78042FG [NEC]

8-BIT SINGLE-CHIP MICROCOMPUTER; 8位单片机
78042FG
型号: 78042FG
厂家: NEC    NEC
描述:

8-BIT SINGLE-CHIP MICROCOMPUTER
8位单片机

计算机
文件: 总72页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
mPD78042F, 78043F, 78044F, 78045F  
8-BIT SINGLE-CHIP MICROCOMPUTER  
The mPD78042F, mPD78043F, mPD78044F, and mPD78045F are 8-bit single-chip microcomputers that incorpo-  
rate many hardware peripherals such as an FIP® controller/driver, 8-bit resolution A/D converter, timer, serial  
interface, and interrupt controller.  
The one-time PROM and EPROM models that can operate in the same voltage range as that of masked ROM  
models, and various development tools are provided.  
The functions of these microcomputers are described in detail in the following User’s Manual. Be sure  
to read this manual when you design a system using any of these microcomputers.  
mPD78044F Sub-Series User’s Manual : U10908E  
78K/0 Series User's Manual, Instruction: IEU-1372  
FEATURES  
High-capacity ROM and RAM  
Data memory  
Item  
Program memory  
(ROM)  
Product name  
mPD78042F  
mPD78043F  
mPD78044F  
mPD78045F  
Internal high-speed RAM  
512 bytes  
Buffer RAM  
64 bytes  
FIP display RAM  
48 bytes  
16K bytes  
24K bytes  
32K bytes  
40K bytes  
1024 bytes  
Wide range of instruction execution time - from  
high-speed (0.4 ms) to ultra low-speed (122 ms)  
I/O ports: 68  
8-bit resolution A/D converter: 8 channels  
Serial interface: 2 channels  
Timer: 6 channels  
FIP controller/driver: total display outputs: 34  
Power supply voltage: VDD = 2.7 to 5.5 V  
APPLICATIONS  
CD players, cassete tape recorders, tuners, minicomponent stereos, VCRs, microwave ovens, ECRs, etc.  
ORDERING INFORMATION  
Part number  
Package  
mPD78042FGF-¥¥¥-3B9  
mPD78043FGF-¥¥¥-3B9  
mPD78044FGF-¥¥¥-3B9  
mPD78045FGF-¥¥¥-3B9  
80-pin plastic QFP (14 ¥ 20 mm)  
80-pin plastic QFP (14 ¥ 20 mm)  
80-pin plastic QFP (14 ¥ 20 mm)  
80-pin plastic QFP (14 ¥ 20 mm)  
Remark ¥¥¥ indicates ROM code number.  
The information in this document is subject to change without notice.  
The mark shows major revised points.  
Document No. U10700EJ1V0DS00 (1st edition)  
Date Published July 1996 P  
Printed in Japan  
1996  
©
mPD78042F, 78043F, 78044F, 78045F  
78K/0 SERIES PRODUCT DEVELOPMENT  
The 78K/0 series products were developed as shown below. The sub-series names are indicated in frames.  
Products under  
mass production  
Products under  
development  
The Y Subseries is compatible with the I2C bus.  
For control  
A timer added to the µPD78054 and external interface functions enhanced.  
100-pin  
100-pin  
80-pin  
µPD78078  
µPD78070A  
µPD78058F  
µPD78054  
µPD78018F  
µPD78014  
µPD780001  
µPD78002  
µPD78083  
µPD78078Y  
µPD78070AY  
µPD78058FY  
µPD78054Y  
µPD78018FY  
µPD78014Y  
ROM-less product of the µPD78078  
Counter-measure against EMI noise added to the µPD78054  
An UART and D/A converter added to the µPD78014 and I/O  
80-pin  
function enhanced.  
Low-voltage (1.8 V) versions of the µPD78014. ROM and RAM variations  
enhanced.  
64-pin  
64-pin  
An A/D converter and 16-bit timer added to the µPD78002.  
An A/D converter added to the µPD78002  
64-pin  
64-pin  
µPD78002Y  
Basic subseries for control  
These products include an UART and can operate at a low voltage (1.8 V).  
42/44-pin  
For FIP driving  
The I/O and FIP C/D of the µPD78044F enhanced.  
Total indication output pins: 53  
100-pin  
80-pin  
64-pin  
µPD780208  
µPD78044F  
µPD78024  
A 6-bit U/D counter added to the µPD78024.  
78K/0  
series  
Total indication output pins: 34  
Basic subseries for FIP driving. Total indication output pins: 26  
For LCD driving  
SIO of the µPD78064 enhanced and ROM/RAM expanded.  
100-pin  
100-pin  
µPD780308  
µPD78064B  
µPD780308Y  
Counter-measure against EMI noise added to the µPD78064.  
Basic subseries for LCD driving. These products include an UART.  
µ
100-pin  
PD78064  
PD78064Y  
µ
Compatible with IEBusTM  
An IEBus controller added to the µPD78054.  
80-pin  
µPD78098  
For LV  
PWM output, LV digital code decoder, built-in Hsync counter.  
100-pin  
µPD78P0914  
2
mPD78042F, 78043F, 78044F, 78045F  
The table below shows the main differences between subseries.  
Function  
Timer  
ROM  
8-bit 8-bit  
A/D D/A  
Serial  
VDD Min. External  
value expansion  
I/O  
capacity  
interface  
Subseries name  
8-bit 16-bit Watch WDT  
For control  
mPD78078  
32K-60K  
4ch 1ch 1ch 1ch 8ch 2ch 3ch (UART : 1ch) 88 pins 1.8 V  
61 pins 2.7 V  
mPD78070A  
mPD78058F  
mPD78054  
mPD78018F  
mPD78014  
mPD780001  
mPD78002  
mPD78083  
mPD780208  
mPD78044F  
mPD78024  
mPD780308  
mPD78064B  
mPD78064  
mPD78098  
48K-60K  
16K-60K  
8K-60K  
8K-32K  
8K  
2ch  
69 pins  
2.0 V  
2ch  
1ch  
53 pins 1.8 V  
2.7 V  
1ch  
39 pins  
8K-16K  
8K-16K  
32K-60K  
16K-40K  
24K-32K  
48K-60K  
32K  
53 pins  
8ch  
1ch (UART : 1ch) 33 pins 1.8 V  
For FIP  
driving  
2ch 1ch 1ch 1ch 8ch  
2ch  
74 pins 2.7 V  
68 pins  
54 pins  
For LCD  
driving  
2ch 1ch 1ch 1ch 8ch  
3ch (UART : 1ch) 57 pins 1.8 V  
2ch (UART : 1ch) 2.0 V  
16K-32K  
32K-60K  
Compatible  
with IEBus  
2ch 1ch 1ch 1ch 8ch 2ch 3ch (UART : 1ch) 69 pins 2.7 V  
For LV  
mPD78P0914  
32K  
6ch  
1ch 8ch  
2ch  
54 pins 4.5 V  
3
mPD78042F, 78043F, 78044F, 78045F  
FUNCTIONAL OUTLINE  
Product name  
mPD78043F  
mPD78042F  
16K bytes  
mPD78044F  
mPD78045F  
40K bytes  
Item  
Internal  
memory  
ROM  
32K bytes  
1024 bytes  
24K bytes  
512 bytes  
64 bytes  
48 bytes  
Internal high-speed RAM  
Buffer RAM  
FIP display RAM  
General registers  
8 bits ¥ 32 registers (8 bits ¥ 8 registers ¥ 4 banks)  
Instruction  
cycle  
Variable instruction execution time  
For main system clock  
For subsystem clock  
0.4 ms/0.8 ms/1.6 ms/3.2 ms/6.4 ms (at 5.0 MHz)  
122 ms (at 32.768 kHz)  
Instruction set  
• Multiplication/division (8 bits ¥ 8 bits, 16 bits ÷ 8 bits)  
• Bit (set, reset, test, Boolean algebra)  
I/O ports (including those  
multiplexed with FIP pins)  
Total  
: 68 lines  
2 lines  
: 27 lines  
5 lines  
• CMOS input  
:
• CMOS I/O  
• N-ch open-drain  
• P-ch open-drain I/O  
• P-ch open-drain output  
:
: 16 lines  
: 18 lines  
FIP controller/driver  
Total  
: 34 lines  
• Segments  
• Digits  
: 9 to 24 lines  
: 2 to 16 lines  
A/D converter  
Serial interface  
• 8-bit resolution ¥ 8 channels  
• Power supply voltage: AVDD = 4.0 to 5.5 V  
• 3-wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel  
3-wire serial I/O mode (with automatic transmission/  
reception function of up to 64 bytes)  
: 1 channel  
Timer  
• 16-bit timer/event counter  
• 8-bit timer/event counter  
• Watch timer  
: 1 channel  
: 2 channels  
: 1 channel  
: 1 channel  
: 1 channel  
• Watchdog timer  
• 6 bit up/down counter  
Timer output  
Clock output  
3 lines (one for 14-bit PWM output)  
19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz  
(Main system clock: at 5.0 MHz)  
32.768 kHz (Subsystem clock: at 32.768 kHz)  
Buzzer output  
1.2 kHz, 2.4 kHz, 4.9 kHz (Main system clock: at 5.0 MHz)  
Vectored  
interrupt  
Maskable interrupt  
Non-maskable interrupt  
Software interrupt  
Internal 10 lines, external 4 lines  
Internal 1 line  
1 line  
Text input  
Internal 1 line  
Power supply voltage  
Package  
VDD = 2.7 to 5.5 V  
80-pin plastic QFP (14 ¥ 20 mm)  
4
mPD78042F, 78043F, 78044F, 78045F  
CONTENTS  
1. PIN CONFIGURATION (TOP VIEW) ........................................................................................  
2. BLOCK DIAGRAM.....................................................................................................................  
3. PINS FUNCTIONS .....................................................................................................................  
6
8
9
9
3.1  
3.2  
3.3  
PORT PINS ......................................................................................................................................  
PINS OTHER THAN PORT PINS...................................................................................................  
PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS........................................................  
11  
13  
4. MEMORY SPACE ...................................................................................................................... 16  
5. PERIPHERAL HARDWARE FUNCTIONS ............................................................................... 17  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
PORTS .............................................................................................................................................  
CLOCK GENERATOR CIRCUIT ....................................................................................................  
