UPD44324184F5-E50-EQ2 [NEC]

36M-BIT DDRII SRAM 4-WORD BURST OPERAT; 36M位DDRII SRAM 4字突发OPERAT
UPD44324184F5-E50-EQ2
型号: UPD44324184F5-E50-EQ2
厂家: NEC    NEC
描述:

36M-BIT DDRII SRAM 4-WORD BURST OPERAT
36M位DDRII SRAM 4字突发OPERAT

存储 内存集成电路 静态存储器 双倍数据速率
文件: 总32页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD44324084, 44324094, 44324184, 44324364  
36M-BIT DDRII SRAM  
4-WORD BURST OPERATION  
Description  
The µPD44324084 is a 4,194,304-word by 8-bit, the µPD44324094 is a 4,194,304-word by 9-bit, the µPD44324184 is a  
2,097,152-word by 18-bit and the µPD44324364 is a 1,048,576-word by 36-bit synchronous double data rate static RAM  
fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.  
The µPD44324084, µPD44324094, µPD44324184 and µPD44324364 integrate unique synchronous peripheral circuitry  
and a burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K  
and /K.  
These products are suitable for application which require synchronous operation, high speed, low voltage, high density  
and wide bit configuration.  
These products are packaged in 165-pin PLASTIC FBGA.  
Features  
1.8 ± 0.1 V power supply and HSTL I/O  
DLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Four-tick burst for reduced address frequency  
Two input clocks (K and /K) for precise DDR timing at clock rising edges only  
Two output clocks (C and /C) for precise flight time  
and clock skew matching-clock and data delivered together to receiving device  
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time : 3.3 ns (300 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. M16781EJ1V0DS00 (1st edition)  
Date Published October 2004 NS CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
2003  
µPD44324084, 44324094, 44324184, 44324364  
Ordering Information  
Part number  
Cycle  
Time  
ns  
Clock  
Frequency  
MHz  
Organization Core Supply  
I/O  
Package  
(word x bit)  
Voltage  
V
Interface  
µPD44324084F5-E33-EQ2 Note  
µPD44324084F5-E40-EQ2  
µPD44324084F5-E50-EQ2  
µPD44324094F5-E33-EQ2 Note  
µPD44324094F5-E40-EQ2  
µPD44324094F5-E50-EQ2  
µPD44324184F5-E33-EQ2 Note  
µPD44324184F5-E40-EQ2  
µPD44324184F5-E50-EQ2  
µPD44324364F5-E33-EQ2 Note  
µPD44324364F5-E40-EQ2  
µPD44324364F5-E50-EQ2  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
3.3  
4.0  
5.0  
300  
250  
200  
300  
250  
200  
300  
250  
200  
300  
250  
200  
4 M x 8-bit  
1.8 ± 0.1  
HSTL  
165-pin PLASTIC  
FBGA (13 x 15)  
4 M x 9-bit  
2 M x 18-bit  
1M x 36-bit  
Note Under development  
Preliminary Data Sheet M16781EJ1V0DS  
2
µPD44324084, 44324094, 44324184, 44324364  
Pin Configurations  
/××× indicates active low signal.  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44324084F5-EQ2]  
1
2
3
A
4
5
/NW1  
NC  
A
6
7
NC  
/NW0  
A
8
9
A
10  
A
11  
CQ  
DQ3  
NC  
NC  
DQ2  
NC  
NC  
ZQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ6  
NC  
NC  
NC  
TCK  
R, /W  
A
/K  
/LD  
A
NC  
NC  
NC  
DQ4  
NC  
DQ5  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ7  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ1  
NC  
NC  
NC  
NC  
NC  
TMS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
G
H
J
NC  
NC  
DQ0  
NC  
NC  
NC  
TDI  
K
L
M
N
P
R
VSS  
VSS  
A
A
C
A
A
A
A
/C  
A
A
A
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
DQ0 to DQ7  
/LD  
R, /W  
/NW0, /NW1  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
/DLL  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Nibble Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.  
Preliminary Data Sheet M16781EJ1V0DS  
3
µPD44324084, 44324094, 44324184, 44324364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44324094F5-EQ2]  
1
2
3
A
4
5
6
7
NC  
/BW0  
A
8
9
A
10  
A
11  
CQ  
DQ4  
NC  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ7  
NC  
NC  
NC  
TCK  
R, /W  
A
NC  
NC  
A
/K  
/LD  
A
NC  
NC  
NC  
DQ5  
NC  
DQ6  
VDDQ  
NC  
NC  
NC  
NC  
NC  
DQ8  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ2  
NC  
NC  
NC  
NC  
NC  
TMS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ3  
NC  
G
H
J
NC  
ZQ  
NC  
K
L
NC  
DQ1  
NC  
M
N
P
R
VSS  
VSS  
NC  
A
A
C
A
A
DQ0  
TDI  
A
A
/C  
A
A
A
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
DQ0 to DQ8  
/LD  
R, /W  
/BW0  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.  
Preliminary Data Sheet M16781EJ1V0DS  
4
µPD44324084, 44324094, 44324184, 44324364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44324184F5-EQ2]  
1
2
VSS  
3
4
5
/BW1  
NC  
A
6
7
NC  
/BW0  
A1  
8
9
A
10  
A
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
A
R, /W  
A
/K  
/LD  
A
DQ9  
NC  
NC  
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
NC  
NC  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ7  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
DQ12  
NC  
NC  
G
H
J
DQ13  
VDDQ  
