UPD64084 [NEC]

THREE-DIMENSIONAL Y/C SEPARATION LSI WITH ON-CHIP MEMORY; 三维Y / C分离与LSI片上存储器
UPD64084
型号: UPD64084
厂家: NEC    NEC
描述:

THREE-DIMENSIONAL Y/C SEPARATION LSI WITH ON-CHIP MEMORY
三维Y / C分离与LSI片上存储器

存储
文件: 总66页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD64084  
THREE-DIMENSIONAL Y/C SEPARATION LSI WITH ON-CHIP MEMORY  
DESCRIPTION  
The µPD64084 realizes a high precision Y/C separation by the three-dimension signal processing for NTSC signal.  
This product has the on-chip 4-Mbit memory for flame delay, a high precision internal 10-bit A/D converter and D/A  
converter, and adapting 10-bit signal processing (only for luminance signal) and high picture quality. The µPD64084 is  
completely single-chip system of 3D Y/C separation.  
This LSI includes the Wide Clear Vision ID signal (Japanese local format) decoder and ID-1 signal decoder.  
FEATURES  
On-chip 4-Mbit frame delay memory.  
2 operation mode  
Motion adaptive 3D Y/C separation  
2D Y/C separation + Frame recursive Y/C NR  
Embedded 10-bit A/D converter (1ch), 10-bit D/A converters (2ch), and System clock generator.  
Embedded Y coring, Vertical enhancer, Peaking filter, and Noise detector.  
Embedded ID-1 signal decoder, and WCV-ID signal decoder.  
I2C bus control.  
Dual power supply of 2.5 V and 3.3 V.  
For digital : DVDD = 2.5 V  
For analog : AVDD = 2.5 V  
For DRAM : DVDDRAM = 2.5 V  
For I/O : DVDDIO = 3.3 V  
ORDERING INFORMATION  
Part number  
Package  
µPD64084GC-8EA-ANote1  
µPD64084GC-8EA-YNote2  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
Notes 1. Lead-free product  
2. High-thermal-resistance product  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S16021EJ2V0DS00 (2nd edition)  
Date Published March 2003 NS CP (K)  
Printed in Japan  
The mark  
shows major revised points.  
2002  
µ PD64084  
PIN CONFIGURATION (TOP VIEW)  
100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
µPD64084GC-8EA-A  
µPD64084GC-8EA-Y  
DGND  
TESTIC1  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DGND  
LINE  
2
TESTIC2  
3
ALTF  
TEST01  
4
DYCO9  
DYCO8  
DYCO7  
DYCO6  
DYCO5  
DYCO4  
DYCO3  
DYCO2  
DYCO1  
DYCO0  
DVDD  
NSTD  
ST1  
TEST02  
5
TEST03  
6
TEST04  
7
TEST05  
8
TEST06  
9
TEST07  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
TEST08  
TEST09  
EXTALTF  
EXTDYCO0  
EXTDYCO1  
EXTDYCO2  
EXTDYCO3  
EXTDYCO4  
EXTDYCO5  
EXTDYCO6  
EXTDYCO7  
EXTDYCO8  
EXTDYCO9  
DGNDRAM  
DGNDRAM  
ST0  
RSTB  
CLK8  
CKMD  
AVDD  
FSCI  
AGND  
AGND  
FSCO  
2
Data Sheet S16021EJ2V0DS  
µ PD64084  
PIN NAME  
ACO  
: Analog C (Chroma) Signal Output  
: Analog Section Ground  
AGND  
ALTF  
AVDD  
AYI  
: Alternate Flag for Digital YC Output  
: Analog Section Power Supply  
: Analog Composite Signal Input  
: Analog Y (Luma) Signal Output  
: C-DAC Phase Compensation Output  
: Y-DAC Phase Compensation Output  
: Clock Mode Selection  
AYO  
CBPC  
CBPY  
CKMD  
CLK8  
CSI  
: 8fSC Clock Input / Output  
: Composite Sync. Input (Active-low)  
DGND  
: Digital Section Ground  
DVDD  
: Digital Section Power Supply  
DVDDIO  
: Digital I/O Section Power Supply  
: Internal DRAM Section Power Supply  
: Digital YC Signal (Alternative) Input / Outputs  
: Extend Alternate Flag for Digital YC Output  
DVDDRAM  
DYCO0 to DYCO9  
EXTALTF  
EXTDYCO0 to EXTDYCO9 : Extend Digital YC Signal (Alternative) Input / Outputs  
FSCI  
FSCO  
KIL  
: fSC (Subcarrier) Input  
: fSC (Subcarrier) Output  
: Killer Selection  
LINE  
NSTD  
RPLL  
RSTB  
: Inter-Line Separate Selection  
: Non Standard Detection Monitor  
: Testing Selection  
: System Reset (Active-low)  
SCL  
: Serial Clock Input  
SDA  
: Serial Data Input / Output  
: Slave Address Selection  
: Inner States Monitor  
SLA0  
ST1, ST0  
TEST01 to TEST26  
: Testing Selection  
TESTIC1, TESTIC2  
: IC Testing Section  
VCLY  
VRTY  
VRBY  
VCOMY  
XI  
: Clamp Voltage Output for ADC  
: Top Voltage Reference Output for ADC  
: Bottom Voltage Reference Output for ADC  
: Common Mode Reference Output for ADC  
: X'tal input  
XO  
: X'tal output  
3
Data Sheet S16021EJ2V0DS  
µ PD64084  
BLOCK DIAGRAM  
10-bit Digital  
Comp. Input  
4-Mbit Frame  
Memory  
C
C Delay &  
10-bit  
C Output  
Y Output  
C Noise Reducer  
C-DAC  
Y-Coring  
10-bit  
ADC  
Y/C Separator &  
Y Noise Reducer  
Clamp  
Comp. Input  
BPF  
10-bit  
Y-DAC  
Y-Peaking  
Y
3-Line Comb Filter  
4fSC  
8fSC  
Y-Enhancer  
ID-1 Enc.  
8fSC PLL  
Motion Detector  
Digital YC  
Output  
8-bit  
SC DAC  
3-Line Comb Filter  
f
3-Line Comb Filter  
4fSC  
f
SC/227.5f  
H
20 MHz  
WCV-ID Dec.  
ID-1 Dec.  
Dec.  
Power  
Down cont.  
Ext. Sync.  
Separate  
Sync.  
Separate  
I2C Bus  
Line  
Timing  
Generator  
Non-Std.  
Detector  
I2C Bus  
I/F  
4
Data Sheet S16021EJ2V0DS  
µ PD64084  
TERMINOLOGY  
This manual use the abbreviation listed below:  
ADC  
DAC  
LPF  
BPF  
: A/D (Analog to Digital) converter  
: D/A (Digital to Analog) converter  
: Low-pass filter  
: Band-pass filter  
Y signal, or Luma  
: Luminance, or luminance signal  
C signal, or Chroma : Color signal, or chrominance signal  
fSC  
: Color subcarrier frequency = 3.579545 MHz  
: 4 times fSC, burst locked clock = 14.318180 MHz  
: 8 times fSC, burst locked clock = 28.636360 MHz  
: Horizontal sync frequency = 15.734 kHz  
: 910 times fH, line locked clock = 14.318180 MHz  
: 1820 times fH, line locked clock = 28.636360 MHz  
: Vertical sync frequency = 59.94 Hz  
4fSC  
8fSC  
fH  
910fH  
1820fH  
fV  
NR  
: Noise reduction  
YNR  
CNR  
WCV-ID  
ID-1  
: Luminance (Y) noise reduction  
: Chrominance (C) noise reduction  
: Wide Clear Vision standard ID signal (Japan only)  
: ID signal of EIAJ CPR-1204  
In the following diagrams, a serial bus register is enclosed in a box:  
5
Data Sheet S16021EJ2V0DS  
µ PD64084  
CONTENTS  
1. PIN FUNCTIONS .....................................................................................................................................................9  
1.1 Pin Functions..................................................................................................................................................9  
2. SYSTEM OVERVIEW ............................................................................................................................................11  
2.1 Operation Modes ..........................................................................................................................................11  
2.2 Filter Processing...........................................................................................................................................12  
2.3 System Delay................................................................................................................................................12  
2.4 Start-up of Power Supply and Reset.............................................................................................................13  
3. VIDEO SIGNAL INPUT BLOCK............................................................................................................................14  
3.1 Video Signal Inputs.......................................................................................................................................14  
3.2 Pedestal Level Reproduction ........................................................................................................................14  
3.3 Video Signal Input Level ...............................................................................................................................15  
3.4 Pin Treatment................................................................................................................................................15  
3.5 External ADC Connection Method................................................................................................................16  
4. CLOCK/TIMING GENERATION BLOCK...............................................................................................................17  
4.1 Sync Separator and Timing Generator .........................................................................................................17  
4.2 Composite Sync Signal Input........................................................................................................................17  
4.3 Horizontal/Burst Phase Detection Circuit......................................................................................................17  
4.4 PLL Filter Circuit ...........................................................................................................................................17  
4.5 Killer Detection Circuit...................................................................................................................................17  
4.6 fSC Generator.................................................................................................................................................18  
4.7 8fSC-PLL Circuit.............................................................................................................................................18  
4.8 Pin Treatment................................................................................................................................................18  
5. COMB FILTER BLOCK .........................................................................................................................................19  
5.1 Line Comb Filter............................................................................................................................................19  
5.2 Frame Comb Filter ........................................................................................................................................19  
5.3 Mixer Circuit..................................................................................................................................................19  
5.4 C Signal Subtraction .....................................................................................................................................19  
6. MOTION DETECTION BLOCK..............................................................................................................................20  
6.1 Line Comb Filter............................................................................................................................................20  
6.2 DY Detection Circuit......................................................................................................................................20  
6.3 DC Detection Circuit .....................................................................................................................................20  
6.4 Motion Factor Generation Circuit ..................................................................................................................20  
6.5 Forcible Control for The Motion Factor..........................................................................................................20  
7. YNR/CNR BLOCK.................................................................................................................................................21  
7.1 YNR/CNR Processing...................................................................................................................................21  
7.2 Nonlinear Filter..............................................................................................................................................21  
7.3 YNR/CNR Operation Stop.............................................................................................................................21  
6
Data Sheet S16021EJ2V0DS  
µ PD64084  
8. NONSTANDARD SIGNAL DETECTION BLOCK ................................................................................................. 22  
8.1 Horizontal Sync Nonstandard Signal Detection............................................................................................ 22  
8.2 Vertical Sync Nonstandard Signal Detection................................................................................................ 22  
8.3 Frame Sync Nonstandard Signal Detection.................................................................................................. 22  
8.4 Forced Standard or Nonstandard Signal Control.......................................................................................... 22  
8.5 Noise Level Detection................................................................................................................................... 22  
9. WCV-ID DECODER / ID-1 DECODER BLOCK..................................................................................................... 23  
9.1 WCV-ID Decoder .......................................................................................................................................... 23  
9.2 ID-1 Decoder ................................................................................................................................................ 24  
10. Y SIGNAL OUTPUT PROCESSING BLOCK........................................................................................................ 25  
10.1 Y High-Frequency Coring Circuit................................................................................................................. 25  
10.2 Y Peaking Filter Circuit ................................................................................................................................ 26  
10.3 Vertical Aperture Compensation Circuit ...................................................................................................... 26  
10.4 Turning On/Off Y Peaking and Vertical Aperture Compensation................................................................. 26  
10.5 ID-1 Encoder ............................................................................................................................................... 26  
11. C SIGNAL OUTPUT PROCESSING BLOCK........................................................................................................ 27  
11.1 C Signal Delay Adjustment.......................................................................................................................... 27  
11.2 BPF and Gain Processing ........................................................................................................................... 27  
12. VIDEO SIGNAL OUTPUT BLOCK........................................................................................................................ 28  
12.1 Digital YC Output Processing...................................................................................................................... 28  
12.2 Video Signal Output Level ........................................................................................................................... 28  
12.3 Pin Treatment .............................................................................................................................................. 29  
13. EXTEND DIGITAL INPUT / OUTPUT.................................................................................................................... 30  
13.1 Usage of extend digital I/O terminals........................................................................................................... 30  