TIMER/EVENT COUNTER ..............................................................................................................  
CLOCK OUTPUT CONTROL CIRCUIT .........................................................................................  
BUZZER OUTPUT CONTROL CIRCUIT .......................................................................................  
A/D CONVERTER ...........................................................................................................................  
SERIAL INTERFACE ......................................................................................................................  
FIP CONTROLLER/DRIVER ..........................................................................................................  
17  
18  
18  
21  
21  
22  
22  
24  
6. INTERRUPT FUNCTION AND TEST FUNCTION .................................................................... 26  
6.1  
6.2  
INTERRUPT FUNCTION.................................................................................................................  
TEST FUNCTION ............................................................................................................................  
26  
29  
7. STANDBY FUNCTION............................................................................................................... 30  
8. RESET FUNCTION .................................................................................................................... 30  
9. INSTRUCTION SET ................................................................................................................... 31  
10. ELECTRICAL SPECIFICATIONS ............................................................................................. 34  
11. CHARACTERISTIC CURVE (REFERENCE VALUE) .............................................................. 58  
12. PACKAGE DRAWING............................................................................................................... 63  
13. RECOMMENDED SOLDERING CONDITIONS........................................................................ 64  
APPENDIX A DEVELOPMENT TOOLS ......................................................................................... 65  
APPENDIX B RELATED DOCUMENTS......................................................................................... 67  
5
mPD78042F, 78043F, 78044F, 78045F  
1. PIN CONFIGURATION (TOP VIEW)  
80-pin plastic QFP (14 ¥ 20 mm)  
mPD78042FGF-¥¥¥-3B9, mPD78043FGF-¥¥¥-3B9  
mPD78044FGF-¥¥¥-3B9, mPD78045FGF-¥¥¥-3B9  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
P94/FIP6  
P93/FIP5  
P92/FIP4  
P114/FIP22  
P115/FIP23  
P116/FIP24  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
2
3
4
P91/FIP3  
P90/FIP2  
P81/FIP1  
P80/FIP0  
P117/FIP25  
P120/FIP26  
P121/FIP27  
P122/FIP28  
P123/FIP29  
P124/FIP30  
P125/FIP31  
P126/FIP32  
P127/FIP33  
VDD  
5
6
7
V
DD  
8
9
P27/SCK0  
P26/SO0/SB1  
P25/SI0/SB0  
P24/BUSY  
P23/STB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P22/SCK1  
P21/SO1  
P70  
P71  
P20/SI1  
P72  
RESET  
P74  
IC  
P00/INTP0/TI0  
P01/INTP1  
P02/INTP2  
P03/INTP3/CI0  
P30/TO0  
P73  
AVSS  
P17/ANI7  
P16/ANI6  
P15/ANI5  
P14/ANI4  
P31/TO1  
P32/TO2  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Cautions 1. Connect the IC (Internally Connected) pins directly to the VSS.  
2. Connect the AVDD pin to the VDD pin.  
3. Connect the AVSS pin to the VSS pin.  
6
mPD78042F, 78043F, 78044F, 78045F  
P00-P04  
P10-P17  
P20-P27  
P30-P37  
P70-P74  
P80, P81  
P90-P97  
: Port 0  
: Port 1  
: Port 2  
: Port 3  
: Port 7  
: Port 8  
: Port 9  
SCK0, SCK1 : Serial clock  
PCL  
: Programmable clock  
: Buzzer clock  
: Strobe  
BUZ  
STB  
BUSY  
: Busy  
FIP0-FIP33 : Fluorescent indicator panel  
VLOAD  
: Negative power supply  
: Crystal (main system clock)  
: Crystal (subsystem clock)  
: Reset  
P100-P107 : Port 10  
X1, X2  
XT1, XT2  
RESET  
P110-P117 : Port 11  
P120-P127 : Port 12  
INTP0-INTP3 : Interrupt from peripherals  
ANI0-ANI7 : Analog input  
TI0-TI2  
: Timer input  
: Timer output  
: Counter input  
: Serial bus  
AVDD  
AVSS  
AVREF  
VDD  
: Analog power supply  
TO0-TO2  
CI0  
: Analog ground  
: Analog reference voltage  
: Power supply  
SB0, SB1  
SI0, SI1  
SO0, SO1  
: Serial input  
: Serial output  
VSS  
: Ground  
IC  
: Internally connected  
7
mPD78042F, 78043F, 78044F, 78045F  
2. BLOCK DIAGRAM  
P00  
TO0/P30  
16-bit timer/  
event counter  
P01-P03  
P04  
Port 0  
Port 1  
Port 2  
TI0/INTP0/P00  
TO1/P31  
TI1/P33  
8-bit timer/  
event counter 1  
P10-P17  
P20-P27  
TO2/P32  
TI2/P34  
8-bit timer/  
event counter  
2
P30-P37  
P70-P74  
P80, P81  
Port 3  
Port 7  
Port 8  
Port 9  
Port 10  
Watchdog timer  
Watch timer  
6-bit up/down  
counter  
CI0/INTP3/P03  
78K/0  
CPU core  
SI0/SB0/P25  
SO0/SB1/P26  
SCK0/P27  
ROM  
Serial  
interface 0  
P90-P97  
P100-P107  
SI1/P20  
SO1/P21  
Serial  
interface 1  
SCK1/P22  
P110-P117  
P120-P127  
Port 11  
Port 12  
STB/P23  
BUSY/P24  
ANI0/P10-  
ANI7/P17  
RAM  
A/D converter  
AVDD  
AVSS  
FIP0-FIP33  
VLOAD  
FIP  
AVREF  
controller/driver  
INTP0/TI0/P00-  
INTP3/CI0/P03  
Interrupt control  
Buzzer output  
RESET  
X1  
BUZ/P36  
PCL/P35  
System control  
X2  
XT1/P04  
XT2  
Clock output  
control  
VDD  
VSS  
IC  
Remark The capacities of the internal ROM and RAM differ depending on the product.  
8
mPD78042F, 78043F, 78044F, 78045F  
3. PINS FUNCTIONS  
3.1 PORT PINS (1/2)  
Pin name  
P00  
I/O  
Input  
I/O  
Function  
On reset  
Input  
Shared by:  
INTP0/TI0  
INTP1  
Port 0  
Input only  
P01  
P02  
P03  
P04  
5-bit I/O port  
Can be specified for input or output in 1-bit  
units. When used as an input port pin, a built-in  
pull-up resistor can be used by software.  
Input only  
Input  
INTP2  
INTP3/CI0  
XT1  
Note 1  
Input  
I/O  
Input  
Input  
P10-P17  
Port 1  
ANI0-ANI7  
8-bit I/O port  
Can be specified for input or output in 1-bit units.  
When used as an input port pin, a built-in pull-up resistor can be  
Note 2  
used by software.  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
I/O  
Port 2  
Input  
SI1  
8-bit I/O port  
SO1  
SCK1  
STB  
Can be specified for input or output in 1-bit units.  
When used as an input port pin, a built-in pull-up resistor can be  
used by software.  
BUSY  
SI0/SB0  
SO0/SB1  
SCK0  
TO0  
I/O  
Port 3  
Input  
8-bit I/O port  
TO1  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
TO2  
TI1  
When used as an input port pin, a built-in pull-up resistor can be  
used by software.  
TI2  
PCL  
A pull-down resistor can be connected in 1-bit units by the mask  
option.  
BUZ  
Notes 1. When the P04/XT1 pins is used as an input port pin, bit 6 (FRC) of the processor clock control register  
(PCC) must be set to 1. At this time, do not use the feedback resistor of the subsystem clock oscillator  
circuit.  
2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be  
sure to place the port 1 in the input mode. In this case, the built-in pull-up resistors are automatically  
unused.  
9
mPD78042F, 78043F, 78044F, 78045F  
3.1 PORT PINS (2/2)  
Pin name  
P70-P74  
I/O  
I/O  
Function  
On reset  
Input  
Shared by:  
Port 7  
5-bit N-ch open-drain I/O port  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A pull-up resistor can be connected in 1-bit units by the mask  
option.  
P80, P81  
Output  
Output  
Output  
I/O  
Port 8  
Output  
Output  
Output  
Input  
FIP0, FIP1  
2-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in bit units).  
P90-P97  
Port 9  
FIP2-FIP9  
8-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
P100-P107  
P110-P117  
Port 10  
FIP10-FIP17  
FIP18-FIP25  
8-bit P-ch open-drain high-voltage output port.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
Port 11  
8-bit P-ch open-drain high-voltage I/O port.  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the  
mask option (whether VLOAD or VSS is connected can be  
specified in 4-bit units).  
P120-P127  
I/O  
Port 12  
Input  
FIP26-FIP33  
8-bit P-ch open-drain high-voltage I/O port  
Can be specified for input or output in 1-bit units.  
Can directly drive LEDs.  
A pull-down resistor can be connected in 1-bit units by the mask  
option (whether VLOAD or VSS is connected can be specified in  
4-bit units).  
1 0  
mPD78042F, 78043F, 78044F, 78045F  
3.2 PINS OTHER THAN PORT PINS (1/2)  
Pin name  
INTP0  
I/O  
Function  
Valid edge (rising, falling, or both rising and falling edges) can  
be specified.  