NC  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
DQ1  
NC  
NC  
DQ16  
DQ17  
A
VSS  
VSS  
NC  
NC  
A
A
C
A
A
NC  
DQ0  
TDI  
TCK  
A
A
/C  
A
A
TMS  
A0, A1, A  
DQ0 to DQ17  
/LD  
R, /W  
/BW0, /BW1  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.  
Preliminary Data Sheet M16781EJ1V0DS  
5
µPD44324084, 44324094, 44324184, 44324364  
165-pin PLASTIC FBGA (13 x 15)  
(Top View)  
[µPD44324364F5-EQ2]  
1
2
3
4
5
/BW2  
/BW3  
A
6
7
/BW1  
/BW0  
A1  
8
9
A
10  
VSS  
11  
CQ  
A
B
C
D
E
F
/CQ  
NC  
NC  
NC  
NC  
NC  
NC  
/DLL  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
VSS  
A
R, /W  
A
/K  
/LD  
A
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
A
K
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
A
NC  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
VSS  
A0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
VSS  
DQ17  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
A
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
DQ33  
NC  
M
N
P
R
DQ11  
NC  
DQ35  
NC  
VSS  
VSS  
A
A
C
A
A
DQ9  
TMS  
TCK  
A
A
/C  
A
A
A0, A1, A  
DQ0 to DQ35  
/LD  
R, /W  
/BW0 to /BW3  
K, /K  
C, /C  
CQ, /CQ  
ZQ  
: Address inputs  
TMS  
TDI  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Test input  
: IEEE 1149.1 Clock input  
: IEEE 1149.1 Test output  
: HSTL input reference input  
: Power Supply  
: Power Supply  
: Ground  
: Data inputs / outputs  
: Synchronous load  
: Read Write input  
: Byte Write data select  
: Input clock  
: Output clock  
: Echo clock  
: Output impedance matching  
: DLL disable  
TCK  
TDO  
VREF  
VDD  
VDDQ  
VSS  
NC  
: No connection  
/DLL  
Remarks 1. Refer to Package Drawing for the index mark.  
2. 2A and 10A are expansion addresses: 10A for 72Mb and 2A for 144Mb.  
Preliminary Data Sheet M16781EJ1V0DS  
6
µPD44324084, 44324094, 44324184, 44324364  
Pin Identification  
Symbol  
Description  
A0  
A1  
A
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the  
rising edge of K. All transactions operate on a burst of four words (two clock periods of bus activity). A0 and A1  
are used as the lowest two address bits for BURST READ and BURST WRITE operations permitting a random  
burst start address on x18 and x36 devices. These inputs are ignored when device is deselected or once  
BURST operation is in progress.  
DQ0 to DQxx Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and /K. Output  
data is synchronized to the respective C and /C data clocks or to K and /K if C and /C are tied to HIGH.  
x8 device uses DQ0 to DQ7.  
x9 device uses DQ0 to DQ8.  
x18 device uses DQ0 to DQ17.  
x36 device uses DQ0 to DQ35.  
/LD  
Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition  
includes address and read/write direction. All transactions operate on a burst of 4 data (two clock periods of bus  
activity).  
R, /W  
Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when R, /W is  
HIGH, WRITE when R, /W is LOW) for the loaded address. R, /W must meet the setup and hold times around  
the rising edge of K.  
/BWx  
/NWx  
Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble  
to be registered and written during WRITE cycles. These signals must meet setup and hold times around the  
rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations  
for signal to data relationships.  
K, /K  
C, /C  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data  
on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous  
inputs must meet setup and hold times around the clock rising edges.  
Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of  
/C is used as the output timing reference for first and third output data. The rising edge of C is used as the  
output reference for second and fourth output data. Ideally, /C is 180 degrees out of phase with C. C and /C  
may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and  
/C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation.  
Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous  
data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q  
tristates.  
CQ, /CQ  
ZQ  
Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus  
impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to  
ground. This pin cannot be connected directly to GND or left unconnected.  
/DLL  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not  
used in the circuit.  
TCK  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to VSS if the JTAG function is not used in the  
circuit.  
TDO  
VREF  
VDD  
IEEE 1149.1 Test Output: 1.8V I/O level.  
HSTL Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers.  
Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics  
and Operating Conditions for range.  
VSS  
NC  
Power Supply: Ground  
No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level  
applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.  