13.2 Digital YC output format .............................................................................................................................. 30  
13.3 Pin Treatment .............................................................................................................................................. 30  
14. DIGITAL CONNECTION WITH GHOST REDUCER IC µ PD64031A................................................................... 31  
14.1 Outline ......................................................................................................................................................... 31  
14.2 System Configuration and Control Method.................................................................................................. 33  
14.2.1 Selecting video signal input path...................................................................................................... 33  
14.2.2 Selecting mode according to clock and video signal input path....................................................... 33  
14.3 Setting of Digital Direct-Connected System ................................................................................................ 34  
14.3.1 Hardware setting .............................................................................................................................. 34  
14.3.2 Register setting ................................................................................................................................ 35  
15. I2C BUS INTERFACE............................................................................................................................................. 36  
15.1 Basic Specification ...................................................................................................................................... 36  
15.2 Data Transfer Formats................................................................................................................................. 37  
15.3 Initialization.................................................................................................................................................. 38  
15.4 Serial Bus Registers.................................................................................................................................... 39  
15.5 Serial Bus Register Functions ..................................................................................................................... 41  
7
Data Sheet S16021EJ2V0DS  
µ PD64084  
16. ELECTRICAL CHARACTERISTICS .....................................................................................................................57  
17. APPLICATION CIRCUIT EXAMPLE .....................................................................................................................62  
18. PACKAGE DRAWING............................................................................................................................................63  
19. RECOMMENDED SOLDERING CONDITIONS.....................................................................................................64  
8
Data Sheet S16021EJ2V0DS  
µ PD64084  
1. PIN FUNCTIONS  
1.1 Pin Functions  
Table 1-1. Pin Functions (1/2)  
No.  
Symbol  
I/O  
Level  
Buffer type  
Description  
PU/PD [k]  
1, 33,  
DGND  
-
I
-
LVTTL  
-
-
Digital section ground  
48, 75  
2, 3  
TESTIC1,  
TESTIC2  
3.3 V  
IC testing (Grounded)  
Device test (Open)  
PD:50  
4-12,  
TEST01-TEST09,  
TEST10-TEST12,  
-
-
28-30,  
78-85,  
99  
TEST18-TEST25,  
TEST26  
13  
EXTALTF  
O
LVTTL  
3.3 V  
3 mA  
Extended alternate flag output  
(This pin is enable in EXTDYCO = 1)  
14 - 23  
EXTDYCO0-  
EXTDYCO9  
I/O  
LVTTL  
3-state  
3.3 V  
3 mA  
Extended digital I/O  
(These pins are enable in EXTDYCO = 1)  
24, 25  
26, 27  
31  
DGNDRAM  
DVDDRAM  
DVDDIO  
TEST13,  
TEST14-TEST17  
AGND  
-
-
-
-
-
-
-
-
-
-
-
-
DRAM section ground  
DRAM section 2.5 V supply voltage  
I/O terminal section 3.3 V supply voltage  
Device Test (Grounded)  
32,  
40-43  
34, 35  
36  
-
I
-
-
X’tal oscillation circuit section gound  
XI  
Analog  
Analog  
2.5 V  
2.5 V  
fSC generator reference clock input (X'tal is connected.)  
37  
XO  
O
fSC generator reference clock inverted output (X'tal is  
connected.)  
38  
AVDD  
DVDD  
-
-
-
-
-
-
X’tal oscillation circuit section 2.5 V supply voltage  
Digital section 2.5 V supply voltage  
39, 62,  
100  
44  
45  
46  
47  
RPLL  
SLA0  
SCL  
I
LVTTL  
LVTTL  
3.3 V  
Test pin (Grounded)  
PD:50  
I
I
3.3 V  
3.3 V  
3.3 V  
I2C bus slave address selection input  
(L : B8h / B9h, H : BAh / BBh)  
I2C bus clock input (Connected to system SCL line)  
Schmitt  
Fail Safe  
SDA  
I/O  
Schmitt  
I2C bus data input/output (Connected to system SDA line)  
Fail Safe 6 mA  
49  
AGND  
AVDD  
FSCO  
AGND  
FSCI  
-
-
-
-
-
-
fSC generator DAC section ground  
fSC generator DAC section 2.5 V supply voltage  
fSC generator fSC output  
50  
51  
O
-
Analog  
2.5 V  
2.5 V  
52, 53  
54  
-
Analog  
-
-
-
8fSC-PLL ground  
I
8fSC-PLL fSC input  
55  
AVDD  
CKMD  
-
8fSC-PLL section 2.5 V supply voltage  
Clock mode test input (Grounded)  
('L' : Normal mode, 'H' : 8fsc clock external input mode)  
56  
I
LVTTL  
3.3 V  
PD:50  
9
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 1-1. Pin Functions (2/2)  
No.  
Symbol  
I/O  
I/O  
I
Level  
Buffer type  
Description  
PU/PD [k]  
57  
58  
CLK8  
RSTB  
LVTTL  
3-state  
3.3 V  
6 mA  
CKMD = 0 : 8fSC clock output  
CKMD = 1 : 8fsc clock input  
System reset input (Active-low)  
Schmitt  
3.3 V  
(Active-low reset pulse is input from the outside.)  
PU:50  
59  
60  
61  
ST0  
O
O
LVTTL  
LVTTL  
LVTTL  
3.3 V  
3 mA  
Internal signal monitor output 0  
ST1  
3.3 V  
3 mA  
Internal signal monitor output 1  
NSTD  
O
3.3 V  
3 mA  
Nonstandard signal detection monitor output  
('L' : standard, 'H' : nonstandard)  
63-  
72  
DYCO0-  
DYCO9  
I/O  
LVTTL  
3-state  
3.3 V  
3 mA  
EXADINS=0: Digital YC signal alternate output  
EXADINS=1: Digital video data input for external ADC (Pull  
down unuse lower bit pins via resistor)  
DYCO0 is the LSB, DYCO9 is the MSB.  
73  
ALTF  
O
LVTTL  
3.3 V  
3 mA  
EXADINS=0: Digital YC signal alternate flag output  
('L' : C, 'H' :Y)  
EXADINS=1: 4fSC clock output for external ADC  
74  
76  
77  
LINE  
KIL  
I
I
I
LVTTL  
LVTTL  
Schmitt  
3.3 V  
Forced inter-line processing selection input  
PD:50  
('L' : ordinary processing, 'H' : forced inter-line processing)  
3.3 V  
External killer input  
PD:50  
('L' : ordinary processing, 'H' : forced Y/C separation stop)  
CSI  
3.3 V  
Composite sync input (Active-low)  
PU:50  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
AVDD  
CBPC  
ACO  
-
-
-
Y-DAC and C-DAC 2.5 V supply voltage  
C-DAC phase compensation output  
C-DAC analog C signal output  
Y-DAC analog Y signal output  
Y-DAC phase compensation output  
Y-DAC and C-DAC ground  
O
O
O
O
-
Analog  
Analog  
Analog  
Analog  
-
2.5 V  
2.5 V  
2.5 V  
2.5 V  
AYO  
CBPY  
AGND  
AGND  
AYI  
-
-
-
-
ADC ground  
I
Analog  
Analog  
Analog  
Analog  
Analog  
-
2.5 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
ADC analog composite signal input  
ADC clamp potential output  
VCLY  
VRBY  
VRTY  
VCOMY  
AVDD  
O
O
O
O
-
ADC bottom reference voltage output  
ADC top reference voltage output  
ADC common mode reference voltage  
ADC 2.5 V supply voltage  
-
10  
Data Sheet S16021EJ2V0DS  
µ PD64084  
2. SYSTEM OVERVIEW  
2.1 Operation Modes  
The µPD64084 can operate in the following major four signal processing modes. Mode selection is performed  
according to NRMD on the serial bus.  
Table 2-1. Operation Modes  
Serial bus setting  
Mode name  
Function Note  
Pin input  
System clock  
Feature Model diagram  
For standard signals, motion-adaptive three-  
dimensional Y/C separation is performed.  
For nonstandard signals, inter-line Y/C  
separation is performed.  
NRMD = 0  
YCS mode  
Y/C separation  
AYI : Composite signal Burst locked clock  
(4fSC, 8fSC  
)
Comp.  
Y
ADC  
4fSC  
DAC  
DAC  
YCS  
(3D/2D)  
C
4-Mbit memory  
Inter-line Y/C separation and Frame recursive  
NRMD = 1  
2D Y/C  
AYI : Composite signal Burst locked clock  
(4fSC, 8fSC  
YCS+ mode  
separation  
and YCNR  
)
YNR and CNR is performed.  
Comp.  
Y
C
ADC  
4fSC  
YNR  
DAC  
YCS  
(2D)  
CNR DAC  
4-Mbit memory  
Note 3D Y/C separation, Frame-recursive YNR/CNR, each function is independence. So these don't operate at the  
same time.  
11  
Data Sheet S16021EJ2V0DS  
µ PD64084  
2.2 Filter Processing  
Table 2-2 lists filters used in each mode.  
Table 2-2. Filter Matrix  
Mode  
Standard / nonstandard / killer  
signal detection  
Filter selected  
Effective-picture period  
Blanking period  
Still picture  
portion  
Moving picture  
portion  
Horizontal  
(11 µs)  
Vertical  
(1H to 22H)  
YCS mode  
Standard signal detected  
Frame comb  
Line comb  
Band-pass Note  
(NRMD = 0)  
Nonstandard signal detected  
Killer signal detected  
Line comb  
Band-pass Note  
Y output: Through (Y/C separation stop)  
C output: Separated C signal  
YCS+ mode  
(NRMD = 1)  
Standard or horizontal  
Line comb + Frame recursive  
Line comb  
Band-pass Note  
Band-pass Note  
nonstandard signal detected  
Vertical nonstandard signal  
detected  
Line comb  
Killer signal detected  
Y output: Through (Y/C separation stop)  
C output: Separated C signal  
Vertical contour  
compensation /  
Y peaking  
-
Active  
Through  
Note Setting serial bus register SA09h: D0 (VFLTH) enables through output.  
2.3 System Delay  
The following diagram shows a model of system delays (video signal delays).  
Figure 2-1. System Delay Model  
DYCO9-2  
Composite  
Input  
1
0
Y Outpur  
AYO  
Filter  
4  
ADC  
10  
1H Delay  
910  
YCS/YNR  
Y-DAC  
1  
AYI  
21  
C Output  
ACO  
EXADINS  
Delay  
0~7  
SA02h:D5  
CNR/Delay  
C-DAC  
1  
21  
C Sync. Input  
CSI  
Timing  
Gen.  
CDL  
SA03h:D2-D0  
Remark 1 corresponds to a one-clock pulse delay (4fSC or 910 fH = about 69.8 ns).  
12  
Data Sheet S16021EJ2V0DS  
µ PD64084  
2.4 Start-up of Power Supply and Reset  
It is necessary to reset the I2C bus interface immediately when it is supplied with power. When reset, the I2C bus  
interface releases its SDA line and becomes operative. In addition, its write register is previously loaded with an initial  
value.  
<1> When the power is switched on, wait until the power supply line reaches and settles on a 3.3-V/2.5-V level  
before starting initialization.  
<2> Initialize the I2C bus interface circuit by keeping the RSTB pin at a low level for at least 10 µs.  
<3> Start communication on the I2C bus interface after 100 µs from pull up the RSTB pin to a high level.  
Figure 2-2. I2C Bus Interface Reset Sequence  
Power ON  
RSTB='L' RSTB='H'  
3.3 V start-up  
3.3 V cut-off  
2.5 V cut-off  
3.3 V  
DVDDIO  
0 V  
2.5 V start-up  
2.5 V  
DVDD  
0 V  
3.3 V  
10µsMIN. 100µsMIN.  
RSTB  
Don't care  
0 V  
I2C bus access disable  
I2C bus access enable  
Serial bus register data setting  
Caution Reset is always necessary whether using the serial bus register or not.  
13  
Data Sheet S16021EJ2V0DS  
µ PD64084  
3. VIDEO SIGNAL INPUT BLOCK  
This block converts analog video signals to digital form.  
Figure 3-1. Video Signal Input Block Diagram  
µ
PC659A  
ST0S=01  
100 Ω×8  
100 Ω×2  
8
2
10  
Composite input  
(When the external  
ADC used)  
V
V
V
V
IN DB  
1
-DB  
8
DYCO9-2  
DYCO1-0  
ST0  
RT  
CL  
RB  
Clamp pulse generator  
47 kΩ  
15 kΩ  
PCL  
CLK  
Clamp level  
feedback  
Sampling clock  
Clamp  
4fSC,910f  
H
ALTF  
AGND  
AYI  
Composite input  
(When the internal ADC used)  
Pedestal level error  
detection  
1µ F  
10 to 47  
0.1  
µ
µ
µ
F
F
F
256  
VCLY  
VRBY  
VRTY  
VCOMY  
AVDD  
140 IRE  
= 0.8 Vp-p  
1
0
10  
10  
Internal  
10-bit  
ADC  
(10)  
0.1  
0.1  
0.1  
0.1  
µ
µ
µ
F
F
F
EXADINS  
CLK  
4fSC  
Analog section supply voltage 2.5 V  
3.1 Video Signal Inputs  
The composite signal is input to the AYI pin. This analog video (composite) signal converts to digital video signal at  
internal 10-bit ADC (EXADINS = 0).  
In case of external ADC used, 10-bit composite signals in digital form are input to the DYCO9 to DYCO0 pins  
(EXADINS = 1).  
3.2 Pedestal Level Reproduction  
This circuit reproduces the pedestal level of a video signal. The pedestal level error detection circuit detects the  
difference between that level and the internal fixed value of 256 LSB levels, and outputs the feedback level.  
This output signal is connected to VCLY pin via internal resistor to feed back to video signal for fixing pedestal level  
to 256 LSB. Pull down the VCLY pin via a 0.1 µF bypass capacitor and a 10 to 47 µF electrolysis capacitor for loop  
filter.  
Caution In case of H-Sync input level is bigger than 256LSB, this pedestal level also becomes over 256LSB.  
Do not use this circuit when the external ADC is used.  
14  
Data Sheet S16021EJ2V0DS  
µ PD64084  
3.3 Video Signal Input Level  
It is necessary to limit the level of video (composite) signal inputs to within a certain range to cope with the maximum  
amplitude of the video signal and variations in it. Figure 3-2 shows the waveform of the video signal input whose  
amplitude is 140 IREp-p = 820 LSB (0.8 times a maximum input range of 1024 LSB). In this case, it is possible to input a  
white level of up to 131 IRE for the Y signal and up to 175 IREp-p for the C signal.  
Figure 3-2. Video Signal Input Waveform Example (for 75% Color Bar Input)  
AYI pin input  
+131 IRE  
1.6 V  
1023  
896  
768  
640  
512  
384  
256  
128  
0
MAX. 131 IRE = 1023 LSB  
100 IRE = 840 LSB  
0 IRE  
Pedestal: 0 IRE = 256 LSB  
Sync-tip: 40 IRE = 20 LSB  
43 IRE  
0.6 V  
Remark The recommended input level of video signals is 140 IREp-p = 0.8 Vp-p (1.00 V × 0.8).  
3.4 Pin Treatment  
Supply 2.5 V to the AVDD pins. Isolate them sufficiently from the digital section power supply.  
Use as wide wiring patterns as possible for the ground lines of each bypass capacitor and the AGND pins so as  
to minimize their impedance.  
Connect a video signal to the AYI pin by capacitive coupling. Maintain low input impedance for video signals. Be  
sure to keep the wiring between the capacitor and the AYI pin as short as possible.  
Pull down the VRTY, VRBY and VCOMY reference voltage pins via a 0.1 µF bypass capacitor.  
Pull down the VCLY pin via a 0.1 µF bypass capacitor and a 10 to 47 µF electrolysis capacitor.  
Do not bring the digital system wiring (especially the memory system) close to this block and the straight  
downward of the IC.  
15  
Data Sheet S16021EJ2V0DS  
µ PD64084  
3.5 External ADC Connection Method  
Setting up EXADINS = 1 on the serial bus puts the IC in the external ADC mode. In this mode, the ALTF pin is used  
to output 4fSC sampling clock pulses, and the DYCO9 to DYCO0 pins are used to receive digital data inputs. Setting up  
ST0S = 01 on the serial bus causes a clamp pulse to be output from the ST0 pin. It is used as a pedestal clamp pulse  
for external ADC. The clamp potential for the pedestal level of external ADC must be determined so that the sampled  
value becomes about 256 8LSB. Supply converted 10-bit data to the DYCO9 to DYCO0 pins via a 100 resistor. For  
using 8-bit ADC (exp. µPC659A), Pull down the DYCO1 and DYCO0 pins via 100 resistor.  
In this mode, for ADC in the µPD64084, keep the VRTY, VRBY and VCOMY pins open, and pull down the VCLY and  
AYI pins via a 0.1 µF capacitor.  
Figure 3-3. Example of Application Circuit Set Up for External ADC  