On reset  
Input  
Shared by:  
P00/TI0  
Input  
INTP1  
INTP2  
INTP3  
SI0  
P01  
External interrupt input  
P02  
Falling edge-active external interrupt input  
Serial data input lines of serial interface  
Input  
Input  
P03/CI0  
P25/SB0  
P20  
Input  
Output  
I/O  
SI1  
SO0  
SO1  
SB0  
Serial data output lines of serial interface  
Serial data I/O lines of serial interface  
Serial clock I/O lines of serial interface  
Input  
Input  
Input  
Input  
P26/SB1  
P21  
P25/SI0  
P26/SO0  
P27  
SB1  
SCK0  
SCK1  
STB  
I/O  
P22  
Output  
Automatic transmission/reception strobe output line of serial  
interface  
P23  
BUSY  
TI0  
Input  
Input  
Automatic transmission/reception busy input line of serial interface Input  
P24  
External count clock input to 16-bit timer (TM0)  
External count clock input to 8-bit timer (TM1)  
External count clock input to 8-bit timer (TM2)  
16-bit timer output (multiplexed with 14-bit PWM output)  
8-bit timer output  
Input  
Input  
P00/INTP0  
P33  
TI1  
TI2  
P34  
TO0  
TO1  
TO2  
CI0  
Output  
P30  
P31  
P32  
Input  
Clock input to 6-bit up/down counter  
Input  
Input  
P03/INTP3  
P35  
PCL  
Output  
Clock output (for trimming main system clock and subsystem  
clock)  
BUZ  
Output  
Output  
Buzzer output  
Input  
P36  
FIP0, FIP1  
FIP2-FIP9  
FIP10-FIP15  
High-voltage, high-current digit/segment output of FIP  
controller/driver  
Output  
P80, P81  
P90-P97  
P100-P105  
Output  
Output  
High-voltage, high-current digit/segment output of FIP  
controller/driver  
Output  
FIP16, FIP17  
FIP18-FIP25  
FIP26-FIP33  
VLOAD  
High-voltage segment output of FIP controller/driver  
Connects pull-down resistor to FIP controller/driver  
Output  
Input  
P106, P107  
P110-P117  
P120-P127  
1 1  
mPD78042F, 78043F, 78044F, 78045F  
3.2 PINS OTHER THAN PORT PINS (2/2)  
Pin name  
ANI0-ANI7  
AVREF  
AVDD  
AVSS  
RESET  
X1  
I/O  
Input  
Function  
A/D converter analog input lines  
On reset  
Input  
Shared by:  
P10-P17  
Input  
A/D converter reference voltage input line  
Analog power supply to A/D converter. Connected to the VDD pin.  
A/D converter ground line. Connected to the VSS pin.  
System reset input  
Input  
Input  
Connect crystal for main system clock oscillation  
X2  
XT1  
Input  
Connect crystal for subsystem clock oscillation  
Input  
P04  
XT2  
VDD  
Positive power supply  
VSS  
Ground potential  
IC  
Internal connection. Connected directly to the VSS pin.  
1 2  
mPD78042F, 78043F, 78044F, 78045F  
3.3 PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS  
Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins.  
For the configuration of the I/O circuit of each type, refer to Fig. 3-1.  
Table 3-1 I/O Circuit Type  
Pin name  
P00/INTP0/TI0  
I/O Circuit type  
I/O  
Input  
Recommended connections when unused  
Connected to VSS.  
2
P01/INTP1  
P02/INTP2  
P03/INTP3/CI0  
P04/XT1  
8-A  
I/O  
Individually connected to VSS with a resistor.  
16  
11  
Input  
I/O  
Connected to VDD or VSS.  
P10/ANI0-P17/ANI7  
P20/SI1  
Individually connected to VDD or VSS with a resistor.  
8-A  
5-A  
8-A  
5-A  
8-A  
10-A  
P21/SO1  
P22/SCK1  
P23/STB  
P24/BUSY  
P25/SI0/SB0  
P26/SO0/SB1  
P27/SCK0  
P30/TO0  
5-C  
P31/TO1  
P32/TO2  
P33/TI1  
8-B  
5-C  
P34/TI2  
P35/PCL  
P36/BUZ  
P37  
P70-P74  
13-B  
14-A  
P80/FIP0, P81/FIP1  
P90/FIP2-P97/FIP9  
P100/FIP10-P107/FIP17  
P110/FIP18-P117/FIP25  
P120/FIP26-P127/FIP33  
RESET  
Output  
I/O  
Open  
15-C  
Individually connected to VDD or VSS with a resistor.  
2
Input  
XT2  
16  
Open  
AVREF  
Connected to VSS.  
Connected to VDD.  
Connected to VSS.  
AVDD  
AVSS  
VLOAD  
IC  
Connected directly to VSS.  
1 3  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 3-1 Pin I/O Circuits (1/2)  
Type 2  
Type 8-A  
V
DD  
Pull-up  
enable  
P-ch  
V
DD  
IN  
Data  
P-ch  
IN/OUT  
N-ch  
Output  
disable  
Schmitt trigger input with hysteresis characteristics  
Type 5-A  
Type 8-B  
V
DD  
V
DD  
Pull-up  
enable  
P-ch  
Pull-up  
enable  
P-ch  
V
DD  
V
DD  
Data  
P-ch  
Data  
P-ch  
IN/OUT  
IN/OUT  
Output  
disable  
N-ch  
Output  
disable  
N-ch  
(Mask  
option)  
Input  
enable  
Type 5-C  
Type 10-A  
V
DD  
VDD  
Pull-up  
enable  
Pull-up  
enable  
P-ch  
P-ch  
VDD  
P-ch  
V
DD  
Data  
Data  
P-ch  
IN/OUT  
IN/OUT  
Output  
disable  
Open-drain  
Output disable  
N-ch  
N-ch  
(Mask  
option)  
Input  
enable  
1 4  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 3-1 Pin I/O Circuits (2/2)  
VDD  
Type 15-C  
Type 11  
V
DD  
V
DD  
Pull-up  
enable  
P-ch  
P-ch  
P-ch  
VDD  
Data  
IN/OUT  
Data  
P-ch  
IN/OUT  
N-ch  
Output  
disable  
N-ch  
P-ch  
N-ch  
Comparator  
+
(Mask  
option)  
N-ch  
RD  
VLOAD  
(Threshold voltage)  
REF  
V
(Mask  
option)  
Input enable  
Type 13-B  
Type 16  
VDD  
Feedback  
cut-off  
(Mask  
option)  
IN/OUT  
P-ch  
Data  
Output disable  
N-ch  
VDD  
RD  
P-ch  
Input buffer with intermediate  
withstand voltage  
XT1  
XT2  
Type 14-A  
V
DD  
V
DD  
P-ch  
P-ch  
OUT  
Data  
(Mask  
option)  
N-ch  
VLOAD  
(Mask  
option)  
1 5  
mPD78042F, 78043F, 78044F, 78045F  
4. MEMORY SPACE  
Fig. 4-1 shows the memory map for mPD78042F, mPD78043F, mPD78044F, and mPD78045F.  
Fig. 4-1 Memory Map  
FFFFH  
Special function  
register (SFR)  
256 × 8 bits  
FF00H  
FEFFH  
General register  
32 × 8 bits  
FEE0H  
FEDFH  
Internal high-speed RAMNote  
nnnnH  
mmmmH  
mmmmH – 1  
Program area  
Inhibited  
FB00H  
FAFFH  
Data  
memory  
space  
1000H  
0FFFH  
Buffer RAM  
64 × 8 bits  
FAC0H  
FABFH  
CALLF entry area  
Program area  
Inhibited  
0800H  
07FFH  
FA80H  
FA7FH  
FIP display RAM  
48 × 8 bits  
FA50H  
FA4FH  
0080H  
007FH  
Inhibited  
CALLT table area  
Vector table area  
nnnnH + 1  
nnnnH  
0040H  
003FH  
Program  
memory  
space  
Internal ROMNote  
0000H  
0000H  
Note The internal ROM and internal high-speed RAM capacities vary depending on the product. (See the table  
below.)  
Product name  
Last Address of Internal  
ROM  
First address of internal  
high-speed RAM  
nnnnH  
3FFFH  
5FFFH  
7FFFH  
9FFFH  
mmmmH  
FD00H  
mPD78042F  
mPD78043F  
mPD78044F  
mPD78045F  
FB00H  
1 6  
mPD78042F, 78043F, 78044F, 78045F  
5. PERIPHERAL HARDWARE FUNCTIONS  
5.1 PORTS  
I/O ports are classified into the following five types:  
• CMOS input (P00, P04)  
: 2  
• CMOS input/output (P01 - P03, ports 1 - 3)  
• N-ch open-drain input/output (port 7)  
• P-ch open-drain output (ports 8 - 10)  
• P-ch open-drain input/output (ports 11 and 12)  
: 27  
: 5  
: 18  
: 16  
Total  
: 68  
Table 5-1 Port Function  
Product  
Port 0  
Pin  
P00, P04  
P01-P03  
Function  
Input-only port  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
internal pull-up resistor can be connected through software.  
Port 1  
Port 2  
Port 3  
P10-P17  
P20-P27  
P30-P37  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
internal pull-up resistor can be connected through software.  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
internal pull-up resistor can be connected through software.  
I/O port. Can be specified for input or output in 1-bit units. When used as input port,  
internal pull-up resistor can be connected through software.  
Pull-down resistor can be connected in 1-bit units by the mask option.  
Can directly drive LED.  
Port 7  
Port 8  
P70-P74  
P80, P81  
N-ch open-drain I/O port. Can be specified for input or output in 1-bit units.  
Pull-up resistor can be connected in 1-bit units by the mask option.  
Can directly drive LED.  
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be  
connected in 2-bit units by the mask option (connection to VLOAD or VSS can be specified in  
2-bit units).  
Can directly drive LED.  
Port 9  
P90-P97  
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be  
connected in 1-bit units by the mask option (connection to VLOAD or VSS can be specified in  
4-bit units).  
Can directly drive LED.  
Port 10  
Port 11  
Port 12  
P100-P107  
P110-P117  
P120-P127  
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be  
connected in 1-bit units by the mask option (connection to VLOAD or VSS can be specified in  
4-bit units).  
Can directly drive LED.  
P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output  
in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option  
(connection to VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output  
in 1-bit units.  
Pull-down resistor can be connected in 1-bit units by the mask option (connection to  
VLOAD or VSS can be specified in 4-bit units).  
Can directly drive LED.  
1 7  
mPD78042F, 78043F, 78044F, 78045F  
5.2 CLOCK GENERATOR CIRCUIT  
The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock.  
The instruction time can be changed.  
• 0.4 ms/0.8 ms/1.6 ms/3.2 ms/6.4 ms (with main system clock: 5.0 MHz)  
• 122 ms (with subsystem clock: 32.768 kHz)  
Fig. 5-1 Clock Generator Circuit Block Diagram  
XT1/P04  
fXT  
Subsystem  
Clock output circuit  
Watch timer  
clock oscillator  
XT2  
Noise  
eliminator  
fX  
8
fX  
16  
Prescaler  
1
X1  
X2  
Main system  
clock oscillator  
2
Prescaler  
Clock to  
hardware peripherals  
fX  
fXT  
2
fX  
2
fX  
fX  
fX  
22  
23 24  
Standby  
control  
circuit  
STOP  
CPU clock (fCPU)  
To INTP0  
sampling clock  
5.3 TIMER/EVENT COUNTER  
Six channels of timer/event counters are provided.  
