).  
If this flag is 0, it can be judged that the RAM contents have been lost or that power has just been applied. This  
flag can be used to initialize the RAM via software. After initializing the RAM and writing the necessary data to it,  
set this RAM retention flag to 1 by software. At this time, 1 means that data has been set to the RAM.  
Figure 3-2. Supply Voltage Transition and Detection Voltage  
V
DD  
V
POC/VID  
POC detection voltage/  
RAM retention detection voltage  
V
POC = VID = 1.5 V (TYP.)  
(A)  
0 V  
t
(1)  
(2)  
(3)  
(4)  
RAM retention flag  
Set to 1  
Flag contents  
are read  
(1) If the supply voltage rises after the battery has been set, and exceeds VPOC (POC detection voltage),  
reset is cleared. Because the supply voltage rises from 0 V, which is lower than VID (RAM retention  
detection voltage), the RAM retention flag remains in the initial status 0.  
(2) The supply voltage has now risen to the level at which the device can operate. Write the necessary data  
to the RAM and set the RAM retention flag to 1.  
(3) The device is reset if the supply voltage drops below VPOC. At point (A) in the figure, the voltage is lower  
than VID. Consequently, the RAM retention flag is cleared to 0.  
(4) If the RAM retention flag is checked by software after reset has been cleared, it is 0. This means that  
the contents of the RAM may have been lost. If this case, initialize the RAM by software.  
Cautions 1. The software developed for the µPD67, 67A, 68, 68A, and 69 (using the RAM retention flag)  
can be used for the µPD67B and 68B as is.  
2. Unlike the µPD67, 67A, 68, 68A, and 69, the RAM retention detection voltage of the µPD67B  
and 68B is the same as the POC detection voltage. When software is newly developed,  
it is not necessary to use the RAM retention flag if only the RAM is initialized by reset.  
Data Sheet U16792EJ1V0DS  
18  
µPD67B, 68B  
3.4 Control Register 1 (P4)  
Control register 1 consists of 8 bits. The contents that can be controlled are as shown below.  
After reset, the register becomes 0010 0110B.  
Table 3-5. Control Register 1 (P4)  
Bit  
b7  
b6  
b5  
KI  
b4  
b3  
S2  
b2  
b1  
b0  
S0  
Name  
S0/S1  
S1/LED KI/O  
Pull-down Pull-down STOP release mode  
mode  
IN  
mode  
OFF  
IN  
Setting  
0
1
Fixed  
to 0  
0
Fixed  
to 0  
0
OFF  
ON  
1
OFF  
ON  
0
Disable S1  
Enable LED  
OUT  
1
After reset  
0
1
0
b0: Specifies the input mode of the S0 port. 0 = OFF mode (high impedance); 1 = IN (input mode).  
b1: Specifies the I/O mode of the KI/O port. 0 = IN (input mode); 1 = OUT (output mode).  
b2: Specifies the I/O mode of the S1/LED port. 0 = S1 (input mode); 1 = LED (output mode).  
b3: Specifies the use of STOP mode release by S2 port (with/without pull-down resistor). 0 = disable (without  
pull-down); 1 = enable (with pull-down).  
b4: Specifies the use of a pull-down resistor in S0/S1 port input mode. 0 = OFF (not used); 1 = ON (used).  
b5: Specifies the use of a pull-down resistor for the KI port. 0 = OFF (not used); 1 = ON (used).  
Remark In output mode or in OFF mode, all the pull-down resistors are automatically disconnected.  
Data Sheet U16792EJ1V0DS  
19  
µPD67B, 68B  
4. TIMER  
4.1 Timer Configuration  
The timer is the block used for creating a remote control transmission pattern. As shown in Figure 4-1, it consists  
of a 9-bit down counter (t8 to t0), a flag (t9) enabling the 1-bit timer output, and a zero detector.  
Figure 4-1. Timer Configuration  
T
Count  
clock  
T1  
T0  
t9  
t8  
t7  
t6  
t
5
t4  
t
3
t2  
t1  
t0  
fX/64  
9-bit down counter  
Timer operation end signal  
(HALT # ×101B release  
signal)  
S
1/LED  
Zero detector  
Carrier  
synchronous  
circuit  
REM  
Carrier signal  
Data Sheet U16792EJ1V0DS  
20  
µPD67B, 68B  
4.2 Timer Operation  
The timer starts (counting down) when a value other than 0 is set for the down counter with a timer manipulation  
instruction. The timer manipulation instructions for making the timer start operation are shown below.  
MOV T0, A  
MOV T1, A  
MOV T, #data10  
MOV T, @R0  
The down counter is decremented (1) in the cycle of 64/fX. If the value of the down counter becomes 0, the  
zero detector generates the timer operation end signal to stop the timer operation. At this time, if the timer is in  
HALT mode (HALT #×101B) waiting for the timer to stop its operation, the HALT mode is released and the instruction  
following the HALT instruction is executed. The output of the timer operation end signal is continued while the down  
counter is 0 and the timer is stopped. The following relational expression applies between the timers output time  
and the down counters set value.  
Timer output time = (Set value + 1) × 64/fX 4/fX  
In addition, when the timer is set successively, the timer output time is also 4/fX shorter than the total time. An  
example is shown below.  
Example When fX = 4 MHz  
MOV T, #3FFH  
STTS #05H  
HALT #05H  
MOV T, #232H  
STTS #05H  
HALT #05H  
In the case above, the timer output time is as follows.  
(Set value + 1) × 64/fX + (Set value + 1) × 64/fX 4/fX  
= (511 + 1) × 64/4 + (50 + 1) × 64/4 4/4  
= 9.007 ms  
Data Sheet U16792EJ1V0DS  
21  
µPD67B, 68B  
By setting the flag (t9) that enables the timer output to 1, the timer can output its operation status from the S1/  
LED pin and the REM pin. The REM pin can also output the carrier while the timer is in operation.  
Table 4-1. Timer Output (at t9 = 1)  
S1/LED Pin  
Low level  
High level  
REM Pin  
High level (or carrier outputNote  
Low level  
Timer operating  
Timer halting  
)
Note The carrier output results if bit 9 (CARY) of the high-level period setting modulo register (MOD1) is cleared  
(to 0).  
Figure 4-2. Timer Output (When Carrier Is Not Output)  
Timer output time:  
4/fX  
(Set value + 1) × 64/f  
X
4/f  
X
LED  
REM  
Data Sheet U16792EJ1V0DS  
22  
µPD67B, 68B  
4.3 Carrier Output  
4.3.1 Carrier output generator  
The carrier generator consists of a 9-bit counter and two modulo registers for setting the high- and low-level  
periods (MOD1 and MOD0 respectively).  
Figure 4-3. Configuration of Remote Controller Carrier Generator  
M1  
M0  
M11  
M10  
M01  
M00  
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
0
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
Modulo register for setting the low-level period (MOD0)Note 1  
Modulo register for setting the high-level period (MOD1)  
CARY  
Carrier signal  
Selector  
Match  
Clear  
Comparator  
9-bit counter  
F/F  
Note 2  
9
2fX  
f
X
t
f
Multiplier  
X
Notes 1. Bit 9 of the modulo register for setting the low-level period (MOD0) is fixed to 0.  
2. t9: Flag that enables timer output (timer block) (see Figure 4-1 Timer Configuration)  
The carrier duty ratio and carrier frequency can be determined by setting the high- and low-level widths using  
the respective modulo registers. Each of these widths can be set in a range of 250 ns to 64 µs (@ fX = 4 MHz).  
The system clock multiplied by 2 is used for the 9-bit counter input (8 MHz when fX = 4 MHz).  
MOD0 and MOD1 are read and written using timer manipulation instructions.  
MOV A, M00  
MOV A, M01  
MOV A, M10  
MOV A, M11  
MOV M00, A  
MOV M01, A  
MOV M10, A  
MOV M11, A  
MOV M0, #data10  
MOV M1, #data10  
MOV M0, @R0  
MOV M1, @R0  
The values of MOD0 and MOD1 can be calculated from the following expressions.  
MOD0 = (2 × fX × (1 D) × T) 1  
MOD1 = (2 × fX × D × T) 1  
Caution Be sure to input values in range of 001H to 1FFH to MOD0 and MOD1.  
Remark D: Carrier duty ratio (0 < D < 1)  
fX: Input clock (MHz)  
T: Carrier cycle (µs)  
Data Sheet U16792EJ1V0DS  
23  
µPD67B, 68B  
4.3.2 Carrier output control  
Remote controller carrier can be output from the REM pin by clearing (0) bit 9 (CARY) of the modulo register  
for setting the high-level period (MOD1).  
When performing carrier output, be sure to set the timer operation after setting the MOD0 and MOD1 values.  
Note that a malfunction may occur if the values of MOD0 and MOD1 are changed while carrier is being output from  
the REM pin.  
Executing the timer manipulation instruction starts the carrier output from the low level.  
If the timers down counter reaches 0 during carrier output, carrier output is stopped and the REM pin becomes  
low level. If the down counter reaches 0 while the carrier output is high level, carrier output will stop after first  
becoming low level following the set period of high level.  
Figure 4-4. Timer Output (When Carrier Is Output)  
Timer manipulation instruction  
Timer output time: (Set value + 1) × 64/f  
X
4/f  
X
LED  
REM  
t
H
Note  
t
L
4/f  
X
Note If the down counter reaches 0 while the carrier output is high level, carrier output will stop after becoming  
low level.  
Data Sheet U16792EJ1V0DS  
24  
µPD67B, 68B  
Output from the REM pin is as follows, in accordance with the values set to bit 9 (CARY) of MOD1 and the timer  
output enable flag (t9), and the value of the timer blocks 9-bit down counter (t0 to t8).  
Table 4-2. REM Pin Output  
MOD1 Bit 9 (CARY)  
Timer Output Enable Flag  
(Timer Block t9)  
9-Bit Down Counter  
(Timer Block t0 to t8)  
REM Pin  
0
0
0
Low-level output  
Other than 0  
1
Carrier outputNote  
High-level output  
1
Note Input values in the range of 001H to 1FFH to MOD0 and MOD1.  
Caution MOD0 and MOD1 must be set while the REM pin is low level (t9 = 0 or t0 to t8 = 0).  
Table 4-3. Example of Carrier Frequency Settings (fX = 4 MHz)  
Setting Value  
MOD1  
tH (µs)  
tL (µs)  
T (µs)  
Duty  
fC (kHz)  
MOD0  
01H  
0BH  
13H  
27H  
41H  
85H  
89H  
8BH  
8CH  
91H  
94H  
D5H  
77H  
C7H  
FFH  
01H  
07H  
13H  
27H  
41H  
41H  
45H  
45H  
45H  