Preliminary Data Sheet M16781EJ1V0DS  
7
µPD44324084, 44324094, 44324184, 44324364  
Block Diagram  
CLK  
Burst  
Logic  
A1'  
A0'  
A1  
D1  
D0  
Q1  
Q0  
A0  
R
Address  
Register  
Address  
/LD  
/W  
E
Compare  
/C  
C
A0''  
A0'''  
Output control  
Logic  
Write address  
Register  
K
E
E
A0'  
Input  
Register  
/A0'  
A0'  
ZQ  
0
2 :1  
MUX  
Memory  
Array  
CLK  
/A0'  
K
1
A0'  
Output Buffer  
E
DQ  
0
1
/K  
Input  
Register  
E
A0'''  
Output Enable  
Register  
C
R, /W  
R, /W  
Register  
E
Preliminary Data Sheet M16781EJ1V0DS  
8
µPD44324084, 44324094, 44324184, 44324364  
Power-on Sequence  
The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after  
VDD/VDDQ stable and when starting the clock before VDD/VDDQ stable.  
1. Clock starts after VDD/VDDQ stable  
V
DD/VDDQ  
V
DD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Clock  
Clock Start  
1,024 cycles or more  
Stable Clock  
Start  
Normal Operation  
2. Clock starts before VDD/VDDQ stable  
V
DD/VDDQ  
VDD/VDDQ Stable (< 0.1 V DC per 50 ns)  
Clock  
Clock Start  
30 ns (MIN.)  
1,024 cycles or more Start  
DLL Reset or DLL Off  
Stable Clock  
Normal Operation  
Preliminary Data Sheet M16781EJ1V0DS  
9
µPD44324084, 44324094, 44324184, 44324364  
Burst Sequence  
Linear Burst Sequence Table  
[µPD44324184, µPD44324364]  
A1, A0  
0, 0  
A1, A0  
0, 1  
A1, A0  
1, 0  
A1, A0  
1, 1  
External Address  
1st Internal Burst Address  
2nd Internal Burst Address  
3rd Internal Burst Address  
0, 1  
1, 0  
1, 1  
0, 0  
1, 0  
1, 1  
0, 0  
0, 1  
1, 1  
0, 0  
0, 1  
1, 0  
Truth Table  
Operation  
/LD R, /W  
CLK  
DQ  
WRITE cycle  
L
L
L H  
L H  
L H  
Data in  
Data out  
High-Z  
Load address, input write data on two  
consecutive K and /K rising edge  
READ cycle  
Input data  
Input clock  
D(A1)  
D(A2)  
D(A3)  
D(A4)  
K(t+1) ↑  
/K(t+1) ↑  
K(t+2) ↑  
/K(t+2) ↑  
L
H
Load address, read data on two  
consecutive C and /C rising edge  
NOP (No operation)  
Output data  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
Output clock /C(t+1) ↑  
C(t+2) /C(t+2) C(t+3) ↑  
H
X
X
X
STANDBY(Clock stopped)  
Stopped Previous state  
Remarks 1. H : High level, L : Low level, × : don’t care, : rising edge.  
2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges  
except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.  
3. All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of  
K. All control inputs are registered during the rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. A1 refers to the address input during a WRITE or READ cycle. A2, A3 and A4 refer to the next internal  
burst address in accordance with the linear burst sequence.  
7. It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most  
rapid restart by overcoming transmission line charging symmetrically.  
Preliminary Data Sheet M16781EJ1V0DS  
10  
µPD44324084, 44324094, 44324184, 44324364  
Byte Write Operation  
[µPD44324084]  
Operation  
K
/K  
/NW0  
/NW1  
Write DQ0 to DQ7  
L H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
L H  
Write DQ0 to DQ3  
Write DQ4 to DQ7  
Write nothing  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44324094]  
Operation  
K
/K  
/BW0  
Write DQ0 to DQ8  
L H  
0
0
1
1
L H  
L H  
Write nothing  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44324184]  
Operation  
K
L H  
/K  
/BW0  
/BW1  
Write DQ0 to DQ17  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
L H  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
[µPD44324364]  
Operation  
K
L H  
/K  
/BW0  
/BW1  
/BW2  
/BW3  
Write DQ0 to DQ35  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
L H  
Write DQ0 to DQ8  
Write DQ9 to DQ17  
Write DQ18 to DQ26  
Write DQ27 to DQ35  
Write nothing  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
L H  
Remark H : High level, L : Low level, : rising edge.  
Preliminary Data Sheet M16781EJ1V0DS  
11  
µPD44324084, 44324094, 44324184, 44324364  
Bus Cycle State Diagram  
LOAD NEW  
ADDRESS  
Count = 0  
Load, Count = 4  
Write  
Load, Count = 4  
READ DOUBLE  
Read  
WRITE DOUBLE  
Count = Count + 2  
Count = Count + 2  
Always  
Count = 2  
Always  
Count = 2  
Load  
NOP,  
NOP,  
Count = 4  
Count = 4  
ADVANCE ADDRESS  
BY TWO  
ADVANCE ADDRESS  
BY TWO  
NOP  
NOP  
Supply voltage provided  
Power UP  
Remarks 1. A0 and A1 are internally advanced in accordance with the burst order table.  
Bus cycle is terminated after burst count = 4.  
2. State transitions: L = (/LD = LOW); /L = (/LD = HIGH); R = (/R, W = HIGH); W = (/R, W = LOW).  
3. State machine control timing sequence is controlled by K.  
Preliminary Data Sheet M16781EJ1V0DS  
12  
µPD44324084, 44324094, 44324184, 44324364  
Electrical Specifications  
Absolute Maximum Ratings  
Parameter  
Symbol Conditions  
MIN.  
–0.5  
–0.5  
–0.5  