• 16-bit timer/event counter : 1 channel  
• 8-bit timer/event counter : 2 channels  
• Watch timer  
: 1 channel  
: 1 channel  
: 1 channel  
• Watchdog timer  
• 6-bit up/down counter  
Table 5-2 Timer/Event Counter Groups and Configurations  
16-bit timer/  
8-bit timer/  
Watch  
timer  
Watchdog  
timer  
6-bit up/  
event counter  
event counter  
down counter  
Interval timer  
1 channel  
1 channel  
1 output  
1 output  
1 input  
1 output  
1
2 channels  
1 channel  
1 channel  
External event counter  
Timer output  
2 channels  
1 channel  
2 outputs  
PWM output  
Pulse width measurement  
Square wave output  
Interrupt Request  
Test input  
2 outputs  
2
1
1
1
1 input  
1 8  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 5-2 16-Bit Timer/Event Counter Block Diagram  
Internal bus  
16-bit compare  
register (CR00)  
INTTM0  
PWM  
pulse  
output  
control  
circuit  
16-bit timer/event  
counter output  
control circuit  
Match  
TO0/P30  
fX  
fX/2  
fX/22  
fX/23  
16-bit timer register (TM0)  
Clear  
Edge  
detector  
Selector  
TI0/P00/INTP0  
INTP0  
16-bit capture  
register (CR01)  
Internal bus  
Fig. 5-3 8-Bit Timer/Event Counter Block Diagram  
Internal bus  
INTTM1  
8-bit compare  
register (CR10)  
8-bit compare  
register (CR20)  
Output  
control  
circuit  
Match  
TO2/P32  
INTTM2  
Match  
fX/2 -fX  
/210  
8-bit timer  
register 1 (TM1)  
f
X
/212  
8-bit timer  
register 2 (TM2)  
TI1/P33  
Clear  
fX/2-fX  
/210  
Selector  
Clear  
f
X
/212  
TI2/P34  
Output  
control  
circuit  
TO1/P31  
Internal bus  
1 9  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 5-4 Watch Timer Block Diagram  
f
W
214  
f
X
/28  
5-bit counter  
f
W
INTWT  
Prescaler  
f
XT  
f
W
213  
f
W
24  
f
W
25  
f
W
26  
f
W
27  
f
W
28  
fW  
29  
INTTM3  
Fig. 5-5 Watchdog Timer Block Diagram  
f
X
24  
f
WDT  
Prescaler  
f
X
23  
f
WDT  
f
WDT  
22  
f
WDT  
23  
f
WDT  
24  
f
WDT  
25  
f
WDT  
26  
f
WDT  
28  
INTWDT  
Maskable  
interrupt  
request  
2
8-bit  
counter  
RESET  
INTWDT  
Nonmaskable  
interrupt  
request  
Fig. 5-6 6-Bit Up/Down Counter Block Diagram  
INTP3/INTUD  
Selector  
Clear  
6-bit up/down counter  
Edge detector  
CI0/P03/INTP3  
(UDC)  
Load  
Match  
Underflow  
6-bit up/down counter  
compare register (UDCC)  
Internal bus  
Caution When using the 6-bit up/down counter, set the CI0/P03/INTP3 pin in the input mode (set bit 3 of  
port mode register 0 (PM03) to 1).  
2 0  
mPD78042F, 78043F, 78044F, 78045F  
5.4 CLOCK OUTPUT CONTROL CIRCUIT  
Clocks of the following frequencies can be output to the clock:  
• 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz (with main system clock: 5.0 MHz)  
• 32.768 kHz (with subsystem clock: 32.768 kHz)  
Fig. 5-7 Clock Output Control Circuit Block Diagram  
fX /23  
fX /24  
fX /25  
fX /26  
fX /27  
fX /28  
fXT  
PCL/P35  
Sync circuit  
Output control circuit  
5.5 BUZZER OUTPUT CONTROL CIRCUIT  
Clocks of the following frequencies can be output to the buzzer:  
• 1.2 kHz/2.4 kHz/4.9 kHz (with main system clock: 5.0 MHz)  
Fig. 5-8 Buzzer Output Control Circuit Block Diagram  
f
f
f
X
X
X
/210  
/211  
/212  
BUZ/P36  
Output control circuit  
2 1  
mPD78042F, 78043F, 78044F, 78045F  
5.6 A/D CONVERTER  
An 8-bit resolution 8-channel A/D converter is provided.  
This A/D converter can be started in the following two modes:  
• Hardware start  
• Software start  
Fig. 5-9 A/D Converter Block Diagram  
Series resistor string  
AVDD  
ANI0/P10  
ANI1/P11  
ANI2/P12  
ANI3/P13  
ANI4/P14  
ANI5/P15  
ANI6/P16  
ANI7/P17  
AVREF  
Sample & hold circuit  
Voltage comparator  
AVSS  
Successive approximation  
register (SAR)  
Control  
circuit  
Falling edge  
detector  
INTAD  
INTP3  
INTP3/P03  
A/D conversion result  
register (ADCR)  
Internal bus  
5.7 SERIAL INTERFACE  
Two channels of clocked serial interfaces are provided.  
• Serial interface channel 0  
• Serial interface channel 1  
Table 5-3 Serial Interface Groups and Functions  
Function  
Serial interface channel 0  
• (MSB/LSB first selectable)  
• (MSB first)  
Serial interface channel 1  
3-wire serial I/O mode  
SBI (serial bus interface) mode  
2-wire serial I/O mode  
• (MSB/LSB first selectable)  
• (MSB first)  
3-wire serial I/O mode with  
automatic transmission/  
reception function  
• (MSB/LSB first selectable)  
2 2  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 5-10 Serial Interface Channel 0 Block Diagram  
Internal bus  
SI0/SB0/P25  
SO0/SB1/P26  
Serial I/O shift  
register 0 (SIO0)  
Output  
latch  
Busy/acknowledge  
output circuit  
Bus release/  
command/acknowledge  
detector  
Interrupt request  
signal generator  
INTCSI0  
Serial clock  
counter  
SCK0/P27  
fX X  
/22 -f /29  
Serial clock  
control circuit  
TO2  
Fig. 5-11 Serial Interface Channel 1 Block Diagram  
Internal bus  
Automatic data  
transmission/  
reception interval  
specification register  
(ADTI)  
Automatic data trans-  
mission/reception  
Buffer RAM  
address pointer (ADTP)  
Match  
Serial I/O shift register 1  
(SIO1)  
SI1/P20  
SO1/P21  
STB/P23  
5-bit counter  
Handshake  
control  
circuit  
BUSY/P24  
SCK1/P22  
Interrupt  
request signal  
generator  
Serial clock  
counter  
INTCSI1  
f
X
/22-f  
TO2  
X
/29  
Serial clock control  
circuit  
Selector  
2 3  
mPD78042F, 78043F, 78044F, 78045F  
5.8 FIP CONTROLLER/DRIVER  
An FIP controller/driver having the following features is provided:  
(a) Automatic output of segment signals (DMA operation) and digit signals  
by automatically reading display data  
(b) Display mode registers (DSPM0 and DSPM1) that can control an FIP of 9 to 24 segments and 2 to 16 digits  
(c) Port pins not used for FIP display can be used as output port or I/O port pins.  
(d) Display mode register (DSPM1) can adjust luminance in eight steps.  
(e) Hardware suitable for key scan application using segment pins  
(f) High-voltage output buffer (FIP driver) that can directly drive an FIP  
(g) Display output pins can be connected to a pull-down resistor by the mask option.  
Fig. 5-12 Selecting Display Modes  
Selecting number of digits  
0
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
0
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Caution If the total number of digits and segments exceeds 34, the specified number of digits takes  
precedence.  
2 4  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 5-13 FIP Controller/Driver Block Diagram  
Internal bus  
Display data memory  
Digit signal  
generator  
Segment data latch  
Port output latch  
Buffer with high withstand voltage  
FIP0/P80 FIP1/P81  
FIP33/P127  
2 5  
mPD78042F, 78043F, 78044F, 78045F  
6. INTERRUPT FUNCTION AND TEST FUNCTION  
6.1 INTERRUPT FUNCTION  
The following three types of interrupt functions are available:  
• Non-maskable interrupt : 1  
• Maskable interrupt  
• Software interrupt  
: 13  
: 1  
Table 6-1 Interrupt Source List  
Note 2  
Interrupt source  
Trigger  
Note 1  
Vector  
table  
address  
Basic  
configuration  
type  
Internal/  
external  
Interrupt  
type  
Default  
priority  
Name  
Non-maskable  
Maskable  
0
INTWDT  
Watchdog timer overflow  
Internal  
External  
0004H  
(A)  
(B)  
(with watchdog timer mode 1 selected)  
INTWDT  
Watchdog timer overflow  
(with interval timer mode selected)  
1
2
3
4
INTP0  
Pin input edge detection  
0006H  
0008H  
000AH  
000CH  
(C)  
(D)  
INTP1  
INTP2  
INTP3  
INTUD  
INTCSI0  
INTCSI1  
INTTM3  
6-bit up/down counter match signal generation Internal  
End of serial interface channel 0 transfer  
(B)  
5
6
7
000EH  
0010H  
0012H  
End of serial interface channel 1 transfer  
Reference time interval signal from watch  
timer  
8
9
INTTM0  
INTTM1  
INTTM2  
16-bit timer/event counter match signal  
generation  
0014H  
0016H  
0018H  
8-bit timer/event counter 1 match signal  
generation  
10  
8-bit timer/event counter 2 match signal  
generation  
11  
12  
INTAD  
INTKS  
BRK  
End of A/D converter conversion  
001AH  
001CH  
003EH  
Key scan timing from FIP controller/driver  
Software  
Execution of BRK instruction  
(E)  
Notes 1. Default priority is the priority order when several maskable interrupts are generated at the same time.  
0 is the highest order and the 12 is the lowest order.  
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1.  