47H  
48H  
69H  
77H  
C7H  
FFH  
0.25  
1.0  
0.25  
1.5  
0.5  
2.5  
1/2  
2/5  
1/2  
1/2  
1/2  
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
1/2  
1/2  
1/2  
2,000  
400  
200  
100  
60.6  
40  
2.5  
2.5  
5.0  
5.0  
5.0  
10  
8.25  
8.25  
8.75  
8.75  
8.75  
9.0  
8.25  
16.5  
25  
16.75  
17.25  
17.5  
26.0  
26.25  
26.375  
27.25  
27.75  
40.0  
30.0  
50.0  
64.0  
38.5  
38.10  
37.9  
36.7  
36.0  
25  
17.625  
18.25  
18.625  
26.75  
15.0  
9.125  
13.25  
15.0  
25.0  
32.0  
33.3  
20  
25.0  
32.0  
15.6  
t
H
t
L
Carrier signal  
T
Data Sheet U16792EJ1V0DS  
25  
µPD67B, 68B  
4.4 Software Control of Timer Output  
The timer output can be controlled by software. As shown in Figure 4-5, a pulse with a minimum width of  
64/fX – 4/fX can be output.  
Figure 4-5. Output of Pulse of 1-Instruction Cycle Width  
MOV T, #0000000000B; low-level output from the REM pin  
MOV T, #1000000000B; high-level output from the REM pin  
MOV T, #0000000000B; low-level output from the REM pin  
4/f  
X
64/f  
X
4/f  
X
LED  
REM  
Data Sheet U16792EJ1V0DS  
26  
µPD67B, 68B  
5. STANDBY FUNCTION  
5.1 Outline of Standby Function  
To save power consumption, two types of standby modes, i.e., HALT mode and STOP mode, have been provided  
available.  
In STOP mode, the system clock stops oscillation. At this time, the XIN and XOUT pins are fixed to a low level.  
In HALT mode, CPU operation halts, while the system clock continues oscillation. When in HALT mode, the  
timer (including REM output and LED output) operates.  
In either STOP mode or HALT mode, the statuses of the data memory, accumulator, and port registers, etc.  
immediately before the standby mode is set are retained. Therefore, make sure to set the port status for the system  
so that the power consumption of the whole system is suppressed before the standby mode is set.  
Table 5-1. Statuses During Standby Mode  
STOP Mode  
HALT instruction  
HALT Mode  
Setting instruction  
Clock oscillator  
Oscillation stopped  
Oscillation continued  
CPU  
Operation halted  
Data memory  
Accumulator  
Flag  
Immediately preceding status retained  
Immediately preceding status retained  
Operation  
statuses  
F
0 (When 1, the flag is not placed in the standby mode.)  
Immediately preceding status retained  
CY  
Port register  
Timer  
Immediately preceding status retained  
Operation halted  
Operable  
(The count value is reset to 0)  
Cautions 1. Write the NOP instruction as the first instruction after STOP mode is released.  
2. When standby mode is released, the status flag (F) is set (to 1).  
3. If, at the point the standby mode has been set, its release condition is met, then the system  
does not enter the standby mode. However, the status flag (F) is set (1).  
Data Sheet U16792EJ1V0DS  
27  
µPD67B, 68B  
5.2 Standby Mode Setting and Release  
The standby mode is set with the HALT #b3b2b1b0B instruction for both STOP mode and HALT mode. For the  
standby mode to be set, the status flag (F) is required to have been cleared (to 0).  
The standby mode is released by the release condition specified with the reset (POC) or the operand of HALT  
instruction. If the standby mode is released, the status flag (F) is set (to 1).  
Even when the HALT instruction is executed in the state that the status flag (F) has been set (to 1), the standby  
mode is not set. If the release condition is not met at this time, the status flag is cleared (to 0). If the release condition  
is met, the status flag remains set (to 1).  
Even in the case when the release condition has been already met at the point that the HALT instruction is  
executed, the standby mode is not set. Here, also, the status flag (F) is set (to 1).  
Caution Depending on the status of the status flag (F), the HALT instruction may not be executed. Be  
careful about this. For example, when setting HALT mode after checking the key status with  
the STTS instruction, the system does not enter HALT mode as long as the status flag (F)  
remains set (to 1) and thus sometimes performs an unintended operation. In this case, the  
intended operation can be realized by executing the STTS instruction immediately after setting  
the timer to clear (to 0) the status flag.  
Example STTS  
#03H  
;To check the KI pin status.  
MOV  
T, #0xxH ;To set the timer  
STTS  
#05H  
;To clear the status flag  
(During this time, be sure not to execute an instruction that may set the status flag.)  
HALT  
#05H  
;To set HALT mode  
Table 5-2. Addresses Executed After Standby Mode Release  
Release Condition  
Address Executed After Release  
Address 0  
The address following the HALT instruction  
Reset  
Release condition shown in Table 5-3  
Data Sheet U16792EJ1V0DS  
28  
µPD67B, 68B  
Table 5-3. Standby Mode Setup (HALT #b3b2b1b0B) and Release Conditions  
Operand Value of  
HALT Instruction  
Setting Mode  
Precondition for Setup  
Release Condition  
b3  
b2  
b1  
b0  
0
0
0
0
STOP  
All KI/O pins are high-level output.  
All KI/O pins are high-level output.  
The KI/O0 pin is high-level output.  
High level is input to at least one  
of KI pins.  
0
1
1
1
1
0
STOP  
High level is input to at least one  
of KI pins.  
STOPNote 1  
STOP  
High level is input to at least one  
of KI pins.  
1
Any of the  
[The following condition is added in addition to the above.]  
combinations of  
b2b1b0 above  
High level is input to at least one  
of S0, S1, and S2 pinsNote 2  
When the timers down counter is 0  
.
0/1  
1
0
1
HALT  
Notes 1. When setting HALT #×110B, configure a key matrix by using the KI/O0 pin and the KI pin so that the  
standby mode can be released.  
2. At least one of the S0, S1, and S2 pins (the pin used for releasing the standby mode) must be specified  
as follows:  
S0, S1 pins: Input mode (specified by bits 0 and 2 of the P4 register)  
S2 pin:  
Use of STOP mode release enabled (specified by bit 3 of the P4 register)  
Cautions 1. The internal reset takes effect when the HALT instruction is executed with an operand value  
other than that above or when the precondition has not been satisfied when executing the  
HALT instruction.  
2. If STOP mode is set when the timer’s down counter is not 0 (timer operating), the system  
is placed in STOP mode only after all the 10 bits of the timer’s down counter and the timer  
output enable flag are cleared to 0.  
3. Write the NOP instruction as the first instruction after STOP mode is released.  
Data Sheet U16792EJ1V0DS  
29  
µPD67B, 68B  
5.3 Standby Mode Release Timing  
(1) STOP mode release timing  
Figure 5-1. STOP Mode Release by Release Condition  
Wait  
HALT instruction  
(STOP mode)  
(284/f  
X
+ α)  
Standby  
release signal  
Operation  
mode  
Operation  
mode  
STOP mode  
HALT mode  
Oscillation  
stopped  
Oscillation  
Oscillation  
α : Oscillation growth time  
Clock  
Caution When a release condition is met in the STOP mode, the device is released from the STOP mode,  
and goes into a wait state. At this time, if the release condition is not held, the device goes  
into STOP mode again after the wait time has elapsed. Therefore, when releasing the STOP  
mode, it is necessary to hold the release condition longer than the wait time.  
(2) HALT mode release timing  
Figure 5-2. HALT Mode Release by Release Condition  
HALT instruction  
(HALT mode)  
Standby  
release signal  
Operation  
HALT mode  
Operation mode  
mode  
Oscillation  
Clock  
Data Sheet U16792EJ1V0DS  
30  
µPD67B, 68B  
6. RESET  
A system reset is effected by the following causes.  
When the POC circuit has detected low power-supply voltage  
When the operand value is illegal or does not satisfy the precondition when the HALT instruction is executed  
When the accumulator is 0H when the RLZ instruction is executed  
When stack pointer overflows or underflows  
Table 6-1. Hardware Statuses After Reset  
Hardware  
Reset by On-Chip POC Circuit During Operation Reset by On-Chip POC Circuit in Standby  
Reset by Other FactorsNote 1  
Mode  
PC (11 bits)  
000H  
0B  
SP (1 bit)  
Data  
R0 = DP 000H  
R1 to RF Undefined  
memory  
Accumulator (A)  
Status flag (F)  
Carry flag (CY)  
Timer (10 bits)  
Port register  
Undefined  
0B  
0B  
000H  
P0 FFH  
P1 ××××11×1BNote 2  
Control register P3 0000×000BNote 3  
P4 26H  
Notes 1. The following resets are available.  
Reset when executing the HALT instruction (when the operand value is illegal or does not satisfy  
the precondition)  
Reset when executing the RLZ instruction (when A = 0)  
Reset by stack pointers overflow or underflow  
2. ×: Refers to the value by the KI or S2 pin status.  
In order to prevent malfunction, be sure to input a low level to one or more of pins KI0 to KI3 when  
POC is released by supply voltage rising (Can be left open. When open, leave the pull-down resistor  
connected).  
3. ×: Refers to the value based on a decrease of power supply voltage (0 when VDD VID).  
Remark VID: RAM retention detection voltage  
Data Sheet U16792EJ1V0DS  
31  
µPD67B, 68B  
7. POC CIRCUIT  
The POC circuit monitors the power supply voltage and applies an internal reset to the microcontroller when the  
battery is replaced.  
Cautions 1. There are cases in which the POC circuit cannot detect a low power supply voltage of less  
than 1 ms. Therefore, if the power supply voltage has become low for a period of less than  
1 ms, the POC circuit may malfunction because it does not generate an internal reset signal.  
2. Clock oscillation is stopped by the resonator due to low power supply voltage before the  
POC circuit generates the internal reset signal. In this case, malfunction may result when  