5 V  
10 Ω  
0.1  
µ
F
4fSC  
V
RT (Pin 1)  
CLK  
ALTF (Pin 73)  
47 k: 1%  
NC  
OVER  
100 Ω×10  
10  
µ
µ
F
F
AVCC  
MSB: DB  
1
2
3
DYCO9 (Pin 72): MSB  
DYCO8 (Pin 71)  
0.1  
VIN  
DB  
1µ F  
Composite input  
AGND  
PCL  
DB  
DYCO7 (Pin 70)  
Clamp Bias  
DGND  
DVCC  
0.1  
2.2  
µ
µ
F
F
0.1  
10  
µ
µ
F
VCL  
F
140 IRE  
= 0.8 Vp-p  
AVCC  
DB  
4
5
6
7
8
DYCO6 (Pin 69)  
DYCO5 (Pin 68)  
DYCO4 (Pin 67)  
DYCO3 (Pin 66)  
DYCO2 (Pin 65): LSB  
DYCO1 (Pin 64)  
DYCO0 (Pin 63)  
ST0 (Pin 59)  
AGND  
DB  
15 k: 1%  
0.1  
VRB  
DB  
µ
F
AVCC  
DB  
AGND  
LSB: DB  
µ
PC659AGS  
Clamp pulse  
Remark Serial bus registers setting: EXADINS = 1, ST0S = 01  
16  
Data Sheet S16021EJ2V0DS  
µ PD64084  
4. CLOCK/TIMING GENERATION BLOCK  
This block generates system clock pulses and timing signals from video signals.  
Figure 4-1. Clock/Timing Generation Block Diagram  
System clock (8fSC, 1820f  
System clock (4fSC, 910f  
H
H
)
)
2.5 V power  
CLK8  
AVDD  
supply voltage  
1/2  
10  
µ
F
0.1  
µ
F
8fSC  
PLL  
0.01µ F  
FSCI  
AGND  
AGND  
FSCO  
AVDD  
DVDD  
XO  
Composite  
sync signal  
f
SC  
BPF  
System timing  
Y/C separation  
stop, CNR stop  
DAC  
Sync.  
separator  
CSI  
AYI  
Timing generator  
0.1  
µ F  
Horizontal  
0.1  
µ
F
Sync.  
phase  
Killer  
detection  
ADC  
fSC  
separator  
detection  
Composite  
input  
generator  
22 to 33 pF  
20 MHz,16 pF  
22 to 33 pF  
Burst phase  
detection  
PLL  
filter  
XI  
DGND  
4.1 Sync Separator and Timing Generator  
These sections separate horizontal and vertical sync signals from the composite signal sampled at 4fSC or 910fH,  
and generate system timing signals by using them as references.  
4.2 Composite Sync Signal Input  
An active-low composite sync signal separated from the video signal is input at the CSI pin. This input is used as a  
reference signal to lock onto sync at the timing generator.  
4.3 Horizontal/Burst Phase Detection Circuit  
The horizontal phase detection circuit extracts the horizontal sync signal from the Y signal sampled at 4fSC or 910fH  
to detect a horizontal phase error. This phase error is used for generation of 227.5fH and timing generator. The burst  
phase detection circuit extracts the burst signal from the composite signal sampled at 4fSC to detect a burst phase error.  
This phase error is used for fSC generation.  
4.4 PLL Filter Circuit  
The PLL filter circuit integrates a burst or horizontal phase error to determine the oscillation frequency of the fSC  
generator ahead.  
4.5 Killer Detection Circuit  
The killer detection circuit compares the amplitude of the burst signal with the KILR value set on the serial bus to  
judge on a color killer. If the burst amplitude becomes smaller than or equal to the set KILR value when the burst  
locked clock is operating, the fSC generator is allowed to free-run.  
17  
Data Sheet S16021EJ2V0DS  
µ PD64084  
4.6 fSC Generator  
The fSC generator generates fSC (or 227.5fH when the line locked clock is running) from an oscillation frequency  
determined in the PLL filter. fSC is converted by internal DAC to an analog sine waveform before it is output from the  
FSCO pin. Because this output contains harmonic components, they must be removed using an external band-pass  
filter (BPF) connected via a buffer, before the analog sine waveform is input to the FSCI pin via a capacitor. The fSC  
generator uses a 20 MHz free-run clock pulse as a reference.  
4.7 8fSC-PLL Circuit  
The 8fSC-PLL circuit generates 8fSC (or 1820fH) from fSC (or 227.5fH) input at the FSCI pin. The 8fSC signal is output  
from the CLK8 pin. It is also used as the internal system clock.  
4.8 Pin Treatment  
Supply 2.5 V to the AVDD pins. Isolate them sufficiently from the digital section power supply.  
Use as wide wiring patterns as possible for the ground lines of each bypass capacitor and the DGND and AGND  
pins so as to minimize their impedance.  
Connect a 20-MHz Crystal resonator across the XI and XO pins. Provide guard areas using ground patterns to  
keep these pins from interfering with other blocks. Table 4-1 shows the crystal resonator specification example.  
Connect a BPF to the FSCO pin via an emitter follower. Supply the fSC signal to the FSCI pin via a capacitor.  
Pull down the RPLL pin via a 0 resistor.  
Input an active-low composite sync signal to the CSI pin. Figure 4-2 shows the external composite sync separator  
application circuit example.  
Table 4-1. Crystal Resonator Specification Example  
Parameter  
Specification  
Frequency  
20.000000 MHz  
16 pF  
Load Capacitance  
40 or less  
50 ppm or less  
50 ppm or less  
Equivalent Serial Resistance  
Frequency Permitted Tolerance  
Frequency Temperature Tolerance  
Figure 4-2. External Composite Sync Separator Application Circuit Example  
Power Supply  
(3.3 V)  
0.1  
µ
F
22 kΩ  
1 kΩ  
4.7 kΩ  
Composite Sync.  
Output  
1µ F  
220 Ω  
Composite  
1000 pF  
to 2200 pF  
Signal (1 Vp-p  
)
220 kΩ  
2.2 kΩ  
470 Ω  
18  
Data Sheet S16021EJ2V0DS  
µ PD64084  
5. COMB FILTER BLOCK  
This block performs Y/C separation or frame comb type YNR according to the result of checks in various detection  
circuits.  
Figure 5-1. Comb Filter Block Diagram  
Composite  
input  
Y
OUT  
Delay  
Y signal output  
C signal output  
0H  
1H  
2H  
Mixer circuit  
0
L
H
H
H
Line comb  
filter  
C2  
COUT  
k
Frame  
Memory  
H
H
526H  
C3  
Delay  
1−  
k
Frame  
comb  
filter  
k =1  
H
L
Motion  
detection  
k
Nonstandard  
signal detection  
LINE  
KIL  
H: Nonstandard signal detected  
H: Killer signal detected  
Killer detection  
5.1 Line Comb Filter  
The C signal is separated from video signals that have been delayed by 0H, 1H, and 2H. This filter serves as a  
logical comb filter based on inter-line correlation to reduce dot and cross-color interference. The filter output (C2) is  
used in the moving picture portion of standard signals, nonstandard signals, and blanking periods.  
5.2 Frame Comb Filter  
The C signal is separated from video signals that have been delayed by 1H and 526H. The filter output (C3) is used  
in still picture portions by the motion detection circuit.  
5.3 Mixer Circuit  
The mixer circuit mixes C signals to adapt to the motion according to the motion factor from the motion detection  
circuit. In other words, COUT is generated by mixing the line comb filter output (C2) and the frame comb filter output (C3)  
by a mixture ratio according to the motion factor k (0 to 1). If the input signal is a nonstandard signal, or if the LINE pin  
is at a high level, C2 is output without performing motion-adaptive mixture.  
5.4 C Signal Subtraction  
The YOUT signal is separated by subtracting the COUT signal from a composite video signal that has been delayed by  
1H. Subtraction is quitted when the killer detection circuit detects that the input signal is a color killer signal  
(monochrome signal or non-burst signal) or that the KIL pin is at an 'H' level.  
19  
Data Sheet S16021EJ2V0DS  
µ PD64084  
6. MOTION DETECTION BLOCK  
This block generates a 4-bit motion factor indicating an inter-frame motion level from the video signal inter-frame  
difference. This motion factor is used as a mixture ratio to indicate how the frame and line comb filter outputs are  
mixed. This block is used in the YCS mode.  
Figure 6-1. Motion Detection Block Diagram  
Composite  
input  
To the mixer circuit  
MD[3:0]  
DYCOR DYGAIN  
Y
Y
1
2
DY detection  
circuit  
Coring  
Gain  
Line comb  
filter  
(current frame)  
H
H
DY  
|x|  
LPF  
LIM  
0
F
Maximum  
value  
Expansion  
circuit  
4
Frame  
memory  
section  
C
C
1
2
DC detection  
circuit  
0
0
|x|  
|x|  
Coring  
Line comb  
filter  
(previous frame)  
H
H
DC  
MSS  
0
MSS  
1
|x|  
LPF  
Gain  
LIM  
Motion factor  
generation circuit  
DCCOR DCGAIN  
6.1 Line Comb Filter  
Before obtaining an inter-frame difference, the line comb filter performs Y/C separation for the composite signals of  
both frames.  
6.2 DY Detection Circuit  
The DY detection circuit detects a Y signal inter-frame difference. After a Y signal difference between the current  
and previous frames is obtained, its absolute value, obtained by limiting the frequency band for the Y signal difference  
using an LPF, is output as a Y frame difference signal, or a DY signal.  
6.3 DC Detection Circuit  
The DC detection circuit detects a C signal inter-frame difference. After a C signal difference between the current  
and previous frames is obtained, its absolute value, obtained by limiting the frequency band for the C signal difference  
using an LPF, is output as a C frame difference signal, or a DC signal. Because the phase of the C signal is inverted  
between frames, the absolute values of the C signals of both frames have been obtained before the difference is  
obtained.  
6.4 Motion Factor Generation Circuit  
The motion factor generation circuit generates a 4-bit motion factor from the DY and DC signals. The first coring  
circuit performs coring according to the DYCOR and DCCOR settings on the serial bus to block weak signals like noise.  
The gain adjustment circuits ahead perform gain adjustment according to the DYGAIN and DCGAIN settings on the  
serial bus to specify the sensitivity of the motion factor. These outputs are limited to a 4-bit width, and one having a  
higher level is selected for output by the maximum value selection circuit. The selected signal is expanded horizontally,  
then output as a final motion factor.  
6.5 Forcible Control for The Motion Factor  
The motion factor can be set to 0 (forced stop) or a maximum value (forced motion) using the MSS signal on the  
serial bus.  
20  
Data Sheet S16021EJ2V0DS  
µ PD64084  
7. YNR/CNR BLOCK  
This block performs frame recursive YNR and CNR. It is used in the YCS+ mode.  
Figure 7-1. YNR/CNR Block Diagram  
Y signal input  
C signal input  
Current Y  
H
H
Delay  
Delay  
Y signal output  
Substraction of noise component  
Current C  
Demodulation  
Modulation C signal output  
Frame  
difference  
Y  
Noise  
component  
Y'  
YNR  
nonlinear  
filter  
1H+α  
Previous frame Y  
Previous frame C  
526H  
Noise  
component  
Frame  
difference  
C  
CNR  
nonlinear  
filter  
C'  
1H+α  
526H  
YNRK CNRK  
YNRINV CNRINV  
YNRLIM CNRLIM  
Frame  
Memory  
Nonstandard  
YNR/CNR stop signal  
signal detection  
LINE  
KIL  
Killer signal detected  
Killer detection  
7.1 YNR/CNR Processing  
The frame difference (Y) signal is generated by subtracting the previous frame Y signal from the current frame Y  
signal. The noise component Y' signal is extracted by eliminating the motion component of the Y signal at the  
nonlinear filter. Noise components are reduced by subtracting the noise component Y' signal from the current frame Y  
signal. At the same time, the Y signal submitted to noise reduction is delayed by a frame to be used to generate Y for  
the next frame. This way the frame recursive YNR is configured. Much the same processing is performed for the C  
signal to reduce noise components.  
7.2 Nonlinear Filter  
The Y' and C' noise components are extracted from Y and C. Y and C contain inter-frame motion  
components and noise components. Subtracting Y and C from the current frame Y and C signals causes inter-frame  
motion components to remain in the output picture. To solve this problem, a nonlinear filter that passes only low-  
amplitude signals is used; generally, motion components have a large amplitude, while noise components have a small  
amplitude. How nonlinear the filter is to be is specified using YNRK, YNRLIM, YNRINV, CNRK, CNRLIM, and CNRINV  
on the serial bus.  
7.3 YNR/CNR Operation Stop  
If the nonstandard signal detection circuit detects a vertical nonstandard signal or frame sync nonstandard signal, or  
the LINE pin is at a high level, the killer detection circuit detects a color killer signal, or the KIL pin is at a high level,  
YNR and CNR operations are stopped.  
21  
Data Sheet S16021EJ2V0DS  
µ PD64084  
8. NONSTANDARD SIGNAL DETECTION BLOCK  
This block detects nonstandard signals not conforming to the NTSC standard, such as VCR playback signals, home  
TV game signals, and Laser-Disc special playback signals. The detection result is used to stop inter-frame video  
processing. (and selects intra-field video processing forcibly.)  
Figure 8-1. Nonstandard Signal Detection Block Diagram  
f
SC trap  
Video  
signal  
input  
Inter-frame processing control  
Coring  
Noise level  
detection  
Signal to stop using YNR, CNR,  
WSL  
and frame comb filter  
WSS  
WSC  
Sync  
H: Nonstandard Forced standard or  
nonstandard signal  
control  
signal detected  
Frame sync  
nonstandard  
signal detection  
separation  
HV  
counter  
NSDS  
LINE  
Vertical sync  
nonstandard  
signal detection  
Mixer  
NSTD  
LDSR  
VTRH  
VTRR  
LDSDF  
Horizontal sync  
nonstandard  
signal detection  
OVSDF Read register  
OHSDF  
8.1 Horizontal Sync Nonstandard Signal Detection  
The horizontal sync nonstandard signal detection circuit detects signals not having a standard relationship between  
fSC and fH (fSC = 227.5fH) like a VCR playback signal. The sensitivity of detection is set using VTRR and VTRH on the  
serial bus. If the circuit detects a nonstandard signal, it stops using the frame comb filter. The detection result can be  
read using OHSDF on the serial bus.  
8.2 Vertical Sync Nonstandard Signal Detection  
The vertical sync nonstandard signal detection circuit detects signals not having a standard relationship between fH  
and fV (fH = 262.5fV) like a VCR special playback signal and home TV game signal. The sensitivity of detection cannot  
be set. If the circuit detects a nonstandard signal, it stops using the frame comb filter, YNR, and CNR. The detection  
result can be read using OVSDF on the serial bus.  
8.3 Frame Sync Nonstandard Signal Detection  
The frame sync nonstandard signal detection circuit detects signals out of horizontal sync phase between frames,  
such as a laser-disc special playback signal. The sensitivity of detection is set using LDSR on the serial bus. If the  
circuit detects a nonstandard signal, it stops using the frame comb filter, YNR, and CNR. The detection result can be  
read using LDSDF on the serial bus.  
8.4 Forced Standard or Nonstandard Signal Control  
It is possible to specify either forced standard or nonstandard signal control using NSDS on the serial bus.  
8.5 Noise Level Detection  
The noise level detection circuit detects a noise level in the flat portion of a video signal. The sensitivity of detection  
is set using WSCOR on the serial bus. The detection result can be read using WSL on the serial bus; it is not used in  
the IC. The detection result can be processed in a microprocessor to find a weak electric field.  
22  
Data Sheet S16021EJ2V0DS  
µ PD64084  
9. WCV-ID DECODER / ID-1 DECODER BLOCK  
This block decodes ID-1 signal of 20H/283H and an identification control signal superimposed on a wide clear vision  
signal of 22H and 285H (The wide clear vision standard applies only in Japan).  
9.1 WCV-ID Decoder  
The WCV-ID decoder checks whether the video signal contains an ID signal by examining mainly the following seven  
items. If all these items turn out to be normal, an ID signal is detected. The check and decode results are output to the  
ED2 bit and bits B3 to B17 on the serial bus, respectively. In addition, the phase of the confirmation signal is detected.  