2 6  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 6-1 Basic Configuration of Interrupt Function (1/2)  
(A) Internal non-maskable interrupt  
Internal bus  
Vector table  
Interrupt  
request  
Priority  
control circuit  
address  
generator  
Standby  
release signal  
(B) Internal maskable interrupt  
Internal bus  
MK  
IE  
PR  
ISP  
Vector table  
Priority  
control circuit  
address  
Interrupt  
request  
IF  
generator  
Standby  
release signal  
(C) External maskable interrupt (INTP0)  
Internal bus  
MK  
Sampling clock  
select register  
(SCS)  
External interrupt  
mode register  
(INTM0)  
IE  
PR  
ISP  
Vector table  
address  
generator  
Priority  
control circuit  
Interrupt  
request  
Edge  
detector  
Sampling  
clock  
IF  
Standby  
release signal  
2 7  
mPD78042F, 78043F, 78044F, 78045F  
Fig. 6-1 Basic Configuration of Interrupt Function (2/2)  
(D) External maskable interrupt (except INTP0)  
Internal bus  
MK  
External interrupt  
mode register  
(INTM0)  
IE  
PR  
ISP  
Vector table  
address  
generator  
Priority  
control circuit  
Interrupt  
request  
Edge  
detector  
IF  
Standby  
release signal  
(E) Software interrupt  
Internal bus  
Vector table  
address  
generator  
Interrupt  
request  
Priority  
control circuit  
IF  
IE  
: Interrupt request flag  
: Interrupt enable flag  
ISP : In-service priority flag  
MK : Interrupt mask flag  
PR : Priority specification flag  
2 8  
mPD78042F, 78043F, 78044F, 78045F  
6.2 TEST FUNCTION  
The following test function is available.  
Test input source  
Trigger  
Overflow of watch timer  
Internal/external  
Name  
INTWT  
Internal  
Fig. 6-2 Basic Configuration of Test Function  
Internal bus  
MK  
Standby  
release signal  
Test input  
source  
IF  
(INTWT)  
IF : Test request flag  
MK : Test mask flag  
2 9  
mPD78042F, 78043F, 78044F, 78045F  
7. STANDBY FUNCTION  
The standby function is to reduce the current dissipation of the system and can be effected in the following two  
modes:  
• HALT mode : In this mode, the operating clock of the CPU is stopped. By using this mode in combination with  
the normal operation mode, the system can be operated intermittently, so that the average current  
dissipation can be reduced.  
• STOP mode : Oscillation of the main system clock is stopped. All the operations on the main system clock are  
stopped, and therefore, the current dissipation of the system can be minimized with only the  
subsystem clock oscillating.  
Fig. 7-1 Standby Function  
CSS = 1  
CSS = 0  
Main system  
clock operation  
Subsystem  
clock operationNote  
HALT instruction  
STOP  
instruction  
HALT instruction  
Interrupt  
request  
Interrupt  
request  
Interrupt  
request  
STOP mode  
HALT mode  
HALT modeNote  
(Oscillation of main system  
clock stopped)  
(Clock supply to CPU stopped.  
Oscillation continues)  
(Clock supply to CPU stopped.  
Oscillation continues)  
Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on  
the subsystem clock, stop the main system clock by setting bit 7 (MCC) of the processor clock control  
register (PCC). The STOP instruction cannot be used.  
Caution When the main system clock is stopped and the subsystem clock is operating, to switch again  
from the subsystem clock to the main system clock, allow sufficient time for the oscillation to  
settle before switching, by coding the program accordingly.  
8. RESET FUNCTION  
The system can be reset in the following two modes:  
• External reset by RESET pin  
• Internal reset by watchdog timer that detects hang up  
3 0  
mPD78042F, 78043F, 78044F, 78045F  
9. INSTRUCTION SET  
(1) 8-bit instruction  
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,  
ROLC, ROR4, ROL4, PUSH, POP, DBNZ  
Second  
operand  
[HL + byte]  
#byte  
A
rNote  
sfr  
saddr  
!addr16  
PSW  
[DE]  
[HL]  
[HL + B] $addr16  
[HL + C]  
1
None  
First  
operand  
A
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
MOV  
XCH  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
MOV  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROR  
XCH  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
ROL  
RORC  
ROLC  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
XOR  
CMP  
r
MOV  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
B, C  
sfr  
DBNZ  
DBNZ  
MOV  
MOV  
MOV  
saddr  
MOV  
ADD  
ADDC  
SUB  
SUBC  
AND  
OR  
INC  
DEC  
XOR  
CMP  
!addr16  
PSW  
MOV  
MOV  
MOV  
PUSH  
POP  
[DE]  
[HL]  
MOV  
MOV  
ROR4  
ROL4  
[HL + byte]  
[HL + B]  
MOV  
[HL + C]  
X
C
MULU  
DIVUW  
Note Except for r = A  
3 1  
mPD78042F, 78043F, 78044F, 78045F  
(2) 16-bit instruction  
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW  
Second  
operand  
#word  
AX  
rpNote  
sfrp  
saddrp !addr16  
SP  
None  
First  
operand  
AX  
rp  
ADDW  
SUBW  
CMPW  
MOVW MOVW MOVW MOVW MOVW  
XCHW  
Note  
MOVW MOVW  
INCW  
DECW  
PUSH  
POP  
sfrp  
MOVW MOVW  
MOVW MOVW  
MOVW  
saddrp  
!addr16  
SP  
MOVW MOVW  
Note Only when rp = BC, DE, HL  
(3) Bit manipulation instruction  
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR  
Second  
operand  
A.bit  
sfr.bit  
saddr.bit PSW.bit [HL].bit  
CY  
$addr16  
None  
First  
operand  
A.bit  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
sfr.bit  
MOV1  
MOV1  
MOV1  
MOV1  
BT  
SET1  
CLR1  
BF  
BTCLR  
saddr.bit  
PSW.bit  
[HL].bit  
CY  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
BT  
SET1  
CLR1  
BF  
BTCLR  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
MOV1  
AND1  
OR1  
SET1  
CLR1  
NOT1  
XOR1  
XOR1  
XOR1  
XOR1  
XOR1  
3 2  
mPD78042F, 78043F, 78044F, 78045F  
(4) Call/Branch instruction  
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ  
Second  
operand  
AX  
!addr16 !addr11 [addr5] $addr16  
First  
operand  
Basic operation  
BR  
CALL  
BR  
CALLF CALLT BR  
BC  
BNC  
BZ  
BNZ  
Compound  
operation  
BT  
BF  
BTCLR  
DBNZ  
(5) Other instructions  
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP  
3 3  
mPD78042F, 78043F, 78044F, 78045F  
10. ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Parameter  
Symbol  
VDD  
Conditions  
Rating  
–0.3 to +7.0  
Unit  
V
Power supply  
voltage  
VDD – 40 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to +0.3  
V
VLOAD  
AVDD  
AVREF  
AVSS  
VI1  
V
V
V
–0.3 to VDD + 0.3  
Input voltage  
P00-P04, P10-P17 (except when used as analog input pins),  
P20-P27, P30-P37, X1, X2, XT2, RESET  
V
Note 1  
–0.3 to +16  
V
V
VI2  
P70-P74  
N-ch open drain  
P-ch open drain  
VDD – 40 to VDD + 0.3  
–0.3 to VDD + 0.3  
VI3  
P110-P117, P120-P127  
Output voltage  
VO1  
VO2  
VO3  
VAN  
IOH  
P01-P03, P10-P17, P20-P27, P30-P37  
P70-P74  
V
Note 1  
–0.3 to +16  
V
VDD – 40 to VDD + 0.3  
V
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127  
AVSS – 0.3 to AVREF + 0.3  
Analog input voltage  
ANI0-ANI7  
Analog input pin  
V
–10  
–30  
–30  
–120  
30  
Output current,  
high  
P01-P03, P10-P17, P20-P27, P30-P37 per pin  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
P01-P03, P10-P17, P20-P27, P30-P37 total  
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 per pin  
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 total  
Output current,  
low  
IOL  
P01-P03, P10-P17, P20-P27, P30-P37,  
P70-P74 per pin  
Peak value  
rms value  
Peak value  
rms value  
Peak value  
rms value  
Note 2  
15  
100  
P70-P74 total  
Note 2  
60  
50  
P01-P03, P10-P17, P20-P27, P30-P37 total  
Note 2  
20  
PTNote 3  
800  
600  
Total power  
dissipation  
TA = –40 to +60 °C  
TA = +85 °C  
–40 to +85  
Operating  
ambient  
TA  
temperature  
–65 to +150  
°C  
Storage  
Tstg  
temperature  
Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability;  
exceeding the ratings could cause permanent damage. The parameters apply independently. The  
device should be operated within the limits specified under DC and AC Characteristics.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.  
Notes 1. For pins to which pull-up resistors are connected by the mask option, the rating is –0.3 to VDD + 0.3.  
2. To obtain the rms value, calculate [rms value] = [peak value] ¥ duty.  
3 4  
mPD78042F, 78043F, 78044F, 78045F  
Notes 3. Permissible total power loss differs depending on the temperature (see the following figure).  
800  
600  
400  
200  
–40  
0
+40  
Temperature [°C]  
+80  
How to calculate total power loss  
The following three power consumption are available for the mPD78042F. The sum of the three power consumption  
should be less than the total power loss PT (80 % or less of ratings is recommended).  
1
CPU power consumption: calculate VDD (MAX.) ¥ IDD1 (MAX.).  
2
Output pin power consumption: Normal output and display output are available. Power consumption when  
maximum current flows into each output pin.  
3
Pull-down resistor power consumption: Power consumption by pull-down resistor connected to display  
output pin by the mask option.  
3 5  
mPD78042F, 78043F, 78044F, 78045F  
The following total power consumption calculation example assumes the case where the characters shown in the  
figure on the next page are displayed.  
Example: The operating conditions are as follows:  
VDD = 5 V ±10 %, operating at 5.0 MHz  
Supply current (IDD) = 21.6 mA  
Display outputs: 11 grids ¥ 10 segments (cut width is 1/16)  
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.  
It is also assumed that all display outputs are turned off at key scan timings.  
Display output voltage: grid  
segment VO3 = VDD – 0.4 V (Voltage drop of 0.4 V is assumed.)  
Voltage applied to fluorescent indication panel (VLOAD) = –30 V  
VO3 = VDD – 2 V (Voltage drop of 2 V is assumed.)  