–0.5  
0
TYP.  
MAX.  
Unit  
V
Supply voltage  
VDD  
VDDQ  
VIN  
+2.5  
Output supply voltage  
Input voltage  
VDD  
VDD + 0.5 (2.5 V MAX.)  
VDDQ + 0.5 (2.5 V MAX.)  
70  
V
V
Input / Output voltage  
Operating ambient temperature  
Storage temperature  
VI/O  
TA  
V
°C  
°C  
Tstg  
–55  
+125  
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause  
permanent damage. The device is not meant to be operated under conditions outside the limits  
described in the operational section of this specification. Exposure to Absolute Maximum Rating  
conditions for extended periods may affect device reliability.  
Recommended DC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
Supply voltage  
Symbol  
Conditions  
MIN.  
1.7  
TYP.  
MAX.  
1.9  
Unit  
V
Note  
VDD  
Output supply voltage  
High level input voltage  
Low level input voltage  
Clock input voltage  
VDDQ  
VIH (DC)  
VIL (DC)  
VIN  
1.4  
VDD  
V
1
VREF + 0.1  
–0.3  
VDDQ + 0.3  
VREF – 0.1  
VDDQ + 0.3  
0.95  
V
1, 2  
1, 2  
1, 2  
V
–0.3  
V
Reference voltage  
VREF  
0.68  
V
Notes 1. During normal operation, VDDQ must not exceed VDD.  
2. Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
Recommended AC Operating Conditions (TA = 0 to 70 °C)  
Parameter  
High level input voltage  
Low level input voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Conditions  
MIN.  
VREF + 0.2  
TYP.  
MAX.  
Unit  
V
Note  
1
1
VREF – 0.2  
V
Note 1. Overshoot: VIH (AC) VDD + 0.7 V for t TKHKH/2  
Undershoot: VIL (AC) – 0.5 V for t TKHKH/2  
Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than  
TKHKH (MIN.).  
Preliminary Data Sheet M16781EJ1V0DS  
13  
µPD44324084, 44324094, 44324184, 44324364  
DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V)  
Parameter  
Symbol  
Test condition  
MIN.  
TYP.  
MAX.  
Unit Note  
x8, x9 x18 x36  
Input leakage current  
I/O leakage current  
Operating supply current  
(Read Write cycle)  
ILI  
–2  
–2  
+2  
+2  
µA  
µA  
ILO  
IDD  
VIN VIL or VIN VIH, –E33  
750 1,050 1,200 mA  
650 900 1,000  
550 750 850  
II/O = 0 mA  
–E40  
–E50  
Cycle = MAX.  
Standby supply current  
(NOP)  
ISB1  
VIN VIL or VIN VIH, –E33  
550  
500  
mA  
II/O = 0 mA  
–E40  
–E50  
Cycle = MAX.  
400  
High level output voltage  
Low level output voltage  
VOH(Low) |IOH| 0.1 mA  
VOH Note1  
VOL(Low) IOL 0.1 mA  
VOL Note2  
VDDQ – 0.2  
VDDQ/2–0.12  
VSS  
VDDQ  
V
V
V
V
3, 4  
3, 4  
3, 4  
3, 4  
VDDQ/2+0.12  
0.2  
VDDQ/2–0.12  
VDDQ/2+0.12  
Notes 1. Outputs are impedance-controlled. | IOH | = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
2. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
3. AC load current is higher than the shown DC values.  
4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
Capacitance (TA = 25 °C, f = 1MHz)  
Parameter  
Input capacitance  
Symbol  
CIN  
Test conditions  
VIN = 0 V  
MIN.  
TYP.  
MAX.  
Unit  
pF  
4
6
5
5
7
6
Input / Output capacitance  
Clock Input capacitance  
CI/O  
VI/O = 0 V  
Vclk = 0 V  
pF  
Cclk  
pF  
Remark These parameters are periodically sampled and not 100% tested.  
Preliminary Data Sheet M16781EJ1V0DS  
14  
µPD44324084, 44324094, 44324184, 44324364  
AC Characteristics (TA = 0 to 70 °C, VDD = 1.8 ± 0.1 V)  
AC Test Conditions  
Input waveform (Rise / Fall time 0.3 ns)  
1.25 V  
0.75 V  
0.25 V  
0.75 V  
Test Points  
Output waveform  
V
DDQ / 2  
Test Points  
VDDQ / 2  
Output load condition  
Figure 1. External load at test  
VDDQ / 2  
0.75 V  
50 Ω  
V
REF  
ZO = 50 Ω  
SRAM  
250 Ω  
ZQ  
Preliminary Data Sheet M16781EJ1V0DS  
15  
µPD44324084, 44324094, 44324184, 44324364  
Read and Write Cycle  
-E33  
-E40  
-E50  
Parameter  
Symbol  
Unit Note  
(300 MHz)  
(250 MHz)  
(200 MHz)  
MIN.  
MAX.  
MIN.  
MAX.  
MIN.  
MAX.  
Clock  
Average Clock cycle time (K, /K, C, /C) TKHKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3.3  
8.4  
0.2  
4.0  
8.4  
0.2  
5.0  
8.4  
0.2  
2.3  
2.8  
3.55  
Clock phase jitter (K, /K, C, /C)  
Clock HIGH time (K, /K, C, /C)  
Clock LOW time (K, /K, C, /C)  
Clock to /clock (K/K., C/C.)  
Clock to /clock (/KK., /CC.)  
Clock to data clock 250 to 300 MHz  
TKC var  
TKHKL  
TKLKH  
TKH /KH  
T /KHKH  
TKHCH  
1.32  
1.32  
1.49  
1.49  
0
0
0
0
0
1.6  
1.6  
1.8  
1.8  
0
0
0
0
2.0  
2.0  
2.2  
2.2  
0
0
0
1.45  
1.8  
2.3  
2.8  
3.55  
(KC., /K/C.)  
200 to 250 MHz  
167 to 200 MHz  
133 to 167 MHz  
< 133 MHz  
1.8  
2.3  
2.8  
3.55  
DLL lock time (K, C)  
K static to DLL reset  
TKC lock  
TKC reset  
Cycle  
ns  
3
1,024  
30  
1,024  
30  
1,024  
30  
Output Times  
C, /C HIGH to output valid  
C, /C HIGH to output hold  
C, /C HIGH to echo clock valid  
C, /C HIGH to echo clock hold  
CQ, /CQ HIGH to output valid  
CQ, /CQ HIGH to output hold  
C HIGH to output High-Z  
TCHQV  
TCHQX  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