the power supply voltage is recovered after the oscillation is stopped. This type of  
phenomenon takes place because the POC circuit does not generate an internal reset signal  
(because the power supply voltage recovers before the low power supply voltage is  
detected) even though the clock has stopped. If, by any chance, a malfunction has taken  
place, remove the battery for a short time and put it back. In most cases, normal operation  
will be resumed.  
3. In order to prevent malfunction, be sure to input a low level to one or more of pins KI0 to  
KI3 when POC is released due to supply voltage rising (Can be left open. When open, leave  
the pull-down resistor connected).  
Data Sheet U16792EJ1V0DS  
32  
µPD67B, 68B  
7.1 Functions of POC Circuit  
The POC circuit has the following functions.  
Generates an internal reset signal when VDD VPOC.  
Cancels an internal reset signal when VDD > VPOC.  
Here, VDD: power supply voltage, VPOC: POC detection voltage.  
VDD  
Operating ambient temperature TA = 40 to +85°C  
3.6 V  
Clock frequency fX = 3.5 to 4.5 MHz  
1.65 V  
VPOC  
POC detection voltage VPOC = 1.5 V (TYP.)Note 3  
Approx. 1.4 V  
0 V  
t  
Internal reset signal  
Operation mode  
Reset  
Reset  
Note 2  
Note 1  
Notes 1. Actually, oscillation stabilization wait time must elapse before the circuit is switched to operation mode.  
The oscillation stabilization wait time is about 534/fX to 918/fX (when about 134 to 230 µs; @ fX = 4 MHz).  
2. For the POC circuit to generate an internal reset signal when the power supply voltage has fallen,  
it is necessary for the power supply voltage to be kept less than the VPOC for the period of 1 ms or  
more. Therefore, in reality, there is the time lag of up to 1 ms until the reset takes effect.  
3. The POC detection voltage (VPOC) varies between approximately 1.4 to 1.65 V; thus, the reset may  
be canceled at a power supply voltage smaller than the guaranteed range (VDD = 1.65 to 3.6 V).  
However, as long as the conditions for operating the POC circuit are met, the actual lowest operating  
power supply voltage becomes lower than the POC detection voltage. Therefore, there is no  
malfunction occurring due to a shortage of power supply voltage. However, malfunction for such  
reasons as the clock not oscillating due to low power supply voltage may occur (refer to Caution 2  
in 7. POC CIRCUIT).  
7.2 Oscillation Check at Low Power Supply Voltage  
A reliable reset operation can be expected of the POC circuit if it satisfies the condition that the clock can oscillate  
even at low power supply voltage (the oscillation start voltage of the resonator being even lower than the POC  
detection voltage). Whether this condition is met or not can be checked by measuring the oscillation status in a  
product that actually includes a POC circuit, as follows.  
<1> Connect a storage oscilloscope to the XOUT pin so that the oscillation status can be measured.  
<2> Connect a power supply whose output voltage can be varied and then gradually raise the power supply  
voltage VDD from 0 V (making sure to avoid VDD > 3.6 V).  
At first (during VDD < approx. 1.4 V), the XOUT pin is 0 V regardless of the VDD. However, at the point that VDD  
reaches the POC detection voltage (VPOC = 1.5 V (TYP.)), the voltage of the XOUT pin jumps to about 0.5VDD. Maintain  
this power supply voltage for a while to measure the waveform of the XOUT pin. If by any chance the oscillation  
start voltage of the resonator is lower than the POC detection voltage, the growing oscillation of the XOUT pin can  
be confirmed within several ms after the VDD has reached the VPOC.  
Data Sheet U16792EJ1V0DS  
33  
µPD67B, 68B  
8. SYSTEM CLOCK OSCILLATOR  
The system clock oscillator consists of oscillators for ceramic resonators (fX = 3.5 to 4.5 MHz).  
Figure 8-1. System Clock  
XOUT  
XIN  
GND  
Ceramic resonator  
The system clock oscillator stops oscillating when a reset is applied or in STOP mode.  
Caution When using the system clock oscillator, wire as follows in the area enclosed by the broken lines  
in the above figure to avoid an adverse effect from wiring capacitance.  
Keep the wiring length as short as possible.  
Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line  
through which a high fluctuating current flows.  
Always make the ground point of the oscillator capacitor the same potential as GND. Do not  
ground the capacitor to a ground pattern through which a high current flows.  
Do not fetch signals from the oscillator.  
Data Sheet U16792EJ1V0DS  
34  
µPD67B, 68B  
9. INSTRUCTION SET  
9.1 Machine Language Output by Assembler  
The bit length of the machine language of this product is 10 bits per word. However, the machine language that  
is output by the assembler is extended to 16 bits per word. As shown in the example below, the extension is made  
by inserting 3-bit extended bits (111) in two locations.  
Figure 9-1. Example of Assembler Output (10 Bits Extended to 16 Bits)  
<1> In the case of “ANL A, @R0H”  
1
1 0 1 0  
1
0 0 0 0  
1 1 1  
1 0 1 0  
1 1 1  
1
0 0 0 0 = FAF0  
1
Extended bits  
Extended bits  
<2> In the case of “OUT P0, #data8”  
0
0 1 1 0  
1
1 0 0 0  
1 1 1  
0 1 1 0  
1 1 1  
1
1 0 0 0 = E6F8  
0
Extended bits  
Extended bits  
Data Sheet U16792EJ1V0DS  
35  
µPD67B, 68B  
9.2 Circuit Symbol Description  
A:  
Accumulator  
ASR:  
addr:  
CY:  
Address stack register  
Program memory address  
Carry flag  
data4:  
data8:  
4-bit immediate data  
8-bit immediate data  
data10: 10-bit immediate data  
F:  
Status flag  
M0:  
Modulo register for setting the low-level period  
Modulo register for setting the low-level period (lower 4 bits)  
Modulo register for setting the low-level period (higher 4 bits)  
Modulo register for setting the high-level period  
Modulo register for setting the high-level period (lower 4 bits)  
Modulo register for setting the high-level period (higher 4 bits)  
Program counter  
M00:  
M01:  
M1:  
M10:  
M11:  
PC:  
Pn:  
Port register pair (n = 0, 1, 3, 4)  
P0n:  
P1n:  
Port register (lower 4 bits)  
Port register (higher 4 bits)  
ROMn: Bit n of the program memory (n = 0 to 9)  
Rn:  
R0n:  
R1n:  
SP:  
T:  
Register pair  
Data memory (General-purpose register; n = 0 to F)  
Data memory (General-purpose register; n = 0 to F)  
Stack pointer  
Timer register  
T0:  
T1:  
(×):  
Timer register (lower 4 bits)  
Timer register (higher 4 bits)  
Content addressed with ×  
Data Sheet U16792EJ1V0DS  
36  
µPD67B, 68B  
9.3 Mnemonic to/from Machine Language (Assembler Output) Contrast Table  
Accumulator Manipulation Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
ANL  
ORL  
XRL  
INC  
A, R0n  
FBEn  
FAEn  
FAF0  
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 • Rmn3  
1
1
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY A3 • ROM7  
A, @R0L  
FBF0  
(A) (A) ((P13), (R0))3-0  
CY A3 • ROM3  
A, #data4 FBF1  
data4  
data4  
data4  
(A) (A) data4  
2
1
CY A3 • data43  
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY 0  
A, R0n  
FDEn  
FCEn  
FCF0  
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY 0  
A, @R0L  
FDF0  
(A) (A) ((P13), (R0))3-0  
CY 0  
A, #data4 FDF1  
(A) (A) data4  
CY 0  
2
1
A, R0n  
F5En  
F4En  
F4F0  
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 • Rmn3  
A, R1n  
A, @R0H  
(A) (A) ((P13), (R0))7-4  
CY A3 • ROM7  
A, @R0L  
F5F0  
(A) (A) ((P13), (R0))3-0  
CY A3 • ROM3  
A, #data4 F5F1  
(A) (A) data4  
CY A3 • data43  
(A) (A) + 1  
2
1
A
F4F3  
if (A) = 0 CY 1  
else CY 0  
RL  
A
A
FCF3  
FEF3  
(An+1) (An), (A0) (A3)  
CY A3  
RLZ  
if A = 0 reset  
else (An+1) (An), (A0) (A3)  
CY A3  
Data Sheet U16792EJ1V0DS  
37  
µPD67B, 68B  
I/O Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
IN  
A, P0n  
A, P1n  
P0n, A  
P1n, A  
A, P0n  
A, P1n  
A, P0n  
A, P1n  
A, P0n  
A, P1n  
FFF8 + n  
FEF8 + n  
E5F8 + n  
E4F8 + n  
FBF8 + n  
FAF8 + n  
FDF8 + n  
FCF8 + n  
F5F8 + n  
F4F8 + n  
(A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
1
1
OUT  
ANL  
ORL  
XRL  
(Pmn) (A) m = 0, 1 n = 0, 1, 3, 4  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 Pmn3  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 Pmn3  
Mnemonic Operand  
Instruction Code  
1st Word 2nd Word 3rd Word  
Pn, #data8 E6F8 + n data8  
Operation  
Instruction Instruction  
Length Cycle  
OUT  
(Pn) data8  
n = 0, 1, 3, 4  
2
1
Remark Pn: P1n to P0n are handled in pairs.  
Data Transfer Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
MOV  
A, R0n  
FFEn  
FEEn  
FEF0  
(A) (Rmn)  
CY 0  
m = 0, 1 n = 0 to F  
1
1
A, R1n  
A, @R0H  
(A) ((P13), (R0))7-4  
CY 0  
A, @R0L  
FFF0  
(A) ((P13), (R0))3-0  
CY 0  
A, #data4 FFF1  
data4  
(A) data4  
CY 0  
2
1
R0n, A  
R1n, A  
E5En  
E4En  
(Rmn) (A)  
m = 0, 1 n = 0 to F  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
MOV  
Rn, #data8 E6En  
Rn, @R0 E7En  
data8  
(R1n to R0n) data8  
n = 0 to F  
2
1
1
(R1n to R0n) ((P13), (R0)) n = 1 to F  
Remark Rn: R1n to R0n are handled in pairs.  
Data Sheet U16792EJ1V0DS  
38  
µPD67B, 68B  
Branch Instructions  
Mnemonic Operand  
Instruction Code  
1st Word 2nd Word 3rd Word  
addr  
Operation  
Instruction Instruction  
Length  
Cycle  
JMP  
JC  
addr (Page 0) E8F1  
addr (Page 1) E9F1  
PC addr  
2
1
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr  
addr (Page 0) ECF1  
addr (Page 1) EAF1  
addr (Page 0) EDF1  
addr (Page 1) EBF1  
addr (Page 0) EEF1  
addr (Page 1) F0F1  
addr (Page 0) EFF1  
addr (Page 1) F1F1  
if CY = 1 PC addr  
else PC PC + 2  
if CY = 0 PC addr  
else PC PC + 2  
if F = 1 PC addr  
else PC PC + 2  
if F = 0 PC addr  
else PC PC + 2  
JNC  
JF  
JNF  