<1> A difference in DC level between B1 and B2 is not smaller than a certain value.  
<2> The DC level of the SCH part is not higher than a certain value.  
<3> The fSC amplitude of the NRZ part is not larger than a certain value.  
<4> The fSC amplitude of the SCH part is not smaller than a certain value (if FSCOFF = 0),  
<5> Items <1> to <4> continue for at least 12 fields.  
<6> The parity of the NRZ part (B3 to B5) is normal. Note  
<7> The CRC of the NRZ part and SCH part (B3 to B23) is normal. Note  
Note If an error is detected in item <6> or <7>, bits B3 to B17 on the serial bus hold the decoded value for the  
previous field.  
Figure 9-1. Wide Clear Vision ID Signal Configuration  
ED2 bit (0: No ID signal, 1: ID signal)  
SA02 MSB  
LSB SA03 MSB  
LSB  
Color  
burst  
1
0
0
CRC code  
Confirmation  
signal  
NRZ part  
SCH part  
23  
Data Sheet S16021EJ2V0DS  
µ PD64084  
9.2 ID-1 Decoder  
The ID-1 decoder checks whether the video signal contains an ID-1 signal by examining mainly the following five  
items. If all these items turn out to be normal, an ID signal is detected.  
<1> A difference of DC level between Ref signal and the pedestal level is not smaller than a certain value.  
<2> The width of each bit is not smaller than a certain value.  
<3> Items <1> to <2> continue for at least 6 fields. (When FELCHK register is set to zero, this check is disable)  
<4> CRC check is passed.  
Remark If any errors are detected in item <1> to <3>, the output for serial bus hold the decoded value for the  
previous field.  
If item <3> is disabled by setting FELCHK register to zero, CRC check is also disabled.  
If any errors are detected by CRC check, the output for serial bus will be initialized.  
Initial values of serial bus registers are WORD0 = 00, WORD1 = 1111, WORD2 = 00h.  
Figure 9-2. ID-1 Signal Configuration  
SA04 MSB  
LSB SA05 MSB  
LSB  
Color  
burst  
1
0
WORD0 WORD1  
WORD2  
CRC code  
24  
Data Sheet S16021EJ2V0DS  
µ PD64084  
10. Y SIGNAL OUTPUT PROCESSING BLOCK  
After Y/C separation or Y Noise reduction, this block performs high-frequency coring, peaking, and vertical aperture  
compensation for the Y signal submitted to YNR processing.  
Figure 10-1. Y Signal Output Processing Block Diagram  
ID1ENW0A1  
ID1ENW0A2  
ID-1  
encoder  
YAPS1  
Y signal output  
(to the DTCO pin)  
YAPS0  
1
0
Y low-frequency  
Coring  
0
Y/C  
HPF  
1
0
Line  
comb  
filter  
Composite  
input  
Y
separation  
HH decoding  
YNR  
Y high-  
frequency  
Y signal output  
(to the Y-DAC pin)  
20/283H  
1
ID1ON  
YHCOR  
Y high-frequency  
coring circuit  
YHCGAIN  
Peaking component + vertical  
aperture conpensation component  
BPF  
Coring  
k
YPFT  
2
YPFG  
Y peaking filter circuit  
LPF Coring  
Limiter  
k
Vertical high-frequency  
component  
1
VAPGAIN VAPINV  
Vertical aperture compensation circuit  
10.1 Y High-Frequency Coring Circuit  
The Y high-frequency coring circuit performs coring for the high-frequency component of the Y main line signal. It  
works as a simplified noise reducer, because it can eliminate high-frequency components at 1 LSB to 3 LSB levels.  
The coring level is set using YHCOR on the serial bus.  
<1> HPF circuit  
: Separates the input Y signal into the low- and high-frequency components.  
<2> Coring circuit : Performs coring for Y high-frequency components according to the YHCOR setting, and  
outputs a Y signal by adding the Y high- and low-frequency components after they are  
submitted to coring. The coring effect can set 1/2 times by the YHCGAIN setting.  
25  
Data Sheet S16021EJ2V0DS  
µ PD64084  
10.2 Y Peaking Filter Circuit  
The Y peaking filter circuit performs peaking processing for the Y signal to correct the frequency response of the Y  
signal.  
<1> BPF circuit  
:
Extracts high-frequency components from the original Y signal according to the  
YPFT setting on the serial bus. The center frequency of the BPF can be selected  
from 3.58, 3.86, 4.08, and 4.22 MHz.  
<2> Coring circuit  
:
:
Performs 2LSB (in 8-bit terms) coring for Y high-frequency components to prevent  
S/N deterioration during peaking processing.  
<3> Gain adjustment circuit  
Performs gain adjustment for peaking components according to the YPFG setting on  
the serial bus. The gain to be added can be changed in 16 steps over a range  
between 1.000 times and +0.875 times.  
<4> Addition to the main line : Y peaking components, together with vertical aperture compensation components,  
are added to the Y signal.  
10.3 Vertical Aperture Compensation Circuit  
The vertical aperture compensation circuit extracts vertical contour components from a Y signal and adds them to  
the Y signal to emphasize contours.  
<1> Line comb filter  
<2> LPF circuit  
:
:
Extracts vertical high-frequency components from the video signal.  
Eliminates C signal components and Y signal slant components to extract vertical  
contour components.  
<3> Coring circuit  
:
:
Performs 1LSB (in 8-bit terms) coring for vertical high-frequency components to  
prevent S/N deterioration during aperture compensation.  
Performs gain adjustment for aperture compensation components according to the  
VAPGAIN setting on the serial bus.  
<4> Gain adjustment circuit  
<5> Limiter circuit (nonlinear processing) :  
Performs limit processing for aperture compensation components according to the  
VAPINV setting on the serial bus. Signals for which contours are to be emphasized  
are rather weak ones. Uniform emphasis would result in initially large signals  
becoming too large. To solve this problem, the limiter circuit blocks signals larger  
than the VAPINV setting, thereby disabling contour emphasis for large signals.  
<6> Addition to the main line : Vertical aperture compensation components, together with Y peaking components,  
are added to the Y signal.  
10.4 Turning On/Off Y Peaking and Vertical Aperture Compensation  
The YAPS setting on the serial bus can be used to turn Y peaking and vertical aperture compensation on and off.  
10.5 ID-1 Encoder  
Bit information conforming to the ID-1 standard (CPX-1204) can be superimposed on the Y signal output at  
20H/283H. ID1ENON on the serial bus specifies whether to turn on or off superimposition. ID1ENW0A1 and  
ID1ENW0A2 specify the bit information to be superimposed.  
If ID-1 information has already be superimposed on the original signal, it will be replaced with the newly specified  
ID-1 information.  
26  
Data Sheet S16021EJ2V0DS  
µ PD64084  
11. C SIGNAL OUTPUT PROCESSING BLOCK  
After Y/C separation, the C signal output processing block performs delay adjustment, BPF processing, and gain  
adjustment for the C signal submitted to CNR processing.  
Figure 11-1. C Signal Output Processing Block Diagram  
BPF  
(fSC  
)
Variable  
delay  
(0~7)  
C signal input  
C signal output  
×2  
CDL  
COUTS0  
COUTS1  
11.1 C Signal Delay Adjustment  
The delay time of the C signal can be varied in a range between 0 and 7 clock pulses (4fSC) according to CDL on the  
serial bus. This way, the delay of the C signal relative to the Y signal can be set to anywhere between 4 clock pulses  
(280 ns) and +3 clock pulses (+210 ns).  
11.2 BPF and Gain Processing  
COUTS on the serial bus can be used to specify whether to insert a BPF. It can also be used to specify the gain (×2  
or ×1).  
27  
Data Sheet S16021EJ2V0DS  
µ PD64084  
12. VIDEO SIGNAL OUTPUT BLOCK  
The video signal output block can convert digital video signals to analog form. It can also output digital video signals  
without performing D/A conversion.  
Figure 12-1. Video Signal Output Block Diagram  
Digital YC / alternate flag output  
Supply voltage 2.5 V for analog block  
10µ F  
AVDD  
CBPY  
AYO  
0.1  
0.1  
µ
F
F
DYCOS1  
4fSC,910f  
H
Supply voltage  
Analog Y output  
µ
Y signal input  
C signal input  
Y signal output  
processing  
2ch  
10-bit DAC  
(Z1)  
10  
10  
ACO  
Analog C output  
C signal output  
processing  
CBPC  
AGND  
0.1  
µ
F
CLK  
System clock (4fSC  
)
12.1 Digital YC Output Processing  
When setting up DYCOS = 00 on the serial bus, DYCO9 (MSB) to DYCO0 (LSB) pins alternately output 10 bits of Y  
signals in straight binary and 10 bits of C signals in offset binary. And ALTF pin outputs alternative flag of Y or C  
signals. When ALTF = 'L' means "C Signal Outputs", when ALTF = 'H' means "Y Signal Outputs".  
When setting up DYCOS = 1x on the serial bus, DYCO9 (MSB) to DYCO0 (LSB) and ALTF pins are high-impedance.  
When the DYCO pins are not used, setting DYCOS = 1x on the serial bus reduces radiation noise of these pins.  
When the external ADC is used, DYCO9 to DYCO0 pins are used as the digital input terminal of video signal. So the  
digital YC output is not available.  
12.2 Video Signal Output Level  
Figure 12-2 shows sample waveforms that would be observed at the AYO and ACO pins after a typical video signal  
is input (see 3. VIDEO SIGNAL INPUT BLOCK).  
28  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Figure 12-2. Video Signal Output Waveform Example (for 75 % Color Bar Input)  
+131 IRE: 1023  
896  
1.94 V  
MAX. 131 IRE = 1023 LSB  
100 IRE = 840 LSB  
768  
640  
512  
384  
0 IRE: 256  
128  
Pedestal: 0 IRE = 256 LSB  
Sync-tip: 40 IRE = 20 LSB  
43 IRE: 0  
0.94 V  
1.94 V  
+87 IRE: 1023  
896  
COUTS = 0x  
COUTS = 1x  
768  
640  
0 IRE: 512  
384  
256  
128  
Center = 512 LSB  
87 IRE: 0  
0.94 V  
12.3 Pin Treatment  
Supply 2.5 V to the AVDD pins and supply 3.3 V to the DVDDIO pin. Isolate them sufficiently from the digital  
section power supply.  
Use as wide wiring patterns as possible as the ground lines of each bypass capacitor and the AGND pins so as  
to minimize their impedance.  
Pull down the CBPY and CBPC pins via a 0.1 µF bypass capacitor.  
When DAC aren't used, connect AGND pin to digital ground, AVDD pin to digital power supply, and AYO, ACO,  
CBPY and CBPC pins set open.  
When the digital I/O pin DYCO9 to DYCO0 aren't used, these pins set open.  
29  
Data Sheet S16021EJ2V0DS  
µ PD64084  
13. EXTEND DIGITAL INPUT / OUTPUT  
This device have the extend digital I/O terminals EXTDYCO9-EXTDYCO0 in addition to DYCO9-DYCO0.  
Using these terminals, the digital in to digital out system is available.  
Table 13-1. Mode setting for extend digital I/O terminals  
Serial bus  
Condition of each terminals  
EXTDYCO  
EXADINS  
DYCOS[1]  
DYCOn  
OUT  
EXTDYCOn  
Low Note  
Low Note  
Low Note  
Low Note  
IN  
ALTF  
FLAG  
4fsc  
EXTALTF  
Low  
A/D  
ON  
D/A  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
0
0
0
1
1
1
1
0
1
0
0
1
0
1
0
x
1
0
0
1
1
IN  
Low  
OFF  
ON  
Low Note  
Low  
Low  
OUT  
FLAG  
FLAG  
Low  
Low  
ON  
OUT  
4fsc  
OFF  
ON  
Low Note  
OUT  
FLAG  
FLAG  
IN  
OUT  
4fsc  
OFF  
Note By setting HIZEN (SA16h, D4) = 1, these pin status are set to Hi-Z.  
13.1 Usage of extend digital I/O terminals  
The extended digital I/O pin EXTDYCO9 to EXTDYCO0 becomes effective by setting serial bus to EXTDYCO = 1.  
At this time, internal ADC can not be available. The I/O mode selection of EXTDYCO9 to EXTDYCO0 are set by  
serial bus DYCOS.  
When using input mode of DYCOn or EXTDYCOn pins, insert serial resistor in the lines.  
13.2 Digital YC output format  
The specification of the digital input and output for the extended digital I/O pin EXTDYCO9 to EXTDYCO0 is same as  
usual digital I/O pin DYCO9 to DYCO0. When using in input mode, input 10-bit digitized composite video signal that is  
sampled by 4fsc. And when using in output mode, EXTDYCO9 (MSB) to EXTDYCO0 (LSB) pins alternately output 10  
bits of Y signals in straight binary and 10 bits of C signals in offset binary. And EXTALTF pin outputs alternative flag of  
Y or C signals. When ALTF = 'L' means "C Signal Outputs", when ALTF = 'H' means "Y Signal Outputs".  
The internal ADC and extended digital I/O cant work at the same time. And extended digital I/O pins have 3.3 V  
resistant.  
13.3 Pin Treatment  
When the extended digital I/O pin EXTDYCO9 to EXTDYCO0 aren't used, these pins set open.  
30  
Data Sheet S16021EJ2V0DS  
µ PD64084  
14. DIGITAL CONNECTION WITH GHOST REDUCER IC µPD64031A  
The µPD64084 can perform processing from ghost reduction to three-dimension Y/C separation digitally in 10-bit  
units when it is directly connected to NEC Electronics' ghost reducer IC µPD64031A.  
Figure 14-1 shows the system configuration when the µPD64031A and µPD64084 are digitally connected directly.  
14.1 Outline  
When signals are input from a ground wave tuner, the composite video signal is first input to the A/D converter of the  
µPD64031A, where the ghost of the signal is reduced. The digital clamp circuit then adjusts the pedestal level, and the  
digital amplifier circuit adjusts the amplitude of the signal. As a result, a 10-bit digital composite video signal is sent to  
the three-dimension Y/C separation IC µPD64084. The µPD64084 then performs processing such as Y/C separation  
and outputs a Y/C video signal that has been converted into an analog signal (see Figure 14-1).  
Figure 14-1. Example of Digital Connection System with Ghost Reducer  
(when signals are input from tuner)  
Tuner input  
Composite video signal input  
Y/C video output  
C sync separation  
10-bit digital  
composite  
ADC  
ADC  
DAC  
DAC  
video signal  
Digital clamp  
amplifier  
Y/C  
separation  
DYCO9 to  
DYCO0  
GR filter  
DO9 to DO0  
4fSC  
ALTF  
OCP  
ALTF  
ST0  
Clamp pulse  
1/2  
Delay  
CSO  
CSI  
WP1  
CLK8  
CKMD  
CLK8  
CKMD  
CLK8 input  
and 8fSC  
PLL stop  
f
SC  
8fSC  
PLL  
8fSC  
PLL  
f
SC/227.5f  
H
generator  
generator  
f
SC BPF  
8fSC  
f
SC  
20 MHz  
f
SC path selection  
µ
PD64031A  
µPD64084  
31  
Data Sheet S16021EJ2V0DS  
µ PD64084  
When signals are input from video (composite or S input), the µPD64031A is not used, and the video signal is  
directly input to the A/D converter of the µPD64084 (see Figure 14-2).  
Figure 14-2. Example of Digital Connection System without Ghost Reducer  
(when signals are input from external source)  
External pin input, etc.  
Composite video signal input  
Y/C video output  
C sync separation  
10-bit digital  
composite  
ADC  
ADC  
DAC  
DAC  
video signal  
Digital  
clamp  
amplifier  
GR filter  
Y/C  
separation  
DYCO9 to  
DYCO0  
DO9 to DO0  
4fSC  
ALTF  
OCP  
ALTF  
ST0  
Clamp pulse  
1/2  
Delay  
CSO  
CSI  
WP1  
CLK8  
CKMD  
CLK8  
CKMD  
CLK8 input  
and 8fSC  
PLL stop  
f
SC  
8fSC  
PLL  
8fSC  
PLL  
f
SC/227.5f  
H
generator  
generator  
fSC BPF  
8fSC  
fSC  
20 MHz  
3DYC/GR selection  
µ
PD64031A  
µ
PD64084  
32  
Data Sheet S16021EJ2V0DS  
µ PD64084  
14.2 System Configuration and Control Method  
14.2.1 Selecting video signal input path  
When a video signal is input from a tuner or external pin, the input path of the video signal must be selected. This  
selection is made by a serial bus register of the µPD64084. If the signal is input from a tuner when the ghost reducer is  
used, a digital video signal input pin is selected by the µPD64084. When signals are input from other external pins  
(such as those of a VCR, DVD, video camera, or game machine), the internal A/D converter of the µPD64084 is made  
valid, so that the video signal directly input to the µPD64084 becomes valid.  
For details on how to set the pins and registers, see Table 14-1 and Table 14-2 in Section 14.3.  
14.2.2 Selecting mode according to clock and video signal input path  
When the µPD64031A and µPD64084 are digitally connected directly, the system clock must be shared by the two  