– 0.45  
– 0.45  
– 0.27  
– 0.45  
0.45  
0.45  
0.27  
0.45  
– 0.45  
– 0.45  
– 0.3  
– 0.45  
0.45  
0.45  
0.3  
0.45  
– 0.45  
– 0.45  
– 0.35  
– 0.45  
0.45  
0.45  
0.35  
0.45  
TCHCQV  
TCHCQX  
TCQHQV  
TCQHQX  
TCHQZ  
4
4
C HIGH to output Low-Z  
TCHQX1  
Setup Times  
Address valid to K rising edge  
Synchronous load input (/LD),  
read write input (R, /W) valid to  
K rising edge  
TAVKH  
TIVKH  
ns  
ns  
5
5
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
Data inputs and write data select  
inputs (/BWx, /NWx) valid to  
K, /K rising edge  
TDVKH  
ns  
5
0.3  
0.35  
0.4  
Hold Times  
K rising edge to address hold  
K rising edge to  
TKHAX  
TKHIX  
ns  
ns  
5
5
0.4  
0.4  
0.5  
0.5  
0.6  
0.6  
synchronous load input (/LD),  
read write input (R, /W) hold  
K, /K rising edge to data inputs and  
write data select inputs (/BWx, /NWx)  
hold  
TKHDX  
ns  
5
0.3  
0.35  
0.4  
Preliminary Data Sheet M16781EJ1V0DS  
16  
µPD44324084, 44324094, 44324184, 44324364  
Notes 1. The device will operate at clock frequencies slower than TKHKH(MAX.).  
2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
3. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.  
DLL lock time begins once VDD and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a 0.1 ns variation from  
echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.  
5. This is a synchronous device. All addresses, data and control lines must meet the specified setup  
and hold times for all latching clock edges.  
Remarks 1. This parameter is sampled.  
2. Test conditions as specified with the output loading as shown in AC Test Conditions  
unless otherwise noted.  
3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).  
4. If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.  
5. VDDQ is 1.5 V DC.  
Preliminary Data Sheet M16781EJ1V0DS  
17  
µPD44324084, 44324094, 44324184, 44324364  
Read and Write Timing  
NOP  
READ  
READ  
NOP  
NOP  
WRITE  
WRITE  
READ  
(burst of 4)  
(burst of 4)  
(burst of 4)  
(burst of 4)  
(burst of 4)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
TKHKH  
K
TKHKL TKLKH  
TKLKH  
TKH/KH  
T/KHKH  
/K  
/LD  
TIVKH  
TKHIX  
R, /W  
TAVKH  
TKHAX  
Address  
DQ  
A2  
A1  
A3  
A4  
A0  
TKHDX  
TKHDX  
TDVKH  
TDVKH  
D21  
D22  
D23  
D24  
D31 D32  
D33  
D34  
Q41  
Q01 Q02 Q03  
TCHQX  
Q04  
Q11  
Q12  
Q13  
Q14  
Qx2  
TCQHQX  
TCHQX  
TCQHQV  
TCHQX1  
TCHQV  
TKHCH  
TKHCH  
TCHQV  
TCHQZ  
CQ  
TCHCQX  
TCHCQV  
/CQ  
C
TCHCQX  
TCHCQV  
TKHKL TKLKH TKHKH TKH/KH T/KHKH  
/C  
Remarks 1. Q01 refers to output from address A0.  
Q02 refers to output from the next internal burst address following A0, etc.  
2. Outputs are disable (high impedance) one clock cycle after a NOP.  
3. The second NOP cycle is not necessary for correct device operation;  
however, at high clock frequencies it may be required to prevent bus contention.  
Preliminary Data Sheet M16781EJ1V0DS  
18  
µPD44324084, 44324094, 44324184, 44324364  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Test Access Port (TAP) Pins  
Pin name  
TCK  
Pin assignments  
2R  
Description  
Test Clock Input. All input are captured on the rising edge of TCK and all outputs  
propagate from the falling edge of TCK.  
Test Mode Select. This is the command input for the TAP controller state machine.  
TMS  
TDI  
10R  
11R  
Test Data Input. This is the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is determined by the state of the TAP  
controller state machine and the instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test Data Output. Output changes in response to the falling edge of TCK. This is the  
output side of the serial registers placed between TDI and TDO.  
Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high  
for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.  
JTAG DC Characteristics (TA = 0 to 70°C, VDD = 1.8 ± 0.1 V, unless otherwise noted)  
Parameter  
Symbol  
ILI  
Conditions  
MIN.  
–5.0  
–5.0  
TYP.  
MAX.  
+5.0  
+5.0  
Unit  
µA  
Note  
JTAG Input leakage current  
JTAG I/O leakage current  
0 V VIN VDD  
ILO  
0 V VIN VDDQ,  
µA  
Outputs disabled  
JTAG input high voltage  
JTAG input low voltage  
JTAG output high voltage  
VIH  
VIL  
1.3  
–0.3  
1.6  
1.4  
VDD+0.3  
V
V
V
V
V
V
+0.5  
VOH1  
VOH2  
VOL1  
VOL2  
| IOHC | = 100 µA  
| IOHT | = 2 mA  
IOLC = 100 µA  
IOLT = 2 mA  
JTAG output low voltage  
0.2  
0.4  
Preliminary Data Sheet M16781EJ1V0DS  
19  
µPD44324084, 44324094, 44324184, 44324364  
JTAG AC Test Conditions  
Input waveform (Rise / Fall time 1 ns)  
1.8 V  
0.9 V  
0 V  
0.9 V  
Test Points  
Output waveform  
0.9 V  
Test Points  
0.9 V  
Output load  
Figure 2. External load at test  
V
TT = 0.9 V  
50 Ω  
ZO = 50 Ω  
TDO  
20 pF  
Preliminary Data Sheet M16781EJ1V0DS  