Caution 0 and 1, which refer to PAGE0 and 1, are not written when describing mnemonics.  
Subroutine Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
CALL  
RET  
addr (Page 0) E6F2  
E8F1  
E9F1  
addr  
addr  
SP SP + 1, ASR PC, PC addr  
PC ASR, SP SP – 1  
3
2
addr (Page 1) E6F2  
E8F2  
1
1
Caution 0 and 1, which refer to PAGE0 and 1, are not written when describing mnemonics.  
Data Sheet U16792EJ1V0DS  
39  
µPD67B, 68B  
Timer Manipulation Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
MOV  
A, T0  
FFFF  
FEFF  
FFF6  
FEF6  
FFF7  
FEF7  
E5FF  
F4FF  
E5F6  
E4F6  
E5F7  
E4F7  
(A) (Tn)  
CY 0  
n = 0, 1  
n = 0, 1  
n = 0, 1  
n = 0, 1  
n = 0, 1  
n = 0, 1  
1
1
A, T1  
A, M00  
A, M01  
A, M10  
A, M11  
T0, A  
(A) (M0n)  
CY 0  
(A) (M1n)  
CY 0  
(Tn) (A)  
(T) n 0  
(M0n) (A)  
CY 0  
T1, A  
M00, A  
M01, A  
M10, A  
M11, A  
(M1n) (A)  
CY 0  
Mnemonic Operand  
MOV  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
T, #data10 E6FF  
data10  
data10  
data10  
(T) data10  
2
1
M0, #data10 E6F6  
M1, #data10 E6F7  
(M0) data10  
(M1) data10  
T, @R0  
F4FF  
E7F6  
E7F7  
(T) ((P13), (R0))  
(M0) ((P13), (R0))  
(M1) ((P13), (R0))  
1
M0, @R0  
M1, @R0  
Other Instructions  
Mnemonic Operand  
Instruction Code  
Operation  
Instruction Instruction  
Length Cycle  
1st Word 2nd Word 3rd Word  
HALT  
STTS  
#data4  
#data4  
E2F1  
E3F1  
data4  
data4  
Standby mode  
2
1
if statuses match F 1  
else F 0  
R0n  
E3En  
FAF3  
E0E0  
if statuses match F 1  
else F 0  
1
n = 0 to F  
SCAF  
NOP  
if A = 0FH CY 1  
else CY 0  
PC PC + 1  
Data Sheet U16792EJ1V0DS  
40  
µPD67B, 68B  
9.4 Accumulator Manipulation Instructions  
ANL A, R0n  
ANL A, R1n  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
1
1
0
1 R  
4
0 R  
3
R
2
R
1
R
0
1
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 Rmn3  
The accumulator contents and the register Rmn contents are ANDed and the results are entered in the  
accumulator.  
ANL A, @R0H  
ANL A, @R0L  
<1> Instruction code:  
1
1 0 1 0/1 1 0 0 0 0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) ((P13), (R0))7-4 (in the case of ANL A, @R0H)  
CY A3 ROM7  
(A) (A) ((P13), (R0))3-0 (in the case of ANL A, @R0L)  
CY A3 ROM3  
The accumulator contents and the program memory contents specified by the control register P13 and  
register pair R10 to R00 are ANDed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5, and b4 take effect. If L is specified, b3, b2, b1, and b0 take effect.  
• Program memory (ROM) configuration  
b9  
b7  
b6  
b5  
b4  
b8  
b3  
b2  
b1  
b0  
H↓  
L↓  
Valid bits at the time of accumulator manipulation  
ANL A, #data4  
<1> Instruction code:  
1
0
1
0
0
0
1
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) data4  
CY A3 data43  
The accumulator contents and the immediate data are ANDed and the results are entered in the  
accumulator.  
Data Sheet U16792EJ1V0DS  
41  
µPD67B, 68B  
ORL A, R0n  
ORL A, R1n  
<1> Instruction code:  
1
1
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY 0  
The accumulator contents and the register Rmn contents are ORed and the results are entered in the  
accumulator.  
ORL A, @R0H  
ORL A, @R0L  
<1> Instruction code:  
1
1 1 0 0/1 1 0 0 0 0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) ((P13), (R0))7-4 (in the case of ORL A, @R0H)  
(A) (A) ((P13), (R0))3-0 (in the case of ORL A, @R0L)  
CY 0  
The accumulator contents and the program memory contents specified by the control register P13 and  
register pair R10 to R00 are ORed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5, and b4 take effect. If L is specified, b3, b2, b1, and b0 take effect.  
ORL A, #data4  
<1> Instruction code:  
1
0
1
0
1
0
0
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) data4  
CY 0  
The accumulator contents and the immediate data are ORed and the results are entered in the  
accumulator.  
XRL A, R0n  
XRL A, R1n  
<1> Instruction code:  
1
0
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) (Rmn) m = 0, 1 n = 0 to F  
CY A3 Rmn3  
The accumulator contents and the register Rmn contents are exclusive-ORed and the results are  
entered in the accumulator.  
Data Sheet U16792EJ1V0DS  
42  
µPD67B, 68B  
XRL A, @R0H  
XRL A, @R0L  
<1> Instruction code:  
1
0 1 0 0/1 1 0 0 0 0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) ((P13), (R0))7-4 (in the case of XRL A, @R0H)  
CY A3 ROM7  
(A) (A) ((P13), (R0))3-0 (in the case of XRL A, @R0L)  
CY A3 ROM3  
The accumulator contents and the program memory contents specified by the control register P13 and  
register pair R10 to R00 are exclusive-ORed and the results are entered in the accumulator.  
If H is specified, b7, b6, b5, and b4 take effect. If L is specified, b3, b2, b1, and b0 take effect.  
XRL A, #data4  
<1> Instruction code:  
1
0
0
0
1
0
0
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) data4  
CY A3 data43  
The accumulator contents and the immediate data are exclusive-ORed and the results are entered in  
the accumulator.  
INC A  
<1> Instruction code:  
1
0 1 0 0 1 0 0 1 1  
<2> Cycle count:  
<3> Function:  
1
(A) (A) + 1  
if A = 0 CY 1  
else CY 0  
The accumulator contents are incremented (+1).  
RL A  
<1> Instruction code:  
1
1 1 0 0 1 0 0 1 1  
<2> Cycle count:  
<3> Function:  
1
(An + 1) (An), (A0) (A3)  
CY A3  
The accumulator contents are rotated anticlockwise bit by bit.  
RLZ A  
<1> Instruction code:  
1
1 1 1 0 1 0 0 1 1  
<2> Cycle count:  
<3> Function:  
1
if A = 0 reset  
else (An + 1) (An), (A0) (A3)  
CY A3  
The accumulator contents are rotated anticlockwise bit by bit.  
If A = 0H at the time of instruction execution, an internal reset takes effect.  
Data Sheet U16792EJ1V0DS  
43  
µPD67B, 68B  
9.5 I/O Instructions  
IN A, P0n  
IN A, P1n  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
1
1
1
1 P  
4
1
1 P  
2
P
1
P
0
1
(A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
The port Pmn data is loaded (read) onto the accumulator.  
OUT P0n, A  
OUT P1n, A  
<1> Instruction code:  
0
0
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count:  
<3> Function:  
1
(Pmn) (A) m = 0, 1 n = 0, 1, 3, 4  
The accumulator contents are transferred to port Pmn to be latched.  
ANL A, P0n  
ANL A, P1n  
<1> Instruction code:  
1
1
0
1 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 Pmn  
The accumulator contents and the port Pmn contents are ANDed and the results are entered in the  
accumulator.  
ORL A, P0n  
ORL A, P1n  
<1> Instruction code:  
1
1
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY 0  
The accumulator contents and the port Pmn contents are ORed and the results are entered in the  
accumulator.  
XRL A, P0n  
XRL A, P1n  
<1> Instruction code:  
1
0
1
0 P  
4
1
1 P  
2
P1  
P0  
<2> Cycle count:  
<3> Function:  
1
(A) (A) (Pmn) m = 0, 1 n = 0, 1, 3, 4  
CY A3 Pmn  
The accumulator contents and the port Pmn contents are exclusive-ORed and the results are entered  
in the accumulator.  
Data Sheet U16792EJ1V0DS  
44  
µPD67B, 68B  
OUT Pn, #data8  
<1> Instruction code:  
0
0
0
1
1
0
1
1 P  
2
P
1
P
0
d7  
d6  
d5  
d4  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(Pn) data8 n = 0, 1, 3, 4  
The immediate data is transferred to port Pn. In this case, port Pn refers to P1n to P0n operating in pairs.  
9.6 Data Transfer Instructions  
MOV A, R0n  
MOV A, R1n  
<1> Instruction code:  
1
1
1
1 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
(A) (Rmn) m = 0, 1 n = 0 to F  
CY 0  
The register Rmn contents are transferred to the accumulator.  
MOV A, @R0H  
<1> Instruction code:  
1
1 1 1 0 1 0 0 0 0  
<2> Cycle count:  
<3> Function:  
1
(A) ((P13), (R0))7-4  
CY 0  
The higher 4 bits (b7 b6 b5 b4) of the program memory specified by control register P13 and register pair  
R10 to R00 are transferred to the accumulator. b9 is ignored.  
MOV A, @R0L  
<1> Instruction code:  
1
1 1 1 1 1 0 0 0 0  
<2> Cycle count:  
<3> Function:  
1
(A) ((P13), (R0))3-0  
CY 0  
The lower 4 bits (b3 b2 b1 b0) of the program memory specified by control register P13 and register pair  
R10 to R00 are transferred to the accumulator. b8 is ignored.  
• Program memory (ROM) contents  
@R0 H  
@R0 L  
b9  
b7 b6 b5 b4  
b8  
b3 b2 b1 b0  
MOV A, #data4  
<1> Instruction code:  
1
0
1
0
1
0
1
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(A) data4  
CY 0  
The immediate data is transferred to the accumulator.  
Data Sheet U16792EJ1V0DS  
45  
µPD67B, 68B  
MOV R0n, A  
MOV R1n, A  
<1> Instruction code:  
0
0
1
0 R  
4
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
(Rmn) (A) m = 0, 1 n = 0 to F  
The accumulator contents are transferred to register Rmn.  
MOV Rn, #data8  
<1> Instruction code:  
0
0
0
1
1
0
0 R  
3
R
2
R
1
R
0
d7  
d6  
d5  
d4  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
(R1n-R0n) data8 n = 0 to F  
The immediate data is transferred to the register. Using this instruction, registers operate as register  
pairs.  
The pair combinations are as follows:  
R0: R10 - R00  
R1: R11 - R01  
:
RE: R1E - R0E  
RF: R1F - R0F  
Lower column  
Higher column  
MOV Rn, @R0  
<1> Instruction code:  
0
0
1
1
1
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
(R1n-R0n) ((P13), (R0)) n = 1 to F  
The program memory contents specified by control register P13 and register pair R10 to R00 are  
transferred to register pair R1n to R0n. The program memory consists of 10 bits and has the following  
state after the transfer to the register.  
Program memory  
b9  
b7 b6 b5 b4  
b8  
b3 b2 b1 b0  
b9  
b7 b6 b5 b4  
b8  
b3 b2 b1 b0  
@R0  
R1n  
R0n  
The higher 2 to 4 bits of the program memory address are specified by the control register (P13).  
Data Sheet U16792EJ1V0DS  
46  
µPD67B, 68B  