ICs. When the ghost reducer is used (when signals are input from a tuner), the µPD64031A generates burst lock clock  
fSC, as shown in Figure 14-1. This fSC goes through an external BPF and is input to the 8fSC PLL of the µPD64084,  
where system clocks (8fSC and 4fSC) are generated. These system clocks are used by the µPD64084, and are also  
supplied to the µPD64031A by the µPD64084 from the CLK8 pin.  
When the ghost reducer is not used (when signals are input from an external source), the video signal is not input to  
the µPD64031A, and only the µPD64084 operates. It is therefore necessary that the burst clock generated by the  
µPD64084 be used.  
To switch the path of inputting fSC to the fSC BPF between the FSCO pin of the µPD64031A and the FSCO pin of the  
µPD64084, an analog switch is necessary in the input block of the fSC BPF.  
This analog switch is controlled by the WP1 pin of the µPD64031A. The WP1 pin is controlled by register DIR3DYC  
(SA08h: D7 and D6) of the µPD64031A (that selects a three-dimension Y/C separation digital connection mode). By  
changing the setting of this register depending on whether the ghost reducer is used or not, the analog switch can be  
controlled by the signal output from the WP1 pin. In this way, the fSC path can be changed.  
A 20-MHz crystal oscillator that generates the basic clock for the fSC generator should be provided to the  
µPD64031A. When the ghost reducer is not used and the µPD64084 operates alone, the 20-MHz clock output from  
the C20O pin of the µPD64031A is used.  
For details on how to set the pins and registers, see Table 14-1 and Table 14-2 in Section 14.3.  
33  
Data Sheet S16021EJ2V0DS  
µ PD64084  
14.3 Setting of Digital Direct-Connected System  
14.3.1 Hardware setting  
See the pin connection and setting in the following table to digitally connect the µPD64031A and µPD64084 directly.  
Table 14-1. Pin Setting for Digital Direct-Connection  
µ PD64031A Pin  
µ PD64084 Pin  
Signal  
Function  
Direction  
DO9 to DO0 (pins 6 to 15)  
N3D (pin 3)  
DYCO0 to DYCO9 (pins 63 to 72) 10-bit digital video signal interface  
LINE (pin 74)  
Three-dimension processing prohibiting flag  
Register N3D1STEN of the µ PD64031A (SA01h:  
D5) must be set.  
CSO (pin 4)  
CSI (pin 77)  
Composite sync signal  
The signal from the sync separation circuit  
connected to the µ PD64031A is shared by the  
µ PD64084.  
ALTF (pin 5)  
OCP (pin 18)  
CLK8 (pin 30)  
ALTF (pin 73)  
ST0 (pin 59)  
CLK8 (pin 57)  
Digital clamp clock (4fSC)  
Register ADCLKS of the µ PD64084 (SA15h: D7  
and D6) must be set.  
Clamp pulse for digital clamp circuit  
Register ST0S of the µ PD64084 (SA07h: D1 and  
D0) must be set.  
System clock (8fSC)  
Register CLK8OFF of the µ PD64084 (SA07h: D4)  
must be set.  
FSCO (pin 47)  
C20O (pin 54)  
CKMD (pin 31)  
WP1 (pin 35)  
FSCI (pin 54)  
XI (pin 36)  
Burst lock clock (connected via an analog switch)  
20-MHz reference clock  
Fixed to high level (external clock mode)  
Connected to analog switch (control signal output)  
This pin is controlled by register DIR3DYC of the  
µ PD64031A (SA08h: D7 and D6) to select a clock  
path.  
EXDAS (pin 58)  
Fixed to high level (digital output is valid)  
Fixed to GND (fSC generator is not used)  
Connected to analog switch  
Open  
FSCI (pin 40)  
FSCO (pin 51)  
XO (pin 37)  
34  
Data Sheet S16021EJ2V0DS  
µ PD64084  
14.3.2 Register setting  
Correctly set the following registers when digitally connecting the µPD64031A and µPD64084 directly.  
Also refer to the following table for register setting to specify whether the ghost reducer is used or not.  
Table 14-2. Register Setting  
Register  
With Ghost Reducer  
Used  
With Ghost Reducer  
Not Used  
Remark  
µ PD64031A  
EXDAS (SA01h: D7)  
1
1
0
Dont care  
Dont care  
Dont care  
Digital data output setting  
N3D1STEN (SA01h: D5)  
CLK20LOW (SA01h: D2)  
ADCPMD (SA04h: D5, D4)  
DIR3DYC (SA08h: D7, D6)  
DCPAG (SA08h: D5 to D3)  
DCPEN (SA09h: D6)  
3-dimesnion processing prohibiting flag setting  
20-MHz clock output setting  
10  
ADC input bias mode setting  
10  
101  
1
11  
Mode selection (WP1 pin control)  
Digital clamp characteristic setting  
Digital clamp selection  
Dont care  
Dont care  
Dont care  
Dont care  
Dont care  
DCPLPFS (SA09h: D5)  
DCPVEN (SA09h: D4)  
DCP_TEST (SA09h: D3 to D0)  
µ PD64084  
1
Error calculation block LPF selection  
Clamp timing setting  
1
1111  
Permissible error range during clamping  
EXADINS (SA02h: D5)  
CLK8OFF (SA07h: D4)  
ST0S (SA07h: D1, D0)  
ADCLKS (SA15h: D7, D6)  
HIZEN (SA16h: D4)  
1
0
Internal ADC selection  
0
1
8fSC output setting  
01  
01  
Dont care  
Clamp pulse output setting  
ALTF clock delay setting  
Digital input / output status select  
11  
35  
Data Sheet S16021EJ2V0DS  
µ PD64084  
15. I2C BUS INTERFACE  
15.1 Basic Specification  
The I2C bus is a two-wire bi-directional serial bus developed by Philips. It consists of a serial data line (SDA) for  
communication between ICs and a serial clock line (SCL) for establishing sync in communication.  
Figure 15-1. I2C Bus Interface  
3.3 V supply voltage  
Serial data line  
SDA  
SCL  
SDA  
SCL  
Master IC  
Slave IC  
Slave IC  
Serial clock line  
SDA  
SCL  
The following procedure is used to transfer data from the master IC to a slave IC.  
<1> Start condition : To start communication, hold the SCL at a high level, then pull down the SDA from a high to a  
low level.  
<2> Data transfer : To transfer data, pull up the SCL from a low to a high, while holding the current state of the  
SDA. Data transfer is carried out in units of 9 bits, that is, 8 data bits (D7 to D0, MSB first) plus  
an acknowledgment bit (ACK). A selected slave IC sets the SDA to a low when it receives bit  
9 to send acknowledgment.  
<3> Stop condition : To terminate communication, pull up the SDA from a low to a high upon acknowledgment,  
while keeping the SCL at a high.  
Figure 15-2. Start Condition, Data Transfer, and Stop Condition Formats  
Start condition  
0.6  
Data acceptance  
Stop condition  
0.6  
µ
s
1.3  
µ
s 0.6  
µ
s
µs  
MIN.  
MIN. MIN.  
MIN.  
0 ns MIN.  
SCL  
0.1  
µs 0.1µs  
MIN. MIN.  
Hi-Z  
Hi-Z  
ACK  
SDA (Master)  
SDA (Slave)  
D7  
D6  
D5  
D4  
D1  
D0  
D7  
D0  
ACK  
36  
Data Sheet S16021EJ2V0DS  
µ PD64084  
15.2 Data Transfer Formats  
Immediately when the master IC satisfies the start condition, each slave receives a slave address. If the received  
slave address matches that of a slave IC, communication begins between the slave IC and the master IC. If not, the  
SDA line is released. Two sets of slave addresses can be specified according to the SLA pin.  
Table 15-1. Slave Address  
SLA pin setting  
Slave address  
(Unchangeable when power is on)  
Write mode  
Read mode  
B9h (1011 1001b)  
BBh (1011 1011b)  
L or open  
H
B8h (1011 1000b)  
BAh (1011 1010b)  
(1) Write mode formats (reception mode for slaves)  
If a slave IC receives its write-mode slave address in byte 1, it continues to receive a subaddress in byte 2 and data  
in the subsequent bytes. The subaddress auto-increment function enables continuous data reception.  
Figure 15-3. Write Mode Formats  
(a) One-byte write format  
Start  
Slave Address  
8 bits  
W A  
1 bit  
Sub Address n  
8 bits  
A
Data (Sub Address n)  
8 bits  
A
Stop  
1 bit  
1 bit  
(b) Multiple-byte write format  
Start  
Slave Address  
8 bits  
W A  
1 bit  
Sub Address n  
8 bits  
A
Data (Sub Address n)  
8 bits  
A
Data (Sub Address n+1)  
8 bits  
A
1 bit  
1 bit  
1 bit  
A
Data (Sub Address 17h)  
8 bits  
A
Stop  
1 bit  
1 bit  
Remark Start : Start condition  
Stop : Stop condition  
Sr : Restart condition  
W
A
: Write mode specification (= 0)  
: Acknowledgment  
R
N
: Read mode specification (= 1)  
: No-acknowledgment  
XXX  
XXX  
: Master Device  
: Slave Device (µPD64084)  
37  
Data Sheet S16021EJ2V0DS  
µ PD64084  
(2) Read mode format (transmission mode for slaves)  
If a slave IC receives its read-mode slave address in byte 1, it sends data in byte 2 and the subsequent bytes. No  
subaddress is specified in this mode. Transmission begins always at address 0. Before establishing a stop condition,  
the master IC must send no-acknowledgment and release the SDA line.  
Figure 15-4. Read Mode Format  
(a) Single read format  
Start  
Slave Address  
8 bits  
R A Data (Sub Address 0)  
A
Data (Sub Address 1)  
8 bits  
A
A
Data (Sub Address n)  
8 bits  
N
Stop  
1 bit  
8 bits  
1 bit  
1 bit  
1 bit  
(b) Multiple read format  
Start  
Slave Address  
8 bits  
W A  
Sub Address n  
8 bits  
A Sr  
1 bit  
Slave Address  
8 bits  
R A Data (Sub Address n)  
1 bit 8 bits  
A
1 bit  
1 bit  
A
Data (Sub Address 06h)  
8 bits  
N
Stop  
1 bit  
1 bit  
Remark Start : Start condition  
Stop : Stop condition  
Sr : Restart condition  
W
A
: Write mode specification (= 0)  
: Acknowledgment  
R
N
: Read mode specification (= 1)  
: No-acknowledgment  
XXX  
XXX  
: Master Device  
: Slave Device (µPD64084)  
15.3 Initialization  
The serial bus registers are initialized when the µPD64084 is reset (RSTB). The I2C bus interface become operative  
after 100 µs from reset operation. In addition, its write register is previously loaded with an initial value.  
For the reset operation, refer to 2.4 Start-up of Power Supply and Reset.  
38  
Data Sheet S16021EJ2V0DS  
µ PD64084  
15.4 Serial Bus Registers  
The µPD64084 incorporates twenty-four 8-bit write registers and seven 8-bit read registers. Writing to the write  
registers is possible in the write mode (with a slave in reception mode), while reading from the read registers is possible  
in the read mode (with a slave in transmission mode). The following table lists how each serial bus register is mapped.  
(1) Write register mapping  
Slave address: 10111000b = B8h (SLA0 = L), 10111010b = BAh (SLA0 = H)  
Data Map (SA00-SA17)  
SA  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
D7  
0
D6  
D5  
0
D4  
1
D3  
D2  
D1  
D0  
NRMD  
COUTS  
MSS  
YAPS  
KILS  
CLKS  
NSDS  
EXADINS  
DYCOS  
MFREEZE  
HDP  
PECS  
EXCSS  
0
CPP  
CDL  
DYCOR  
DCCOR  
DYGAIN  
DCGAIN  
YNRK  
YNRINV  
YNRLIM  
ID1W0A2 CLK8OFF  
VTRH  
CNRK  
CNRINV  
CNRLIM  
ST0S  
ID1ON  
ID1W0A1  
ST1S  
VTRR  
WSC  
LDSR  
WSS  
0
ID1DECON  
VAPGAIN  
0
TH  
FELCHK  
TT  
VFLTH  
VAPINV  
YPFT  
YPFG  
V1PSEL  
VEGSEL  
CC3N  
C0HS  
CLPH  
SELD2FH  
0
0
0
0
0
1
SELD1FL  
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
YHCOR  
YHCGAIN  
VCT  
ED2OFF  
OTT  
PLLFG  
OVST  
CLKG2D  
CSHDT  
CLKGGT  
KCTT  
SHT0  
SHT1  
CLKGEB  
CLKGT  
HPLLFS  
BPLLFS  
FSCFG  
KILR  
HSSL  
BGPS  
VSSL  
BGPW  
FSCOFF  
ADCLKS  
SYSPDS  
CNROFS  
ADPDS  
EXTDYCO  
NSDSW  
HIZEN  
NRZOFF  
VLSEL  
0
VTVH  
VLTYPE  
0
0
0
0
0
HCNTFSYN ADCLPFSW ADCLPSTP  
Caution It may be necessary to change set values on the serial bus depending on the results of  
performance evaluation conducted by NEC Electronics.  
39  
Data Sheet S16021EJ2V0DS  
µ PD64084  
(2) Read register mapping  
Slave address: 10111001b = B9h (SLA0 = L), 10111011b = BBh (SLA0 = H)  
Data Map (SA00 - SA06)  
SA  
00  
01  
02  
03  
04  
05  
06  
D7  
D6  
D5  
-
D4  
D3  
D2  
D1  
D0  
VER  
KILF  
NSDF  
LDSDF  
OVSDF  
OHSDF  
WSL  
ED2  
B10  
-
B3  
B11  
-
B4  
B5  
B6  
B7  
B8  
B9  
B12  
B13  
B14  
B15  
B16  
B17  
ID1W0  
ID1W1  
ID1W2  
DCLEVH  
CRCCH  
DCFEL  
CRCCFEL  
HOLD1  
-
-
-
40  
Data Sheet S16021EJ2V0DS  
µ PD64084  
15.5 Serial Bus Register Functions  
Table 15-2 lists the function of each write register. The initial and typical values for each register were determined  
for evaluation purposes by NEC Electronics. They are not necessarily optimum values.  
(1) Write Register  
Table 15-2. Write Register Functions (1/14)  
SA  
00  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7  
D6  
-
Undefined  
0
-
0
0
NRMD  
0 :YCS mode :  
Y/C separation (burst locked clocking)  
Y
Specifies an operation  
mode.  
Comp.  
ADC  
DAC  
YCS  
(3D/2D)  
4fSC  
C
DAC  
Memory  
1 :YCS+ mode : 2D Y/C separation and YNR/CNR (burst  
locked clocking)  
Comp.  
Y
ADC  
4fSC  
YNR  
DAC  
YCS  
(2D)  
C
CNR DAC  
Memory  
D5-D4  
D3-D2  
-
Undefined  
01  
11  
01  
11  
COUTS  
00: Input-to-output gain of 2, without BPF processing  
01: Input-to-output gain of 2, with BPF processing  
10: Input-to-output gain of 1, without BPF processing  
11: Input-to-output gain of 1, with BPF processing  
Specifies the way the C  
signal is output.  
(Common to digital and  
analog outputs)  
D1-D0  
YAPS  
00: Correction is disabled for both analog and digital outputs.  
01: Correction is enabled for only analog outputs.  
11  
11  
Specifies Y signal output  
correction. (Vertical  
aperture compensation  
and Y peaking filtering)  
10: Correction is enabled for only digital outputs.  
11: Correction is enabled for both analog and digital outputs.  
41  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (2/14)  
SA  
01  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
CLKS  
Specifies whether to  
00: Automatic setting (in an operation mode specified by NRMD)  
01: Forced burst locked clocking  
00  
00  
00  
00  
force use of the system  
clock.  
1x: Forced line (horizontal) locked clocking  
Caution If the specified setting does not match the input  
signal, a malfunction may occur.  
D5-D4  
NSDS  
00: Adaptive processing (performed according to whether a  
nonstandard signal is detected)  
Specifies whether to  
force  
01: Forced standard signal processing (performed regardless of  
whether a nonstandard signal is detected)  
standard/nonstandard  
signal processing.  
10: Forced horizontal sync nonstandard signal processing  
11: Forced vertical sync nonstandard signal processing (forced  
inter-line processing)  
Caution If the specified setting does not match the input  
signal, a malfunction may occur.  
D3-D2  
D1-D0  
MSS  
00: Adaptive processing (performed according to the LINE pin  
input and motion detection signal)  
00  
01  
00  
01  
Specifies whether to  
force inter-frame or inter-  
line processing.  
01: Forced inter-frame processing (performed according to the  
LINE pin input)  
1x: Forced inter-line processing  
KILS  
00: Adaptive processing (performed according to the KIL pin  
input and internal killer detection results)  
Specifies whether to  
force killer processing  
01: Internal killer detection is not used (processing is performed  
according to the KIL pin input only).  
1x: Forced killer processing  
In killer processing, subtraction of the C signal from Comp. Signal  
is disabled.  
42  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (3/14)  
SA  
02  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
DYCOS  
In case of EXTDYCO = 0  
10  
10  
Specifies DYCO pin  
input/output.  
00: Y/C separation signal alternate output  
01: Test mode (setting prohibited)  
1x: Low* High impedance  
In case of EXDYCO = 1  
00: DYCO9-0 : Output,  
EXTDYCO9-0 : Input (When EXADINS=0, Low Note  
)
01: Test mode (setting prohibited)  
1x: DYCO9-0 : Input (When EXADINS=0, Low Note),  
EXTDYCO9-0 : Output  
Note If HIZEN (SA16h, D4) = 1, then HI-Z.  
D5  
EXADINS  
0: Internal ADC  
0
0
Specifies whether to  
select external ADC.  
1: External ADC (digital video signal, converted from analog  
form, is input to the DYCO9 to DYCO0 pins)  
D4  
MFREEZE  
0: Normal mode  
0
0
External memory test bit  
1: Test mode (setting prohibited)  
00: Normal setting  
D3-D2  
PECS  
00  
00  
Specifies a pedestal error  
correction test bit.  