20  
µPD44324084, 44324094, 44324184, 44324364  
JTAG AC Characteristics (TA = 0 to 70 °C)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Note  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
tTHTH  
fTF  
100  
10  
ns  
MHz  
ns  
tTHTL  
tTLTH  
40  
40  
ns  
Output time  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
20  
ns  
ns  
ns  
ns  
10  
10  
Setup time  
TMS setup time  
Capture setup time  
tMVTH  
tCS  
10  
10  
ns  
ns  
Hold time  
TMS hold time  
Capture hold time  
tTHMX  
tCH  
10  
10  
ns  
ns  
JTAG Timing Diagram  
tTHTH  
TCK  
tMVTH  
tTHTL  
t
TLTH  
TMS  
TDI  
tTHMX  
tDVTH  
tTHDX  
tTLOV  
tTLOX  
TDO  
Preliminary Data Sheet M16781EJ1V0DS  
21  
µPD44324084, 44324094, 44324184, 44324364  
Scan Register Definition (1)  
Register name  
Description  
Instruction register  
The instruction register holds the instructions that are executed by the TAP controller when it is  
moved into the run-test/idle or the various data register state. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction register is automatically preloaded with the  
IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.  
Bypass register  
ID register  
The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial  
test data to be passed through the RAMs TAP to another device in the scan chain with as little delay  
as possible.  
The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when  
the controller is put in capture-DR state with the IDCODE command loaded in the instruction register.  
The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR  
state.  
Boundary register  
The boundary register, under the control of the TAP controller, is loaded with the contents of the  
RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and  
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to  
activate the boundary register.  
The Scan Exit Order tables describe which device bump connects to each boundary register  
location. The first column defines the bit’s position in the boundary register. The second column is  
the name of the input or I/O at the bump and the third column is the bump number.  
Scan Register Definition (2)  
Register name  
Instruction register  
Bypass register  
ID register  
Bit size  
Unit  
bit  
3
1
bit  
32  
109  
bit  
Boundary register  
bit  
ID Register Definition  
Part number Organization ID [31:28] vendor revision no.  
ID [27:12] part no.  
0000 0000 0100 0001  
0000 0000 0100 0010  
0000 0000 0100 0011  
0000 0000 0100 0100  
ID [11:1] vendor ID no.  
00000010000  
ID [0] fix bit  
µPD44324084  
µPD44324094  
µPD44324184  
µPD44324364  
4M x 8  
4M x 9  
XXXX  
XXXX  
XXXX  
XXXX  
1
1
1
1
00000010000  
2M x 18  
1M x 36  
00000010000  
00000010000  
Preliminary Data Sheet M16781EJ1V0DS  
22  
µPD44324084, 44324094, 44324184, 44324364  
SCAN Exit Order  
Bit  
Signal name  
x9 x18 x36  
Bump  
ID  
Bit  
Signal name  
Bump  
ID  
Bit  
Signal name  
x9 x18 x36  
NC NC NC NC  
Bump  
ID  
no.  
x8  
no.  
x8  
x9 x18 x36  
no.  
x8  
1
2
/C  
C
A
A
A
A
A
A
A
6R  
6P  
6N  
7P  
7N  
7R  
8R  
8P  
9R  
37 NC NC NC NC 10D  
38 NC NC NC NC 9E  
73  
2C  
74 DQ4 DQ5 DQ11 DQ20 3E  
3
39 NC NC DQ7 DQ17 10C  
40 NC NC NC DQ16 11D  
75  
76  
77  
78  
79  
80  
81  
NC NC NC DQ29 2D  
4
NC NC NC NC  
NC NC NC NC  
2E  
1E  
5
41 NC NC NC NC  
42 NC NC NC NC  
9C  
9D  
6
NC NC DQ12 DQ30 2F  
NC NC NC DQ21 3F  
7
43 DQ3 DQ4 DQ8 DQ8 11B  
44 NC NC NC DQ7 11C  
8
NC NC NC NC  
NC NC NC NC  
1G  
1F  
9
45 NC NC NC NC  
9B  
10  
11  
12  
13  
14  
15  
16  
17  
NC DQ0 DQ0 DQ0 11P  
NC NC NC DQ9 10P  
NC NC NC NC 10N  
46 NC NC NC NC 10B  
82 DQ5 DQ6 DQ13 DQ22 3G  
47  
48  
49  
50  
51  
CQ  
11A  
10A  
9A  
83  
84  
85  
86  
87  
88  
89  
90  
NC NC NC DQ31 2G  
A
A
A
A
A
VSS  
/DLL  
1H  
1J  
2J  
NC NC NC NC  
9P  
A
A
NC NC NC NC  
NC NC NC NC  
NC NC DQ1 DQ11 10M  
NC NC NC DQ10 11N  
NC NC NC NC 9M  
8B  
A1  
A1  
A0  
7C  
6C  
8A  
NC NC DQ14 DQ23 3K  
NC NC NC DQ32 3J  
52 NC NC A0  
53 /LD  
NC NC NC NC  
9N  
NC NC NC NC  
NC NC NC NC  
2K  
1K  
18 DQ0 DQ1 DQ2 DQ2 11L  
54 NC NC NC /BW1 7A  
55 /NW0 /BW0 /BW0 /BW0 7B  
19  
20  
21  
22  
23  
24  
25  
NC NC NC DQ1 11M  
NC NC NC NC 9L  
91 DQ6 DQ7 DQ15 DQ33 2L  
56  
57  
K
6B  
6A  
92  
93  
94  
95  
96  
97  
98  
NC NC NC DQ24 3L  
NC NC NC NC 1M  
NC NC NC NC 10L  
NC NC DQ3 DQ3 11K  
NC NC NC DQ12 10K  
/K  
58 NC NC NC /BW3 5B  
59 /NW1 NC /BW1 /BW2 5A  
NC NC NC NC  
1L  
NC NC DQ16 DQ25 3N  
NC NC NC DQ34 3M  
NC NC NC NC  
NC NC NC NC  
9J  
60  
61  
62  
63  
64  
65  
R, /W  
A
4A  
5C  
4B  
3A  
2A  
1A  
9K  
NC NC NC NC  
1N  
26 DQ1 DQ2 DQ4 DQ13 10J  
A
NC NC NC NC 2M  
27  
28  
29  
30  
31  
32  
33  
34  
NC NC NC DQ4 11J  
ZQ 11H  
A
99 DQ7 DQ8 DQ17 DQ26 3P  
100 NC NC NC DQ35 2N  
VSS  
/CQ  
NC NC NC NC 10G  