9.7 Branch Instructions  
The program memory consists of pages in steps of 1K (000H to 3FFH). However, as the assembler automatically  
performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as  
follows.  
µPD67B (ROM: 1K steps):  
µPD68B (ROM: 2K steps):  
Page 0  
Pages 0, 1  
JMP addr  
<1> Instruction code: Page 0  
0
1
0
0
0
1
0
0
0
1
; page 1 0 1 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
1
PC addr  
The 10 bits (PC9-0) of the program counter are replaced directly by the specified address addr (a9 to  
a0).  
JC addr  
<1> Instruction code: Page 0  
0
1
1
0
0
1
0
0
0
1
; page 1 0 1 0 1 0 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
1
if CY = 1 PC addr  
else PC PC + 2  
If the carry flag CY is set (to 1), a jump is made to the address specified by addr (a9 to a0).  
JNC addr  
<1> Instruction code: Page 0  
0
1
1
0
1
1
0
0
0
1
; page 1 0 1 0 1 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
1
if CY = 0 PC addr  
else PC PC + 2  
If the carry flag CY is cleared (to 0), a jump is made to the address specified by addr (a9 to a0).  
JF addr  
<1> Instruction code: Page 0  
0
1
1
1
0
1
0
0
0
1
; page 1 1 0 0 0 0 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
1
if F = 1 PC addr  
else PC PC + 2  
If the status flag F is set (to 1), a jump is made to the address specified by addr (a9 to a0).  
JNF addr  
<1> Instruction code: Page 0  
0
1
1
1
1
1
0
0
0
1
; page 1 1 0 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
1
if F = 0 PC addr  
else PC PC + 2  
If the status flag F is cleared (to 0), a jump is made to the address specified by addr (a9 to a0).  
Data Sheet U16792EJ1V0DS  
47  
µPD67B, 68B  
9.8 Subroutine Instructions  
The program memory consists of pages in steps of 1K (000H to 3FFH). However, as the assembler automatically  
performs page optimization, it is unnecessary to designate pages. The pages allowed for each product are as  
follows.  
µPD67B (ROM: 1K steps):  
µPD68B (ROM: 2K steps):  
Page 0  
Pages 0, 1  
CALL addr  
<1> Instruction code:  
0
0
1
1
0
0
1
1
0
0
0
0
1 0  
Page 0  
0
1
0
0
0
1
; page 1 0 1 0 0 1 1 0 0 0 1  
a9  
a7  
a6  
a5  
a4  
a8  
a3  
a2  
a1  
a0  
<2> Cycle count:  
<3> Function:  
2
SP SP + 1  
ASR PC  
PC addr  
Increments (+1) the stack pointer value and saves the program counter value in the address stack  
register. Then, enters the address specified by the operand addr (a9 to a0) into the program counter.  
If a carry is generated when the stack pointer value is incremented (+1), an internal reset takes effect.  
RET  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
0
1 0 0 0 1 0 0 1 0  
1
PC ASR  
SP SP 1  
Restores the value saved in the address stack register to the program counter. Then, decrements  
(1) the stack pointer.  
If a borrow is generated when the stack pointer value is decremented (1), an internal reset takes effect.  
Data Sheet U16792EJ1V0DS  
48  
µPD67B, 68B  
9.9 Timer Manipulation Instructions  
MOV A, T0  
MOV A, T1  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
1
1 1 1 0/1 1 1 1 1 1  
1
(A) (Tn) n = 0, 1  
CY 0  
The timer register Tn contents are transferred to the accumulator. T1 corresponds to (t9, t8, t7, t6); T0  
corresponds to (t5, t4, t3, t2).  
T
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
T1  
T0  
Can be set with  
MOV T, #data10  
MOV T, @R0  
MOV A, M00  
MOV A, M01  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
1
1 1 1 0/1 1 0 1 1 0  
1
(A) (M0n) n = 0, 1  
CY 0  
The modulo register M0n contents are transferred to the accumulator. M01 corresponds to (t9, t8, t7,  
t6); M00 corresponds to (t5, t4, t3, t2).  
M0  
t
9
t
8
t
7
t
6
t5  
t
4
t
3
t
2
t
1
t
0
M01  
M00  
Can be set with  
MOV M0, #data10  
MOV M0, @R0  
Data Sheet U16792EJ1V0DS  
49  
µPD67B, 68B  
MOV A, M10  
MOV A, M11  
<1> Instruction code:  
1
1 1 1 0/1 1 0 1 1 1  
<2> Cycle count:  
<3> Function:  
1
(A) (M1n) n = 0, 1  
CY 0  
The modulo register M1n contents are transferred to the accumulator. M11 corresponds to (t9, t8, t7,  
t6); M10 corresponds to (t5, t4, t3, t2).  
M1  
t
9
t
8
t
7
t
6
t
5
t
4
t
3
t
2
t
1
t
0
M11  
M10  
Can be set with  
MOV M1, #data10  
MOV M1, @R0  
MOV T0, A  
MOV T1, A  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
0
0 1 0 0/1 1 1 1 1 1  
1
(Tn) (A) n = 0, 1  
The accumulator contents are transferred to the timer register Tn. T1 corresponds to (t9, t8, t7, t6); T0  
corresponds to (t5, t4, t3, t2). After executing this instruction, if data is transferred to T1, t1 becomes  
0; if data is transferred to T0, t0 becomes 0.  
MOV M00, A  
MOV M01, A  
<1> Instruction code:  
0
0 1 0 0/1 1 0 1 1 0  
<2> Cycle count:  
<3> Function:  
1
(M0n) (A) n = 0, 1  
(CY) 0  
The accumulator contents are transferred to the modulo register M0n. M01 corresponds to (t9, t8, t7,  
t6); M00 corresponds to (t5, t4, t3, t2). After executing this instruction, if data is transferred to M01,  
t1 becomes 0; if data is transferred to M00, t0 becomes 0.  
MOV M10, A  
MOV M11, A  
<1> Instruction code:  
0
0 1 0 0/1 1 0 1 1 1  
<2> Cycle count:  
<3> Function:  
1
(M1n) (A) n = 0, 1  
(CY) 0  
The accumulator contents are transferred to the modulo register M1n. M11 corresponds to (t9, t8, t7,  
t6); M10 corresponds to (t5, t4, t3, t2). After executing this instruction, if data is transferred to M11,  
t1 becomes 0; if data is transferred to M10, t0 becomes 0.  
Data Sheet U16792EJ1V0DS  
50  
µPD67B, 68B  
MOV T, #data10  
<1> Instruction code:  
0
0 1 1 0 1 1 1 1 1  
t1  
t9  
t8  
t7  
t6  
t0  
t5  
t4  
t3  
t2  
<2> Cycle count:  
<3> Function:  
1
(T) data10  
The immediate data is transferred to the timer register T (t9 to t0).  
Remark The timer time is set as follows: (Set value + 1) × 64/fX 4/fX  
MOV M0, #data10  
<1> Instruction code:  
0
0 1 1 0 1 0 1 1 0  
t1  
t9  
t8  
t7  
t6  
t0  
t5  
t4  
t3  
t2  
<2> Cycle count:  
<3> Function:  
1
(M0) data10  
The immediate data is transferred to the modulo register M0 (t9 to t0).  
MOV M1, #data10  
<1> Instruction code:  
0
0 1 1 0 1 0 1 1 1  
t1  
t9  
t8  
t7  
t6  
t0  
t5  
t4  
t3  
t2  
<2> Cycle count:  
<3> Function:  
1
(M1) data10  
The immediate data is transferred to the modulo register M1 (t9 to t0).  
MOV T, @R0  
<1> Instruction code:  
0
0 1 1 1 1 1 1 1 1  
<2> Cycle count:  
<3> Function:  
1
(T) ((P13), (R0))  
Transfers the program memory contents specified by the control register P13 and the register pair R10  
to R00 to the timer register T (t9 to t0).  
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the  
register.  
Timer  
T
Program memory  
t1  
t
9
t8  
t7  
t6  
t0  
t5  
t4  
t3  
t2  
t9  
t
8
t7  
t6  
t
5
t4  
t3  
t2  
t1  
t0  
@R  
0
T1  
T0  
The higher 2 to 4 bits of the program memory address are specified by the control register (P13).  
Caution When setting a timer value in the program memory, be sure to use the DT  
quasi-directive.  
Data Sheet U16792EJ1V0DS  
51  
µPD67B, 68B  
MOV M0, @R0  
<1> Instruction code:  
0
0 1 1 1 1 0 1 1 0  
<2> Cycle count:  
<3> Function:  
1
(M0) ((P13), (R0))  
Transfers the program memory contents specified by the control register P13 and the register pair R10  
to R00 to the modulo register M0 (t9 to t0).  
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the  
register.  
Modulo register  
Program memory  
M0  
t1  
t9  
t
8
t
7
t6  
t
0
t5  
t
4
t3  
t2  
t
9
t
8
t7  
t
6
t5  
t
4
t
3
t
2
t
1
t
0
@R  
0
M01  
M00  
The higher 2 to 4 bits of the program memory address are specified by the control register (P13).  
Caution When setting a register value in the program memory, be sure to use the DT  
quasi-directive.  
MOV M1, @R0  
<1> Instruction code:  
0
0 1 1 1 1 0 1 1 1  
<2> Cycle count:  
<3> Function:  
1
(M1) ((P13), (R0))  
Transfers the program memory contents specified by the control register P13 and the register pair R10  
to R00 to the modulo register M1 (t9 to t0).  
The program memory, which consists of 10 bits, is placed in the following state after the transfer to the  
register.  
Modulo register  
Program memory  
M1  
t1  
t9  
t
8
t
7
t6  
t
0
t5  
t
4
t3  
t2  
t
9
t
8
t7  
t
6
t5  
t
4
t
3
t
2
t
1
t
0
@R  
0
M11  
M10  
The higher 2 to 4 bits of the program memory address are specified by the control register (P13).  
Caution When setting a register value in the program memory, be sure to use the DT  
quasi-directive.  
9.10 Other Instructions  
HALT #data4  
<1> Instruction code:  
0
0
0
0
0
0
1
0
0
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
Standby mode  
Places the CPU in standby mode.  
The condition for having the standby mode (HALT/STOP mode) canceled is specified by the immediate  
data.  
Data Sheet U16792EJ1V0DS  
52  
µPD67B, 68B  
STTS R0n  
<1> Instruction code:  
0
0
0
1
1
0 R  
3
R2  
R1  
R0  
<2> Cycle count:  
<3> Function:  
1
if statuses match F 1  
else F 0 n = 0 to F  
Compares the S0, S1, S2, KI/O, KI, and TIMER statuses with the register R0n contents. If at least one  
of the statuses matches the bits that have been set, the status flag F is set (to 1).  
If none of them match, the status flag F is cleared (to 0).  
STTS #data4  
<1> Instruction code:  
0
0
0
0
0
0
1
0
1
0
1 0 0 0 1  
0 d  
3
d2  
d1  
d0  
<2> Cycle count:  
<3> Function:  
1
if statuses match F 1  
else F 0  
Compares the S0, S1, S2, KI/O, KI, and TIMER statuses with the immediate data contents. If at least one  
of the statuses matches the bits that have been set, the status flag F is set (to 1).  
If none of them match, the status flag F is cleared (to 0).  
SCAF (Set Carry if ACC = FH)  
<1> Instruction code:  
<2> Cycle count:  
<3> Function:  
1
1 0 1 0 1 0 0 1 1  
1
if A = 0FH CY 1  
else CY 0  
Sets the carry flag CY (to 1) if the accumulator contents are FH.  