01: Test setting (setting prohibited)  
10: Test setting (setting prohibited)  
11: Test setting (setting prohibited)  
00: Internally separated sync signal is always used (CSI input is  
not used).  
D1-D0  
EXCSS  
01  
01  
Specifies whether to use  
external C sync input.  
01: Sync signal input at the CSI pin is used during out-of-sync  
state.  
1x: Sync signal input at the CSI pin is always used.  
03  
D7  
D6  
-
Undefined  
0 : 2.2 µs  
1 : 1.1 µs  
0
0
0
0
CPP  
Specifies the clamp pulse  
width of internal ADC  
000: 1.12 µs to 100: 0.00 µs (Typ.) to 111: +0.84 µs  
D5-D3  
D2-D0  
HDP  
100  
100  
100  
100  
Fine adjustment of  
system horizontal phase  
Fine-adjusts the horizontal-processing phase with respect to the  
horizontal sync signal (0.28 µs/step).  
000: 280 ns to 100: 0 ns (Typ.) to 111: +210 ns  
CDL  
Fine adjustment of C  
signal output delay  
Fine-adjusts the C signal phase with respect to the Y signal  
(70 ns/step).  
43  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (4/14)  
SA  
04  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D4  
DYCOR  
0000: Coring 0 (Closer to motion pictures) to  
0010  
0010  
DY detection coring level 1111: Large amount of coring (Closer to still pictures)  
(Y motion detection  
coring)  
The coring level for inter-frame Y difference detection is specified.  
A signal smaller than specified is assumed to be noise, resulting  
in '0' being output.  
D3-D0  
D7-D4  
DYGAIN  
0000: Gain of 0 (Closer to still pictures) to  
1001  
0011  
1001  
0011  
DY detection gain (Y  
motion detection gain)  
1111: Maximum gain (Closer to motion pictures)  
Inter-frame Y difference detection gain is specified.  
0000: Coring 0 (Closer to motion pictures) to  
05  
DCCOR  
DC detection coring level 1111: Large amount of coring (Closer to still pictures)  
(C motion detection  
coring)  
The coring level for inter-frame C difference detection is specified.  
A signal smaller than specified is assumed to be noise, resulting  
in 0 being output.  
D3-D0  
DCGAIN  
0000: Gain of 0 (Closer to still pictures) to  
0110  
0110  
DC detection gain (C  
motion detection gain)  
1111: Maximum gain (Closer to motion pictures)  
Inter-frame C difference detection gain is specified.  
44  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (5/14)  
SA  
06  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7  
D6  
YNRK  
Specifies the frame  
0: x 6/8 (small noise reduction effect and small after-image)  
1: x 7/8 (large noise reduction effect and large after-image)  
0
0
recursive YNR nonlinear  
filter gain.  
The magnitude of the NR effect is specified.  
YNRINV  
0: 6 LSB (small noise reduction effect and small after-image)  
1: 8 LSB (large noise reduction effect and large after-image)  
0
0
Specifies the frame  
recursive YNR nonlinear  
filter convergence level.  
An input larger than specified is assumed to be a motion  
component, resulting in 0 being output.  
D5-D4  
YNRLIM  
00: 0 LSB (YNR off) to  
01  
01  
Specifies the frame  
recursive YNR nonlinear  
filter limit level.  
11: 3 LSB (large noise reduction effect and large after-image)  
An input larger than specified is assumed to be a motion  
component, resulting in a limit value being output.  
Nonlinear characteristic curve based on YNRK, YNRINV, and  
YNRLIM  
YNRK=1 (k=7/8)  
YNRK=0 (k=6/8)  
YNRINV=1  
YNRINV=0  
Y' output (LSB)  
4
3
2
1
YNRLIM=3  
YNRLIM=2  
YNRLIM=1  
8  
6  
6
8
Y  
1  
input (LSB)  
2 Remarks1. The Characteristic are  
symmetrical with respect to  
the origin.  
3  
4  
2. The levels shown are in 8-bit  
terms.  
D3  
D2  
CNRK  
0: x 6/8 (small noise reduction effect and small after-image)  
1: x 7/8 (large noise reduction effect and large after-image)  
The magnitude of the NR effect is specified.  
0
0
0
0
Specifies the frame  
recursive CNR nonlinear  
filter gain.  
CNRINV  
0: 6 LSB (small noise reduction effect and small after-image)  
1: 8 LSB (large noise reduction effect and large after-image)  
Specifies the frame  
recursive CNR nonlinear  
filter convergence level.  
An input larger than specified is assumed to be a motion  
component, resulting in 0 being output.  
D1-D0  
CNRLIM  
00: 0 LSB (CNR off) to  
01  
01  
Specifies the frame  
recursive CNR nonlinear  
filter limit level.  
11: 3 LSB (large noise reduction effect and large after-image)  
An input larger than specified is assumed to be a motion  
component, resulting in a limit value being output.  
Nonlinear characteristic curve based on CNRK, CNRINV, and  
CNRLIM  
CNRK=1 (k=7/8)  
CNRK=0 (k=6/8)  
CNRINV=1  
CNRINV=0  
C' output (LSB)  
4
3
2
1
CNRLIM=3  
CNRLIM=2  
CNRLIM=1  
8  
6  
6
8
C  
1  
input (LSB)  
2 Remarks1. The Characteristic are  
symmetrical with respect to  
the origin.  
3  
4  
2. The levels shown are in 8-bit  
terms.  
45  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (6/14)  
SA  
07  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7  
ID1ENON  
0: Through (no superimposition)  
-
0
Specifies whether to  
superimpose ID-1  
1: Forced superimposition  
Caution Do not set this bit to 1 during no-signal state.  
specification ID signal.  
D6  
D5  
D4  
ID1ENW0A1  
0: 0 (transmission aspect of 4:3)  
-
-
0
0
Specifies whether to set  
bit A1 of ID-1 word 0.  
1: 1 (transmission aspect of 16:9)  
ID1ENW0A2  
0: 0 (image display format = normal)  
1: 1 (image display format = letter box)  
Specifies whether to set  
bit A2 of ID-1 word 0.  
CLK8OFF  
0: Active-low (to output 8fSC clock pulse)  
1
-
0
Specifies the state of the  
CLK8 pin output.  
1: Fixed to low level (to reduce radiation noise)  
D3-D2  
D1-D0  
ST1S  
00: I2C SDA inversed pulse  
01: Internal ADC clamp pulse (active-high)  
10: Composite sync (active-low)  
11: H sync (active-high)  
00  
Specifies internal signal  
monitor output for the  
ST1 pin.  
ST0S  
00: Reserved  
-
00  
Specifies internal signal  
monitor output for the  
ST0 pin.  
01: External ADC clamp pulse (active-high)  
10: HV blanking (active-high)  
11: V sync (active-low)  
46  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (7/14)  
SA  
08  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
WSC  
00: 0LSB (high detection sensitivity)  
01  
01  
Specifies the amount of  
noise detection coring.  
01: 1LSB  
10: 2LSB  
11: 3LSB (low detection sensitivity)  
Specifies an input coring value for the noise detection circuit.  
Detection results are not used within the device.  
D5-D4  
VTRH  
00: Hysteresis off (width of 0 clock pulses)  
01: Low hysteresis (width of 2 clock pulses)  
10: Medium hysteresis (width of 4 clock pulses)  
11: High hysteresis (width of 6 clock pulses)  
01  
01  
Specifies hysteresis for  
horizontal sync  
nonstandard signal  
detection (out-of-  
horizontal sync intra-field)  
For horizontal sync nonstandard signal detection, a criterion  
value to detect an out-of-horizontal sync state intra-field is  
decreased by a value indicated above.  
D3-D2  
VTRR  
00: High detection sensitivity (width of 4 clock pulses)  
01: Medium detection sensitivity (width of 8 clock pulses)  
10: Low detection sensitivity (width of 12 clock pulses)  
11: Detection off  
01  
01  
Specifies sensitivity for  
horizontal sync  
nonstandard signal  
detection (out-of-  
horizontal sync intra-field)  
If the degree of out-of-horizontal sync state intra-field becomes  
larger than specified, a horizontal sync nonstandard signal is  
assumed to have been detected.  
Horizontal sync nonstandard signal detection characteristic curve  
Standard-to-nonstandard hysteresis width  
VTRH×2(clk) Note 1  
OHSD=1 (nonstandard  
signal detected)  
OHSD=0 (standard  
signal detected)  
Standard-to-nonstandard  
decision criterion Note 2  
Notes 1. clk is in 4fSC units.  
(VTRR+1)×4(clk) Note 1  
2. Excluding when  
VTRR = 11  
D1-D0  
LDSR  
00: High detection sensitivity (width of 0.5 clock pulses)  
01: Medium detection sensitivity (width of 1 clock pulse)  
10: Low detection sensitivity (width of 1.5 clock pulses)  
11: Detection off  
10  
10  
Specifies sensitivity for  
frame sync nonstandard  
signal detection (out-of-  
horizontal sync inter-  
frame)  
If the degree of out-of-horizontal sync state inter-frame becomes  
larger than specified, a frame sync nonstandard signal is  
assumed to have been detected.  
47  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (8/14)  
SA  
09  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
0 : Normal (µPD64082 compatible)  
D7  
D6  
WSS  
0
0
Specifies the pre-filter  
characteristic of noise  
detection.  
1 : fsc trap  
ID1DECON  
0 : disable  
1
1
ID-1 decoder  
1 : enable  
When decoding is disable, The output of register is following.  
WORD0=00, WORD1=1111, WORD2=00h  
D5-D4  
TH  
01 : Strict  
00  
00  
ID-1 decorder  
check level  
00  
10  
:
:
11 : Loose  
D3  
FELCHK  
0 : 6 fields check is disable  
1 : 6 fields check is enable  
1
1
ID-1 decoder  
Field check enable  
D2-D1  
TT  
00 : 8CLK  
01 : 2CLK  
10 : 4CLK  
11 : 16CLK  
00  
00  
ID-1 decoder  
pulse width level  
D0  
VFILTH  
0: BPF enable  
0
-
0
Specifies the vertical  
blanking (1H to 22H) BPF  
1: BPF disable (through)  
0A  
D7-D5  
VAPGAIN  
000: Correction off to  
000  
Specifies a vertical  
aperture compensation  
gain.  
111: Maximum correction (0.875 times)  
D4-D0  
VAPINV  
00000: Correction off to  
-
00000  
Specifies a vertical  
aperture compensation  
convergence point.  
11111: Maximum correction  
Vertical aperture compensation characteristic curve based on  
VAPGAIN and VAPINV  
Output  
Tilt: VAPGAIN/8Note  
Coring: Fixed at  
1
Tilt: Fixed at 1  
Input  
VAPINV  
VAPINV  
Note The curve is symmetrical  
with resept to the origin  
48  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (9/14)  
SA  
0B  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7  
D6  
TEST  
0: Normal mode  
0
0
Test bit  
1: Test mode (setting prohibited)  
0: Normal mode  
TEST  
0
0
Test bit  
1: Test mode (setting prohibited)  
00: 3.58 MHz, 01: 3.86 MHz, 10: 4.08 MHz, 11: 4.22 MHz  
D5-D4  
YPFT  
11  
11  
Specifies the Y peaking  
filter (BPF) center  
frequency.  
Y-peaking filter BPF characteristic curve  
Gain  
1.25  
1.13  
1.00  
0.88  
0.75  
0.63  
0.50  
0.38  
0.25  
0.13  
k=0  
k=1  
k=2  
k=3  
0.00  
f (MHz)  
0000: 1.0 times to 1000: 0.0 times to 1111: +0.875 times  
D3-D0  
YPFG  
1000  
1000  
Specifies a Y peaking  
filter gain.  
Y signal output frequency characteristic curve based  
onYPFT andYPFG  
YPFT=2  
Output  
1.875  
YPFT=0  
YPFG=15  
YPFG=12  
YPFG=8  
1.5  
1.0  
0.5  
YPFG=4  
YPFG=0  
0
0.5fSC  
f
SC  
1.5fSC Input freq.  
49  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (10/14)  
SA  
0C  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
V1PSEL  
00: Suppression off  
10  
10  
Line comb filter horizontal  
dot interference  
01: Low suppression level  
10: Medium suppression level  
11: High suppression level  
suppression level  
Horizontal dot interference is reduced at inter-line Y/C separation.  
00: Suppression off  
D5-D4  
VEGSEL  
10  
10  
Line comb filter vertical  
dot interference  
suppression level  
01: Low suppression level  
10: Medium suppression level  
11: High suppression level  
Vertical dot interference is reduced at inter-line Y/C separation.  
0: Narrow bandwidth  
D3  
D2  
CC3N  
0
0
0
0
Selects a line comb filter  
C separation filter  
characteristic.  
1: Wide bandwidth  
C0HS  
0: 1H delay  
Specifies C signal delay  
time extension at NR  
1: No 1H delay  
D1  
D0  
CLPH  
0: Normal mode  
0
0
0
0
ADC clamp test bit  
1: Test mode (setting prohibited)  
0: Low sensitivity, Closer to still pictures  
1: High sensitivity, Closer to motion pictures  
SELD2FH  
Specifies DC detection  
High-frequency  
sensitivity.  
0D  
D7  
D6  
D5  
-
-
0
0
0
0
0
0
0
0
SELD1FL  
0: Low sensitivity, Closer to still pictures  
1: High sensitivity, Closer to motion pictures  
Specifies DY detection  
low-frequency sensitivity.  
D4  
-
-
-
-
-
-
-
0
0
0
D3  
0
0
0
D2-D0  
D7-D4  
D3-D0  
D7-D4  
D3-D0  
101  
0000  
1000  
0100  
0100  
101  
0000  
1000  
0100  
0100  
101  
0000  
1000  
0100  
0100  
0E  
0F  
50  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (11/14)  
SA  
10  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
YHCOR  
00: Coring off  
00  
00  
Specifies Y output high  
frequency component  
coring.  
01: Small amount of coring  
10: Medium amount of coring ( 2 LSB: 8-bit terms)  
11: Large amount of coring ( 3 LSB: 8-bit terms)  
( 1 LSB: 8-bit terms)  
Coring characteristic curve (for high-frequency component only)  
Output (LSB)  
Solid line:YHCGAIN = 0  
Dotted line:YHCGAIN = 1  
YHCOR  
Input (LSB)  
YHCOR  
Remark Converted into 8 bits  
0: Normal (×1) 1 :1/2 gain  
D5  
YHCGAIN  
0
0
Specifies Y output high-  
frequency component  
coring gain.  
Refer to YHCOR (SA10h, D7-D6)  
D4  
D3  
ED2OFF  
0: Normal mode  
0
0
0
0
Specifies WCV-ID  
detection circuit.  
1: Forced WCV-ID detection circuit turned off  
OVST  
0: Normal mode  
1: Test mode  
Nonstandard signal  
detection test bit  
D2  
CSHDT  
0: Normal mode  
1: Test mode  
0
0
H / V counter test bit  
D1-D0  
KCTT  
0x: Normal mode  
1x: Test mode  
00  
00  
H / V counter test bit  
51  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (12/14)  
SA  
11  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7  
D6  
SHT1  
0: Normal mode  
1: Test mode  
0
0
Nonstandard signal  
detection test bit  
SHT0  
0: Normal mode  
1: Test mode  
0
0
Nonstandard signal  
detection test bit  
D5  
D4  
D3  
VCT  
0: Normal mode  
1: Test mode  
0: Normal mode  
1: Test mode  
0: Test mode  
0
0
1
0
0
1
H / V counter test bit  
OTT  
H / V counter test bit  
CLKG2D  
Clock generator section  
test bit  
1: Normal mode  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
CLKGGT  
0: Normal mode  
1: Test mode  
0
0
Clock generator section  
test bit  
CLKGEB  
0: Normal mode  
1: Test mode  
0
0
Clock generator section  
test bit  
CLKGT  
0: Normal mode  
1: Test mode  
0
0
Clock generator section  
test bit  
12  
HPLLFS  
0: Slow convergence  
1: Quick convergence  
-
1
1
1
Specifies the horizontal  
PLL filter.  
BPLLFS  
0: Quick convergence  
1: Slow convergence  
Specifies the burst PLL  
filter.  
FSCFG  
0: High gain  
1: Low gain  
0
0
Specifies the burst  
extraction gain.  
PLLFG  
0: Low gain (slow convergence)  
1: High gain (quick convergence)  
1
1
Specifies the PLL loop  
gain.  
D3-D0  
KILR  
0000: Detection off  
0010  
1010  
Killer detection reference  
0001: Low detection sensitivity to  
1111: High detection sensitivity  
13  
D7-D4  
D3-D0  
HSSL  
0000: 4LSB to 1111: 19LSB  
(in 8-bit input terms, 1LSB/step)  
1111  
1000  
1111  
1000  
Horizontal sync slice  
level  
VSSL  
0000: HSSL setting + 0LSB to  
1111: HSSL setting + 15LSB  
Vertical sync slice level  
(in 8-bit input terms, 1LSB/step)  
52  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (13/14)  
SA  
14  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
0000: H sync center + 2 µs to  
1111: H sync center + 5.75 µs  
D7-D4  
BGPS  
Specifies the internal  
0101  
0101  
burst gate start position.  
Calculation of gate start position from the H sync center :  
0.25 × BGPS + 2.0 (µs)  
0000: 0.5 µs to 1111: 4.25 µs  
D3-D0  
D7-D6  
BGPW  
0011  
11  
0011  
11  
Specifies the internal  
burst gate width.  
Calculation of gate width : 0.25 × BGPW + 0.5 (µs)  
15  
ADCLKS  
00: 0 ns typically (setting prohibited)  