Mask-option pull-down resistor = 25 kΩ  
3
The total power loss is calculated by determining power consumption  
conditions.  
to  
under the above  
1
Power consumption of CPU: 5.5 V ¥ 21.6 mA = 118.8 mW  
1
2
Power consumption at output pins:  
total current for all grids  
number of grids + 1  
Grid:  
(VDD – VO3) ¥  
¥ digit width (1 – cut width) =  
15 mA ¥ 11 grids  
2 V ¥  
¥ (1 – 1/16) = 25.8 mW  
11 grids + 1  
total segment current for all dots to be lit  
number of grids + 1  
Segment: (VDD – VO3) ¥  
0.4 V ¥  
=
3 mA ¥ 31 dots  
= 3.1 mW  
11 grids + 1  
3
Power consumption at pull-down resistors:  
Grid:  
(VO3 – VLOAD)2  
number of grids  
number of grids + 1  
11 grids  
¥
¥ digit width =  
pull-down resistance  
(5.5 V – 2 V – (–30 V))2  
¥
¥ (1 – 1/16) = 38.6 mW  
25 kΩ  
11 grids + 1  
Segment:  
(VO3 – VLOAD)2  
number of dots to be lit  
number of grids + 1  
31 dots  
¥
=
pull-down resistance  
(5.5 V – 0.4 V – (–30 V))2  
¥
= 127.3 mW  
25 kΩ  
11 grids + 1  
2
3
Total power consumption =  
+
+
= 118.8 + 25.8 + 3.1 + 38.6 + 127.3 = 313.6 mW  
1
In this example, the total power consumption does not exceed the rated value for the permissible total power loss  
shown in the graph on the previous page. Therefore, the calculation result in this example (313.6 mW) satisfies the  
requirement. If the total power consumption exceed the rated value for the permissible total power loss, the power  
consumption must be reduced, by reducing the number of built-in pull-down resistors.  
3 6  
mPD78042F, 78043F, 78044F, 78045F  
3 7  
mPD78042F, 78043F, 78044F, 78045F  
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Resonator  
Recommended circuit  
Parameter  
Conditions  
MIN.  
1
TYP.  
MAX.  
5
Unit  
Ceramic  
Oscillation frequency  
MHz  
Note 1  
SS X1  
V
X2  
resonator  
(fX)  
Oscillation settling  
4
5
ms  
C1  
C2  
Note 2  
time  
Crystal  
Oscillation frequency  
1
4.19  
MHz  
SS X1  
X2  
V
Note 1  
(fX)  
C1  
C2  
Oscillation settling  
VDD = 4.5 to 5.5 V  
10  
30  
5
ms  
Note 2  
time  
External  
clock  
X1 input frequency  
1
MHz  
Note 1  
(fX)  
X1  
X2  
X1 input high, low-level  
width (tXH, tXL)  
100  
500  
ns  
µ
PD74HCU04  
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Charac-  
teristics.  
2. Time required until oscillation becomes stable after VDD is applied or the STOP mode is disabled.  
Cautions 1. If the main system clock oscillator is to be used, wire the area inside the broken line square  
as follows to avoid influence of wiring capacitance:  
• Make wiring as short as possible.  
• Do not cross other signal lines.  
• Do not get close to lines with fluctuating large current.  
• Make sure that the connecting points of the capacitor of the oscillator always have the same  
electric potential as VSS.  
• Do not connect the oscillator to a ground pattern that conducts a large current.  
• Do not take out signal from the oscillator.  
2. When switching to the main system clock again after the subsystem clock has been used with  
the main system clock stopped, be sure to set the program to provide enough time for the  
oscillation to stabilize.  
3 8  
mPD78042F, 78043F, 78044F, 78045F  
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Resonator  
Crystal  
Recommended circuit  
Parameter  
Conditions  
MIN.  
32  
TYP.  
MAX.  
35  
Unit  
kHz  
Oscillation frequency  
32.768  
XT2 VSS  
R
XT1  
Note 1  
(fXT)  
C3  
C4  
Oscillation settling  
VDD = 4.5 to 5.5 V  
1.2  
2
s
Note 2  
time  
10  
External  
XT1 input frequency  
32  
5
100  
kHz  
ms  
XT1  
XT2  
Note 1  
(fXT)  
XT1 input high, low-  
level width (tXTH, tXTL)  
15  
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Charac-  
teristics.  
2. Time required until oscillation becomes stable after VDD reaching MIN. of oscillation voltage range.  
Cautions 1. If the subsystem clock oscillator is to be used, wire the area inside the broken line square as  
follows to avoid influence of wiring capacitance:  
• Make wiring as short as possible.  
• Do not cross other signal lines.  
• Do not get close to lines with fluctuating large current.  
• Make sure that the connecting points of the capacitor of the oscillator always have the same  
electric potential as VSS.  
• Do not connect the oscillator to a ground pattern that conducts a large current.  
• Do not take out signal from the oscillator.  
2. The subsystem clock oscillator is more likely to have malfunctions due to noise than the main  
system clock oscillator because gain for the subsystem clock oscillator is made lower to  
reduce current consumption. When using the subsystem clock, be careful about how to  
connect wires.  
3 9  
mPD78042F, 78043F, 78044F, 78045F  
RECOMMENDED OSCILLATOR CONSTANT  
MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = –40 to +85 °C)  
Manufacturer  
Product name  
Frequency  
(MHz)  
Recommended  
circuit constant  
Oscillator voltage range  
Remark  
C1 (pF)  
100  
100  
C2 (pF) MIN. (V) MAX. (V)  
Note  
Murata Mfg. Co., Ltd.  
CSB1000J  
1.00  
2.00  
2.00  
4.00  
4.00  
5.00  
5.00  
1.00  
2.00  
100  
100  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
Rd = 4.7 kΩ  
CSA2.00MG040  
CST2.00MG040  
CSA4.00MG  
CST4.00MGW  
CSA5.00MG  
CST5.00MGW  
CCR1000K2  
CCR2.0MC3  
Built-in capacitor  
Built-in capacitor  
30  
30  
30  
30  
Built-in capacitor  
Surface-mount type  
TDK Corp.  
150  
150  
Built-in capacitor,  
surface-mount type  
CCR4.0MC3  
4.00  
2.7  
5.5  
Built-in capacitor,  
surface-mount type  
FCR4.0MC5  
CCR5.0MC3  
4.00  
5.00  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
FCR5.0MC5  
5.00  
2.00  
2.00  
33  
33  
33  
33  
2.7  
2.7  
2.7  
5.5  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor  
Matsushita Electronics  
Components Co., Ltd.  
EFOEC2004A4  
EFOS2004B5  
Built-in capacitor,  
surface-mount type  
EFOEC3584A4  
EFOS3584B5  
3.58  
3.58  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
EFOEC4004A4  
EFOS4004B5  
4.00  
4.00  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
EFOEC5004A4  
EFOS5004B5  
5.00  
5.00  
33  
33  
33  
33  
2.7  
2.7  
5.5  
5.5  
Built-in capacitor  
Built-in capacitor,  
surface-mount type  
Note When the CSB1000J (1.00 MHz) manufactured by Murata Mfg. is used, a limiting resistor (4.7 k) is  
necessary (see the figure in the next page). When one of other resonators is used, no limiting resistor is  
required.  
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable  
oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit  
requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency  
of the resonator in the application circuit. For this, it is necessary to directly contact the  
manufacturer of the resonator that being used.  
4 0  
mPD78042F, 78043F, 78044F, 78045F  
Recommended sample circuit for the main system clock when the CSB1000J manufactured by Murata Mfg.  
is used  
VSS  
X1  
X2  
CSB1000J  
Rd  
C2  
C1  
VDD  
4 1  
mPD78042F, 78043F, 78044F, 78045F  
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
15  
Unit  
pF  
Input  
CIN  
f = 1 MHz Unmeasured pins returned to 0 V  
capacitance  
Output  
COUT  
f = 1 MHz Unmeasured pins returned to 0 V  
35  
15  
pF  
pF  
capacitance  
Input/output  
capacitance  
CIO  
f = 1 MHz  
P01-P03, P10-P17,  
Unmeasured pins returned to 0 V P20-P27, P30-P37  
P70-P74  
20  
35  
pF  
pF  
P110-P117, P120-P127  
Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of  
the port pin.  
POWER SUPPLY VOLTAGE (TA = –40 to +85 °C)  
Parameter  
Conditions  
MIN.  
2.7Note 2  
4.5  
TYP.  
MAX.  
5.5  
Unit  
V
Note 1  
CPU  
Display controller/driver  
5.5  
V
PWM mode of 16-bit  
timer/event counter  
(TM0)  
4.5  
5.5  
V
A/D converter  
4.0  
2.7  
5.5  
5.5  
V
V
Other hardware  
Notes 1. Except for system clock oscillator, display controller/driver, and PWM.  
2. Operating power supply voltage differs depending on the cycle time. See the AC Characteristics.  
4 2  
mPD78042F, 78043F, 78044F, 78045F  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Symbol  
VIH1  
MIN.  
0.7VDD  
0.8VDD  
0.7VDD  
VDD – 0.5  
VDD – 0.5  
VDD – 0.3  
0.65VDD  
0.7VDD  
0.7VDD  
VDD – 0.5  
0
MAX.  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Parameter  
Conditions  
TYP.  