The accumulator values after executing the SCAF instruction are as follows.  
Accumulator Value  
Before Execution After Execution  
Carry Flag  
×××0  
××01  
×011  
0111  
1111  
0000  
0001  
0011  
0111  
1111  
0 (clear)  
0 (clear)  
0 (clear)  
0 (clear)  
1 (set)  
Remark ×: dont care  
NOP  
<1> Instruction code:  
0
0 0 0 0 0 0 0 0 0  
<2> Cycle count:  
<3> Function:  
No operation  
1
PC PC + 1  
Data Sheet U16792EJ1V0DS  
53  
µPD67B, 68B  
10. ASSEMBLER RESERVED WORDS  
10.1 Mask Option Quasi-Directives  
When creating a program in the µPD67B and 68B, it is necessary to use a mask option quasi-directive in the  
assemblers source program.  
10.1.1 OPTION and ENDOP quasi-directives  
The quasi-directives from the OPTION quasi-directive down to the ENDOP quasi-directive are called the mask  
option definition block. The format of the mask option definition block is as follows.  
Format  
Symbol field  
[Label:]  
Mnemonic field  
Operand field  
Comment field  
[; Comment]  
OPTION  
:
:
ENDOP  
10.1.2 Mask option definition quasi-directive  
The quasi-directive that can be used in the mask option definition block is shown in Table 10-1.  
The mask option definition can only be specified as follows. Be sure to specify the following quasi-directive.  
Example  
Symbol field  
Mnemonic field  
OPTION  
Operand field  
Comment field  
NOUSECAP  
ENDOP  
; Capacitor for oscillation  
not incorporated  
Table 10-1. Mask Option Definition Quasi-Directive  
Name  
Mask Option Definition Quasi-Directive  
PRO File  
Address Value  
2043H  
Data Value  
00  
CAP  
NOUSECAP  
(Capacitor for oscillation not incorporated)  
Data Sheet U16792EJ1V0DS  
54  
µPD67B, 68B  
11. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = +25°C)  
Item  
Symbol  
VDD  
Conditions  
Ratings  
Unit  
V
Power supply voltage  
Input voltage  
0.3 to +3.8  
VI  
KI/O, KI, S0, S1, S2  
REM  
0.3 to VDD + 0.3  
V
Output voltage  
VO  
0.3 to VDD + 0.3  
V
Note  
Output current, high  
IOH  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
30  
20  
7.5  
5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
LED  
KI/O Per pin  
13.5  
9  
Total for LED and KI/O pins  
18  
12  
7.5  
Note  
Output current, low  
IOL  
REM  
LED  
5
7.5  
5
Operating ambient  
temperature  
TA  
40 to +85  
Storage temperature  
Tstg  
65 to +150  
°C  
Note The rms value should be calculated as follows: [rms value] = [Peak value] × Duty.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for  
any parameter. That is, the absolute maximum ratings are rated values at which the product  
is on the verge of suffering physical damage, and therefore the product must be used under  
conditions that ensure that the absolute maximum ratings are not exceeded.  
Recommended Power Supply Voltage Range (TA = –40 to +85°C)  
Item  
Symbol  
Conditions  
fX = 3.5 to 4.5 MHz  
MIN.  
1.65  
TYP.  
3.0  
MAX.  
3.6  
Unit  
V
Power supply voltage  
VDD  
Data Sheet U16792EJ1V0DS  
55  
µPD67B, 68B  
DC Characteristics (TA = –40 to +85°C, VDD = 1.65 to 3.6 V)  
Item  
Symbol  
VIH1  
Conditions  
MIN.  
0.7VDD  
0.65VDD  
0
TYP.  
MAX.  
Unit  
V
Input voltage, high  
KI/O  
VDD  
VDD  
VIH2  
KI, S0, S1, S2  
V
Input voltage, low  
VIL1  
KI/O  
0.3VDD  
0.15VDD  
3
V
VIL2  
KI, S0, S1, S2  
KI  
0
V
Input leakage current,  
high  
ILIH1  
µA  
VI = VDD, pull-down resistor not incorporated  
ILIH2  
S0, S1, S2  
3
µA  
VI = VDD, pull-down resistor not incorporated  
Input leakage current,  
low  
ILIL1  
ILIL2  
ILIL3  
VOH1  
VOL1  
VOL2  
IOH1  
IOH2  
IOL1  
KI  
VI = 0 V  
VI = 0 V  
3  
3  
3  
µA  
µA  
µA  
V
KI/O  
S0, S1, S2 VI = 0 V  
Output voltage, high  
Output voltage, low  
REM, LED, KI/O  
IOH = 0.3 mA  
0.8VDD  
REM, LED  
KI/O  
IOL = 0.3 mA  
0.3  
0.4  
V
IOL = 15 µA  
V
Output current, high  
Output current, low  
REM  
KI/O  
VDD = 3.0 V, VOH = 1.0 V  
VDD = 3.0 V, VOH = 2.2 V  
VDD = 3.0 V, VOL = 0.4 V  
VDD = 3.0 V, VOL = 2.2 V  
5  
2.5  
47  
12  
7  
mA  
mA  
µA  
µA  
kΩ  
kΩ  
V
KI/O  
70  
260  
75  
390  
150  
250  
On-chip pull-down  
resistance  
R1  
KI, S0, S1, S2  
KI/O  
300  
500  
3.6  
R2  
130  
0.9  
Data retention power  
supply voltage  
VDDDR  
In STOP mode  
RAM retention detection  
voltage  
VID  
1.5  
0.7  
1.65  
1.4  
V
Supply current  
IDD1  
Operation  
mode  
fX = 4.0 MHz, VDD = 3 V 10%  
mA  
IDD2  
IDD3  
HALT mode  
STOP mode  
fX = 4.0 MHz, VDD = 3 V 10%  
VDD = 3 V 10%  
0.65  
2.0  
1.3  
9.0  
3.0  
mA  
µA  
µA  
VDD = 3 V 10%, TA = 25°C  
1.8  
Data Sheet U16792EJ1V0DS  
56  
µPD67B, 68B  
AC Characteristics (TA = –40 to +85°C, VDD = 1.65 to 3.6 V)  
Item  
Symbol  
Conditions  
MIN.  
14  
TYP.  
16  
MAX.  
18.5  
Unit  
µs  
Instruction execution time tCY  
VDD = 2.0 to 3.6 V  
KI, S0, S1, S2 high-level  
width  
tH  
10  
µs  
When releasing standby mode In STOP mode Note  
µs  
Note 10 + 284/fX + oscillation growth time  
Remark tCY = 64/fX (fX: System clock oscillation frequency)  
POC Circuit (TA = –40 to +85°C)  
Item  
Symbol  
Conditions  
MIN.  
TYP.  
1.5  
MAX.  
1.65  
Unit  
V
Note  
POC detection voltage  
VPOC  
Note Refers to the voltage with which the POC circuit releases an internal reset. If VPOC < VDD, the internal  
reset is released.  
From the time of VPOC VDD until the internal reset takes effect, a delay of up to 1 ms occurs. When the  
period of VPOC VDD lasts less than 1 ms, the internal reset may not take effect.  
System Clock Oscillator Characteristics (TA = –40 to +85°C, VDD = 1.65 to 3.6 V)  
Item  
Symbol  
Conditions  
MIN.  
3.5  
TYP.  
4.0  
MAX.  
4.5  
Unit  
Oscillation frequency  
(ceramic resonator)  
fX  
MHz  
Data Sheet U16792EJ1V0DS  
57  
µPD67B, 68B  
Recommended Oscillator Constant  
Ceramic resonator (TA = –40 to +85°C)  
Manufacturer  
Part Number  
Frequency  
(MHz)  
4.0  
Oscillator Constant (pF)  
C1 C2  
Unnecessary (on-chip C type)  
Oscillation Voltage Range (VDD) Remark  
MIN.  
1.65  
MAX.  
3.6  
Murata Mfg. CSTCR4M00G55-R0  
Co., Ltd.  
CSTLS4M00G56-B0  
CSTCR4M19G55-R0  
CSTLS4M19G56-B0  
4.194  
External circuit example  
XIN  
XOUT  
C1  
C2  
Caution These oscillator constants are reference values based on evaluation by the manufacturer of  
the resonator under a specific environment.  
If optimization of the oscillator characteristics is required for the actual application, apply to  
the resonator manufacturer for evaluation on the mounting circuit.  
The oscillation voltage and oscillation frequency only indicate the oscillator characteristics;  
the oscillator must be used within the ratings of the DC and AC characteristics specified under  
the internal operation conditions of the µPD67B and 68B.  
Data Sheet U16792EJ1V0DS  
58  
µPD67B, 68B  
12. CHARACTERISTIC CURVES (REFERENCE VALUES)  
IOL vs. VOL (REM, LED)  
(TA = 25°C, VDD = 3.0 V)  
IDD vs. VDD (fx = 4 MHz)  
(TA = 25°C)  
25  
20  
15  
10  
5
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Operation mode  
HALT mode  
0.1  
0
1.5  
0
3
1
2
2
2.5  
3
3.6  
4
1.65  
Low-level output voltage VOL [V]  
Power supply voltage VDD [V]  
IOL vs. VOL (KI/O)  
IOH vs. VOH (REM, LED, KI/O)  
(TA = 25°C, VDD = 3.0 V)  
(TA = 25°C, VDD = 3.0 V)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20  
18  
16  
14  
12  
10  
8  
µ
6  
4  
2  
0
V
0
1
2
3
DD  
V
DD 1  
V
DD 2  
VDD 3  
Low-level output voltage VOL [V]  
High-level output voltage VOH [V]  
Data Sheet U16792EJ1V0DS  
59  
µPD67B, 68B  
13. APPLICATION CIRCUIT EXAMPLE  
Example of Application in System  
Remote control transmitter (48 keys; mode selection switch supported)  
K
K
S
S
I/O6  
I/O7  
0
K
K
K
K
K
K
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
+
1/LED  
REM  
V
X
X
DD  
Note 1  
Note 3  
Note 3  
Note 3  
Note 3  
OUT  
KI3  
KI2  
KI1  
KI0  
Note 1  
IN  
GND  
Note 2  
S2  
Mode selection  
switch  
Key matrix  
8 × 6 = 48 keys  
Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.  
2. S2: Set to enable for STOP mode release.  
3. Set pins KI0 to KI3 to with pull-down resistors.  
Data Sheet U16792EJ1V0DS  
60  
µPD67B, 68B  
Remote control transmitter (56 keys supported)  
KI/O6  
KI/O7  
S0  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
+
S1/LED  
REM  
VDD  
KI/O0  
Note 1  
Note 3  
XOUT  
KI3  
Note 1  
Note 3  
Note 3  
Note 3  
XIN  
KI2  
KI1  
KI0  
GND  
Note 2  
S2  
Key matrix  
8 × 7 = 56 keys  
Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.  
2. S2: Set to enable for STOP mode release.  
3. Set pins KI0 to KI3 to with pull-down resistors.  
Data Sheet U16792EJ1V0DS  
61  
µPD67B, 68B  
Remote control transmitter (56 keys supported, mode selection switch supported)  
Data can be read from the KI/O0 to KI/O7 pins by connecting a pull-up resistor of 50 kand a switch to these  
pins (which then become high level when the switch is on and low level when off). Set the KI/O0 to KI/O7 pins  
to input mode at this time. Reading data from these pins enables multiple output data to be obtained for the  
same key input.  
A pull-up resistor can be connected to any of pins KI/O0 to KI/O7 (the figure below shows an example of when  
a pull-up resistor is connected to the KI/O5 pin).  
The mode selection switch in the figure is used for switching the set for unified multiple ROM codes.  
VDD  
Mode selection switch  
KI/O6  
KI/O7  
S0  
KI/O5  
KI/O4  
KI/O3  
KI/O2  
KI/O1  
+
S1/LED  
REM  
VDD  
KI/O0  
Note 1  
Note 3  
XOUT  
KI3  
KI2  
KI1  
KI0  
Note 1  
Note 3  
Note 3  
Note 3  
XIN  
GND  
Note 2  
S2  
Key matrix  
8 × 7 = 56 keys  
Notes 1. When incorporation of a capacitor for oscillation has not been specified by a mask option.  
2. S2: Set to enable for STOP mode release.  