01: 3 ns typically  
Specifies the ADC clock  
delay.  
10: 17.5 ns typically  
11: 20.5 ns typically  
D5  
ADPDS  
0: Do not stop operation of ADC not in use.( High current drain)  
1: Stop operation of ADC not in use. (Low current drain)  
1
0
1
0
Specifies whether to use  
ADC power-down.  
D4  
NRDSW  
0: Normal mode  
1: Test mode  
Nonstandard detection  
section test  
D3  
NRZOFF  
0: NRZ section amplitude check on  
1: NRZ section amplitude check off  
0
0
WCV-ID detection NRZ  
section check  
D2  
FSCOFF  
0: FSC amplitude check on  
1: FSC amplitude check off  
0
0
WCV-ID detection FSC  
section check  
D1-D0  
VTVH  
00: Ordinary processing  
00  
00  
Specifies WCV signal no-  
image section processing  
(only letter box signal is  
valid).  
01: Forced inter-frame Y/C separation  
10: Forced inter-line Y/C separation  
11: Forced through (composite signal is output.)  
53  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 15-2. Write Register Functions (14/14)  
SA  
16  
Bit  
Name and function  
Description  
Typical  
value  
Initial  
value  
D7-D6  
SYSPDS  
00: Normal operation  
00  
00  
System power down  
01: Mode1 (D/A, Memory Access stop, Total current :mid)  
10: Mode2 (Memory Access stop, Total current: High  
11: Mode3 (A/D, D/A, Memory Access stop, Total current : Low)  
Remark All register data are kept in power down term.Reset is  
not required for re-start.  
D5  
D4  
EXTDYCO  
0: EXTDYCO9-EXTDYCO0 disable  
1: EXTDYCO9-EXTDYCO0 enable  
0
0
0
0
Extended digital I/O  
enable  
HIZEN  
0: Low  
1: Hi-Z  
Digital input / output  
status select  
D3  
D2  
VLSEL  
0: Normal mode  
1: Test mode  
0: Normal mode  
1: Test mode  
Undefined  
0
0
0
0
Test bit  
VLTYPE  
Test bit  
D1  
D0  
D7  
-
-
0
0
0
0
0
0
Undefined  
17  
CNROFS  
0: Normal mode  
CNR section test bit  
1: Test mode  
D6  
HCNTFSYN  
0: Normal mode  
0
0
Nonstandard signal  
detection test bit  
1: Test mode (Forced H counter synchronize)  
Do not use 1setting in the YCS mode.  
0: Normal mode  
D5  
ADCLPFSW  
ADC clamp  
test bit  
0
0
0
0
1: Clamp level feedback disable  
D4  
ADCLPSTP  
ADC clamp  
test bit  
0: Normal mode  
1: Clamp disable  
D3-D0  
-
Undefined  
0000  
0000  
54  
Data Sheet S16021EJ2V0DS  
µ PD64084  
(2) Read Register  
Table 15-3. Read Register Functions (1/2)  
SA  
00  
Bit  
Name and function  
Description  
Initial  
value  
Version code of µPD64084 is 01(Fixed)  
D7-D6  
VER  
-
Product Version Code  
-
D5  
D4  
Undefined  
-
-
KILF  
0: Color signal detected  
1: Killer signal (non-burst signal) detected  
0: Sync signal detected  
1: No sync signal detected  
Killer detection flag  
D3  
D2  
NSDF  
-
-
Horizontal sync signal  
detection flag  
LDSDF  
0: Standard signal detected  
Frame sync nonstandard  
signal detection flag  
1: Nonstandard signal detected  
(such as laser disc special playback signal)  
D1  
D0  
OVSDF  
0: Standard signal detected  
-
-
Vertical sync  
nonstandard signal  
detection flag  
1: Nonstandard signal detected  
(such as VCR special playback signal and home TV game signal)  
OHSDF  
0: Standard signal detected  
Horizontal sync  
nonstandard signal  
detection flag  
1: Nonstandard signal detected  
(such as VCR ordinary playback signal)  
01  
02  
D7-D0  
D7  
WSL  
00000000: Closer to low noise  
11111111: Closer to high noise  
0: Invalid (no WCV-ID signal detected)  
1: Valid (WCV-ID signal detected)  
-
-
Noise level detection data  
ED2  
WCV-ID signal detection  
flag  
D6-D0  
D7-D0  
B3-B9  
-
-
WCV-ID signal decoding  
result  
03  
04  
B10-B17  
WCV-ID signal decoding  
result  
D7-D6  
D5-D4  
-
Undefined  
-
ID1W0  
Decoded data of WORD0 (2 bits)  
00  
Decoded Data of  
ID-1 WORD0  
D3-D0  
D7-D0  
ID1W1  
Decoded data of WORD0 (4 bits)  
Decoded data of WORD0 (8 bits)  
1111  
00h  
Decoded Data of  
ID-1 WORD1  
05  
ID1W1  
Decoded Data of  
ID-1 WORD2  
55  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Table 14-3. Read Register Functions (2/2)  
SA  
06  
Bit  
Name and function  
Description  
Initial  
value  
D7  
D6  
D5  
DCLEVH  
0 : Reference signal is not detected  
1 : Reference signal is detected  
-
-
-
ID-1 Decode  
Reference signal detect  
CRCCH  
0 : Error  
1 : Normal  
ID-1 Decode  
CRC check  
DCFEL  
0 : Error  
1 : Normal  
ID-1 Decode  
Reference signal Field  
check  
D4  
D3  
CRCCFEL  
0 : Error  
-
-
1 : Normal  
ID-1 Decode  
CRC field check  
HOLD1  
0 : Error  
1 : Normal  
ID-1 Decode signal  
availability check  
detection result  
D2-D0  
-
Undefined  
-
56  
Data Sheet S16021EJ2V0DS  
µ PD64084  
16. ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (TA = +25°C Unless otherwise specified)  
Parameter  
Digital section supply voltage  
Analog section supply voltage  
DRAM section supply voltage  
I/O section supply voltage  
Input voltage  
Symbol  
DVDD  
Conditions  
Rating  
Unit  
V
0.3 to +3.6  
0.3 to +3.6  
0.3 to +3.6  
0.3 to +4.6  
0.3 to +4.6  
10 to +10  
964  
AVDD  
DVDDRAM  
DVDDIO  
VI  
V
V
V
3.3 V-resistant input pins  
V
Output current  
IO  
mA  
mW  
Package allowable dissipation  
PD  
When mounted on an epoxy-glass board  
(TA = +70 °C, 100 mm × 100 mm, 2  
layer, 1.6-mm thick)  
°C  
°C  
°C  
Operating ambient temperature  
Operating junction temperature  
Storage temperature  
TA  
Device ambient temperature  
0 to +70  
+125  
TJ:MAX  
Tstg  
Upper limit to junction temperature  
40 to +125  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Conditions  
Parameter  
Symbol  
DVDD  
AVDD  
DVDDRAM  
DVDDIO  
VIH  
Conditions  
MIN.  
2.3  
2.3  
2.3  
3.0  
2.0  
TYP.  
2.5  
2.5  
2.5  
3.3  
MAX.  
2.7  
2.7  
2.7  
3.6  
3.6  
0.8  
3.6  
Unit  
V
Digital section supply voltage  
Analog section supply voltage  
DRAM section supply voltage  
I/O section supply voltage  
High-level input voltage  
V
V
V
3.3 V-resistant buffer  
V
Low-level input voltage  
VIL  
0
V
0.7 ×  
DVDDIO  
High-level input voltage  
VIH  
Schmitt input pin  
V
0.3 ×  
Low-level input voltage  
VIL  
0
V
DVDDIO  
Reference clock input frequency  
Reference clock input amplitude  
Subcarrier input frequency  
fXI  
XI pin  
19.998  
0.8  
20.000  
3.579545  
0.8  
20.002  
DVDDIO  
MHz  
Vp-p  
MHz  
Vp-p  
Vp-p  
VXI  
fFSCI  
VFSCI  
VAYI  
FSCI pin  
Subcarrier input amplitude  
0.45  
AVDD  
Composite  
AYI pin,  
Video signal input amplitude  
Picture + Sync. amp. (140 IREp-p),  
AVDD = 2.5 V  
Composite signal  
VAYI(S)  
AYI pin, Sync. amp. (40 IREp-p),  
AVDD = 2.5 V  
229  
288  
mVp-p  
Sync. signal input amplitude  
( 0 dB)  
(+2 dB)  
57  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Digital Section DC Characteristics  
(DVDD = DVDDRAM = 2.5 0.2 V, DVDDIO = 3.3 0.3 V, DGND = DGNDRAM = 0 V, TA = 0 to +70°C)  
Parameter  
Symbol  
DIDD  
Conditions  
DVDD and DGND pins  
MIN.  
TYP.  
MAX.  
Unit  
Digital section current drain  
37  
15  
12  
0
100  
50  
mA  
mA  
mA  
µA  
DIDDRAM  
DIDDIO  
ILI  
DVDDRAM and DGNDRAM pins  
DVDDIO and DGND pins  
20  
10  
20  
Input leakage current  
Ordinary input  
Pull-down type  
Pull-up type  
VI = DVDDIO or 0 V  
+10  
200  
20  
6.0  
µA  
High-level input current  
Low-level input current  
High-level output current 1  
Low-level output current 1  
High-level output current 2  
Low-level output current 2  
Low-level output current 3  
Output leakage current  
IIH  
VI = DVDDIO  
VI = 0 V  
83  
83  
200  
µA  
IIL  
IOH1  
IOL1  
IOH2  
IOL2  
IOL3  
ILO  
6.0 mA type  
VOH1 = 2.4 V  
VOL1 = 0.4 V  
VOH2 = 2.4 V  
VOL2 = 0.4 V  
VOL3 = 0.4 V  
mA  
mA  
mA  
mA  
mA  
µA  
+6.0  
2.0  
3.0 mA type  
+3.0  
+6.0  
10  
N-ch. open drain  
3-state, open drain VO = DVDDIO to  
DGND  
0
+10  
58  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Analog Section DC Characteristics  
(AVDD = 2.5 0.2 V, AGND = 0 V, TA = +25°C Unless otherwise specified)  
Parameter  
Symbol  
AIDD  
Conditions  
MIN.  
-
TYP.  
MAX.  
Unit  
mA  
bit  
Analog section current drain  
ADC resolution  
AVDD and AGND pins  
50  
10  
100  
-
RESADY  
ILEADY  
DLEADY  
DGADY  
DPADY  
VRBADY  
VRTADY  
VINAY  
AYI pin, AVDD = 2.5 V, fS = 4 fSC,  
DGAD, DPAD : NTSC 100 IRE RAMP  
3.0  
1.0  
2.0  
1.0  
0.75  
1.25  
1.00  
0.70  
10  
6.0  
2.0  
3.0  
3.0  
ADC integral linearity error  
ADC differential linearity error  
ADC differential gain  
LSB  
LSB  
%
ADC differential phase  
ADC reference voltage(low)  
ADC reference voltage(high)  
ADC analog input range  
ADC clamp pin voltage  
ADC analog input capacitance  
DAC resolution  
Deg  
V
V
V
VCLY  
V
CINAD  
AVDD = VIN = 0 V, fIN = 1 MHz  
pF  
bit  
RESDA  
ILEDA  
AYO and ACO pins,  
-
10  
-
AVDD = 2.5 V, fS = 4fSC  
3.5  
0.5  
1.0  
1.0  
1.94  
0.94  
1.00  
8
4.5  
1.0  
3.0  
3.0  
2.08  
1.07  
DAC integral linearity error  
DAC differential linearity error  
DAC differential gain  
LSB  
LSB  
%
DGAD, DPAD : NTSC 100 IRE RAMP  
DLEDA  
DGDA  
DAC differential phase  
DAC full-scale output voltage  
DAC zero-scale output voltage  
DAC output amplitude  
DPDA  
deg  
V
VFSDA  
AYO and ACO pins, AVDD = 2.5 V  
1.77  
0.77  
VZSDA  
V
VOPPDA  
RESFSC  
Vp-p  
bit  
fSC DAC resolution  
FSCO pin  
-
-
59  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Digital Section AC Characteristics  
(DVDD = DVDDRAM = 2.5 0.2 V, DVDDIO = 3.3 0.3 V, DGND = DGNDRAM = 0 V, CL = 15 pF, tr = tf = 2 ns,  
TA = 0 to +70°C)  
Parameter  
Symbol  
tD:DAT  
Conditions  
MIN.  
3
TYP.  
9
MAX.  
20  
Unit  
ns  
CLK8↑ → DYCOn, ALTF  
(EXADINS = 0)  
Video data output delay  
CLK8↑→ NSTD, ST1, ST0  
Internal signal monitor output  
delay  
tD:STAT  
35  
45  
55  
ns  
CSI input set-up time  
CSI input hold time  
CSI CLK8↑  
CLK8↑ → CSI  
tS:CSI  
0
ns  
ns  
ns  
tH:CSI  
15  
CLK8↑ → ALTF + : tS:DYCO  
: EXADINS = 1, ADCLKS = xx  
CLK8↑ → ALTF : EXADINS = 1,  
ADCLKS = 00  
ALTF output delay + DYCOn  
input set-up time  
tD:DYCO-ALTF  
35  
23  
25  
38  
40  
ALTF output delay 0  
ALTF output delay 1  
ALTF output delay 2  
ALTF output delay 3  
tD:ALTF0  
tD:ALTF1  
tD:ALTF2  
tD:ALTF3  
3
5
ns  
ns  
ns  
ns  
CLK8↑ → ALTF : EXADINS = 1,  
ADCLKS = 01  
CLK8↑ → ALTF : EXADINS = 1,  
ADCLKS = 10  
18  
20  
CLK8↑ → ALTF : EXADINS = 1,  
ADCLKS = 11  
DYCOn CLK8: EXADINS = 1  
DYCOn input set-up time  
DYCOn hold time  
tS:DYCO  
tH:DYCO  
CI  
0
ns  
ns  
pF  
CLK8↑ → DYCOn : EXADINS = 1  
10  
Input capacitance  
DVDD = VI = 0 V, fIN = 1 MHz  
10  
15  
1/fCLK8OUT  
CLK8  
t
D:DAT  
ALTF  
(EXADINS=0)  
DYCO[9:0]  
(EXADINS=0)  
t
D:STAT  
NSTD, ST1, ST0  
tS:CSI  
tH:CSI  
Hi-Z  
CSI  
(input)  
tD:ALTF  
ALTF  
(EXADINS=1)  
tS:DYCO  
tH:DYCO  
Hi-Z  
DYCO[9:0]  
(EXADINS=1)  
tD:DYCO-ALTF  
60  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Clock and Timing Generation Section AC Characteristics  
(DVDD = DVDDRAM = AVDD = 2.5 0.2 V, DVDDIO = 3.3 0.3 V, DGND = DGNDRAM = AGND = 0 V, CL = 15 pF,  
TA = 0 to + 70°C)  
Parameter  
Symbol  
fFSCO  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
MHz  
Vp-p  
MHz  
%
Subcarrier output frequency  
Subcarrier output amplitude  
Clock output frequency  
FSCO pin  
3.579545  
1.00  
VFSCO  
fCLK8OUT  
DCLK8OUT  
fbp  
FSCO pin, AVDD = 3.3 V  
CLK8 pin, CKMD pin = DGND,  
CLK8OFF (SA07:D4) = 0  
28.63636  
50  
Clock output duty factor  
fSC pull-in range (in fSC terms)  
45  
55  
600  
When the burst locked clock operation  
Hz  
8  
6  
Horizontal sync attenuation  
(Capture range)  
Vhi  
Sync input amplitude, HSSL = 1111,  
VSSL = 1000  
0
dB  
(assumed to be 0dB when inputting  
40IRE = 59LSB)  
Vertical sync attenuation  
(Capture range)  
Vvi  
0
dB  
ADC and DAC Section AC Characteristics (AVDD = 2.5 0.2 V, AGND = 0 V, CL = 15 pF, TA = +25 °C)  
Parameter  
ADC acquisition time Note  
DAC setting time Note  
Symbol  
tACKAD  
Conditions  
CLK8↑ → AYI  
CLK8↑ → AYO, ACO  
MIN.  
TYP.  
7
MAX.  
Unit  
ns  
tSETDA  
15  
ns  
Note Excluding data conversion delay  
CLK8  
t
ACKAD  
AYI  
tSETDA  
AYO, ACO  
I2C Bus Interface Section AC Characteristics  
(DVDD = 2.5 0.2 V, DGND = 0 V, CL = 15 pF, TA = 0 to +70 °C)  
Parameter  
SDA pin ACK response delay  
SDA data set-up time  
SDA data hold time  
Symbol  
tACK  
tSU:DAT  
tHD:DAT  
Conditions  
SCL↓ → SDA↓  
MIN.  
TYP.  
MAX.  
500  
Unit  
ns  
SDA:L SCL↑  
100  
0
ns  
SCL↓ → SDA:Hi-Z  
ns  
SDA  
(Slave)  
Hi-Z  
t
ACK  
t
SU:DAT  
t
HD:DAT  
SCL  
(from Master)  
8th Clock  
9th Clock  
1st Clock  
61  
Data Sheet S16021EJ2V0DS  
µ PD64084  
17. APPLICATION CIRCUIT EXAMPLE  
µ
µ
µ
µ
µ
µ
µ
µ
10 µ F  
0.1 µ F  
0.1  
µ
F × 2  
DGND × 4  
DVDD × 3  
DVDDRAM × 2  
DGNDRAM × 2  
0.1  
µ
F × 3  
Clock mode (GND)  
CKMD  
8fSC clock output  
States 0 [VD, etc.]  
States 1 [HD, etc.]  
Non standard detection  
Digital Y input  
CLK8  
ST0  
Internal memory  
µ
PD64084  
ST1  
NSTD  
DYCO9-DYCO0  
ALTF  
Ext. ADC clock  
TEST01-TEST12 Open  
TEST13-TEST17  
C-sync. input  
CSI  
Forced 2D  
LINE  
TEST18-TEST26 Open  
TESTIC1, TESTIC2  
Killer input (option)  
KIL  
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
µ
Caution This application circuit and the circuit parameters are for reference only, and not intended for use in  
actual design-ins.  
62  
Data Sheet S16021EJ2V0DS  
µ PD64084  
18. PACKAGE DRAWING  
100-PIN PLASTIC LQFP (FINE PITCH) (14x14)  
A
B
75  
76  
51  
50  
detail of lead end  
S
C
D
R
Q
100  
1
26  
25  
F
M
G
J
H
I
K
P
S
N
S
L
M
NOTE  
Each lead centerline is located within 0.08 mm of  
its true position (T.P.) at maximum material condition.  
ITEM MILLIMETERS  
A
B
C
D
F
16.00 0.20  
14.00 0.20  
14.00 0.20  
16.00 0.20  
1.00  
G
1.00  
+0.05  
0.22  
H
0.04  
I
J
0.08  
0.50 (T.P.)  
1.00 0.20  
0.50 0.20  
K
L
+0.03  
0.17  
M
0.07  
N
P
Q
0.08  
1.40 0.05  
0.10 0.05  
+7°  
3°  
R
3°  
S
1.60 MAX.  
S100GC-50-8EU, 8EA-2  
63  
Data Sheet S16021EJ2V0DS  
µ PD64084  
19. RECOMMENDED SOLDERING CONDITIONS  
The µPD64084 should be solderd and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, content an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Table 19-1. Surface Mounting Type Soldering Conditions  
µPD64084GC-8EA-ANote1: 100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
µPD64084GC-8EA-YNote2: 100-pin plastic LQFP (fine pitch) (14 × 14 mm)  
Soldering Method  
Soldering Conditions  
Recommended  
Condition Symbol  
Package peak temperature: 260 °C or below, Time: 30 s. Max. (at 210°C or higher),  
Count: three times or less,  
Infrared reflow  
IR60-107-3  
Exposure limit: 7 days Note3 (after that, prebake at 125°C for 10 to 72 hours)  
<Caution>  
Products packed in a medium other than a heat-resistance tray (such as a magazine,  
taping, and non-heat-resistance tray) cannot be baked.  
Pin temperature: 300°C Max., Time: 3 s. Max. (per pin row)  
Partial heating  
-
Notes 1. Lead-free product  
2. High-thermal-resistance product  
3. After opening the dry pack, store it at 25 °C or less and 65 % RH or less for the allowable storage period.  
Caution Do not use different soldering methods together (except for partial heating).  
64  
Data Sheet S16021EJ2V0DS  
µ PD64084  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
65  
Data Sheet S16021EJ2V0DS  
µ PD64084  
Purchase of NEC Electronics l2C components conveys a license under the Philips l2C Patent Rights to  
use these components in an l2C system, provided that the system conforms to the l2C Standard  
Specification as defined by Philips.  
The information in this document is current as of March, 2003. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD64084GC-8EA-A