High-level  
VDD  
P21, P23  
P00-P03, P20, P22, P24-P27, P33, P34, RESET  
P70-P74 N-ch open drain  
input voltage  
VDD  
VIH2  
VIH3  
VIH4  
VIH5  
Note 1  
15  
Note 2  
VDD  
VDD  
X1, X2  
Note 2  
XT1/P04, XT2  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
VDD  
VDD  
VIH6  
VIH7  
P10-P17, P30-P32, P35-P37  
P110-P117, P120-P127  
P21, P23  
VDD  
VDD  
VDD  
0.3VDD  
0.2VDD  
0.3VDD  
0.2VDD  
0.4  
Low-level  
VIL1  
VIL2  
VIL3  
input voltage  
0
P00-P03, P20, P22, P24-P27, P33, P34, RESET  
P70-P74 VDD = 4.5 to 5.5 V  
0
0
Note 2  
X1, X2  
VIL4  
VIL5  
0
Note 2  
0.4  
0
XT1/P04, XT2  
VDD = 4.5 to 5.5 V  
0.3  
0
0.3VDD  
0.3VDD  
VIL6  
VIL7  
VOH  
0
P10-P17, P30-P32, P35-P37  
P110-P117, P120-P127  
VDD – 35  
VDD – 1.0  
High-level  
output  
P01-P03, P10-P17, P20-P27,  
P30-P37, P80, P81, P90-P97,  
P100-P107, P110-P117,  
P120-P127  
VDD = 4.5 to 5.5 V  
IOH = –1 mA  
voltage  
VDD – 0.5  
IOH = –100 mA  
V
V
0.4  
VOL1  
2.0  
0.4  
Low-level  
output  
P30-P37, P70-P74  
VDD = 4.5 to 5.5 V,  
IOL = 15 mA  
voltage  
P01-P03, P10-P17, P20-P27  
SB0, SB1, SCK0  
VDD = 4.5 to 5.5 V,  
IOL = 1.6 mA  
V
V
V
VOL2  
VOL3  
VDD = 4.5 to 5.5 V,  
With open-drain and  
pull-up (R = 1 kW)  
0.2VDD  
0.5  
P01-P03, P10-P17, P20-P27,  
P30-P37, P70-P74  
IOL = 400 mA  
Notes 1. Pins to which pull-up resistors are connected by the mask option become VDD.  
2. If the X1 pin is used for high-level voltage input, the X2 pin is used for low-level voltage input, or vice  
versa. This is also true for the XT1/P04 pin and XT2 pin.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.  
4 3  
mPD78042F, 78043F, 78044F, 78045F  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Symbol  
MIN.  
TYP.  
MAX.  
3
Unit  
Parameter  
Conditions  
P00-P03, P10-P17,  
mA  
ILIH1  
VIN = VDD  
High-level  
input leakage  
current  
P20-P27, P30-P37, RESET  
X1, X2, XT1/P04, XT2  
P70-P74  
mA  
mA  
mA  
mA  
mA  
ILIH2  
ILIH3  
ILIH4  
20  
VIN = 15 V  
20  
Note 1  
VDD = 4.5 to 5.5 V  
3
P110-P117, P120-P127,  
VIN = VDD  
Note 2  
3
P00-P03, P10-P17,  
–3  
ILIL1  
VIN = 0 V  
Low-level  
input leakage  
current  
P20-P27, P30-P37, RESET  
mA  
mA  
mA  
mA  
X1, X2, XT1/P04, XT2  
P70-P74  
–20  
ILIL2  
ILIL3  
ILIL4  
ILOH1  
Note 3  
–3  
P110-P117, P120-P127  
–10  
P01-P03, P10-P17, P20-P27,  
P30-P37, P80, P81, P90-P97,  
P100-P107, P110-P117, P120-P127  
3
VOUT = VDD  
High-level  
output  
leakage  
Note 4  
current  
mA  
mA  
P70-74, N-ch open drain  
20  
–3  
VOUT = 15 V  
VOUT = 0 V  
ILOH2  
ILOL1  
P01-P03, P10-P17, P20-P27,  
P30-P37, P70-P74  
Low-level  
output  
leakage  
P80, P81, P90-P97, P100-P107,  
P110-P117, P120-P127  
–10  
VOUT = VLOAD = VDD – 35 V  
mA  
mA  
k Ω  
k Ω  
ILOL2  
IOD  
R1  
Note 4  
current  
–15  
20  
–25  
40  
VDD = 4.5 to 5.5 V, VO3 = VDD – 2 V  
Display output  
current  
90  
90  
VIN = 0 V, P70-P74  
Mask option  
pull-up resistor  
VDD = 4.5 to 5.5 V  
15  
40  
R2  
VIN = 0 V,  
Software pull-  
up resistor  
P01-P03, P10-P17,  
P20-P27, P30-P37  
20  
25  
500  
135  
k Ω  
k Ω  
VO3 – VLOAD = 35 V  
VO3 – VSS = 5 V  
P80, P81, P90-P97,  
P100-P107, P110-P117,  
P120-P127  
65  
R3  
R4  
Mask option  
pull-down  
resistor  
15  
40  
90  
k Ω  
k Ω  
40  
80  
150  
P30-P37, VIN = VDD  
Notes 1. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the  
specification of the mask option), a high-level input leakage current of 150 mA (MAX.) flows only during  
1.5 clocks after a read instruction has been executed to read out port 11 or 12 (P11 or P12) or port mode  
register 11 or 12 (PM11 or PM12). Outside the 1.5 clocks after a read instruction, the current is 3 mA  
(MAX.).  
2. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the  
specification of the mask option), a high-level input leakage current of 90 mA (MAX.) flows only during  
1.5 clocks after a read instruction has been executed to read out P11, P12, PM11, or PM12. Outside  
the 1.5 clocks after a read instruction, the current is 3 mA (MAX.).  
3. When P70 to P74 do not contain the pull-down resistors (according to the specification of the mask  
option), a low-level input leakage current of –150 mA (MAX.) flows only during 1.5 clocks after a read  
instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the 1.5  
clocks after a read out instruction, the current is –3 mA (MAX.).  
4. Current which flows in the built-in pull-up or pull-down resistor is not included.  
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.  
4 4  
mPD78042F, 78043F, 78044F, 78045F  
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
Parameter Symbol Conditions  
5.0 MHz crystal oscillation  
MIN.  
TYP.  
7.2  
0.9  
1.3  
550  
60  
MAX.  
21.6  
2.7  
Unit  
mA  
mA  
mA  
mA  
Power supply IDD1  
VDD = 5.0 V ±10 %Note 2  
VDD = 3.0 V ±10 %Note 3  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
Note 1  
current  
Operating mode  
IDD2  
IDD3  
IDD4  
IDD5  
5.0 MHz crystal oscillation  
HALT mode  
3.9  
1650  
120  
70  
32.768 kHz crystal oscillation  
mA  
Note 4  
Operating mode  
35  
mA  
32.768 kHz crystal oscillation  
25  
50  
mA  
Note 4  
HALT mode  
5
10  
mA  
XT1 = 0 V  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
1
20  
10  
mA  
mA  
STOP mode  
0.5  
Feedback resistor connected  
IDD6  
XT1 = 0 V  
VDD = 5.0 V ±10 %  
VDD = 3.0 V ±10 %  
0.1  
20  
10  
mA  
mA  
STOP mode  
0.05  
Feedback resistor not connected  
Notes 1. This current excludes the AVREF current, port current, and current which flows in the built-in pull-down  
resistor (mask option).  
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)  
3. When operating at low-speed mode (when the PCC is set to 04H)  
4. When the main system clock is stopped  
4 5  
mPD78042F, 78043F, 78044F, 78045F  
AC CHARACTERISTICS  
(1) Basic operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
TYP.  
122  
Parameter  
Symbol  
TCY  
Conditions  
MIN.  
0.4  
MAX.  
Unit  
Cycle time  
(minimum  
instruction  
execution  
time)  
Operated with main system clock  
VDD = 4.5 to 5.5 V  
ms  
ms  
ms  
32  
32  
0.8  
Note 1  
Operated with subsystem clock  
VDD = 4.5 to 5.5 V  
40  
125  
TI1, 2 input  
frequency  
MHz  
kHz  
ns  
fTI  
0
0
2
138  
TI1, 2 input  
high, low-level  
width  
tTIH  
tTIL  
VDD = 4.5 to 5.5 V  
250  
3.6  
ms  
tINTH  
Interrupt  
input high,  
low-level  
width  
8/fsamNote 2  
INTP0  
ms  
tINTL  
tRSL  
INTP1-INTP3  
ms  
ms  
10  
10  
RESET low-  
level width  
Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes  
114 ms.  
2. Selection of fsam = fX/2N+1, fX/64, fX/128 is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of sampling  
clock select register (SCS).  
TCY vs. VDD (with main system clock operated)  
60  
30  
Operation guarantee  
range  
10  
µ
2.0  
1.0  
0.5  
0.4  
0
1
2
3
4
5
6
Power supply voltage VDD [V]  
4 6  
mPD78042F, 78043F, 78044F, 78045F  
(2) Serial interface (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)  
(a) Serial interface channel 0  
(i) Three-wire serial I/O mode (SCK0: Internal clock output)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY1  
3200  
SCK0 high, low-level width  
tKH1  
tKL1  
VDD = 4.5 to 5.5 V  
tKCY1/2  
KCY1/2  
50  
t
150  
SI0 setup time to SCK0↑  
SI0 hold time from SCK0↑  
tSIK1  
tKSI1  
tKSO1  
100  
400  
Note  
SCK0ØÆ SO0 output  
delay time  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
Note C is a load capacitance of the SCK0 or SO0 output line.  
(ii) Three-wire serial I/O mode (SCK0: External clock input)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY2  
3200  
400  
SCK0 high, low-level width  
tKH2  
tKL2  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
1600  
100  
SI0 setup time to SCK0↑  
SI0 hold time from SCK0↑  
tSIK2  
tKSI2  
tKSO2  
400  
Note  
SCK0ØÆ SO0 output  
delay time  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
160  
SCK0 rise time and fall time  
tR2  
tF2  
Note C is a load capacitance of the SO0 output line.  
4 7  
mPD78042F, 78043F, 78044F, 78045F  
(iii) SBI mode (SCK0: Internal clock output)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY3  
3200  
SCK0 high, low-level width  
tKH3  
tKL3  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
tKCY3/2 – 50  
t
KCY3/2 – 150  
100  
SB0, SB1 setup time to SCK0tSIK3  
300  
SB0, SB1 hold time from  
tKSI3  
tKCY3/2  
SCK0↑  
SCK0ØÆSB0, SB1 output  
delay time  
tKSO3  
R = 1 kW,  
C = 100 pF  
VDD = 4.5 to 5.5 V  
0
250  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
0
1000  
SCK0ÆSB0, SB1Ø  
tKSB  
tSBK  
tSBH  
tSBL  
tKCY3  
tKCY3  
tKCY3  
tKCY3  
SB0, SB1ØÆ SCK0Ø  
SB0, SB1 high-level width  
SB0, SB1 low-level width  
Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.  