3. Set pins KI0 to KI3 to with pull-down resistors.  
Caution For a switch used by the end user to switch the mode on the same set, the mode may not be  
correctly read while a key is being pressed. In this case, either avoid placing a key on the switch  
line, or read the mode while a key is not being pressed.  
Data Sheet U16792EJ1V0DS  
62  
µPD67B, 68B  
14. PACKAGE DRAWING  
20-PIN PLASTIC SSOP (7.62 mm (300))  
20  
11  
detail of lead end  
F
G
T
P
L
U
E
1
10  
A
H
I
J
S
N
S
K
C
B
M
D
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.13 mm of  
its true position (T.P.) at maximum material condition.  
A
B
C
6.65 0.15  
0.475 MAX.  
0.65 (T.P.)  
+0.08  
0.24  
D
0.07  
E
F
G
H
I
0.1 0.05  
1.3 0.1  
1.2  
8.1 0.2  
6.1 0.2  
1.0 0.2  
0.17 0.03  
0.5  
J
K
L
M
N
0.13  
0.10  
+5°  
3°  
P
3°  
T
0.25  
U
0.6 0.15  
S20MC-65-5A4-2  
Remark The external dimensions and material of the ES version are the same as those of the mass produced  
version.  
Data Sheet U16792EJ1V0DS  
63  
µPD67B, 68B  
15. RECOMMENDED SOLDERING CONDITIONS  
The µPD67B and 68B should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Table 15-1. Surface Mounting Type Soldering Conditions  
µPD67BMC-×××-5A4: 20-pin plastic SSOP (7.62 mm (300))  
µPD68BMC-×××-5A4: 20-pin plastic SSOP (7.62 mm (300))  
Soldering Method  
Infrared reflow  
VPS  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),  
IR35-00-3  
VP15-00-3  
WS60-00-1  
Count: Three times or less  
Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),  
Count: Three times or less  
Wave soldering Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once,  
Preheating temperature: 120°C max. (package surface temperature)  
Partial heating  
Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)  
Caution Do not use different soldering methods together (except for partial heating).  
Data Sheet U16792EJ1V0DS  
64  
µPD67B, 68B  
APPENDIX A. DEVELOPMENT TOOLS  
An emulator is provided as an emulation tool and a PROM programmer and program adapter are provided as  
writing tools for the PROM product, the µPD6P9.  
Hardware  
Emulator (EB-69, EB-69ANote 1  
Tool to emulate the µPD67B, 68B, and 6P9.  
)
Emulation probe (NP-20GSNote 1  
)
Probe for 20-pin SSOP to connect the emulator to the target system.  
Flexible board (EV-9500GS-20)  
20-pin flexible board to facilitate the connection between the emulation probe and the target system.  
PROM programmer (AF-9706Note 2, AF-9708Note 2, AF-9709Note 2  
PROM programmer supporting the µPD6P9.  
)
The µPD6P9 can be programmed by connecting the program adapter.  
Program adapter (PA-61P34BMC)  
Adapter to program the µPD6P9. Use in combination with the AF-9706, AF-9708, and AF-9709.  
Notes 1. This is a product of Naito Densei Machida Mfg. Co., Ltd.  
For details, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191).  
2. This is a product of Ando Electric Co., Ltd.  
For details, contact Ando Electric Co., Ltd. (TEL: +81-3-3733-1151).  
Software  
Assembler (AS6133 Ver. 2.22 or later)  
Development tool for remote control transmitter software.  
Part Number List of AS6133  
Host Machine  
PC-9800 series  
OS  
Supply Medium  
3.5-inch 2HD  
Part Number  
MS-DOS(Ver. 5.0 to Ver. 6.2)  
µS5A13AS6133  
(CPU: 80,386 or more)  
IBM PC/ATcompatible  
MS-DOS (Ver. 6.0 to Ver. 6.22)  
3.5-inch 2HC  
µS7B13AS6133  
PC DOS(Ver. 6.1 to Ver. 6.3)  
Caution Although Ver. 5.0 or later has a task swap function, this function cannot be used with this  
software.  
Data Sheet U16792EJ1V0DS  
65  
µPD67B, 68B  
APPENDIX B. FUNCTIONAL COMPARISON BETWEEN µPD67B, 68B, AND OTHER PRODUCTS  
Item  
µPD67A  
1,002 × 10 bits  
32 × 4 bits  
µPD68A  
µPD67B  
µPD68B  
ROM capacity  
RAM capacity  
Stack  
2,026 × 10 bits  
1,002 × 10 bits  
2,026 × 10 bits  
1 level (also used as RF of RAM)  
8 × 7 = 56 keys  
Key matrix  
Key extended input  
Clock frequency  
S0, S1, S2  
Ceramic oscillation  
• fX = 3.5 to 4.5 MHz  
Timer  
Clock  
64/fX  
Count start  
Output value  
Frequency  
Writing count value  
(Set value + 1) × 64/fX – 4/fX  
Carrier  
Each high-/low-level width can be set from 250 ns to 64 µs (@ fX = 4 MHz operation) via  
modulo registers (2 channels).  
Output start  
Synchronized with timer  
16 µs (fX = 4 MHz)  
n = 1 to F  
Instruction execution time  
“MOV Rn, @R0” instruction  
Standby  
mode  
Reset  
POC  
Release condition  
• HALT mode for timer only.  
(HALT instruction) • STOP mode for only releasing KI (KI/O high-level output or KI/O0 high-level output)  
Relation between HALT instruction HALT instruction not executed when F = 1  
execution and status flag (F)  
POC circuit  
• Provided  
• Generates internal reset signal on detection  
• VPOC = 1.85 V (TYP.)  
• Provided  
• VPOC = 1.5 V (TYP.)  
RAM retention detector  
• VID = 1.4 V (TYP.)  
VDD = 2.0 to 3.6 V  
TA = –40 to +85°C  
20-pin plastic SSOP (7.62 mm (300))  
µPD6P9  
• VID = 1.5 V (TYP.)  
VDD = 1.65 to 3.6 V  
Supply voltage  
Operating ambient temperature  
Package  
One-time PROM  
Data Sheet U16792EJ1V0DS  
66  
µPD67B, 68B  
APPENDIX C. EXAMPLE OF REMOTE CONTROL TRANSMISSION FORMAT  
(in the case of NEC transmission format in command one-shot transmission mode)  
Caution When using the NEC transmission format, please apply to NEC Electronics for a custom code.  
(1) REM output waveform (From <2> on, the output is made only when the key is held down)  
REM output  
58.5 to 76.5 ms  
< 1 >  
< 2 >  
108 ms  
108 ms  
Remark If the key is held down, the power consumption of the infrared light-emitting diode (LED) can be reduced  
by transmitting only the reader code and the stop bit from the second time.  
(2) Enlarged waveform of <1>  
< 3 >  
REM output  
9 ms  
4.5 ms  
Custom code  
8 bits  
Custom code'  
8 bits  
Data code  
8 bits  
Data code  
8 bits  
Stop bit  
1 bit  
13.5 ms  
Leader code  
18 to 36 ms  
58.5 to 76.5 ms  
27 ms  
(3) Enlarged waveform of <3>  
REM output  
9 ms  
4.5 ms  
0.56 ms  
13.5 ms  
1.125 ms 2.25 ms  
0
1
1
0
0
(4) Enlarged waveform of <2>  
REM output  
9 ms  
2.25 ms  
11.25 ms  
Leader code  
0.56 ms  
Stop bit  
Data Sheet U16792EJ1V0DS  
67  
µPD67B, 68B  
(5) Carrier waveform (enlarged waveform of each codes high period)  
REM output  
8.77 µs  
26.3 µs  
9 ms or 0.56 ms  
Carrier frequency: 38 kHz  
(6) Bit array of each code  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C0  
' C1  
' C2  
' C3  
' C4  
' C5  
' C6  
' C7  
' D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
C
0
C
1
C
2
C
3
C
4
C
5
C
6
C
7
or or or or or or or or  
C
o
C
1
C
2
C
3
C
4
C
5
C
6
C
7
Leader code  
Custom code  
Custom code'  
Data code  
Data code  
Caution To prevent malfunction with other systems when receiving data in the NEC transmission  
format, not only fully decode (make sure to check Data code as well) the total 32 bits of the  
16-bit custom codes (Custom code, Custom code) and the 16-bit data codes (Data code,  
Data code), but also check to make sure that no signals are present.  
Data Sheet U16792EJ1V0DS  
68  
µPD67B, 68B  
[MEMO]  
Data Sheet U16792EJ1V0DS  
69  
µPD67B, 68B  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions  
need to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input  
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each  
unused pin should be connected to VDD or GND with a resistor, if it is considered to have a  
possibility of being an output pin. All handling related to the unused pins must be judged device  
by device and related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until  
the reset signal is received. Reset operation must be executed immediately after power-on for  
devices having reset function.  
Data Sheet U16792EJ1V0DS  
70  
µPD67B, 68B  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
Electronics product in your application, pIease contact the NEC Electronics office in your country to  
obtain a list of authorized representatives and distributors. They will verify:  
Device availability  
Ordering information  
Product release schedule  
Availability of related technical literature  
Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
[GLOBAL SUPPORT]  
http://www.necel.com/en/support/support.html  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics America, Inc. (U.S.)  
Santa Clara, California  
Tel: 408-588-6000  
NEC Electronics (Europe) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 01  
800-366-9782  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Sucursal en España  
Madrid, Spain  
Tel: 091-504 27 87  
Seoul, Korea  
Tel: 02-558-3737  
Succursale Française  
Vélizy-Villacoublay, France  
Tel: 01-30-67 58 00  
NEC Electronics Shanghai, Ltd.  
Shanghai, P.R. China  
Tel: 021-6841-1138  
Filiale Italiana  
Milano, Italy  
Tel: 02-66 75 41  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-2719-2377  
Branch The Netherlands  
Eindhoven, TheNetherlands  
Tel: 040-2445845  
NEC Electronics Singapore Pte. Ltd.  
Novena Square, Singapore  
Tel: 6253-8311  
Tyskland Filial  
Taeby, Sweden  
Tel: 08-63 80 820  
United Kingdom Branch  
Milton Keynes, UK  
Tel: 01908-691-133  
J03.4  
Data Sheet U16792EJ1V0DS  
71  
µPD67B, 68B  
MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States  
and/or other countries.  
PC/AT and PC DOS are trademarks of International Business Machines Corporation.  
These commodities, technology or software, must be exported in accordance  
with the export administration regulations of the exporting country.  
Diversion contrary to the law of that country is prohibited.  
The information in this document is current as of July, 2003. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD68BMC-XXX-5A4-A