NC NC NC NC 9G  
NC NC DQ5 DQ5 11F  
NC NC NC DQ14 11G  
101 NC NC NC NC  
102 NC NC NC NC  
2P  
1P  
66 NC NC DQ9 DQ27 2B  
67 NC NC NC DQ18 3B  
103  
104  
105  
106  
107  
108  
109  
A
A
A
A
A
A
3R  
68 NC NC NC NC  
69 NC NC NC NC  
1C  
1B  
4R  
NC NC NC NC  
9F  
4P  
NC NC NC NC 10F  
70 NC NC DQ10DQ19 3D  
71 NC NC NC DQ28 3C  
5P  
35 DQ2 DQ3 DQ6 DQ6 11E  
36 NC NC NC DQ15 10E  
5N  
72 NC NC NC NC  
1D  
5R  
Internal  
Preliminary Data Sheet M16781EJ1V0DS  
23  
µPD44324084, 44324094, 44324184, 44324364  
JTAG Instructions  
Instructions  
EXTEST  
Description  
The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-  
scan register cells at output pins are used to apply test vectors, while those at input pins capture test  
results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the  
boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST,  
the output drive is turned on and the PRELOAD data is driven onto the output pins.  
IDCODE  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in  
capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and any time the controller is  
placed in the test-logic-reset state.  
The BYPASS instruction is loaded in the instruction register when the bypass register is placed  
between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This  
allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.  
SAMPLE / PRELOAD SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE /  
PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-  
DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to  
capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to sample metastable input will not harm the device, repeatable results  
cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input  
data capture setup plus hold time (tCS plus tCH). The RAMs clock inputs need not be paused for any  
other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving  
the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an  
inactive drive state (high impedance) and the boundary register is connected between TDI and TDO  
when the TAP controller is moved to the shift-DR state.  
JTAG Instruction Coding  
IR2  
0
IR1  
0
IR0  
0
Instruction  
EXTEST  
Note  
1
0
0
1
IDCODE  
0
1
0
SAMPLE-Z  
0
1
1
RESERVED  
SAMPLE / PRELOAD  
RESERVED  
RESERVED  
BYPASS  
1
0
0
1
0
1
1
1
0
1
1
1
Note 1. TRISTATE all DQ pins and CAPTURE the pad values into a SERIAL SCAN LATCH.  
Preliminary Data Sheet M16781EJ1V0DS  
24  
µPD44324084, 44324094, 44324184, 44324364  
TAP Controller State Diagram  
1
0
Test-Logic-Reset  
0
1
1
1
Run-Test / Idle  
Select-DR-Scan  
0
Select-IR-Scan  
0
1
1
Capture-DR  
0
Capture-IR  
0
0
0
Shift-DR  
1
Shift-IR  
1
1
1
Exit1-DR  
0
Exit1-IR  
0
0
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal  
operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1 kresistor.  
TDO should be left unconnected.  
Preliminary Data Sheet M16781EJ1V0DS  
25  
Test Logic Operation (Instruction Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
IDCODE  
New Instruction  
Output Inactive  
TDO  
Test Logic (Data Scan)  
TCK  
TMS  
Controller  
state  
TDI  
Instruction  
Register state  
Instruction  
IDCODE  
Output Inactive  
TDO  
µPD44324084, 44324094, 44324184, 44324364  
Package Drawing  
165-PIN PLASTIC FBGA (13x15)  
E
w S B  
ZD  
ZE  
B
11  
10  
9
8
7
A
6
5
D
4
3
2
1
R P N M L K J H G F E D C B A  
w S A  
INDEX MARK  
y1 S  
A2  
h
A
S
ITEM MILLIMETERS  
A1  
e
y
D
E
13.00  
15.00  
1.50  
0.50  
1.00  
0.60  
1.40  
0.40  
1.00  
0.50  
0.08  
0.08  
0.15  
0.20  
S
ZD  
ZE  
e
φ M  
x
φ
b
S A B  
h
A
A1  
A2  
b
y
x
w
y1  
This package drawing is a preliminary version. It may be changed in the future.  
Preliminary Data Sheet M16781EJ1V0DS  
28  
µPD44324084, 44324094, 44324184, 44324364  
Recommended Soldering Condition  
Please consult with our sales offices for soldering conditions of these products.  
Types of Surface Mount Devices  
µPD44324084F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44324094F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44324184F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
µPD44324364F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)  
Preliminary Data Sheet M16781EJ1V0DS  
29  
µPD44324084, 44324094, 44324184, 44324364  
Revision History  
Edition/  
Page  
Previous  
edition  
Type of  
revision  
Location  
Description  
Date  
This  
edition  
(Previous edition This edition)  
1st edition/  
Oct. 2004  
Modification  
Preliminary Product Information  
Throughout Throughout  
Preliminary Data sheet  
F5-EQ1 F5-EQ2  
Package Code  
Deletion  
Addition  
E60 (167MHz)  
p.2  
p.2  
Ordering Information  
"Note Under development" has been added to  
E33.  
pp.3-6  
p.9  
pp.3-6  
Pin Configurations  
Remark 2 has been added  
Power-on sequence has been added  