THREE-DIMENSIONAL Y/C SEPARATION LSI WITH ON-CHIP MEMORY
NEC

UPD64084GC-8EA-Y

THREE-DIMENSIONAL Y/C SEPARATION LSI WITH ON-CHIP MEMORY
NEC

UPD6450

12LINE x 24 COLUMN ON-SCREEN CHARACTER DISPLAY CMOS LSI FOR VTR
NEC

UPD6450CX-001

On-Screen Display IC, CMOS, PDIP18, 0.300 INCH, PLASTIC, DIP-18
NEC

UPD6450CX-002

12LINE x 24 COLUMN ON-SCREEN CHARACTER DISPLAY CMOS LSI FOR VTR
NEC

UPD6450GT-101

On-Screen Display IC, CMOS, PDSO20, 0.375 INCH, PLASTIC, SOP-20
NEC

UPD6450GT-102

12LINE x 24 COLUMN ON-SCREEN CHARACTER DISPLAY CMOS LSI FOR VTR
NEC

UPD6451A

MOS INTEGRATED CIRCUIT CMOS LSI FOR 12lines X 24 columns CHARACTER DISPLAY ON SCREEN
NEC

UPD6451ACX-001

MOS INTEGRATED CIRCUIT CMOS LSI FOR 12lines X 24 columns CHARACTER DISPLAY ON SCREEN
NEC

UPD6451AGT-101

MOS INTEGRATED CIRCUIT CMOS LSI FOR 12lines X 24 columns CHARACTER DISPLAY ON SCREEN
NEC

UPD6451AGT-301

MOS INTEGRATED CIRCUIT CMOS LSI FOR 12lines X 24 columns CHARACTER DISPLAY ON SCREEN
NEC

UPD6452CS-002

On-Screen Display IC, CMOS, PDIP24, 0.300 INCH, SHRINK, PLASTIC, DIP-24
NEC