Microcontroller, 4-Bit, MROM, 4MHz, MOS, PDSO20, 7.62 MM, LEAD FREE, PLASTIC, SSOP-20
NEC

UPD68BMC-XXX-5A4-E1

UPD68BMC-XXX-5A4-E1
RENESAS

UPD68BMC-XXX-5A4-E2

UPD68BMC-XXX-5A4-E2
RENESAS

UPD68BMC-XXX-5A4-E2-A

IC,MICROCONTROLLER,4-BIT,CMOS,SSOP,20PIN,PLASTIC
RENESAS

UPD68MC-XXX-5A4

Microcontroller, 4-Bit, MROM, 4MHz, CMOS, PDSO20, 7.62 MM, PLASTIC, SSOP-20
NEC

UPD68MC-XXX-5A4-A

Microcontroller, 4-Bit, OTPROM, 4.5MHz, MOS, PDSO20, 0.300 INCH, PLASTIC, SSOP-20
NEC

UPD68MC-XXX-5A4-E1

UPD68MC-XXX-5A4-E1
RENESAS

UPD68MC-XXX-5A4-E2

UPD68MC-XXX-5A4-E2
RENESAS

UPD69

Microcontrollers for Remote Controllers Pamphlet | Pamphlet[11/2002]
ETC

UPD6900C

8-Bit Digital-to-Analog Converter
ETC

UPD6900G

8-Bit Digital-to-Analog Converter
ETC

UPD6901C

Video DAC without Color Palette
ETC