Power-on Sequence  
p.14  
p.13  
Modification DC Characteristics IDD (MAX.)  
MAX.  
MAX.  
Unit  
Unit  
x8, x9 x18 x36  
E33 620 650 730  
E40 540 560 620  
E50 450 470 520  
x8, x9 x18 x36  
mA  
mA  
E33 750 1,050 1,200  
E40 650 900 1,000  
E50 550 750 850  
DC Characteristics ISB1 (MAX.)  
MAX.  
MAX.  
Unit  
Unit  
x8, x9 x18 x36  
x8, x9 x18 x36  
mA  
mA  
E33  
E40  
E50  
290  
250  
210  
E33  
E40  
E50  
550  
500  
400  
Preliminary Data Sheet M16781EJ1V0DS  
30  
µPD44324084, 44324094, 44324184, 44324364  
NOTES FOR CMOS DEVICES  
VOLTAGE APPLICATION WAVEFORM AT INPUT PIN  
1
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the  
CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may  
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,  
and also in the transition period when the input level passes through the area between VIL (MAX) and  
VIH (MIN).  
HANDLING OF UNUSED INPUT PINS  
2
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is  
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS  
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed  
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND  
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must  
be judged separately for each device and according to related specifications governing the device.  
3
PRECAUTION AGAINST ESD  
A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as  
much as possible, and quickly dissipate it when it has occurred. Environmental control must be  
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that  
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static  
container, static shielding bag or conductive material. All test and measurement tools including work  
benches and floors should be grounded. The operator should be grounded using a wrist strap.  
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for  
PW boards with mounted semiconductor devices.  
4
STATUS BEFORE INITIALIZATION  
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power  
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does  
not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the  
reset signal is received. A reset operation must be executed immediately after power-on for devices  
with reset functions.  
5
POWER ON/OFF SEQUENCE  
In the case of a device that uses different power supplies for the internal operation and external  
interface, as a rule, switch on the external power supply after switching on the internal power supply.  
When switching the power supply off, as a rule, switch off the external power supply and then the  
internal power supply. Use of the reverse power on/off sequences may result in the application of an  
overvoltage to the internal elements of the device, causing malfunction and degradation of internal  
elements due to the passage of an abnormal current.  
The correct power on/off sequence must be judged separately for each device and according to related  
specifications governing the device.  
6
INPUT OF SIGNAL DURING POWER OFF STATE  
Do not input signals or an I/O pull-up power supply while the device is not powered. The current  
injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and  
the abnormal current that passes in the device at this time may cause degradation of internal elements.  
Input of signals during the power off state must be judged separately for each device and according to  
related specifications governing the device.  
Preliminary Data Sheet M16781EJ1V0DS  
31  
µPD44324084, 44324094, 44324184, 44324364  
The information in this document is current as of October, 2004. The information is subject to  
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data  
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not  
all products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD44324184F5-E50-EQ2-A

2MX18 DDR SRAM, 0.45ns, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44324184F5-E50-EQ2-A

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44324184F5-E50Y-EQ2

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, PLASTIC, BGA-165
NEC

UPD44324184F5-E50Y-EQ2-A

DDR SRAM, 2MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, LEAD FREE, PLASTIC, BGA-165
NEC

UPD44324185BF5-E33-FQ1

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E33-FQ1-A

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E33Y-FQ1-A

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E35Y-FQ1

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E40Y-FQ1-A

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E50-FQ1

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E50-FQ1-A

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, LEAD FREE, PLASTIC, BGA-165
RENESAS

UPD44324185BF5-E50Y-FQ1

2MX18 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, PLASTIC, BGA-165
RENESAS