(iv) SBI mode (SCK0: External clock input)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY4  
3200  
400  
SCK0 high, low-level width  
tKH4  
tKL4  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
1600  
100  
SB0, SB1 setup time to SCK0tSIK4  
300  
SB0, SB1 hold time from  
tKSI4  
tKCY4/2  
SCK0↑  
SCK0ØÆSB0, SB1 output  
delay time  
tKSO4  
R = 1 kW,  
C = 100 pF  
VDD = 4.5 to 5.5 V  
0
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
0
1000  
SCK0ÆSB0, SB1Ø  
tKSB  
tSBK  
tSBH  
tSBL  
tKCY4  
tKCY4  
tKCY4  
tKCY4  
SB0, SB1ØÆSCK0Ø  
SB0, SB1 high-level witdh  
SB0, SB1 low-level width  
SCK0 rise time and fall time  
tR4  
tF4  
160  
Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.  
4 8  
mPD78042F, 78043F, 78044F, 78045F  
(v) Two-wire serial I/O mode (SCK0: Internal clock output)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
1600  
3800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY5  
R = 1 kW,  
C = 100 pF  
Note  
SCK0 high-level width  
SCK0 low-level width  
tKH5  
tKL5  
tKCY5/2  
tKCY5/2  
160  
50  
SB0, SB1 setup time to SCK0tSIK5  
300  
600  
SB0, SB1 hold time from  
tKSI5  
SCK0↑  
SCK0ØÆ SB0, SB1 output  
delay time  
tKSO5  
VDD = 4.5 to 5.5 V  
0
0
250  
ns  
ns  
1000  
Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.  
(vi) Two-wire serial I/O mode (SCK0: External clock input)  
Parameter  
SCK0 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
1600  
3800  
650  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY6  
SCK0 high-level width  
SCK0 low-level width  
tKH6  
tKL6  
800  
SB0, SB1 setup time to SCK0tSIK6  
100  
SB0, SB1 hold time from  
tKSI6  
tKCY6/2  
SCK0↑  
SCK0ØÆ SB0, SB1 output  
delay time  
tKSO6  
R = 1 kW,  
C = 100 pF  
VDD = 4.5 to 5.5 V  
0
0
300  
1000  
160  
ns  
ns  
ns  
Note  
SCK0 rise time and fall time  
tR6  
tF6  
Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.  
4 9  
mPD78042F, 78043F, 78044F, 78045F  
(b) Serial interface channel 1  
(i) Three-wire serial I/O mode (SCK1: Internal clock output)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY7  
3200  
SCK1 high, low-level width  
tKH7  
tKL7  
VDD = 4.5 to 5.5 V  
tKCY7/2  
KCY7/2  
50  
t
150  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK7  
tKSI7  
tKSO7  
100  
400  
Note  
SCK1ØÆ SO1 output delay  
time  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
Note C is a load capacitance of the SCK1 or SO1 output line.  
(ii) Three-wire serial I/O mode (SCK1: External clock input)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY8  
3200  
400  
SCK1 high, low-level width  
tKH8  
tKL8  
VDD = 4.5 to 5.5 V  
VDD = 4.5 to 5.5 V  
1600  
100  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK8  
tKSI8  
tKSO8  
400  
Note  
SCK1ØÆ SO1 output delay  
time  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
160  
SCK1 rise time and fall time  
tR8  
tF8  
Note C is a load capacitance of the SO1 output line.  
5 0  
mPD78042F, 78043F, 78044F, 78045F  
(iii) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: internal clock  
output)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY9  
3200  
SCK1 high, low-level width  
tKH9  
tKL9  
VDD = 4.5 to 5.5 V  
tKCY9/2  
KCY9/2  
50  
t
150  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK9  
tKSI9  
100  
400  
Note  
SCK1ØÆSO1 output delay time tKSO9  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
SCK1ÆSTB•  
tSBD  
tSBW  
t
KCY9/2  
tKCY9  
100  
30  
tKCY9/2 + 100  
Strobe signal high level width  
tKCY9 + 30  
Busy signal setup time (to busy tBYS  
signal detection timing)  
100  
Busy signal hold time (to busy  
signal detection timing)  
tBYH  
100  
ns  
ns  
Busy inactive Æ SCK1Ø  
tSPS  
2tKCY9  
Note C is a load capacitance of the SCK1 or SO1 output line.  
(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: external clock  
input)  
Parameter  
SCK1 cycle time  
Symbol  
Conditions  
VDD = 4.5 to 5.5 V  
MIN.  
800  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKCY10  
3200  
400  
SCK1 high, low-level width  
tKH10  
tKL10  
VDD = 4.5 to 5.5 V  
1600  
100  
SI1 setup time to SCK1↑  
SI1 hold time from SCK1↑  
tSIK10  
tKSI10  
tKSO10  
400  
Note  
SCK1ØÆ SO1 output delay  
time  
C = 100 pF  
VDD = 4.5 to 5.5 V  
300  
1000  
160  
SCK1 rise time and fall time  
tR10  
tF10  
Note C is a load capacitance of the SO1 output line.  
5 1  
mPD78042F, 78043F, 78044F, 78045F  
AC timing test points (except X1, XT1 input)  
0.8VDD  
0.2VDD  
0.8VDD  
Test points  
0.2VDD  
Clock timing  
1/fX  
tXH  
tXL  
VDD – 0.5 V  
0.4 V  
X1 input  
1/fXT  
t
XTH  
t
XTL  
VDD – 0.5 V  
XT1 input  
0.4 V  
TI timing  
1/fTI  
t
TIH  
t
TIL  
TI1, TI2  
5 2  
mPD78042F, 78043F, 78044F, 78045F  
Serial transfer timing  
3-wire serial I/O mode:  
t
KCY1, 2, 7, 8  
t
KL1, 2, 7, 8  
t
KH1, 2, 7, 8  
t
R2, 8  
t
F2, 8  
SCK0, SCK1  
t
SIK1, 2, 7, 8  
t
KSI1, 2, 7, 8  
Input data  
SI0, SI1  
t
KSO1, 2, 7, 8  
SO0, SO1  
Output data  
SBI mode (bus release signal transfer):  
t
KCY3, 4  
t
KL3, 4  
R4  
t
KH3, 4  
t
t
F4  
SCK0  
t
SIK3, 4  
t
KSB  
t
SBL  
t
SBH  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
SBI mode (command signal transfer):  
t
KCY3, 4  
t
KL3, 4  
t
KH3, 4  
SCK0  
t
SIK3, 4  
t
KSB  
t
SBK  
t
KSI3, 4  
SB0, SB1  
t
KSO3, 4  
5 3  
mPD78042F, 78043F, 78044F, 78045F  
2-wire serial I/O mode:  
t
KCY5, 6  
t
KH5, 6  
t
KL5, 6  
R6  
t
t
F6  
SCK0  
t
SIK5, 6  
t
KSO5, 6  
t
KSI5, 6  
SB0, SB1  
3-wire serial I/O mode with automatic transmission/reception function:  
SO1  
SI1  
D2  
D1  
D0  
D7  
D2  
D1  
D0  
D7  
t
KSI9, 10  
t
SIK9, 10  
t
KH9, 10  
t
KSO9, 10  
t
F10  
SCK1  
STB  
t
R10  
t
KL9, 10  
KCY9, 10  
t
t
SBD  
t
SBW  
3-wire serial I/O mode with automatic transmission/reception function (busy processing):  
Note  
9Note  
10Note  
1
10 + n  
SCK1  
7
8
t
BYH  
t
SPS  
t
BYS  
BUSY  
(Active high)  
Note SCK does not become low actually at this point, but is indicated so to conform to the timing specification.  
5 4  
mPD78042F, 78043F, 78044F, 78045F  
A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, AVDD = VDD = 4.0 to 5.5 V, AVSS = VSS = 0 V)  
Parameter  
Resolution  
Symbol  
Conditions  
MIN.  
8
TYP.  
8
MAX.  
8
Unit  
bit  
%
Note 1  
Total error  
Conversion time  
0.8  
Note 2  
tCONV  
1 MHz - fX - 5.0 MHz  
19.1  
2.86  
AVSS  
200  
30  
ms  
ms  
V
Note 3  
Sampling time  
tSAMP  
VIAN  
Analog signal input  
voltage  
AVREF  
Reference voltage  
AVREF resistor  
AVDD current  
AVREF  
RAVREF  
AIDD  
4.0  
4
AVDD  
V
14  
k Ω  
mA  
200  
400  
Notes 1. Quantization error (±1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale  
value.  
2. Set the A/D conversion time to 19.1 ms or more.  
3. Sampling time depends on the conversion time.  
5 5  
mPD78042F, 78043F, 78044F, 78045F  
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS  
(TA = –40 to +85 °C)  
Parameter  
Symbol  
VDDDR  
Conditions  
MIN.  
2.0  
TYP.  
0.1  
MAX.  
5.5  
Unit  
V
Data retention supply  
voltage  
Data retention supply  
current  
IDDDR  
VDDDR = 2.0 V  
10  
mA  
Subsystem clock stopped  
Feedback resistor not connected  
Release signal set time tSREL  
0
ms  
ms  
ms  
17  
Oscillation stabilization  
wait time  
tWAIT  
Release by RESET  
Release by interrupt  
2 /fX  
Note  
Note Selection of 212/fX, 214/fX to 217/fX is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time  
select register (OSTS).  
Data retention timing (STOP mode release by RESET)  
Internal reset operation  
HALT mode  
Operating mode  
STOP mode  
Data retention mode  
V
DD  
VDDDR  
t
SREL  
STOP instruction execution  
RESET  
t
WAIT  
Data retention timing (standby release signal: STOP mode release by interrupt signal)  
HALT mode  
Operating mode  
STOP mode  
Data retention mode  
VDD  
VDDDR  
tSREL  
STOP instruction execution  
Standby release signal  
(interrupt request)  
tWAIT  
5 6  
mPD78042F, 78043F, 78044F, 78045F  
Interrupt input timing  
t
INTL  
tINTH  
INTP0-INTP2  
t
INTL  
INTP3  
RESET input timing  
t
RSL  
RESET  
5 7  
mPD78042F, 78043F, 78044F, 78045F  
11. CHARACTERISTIC CURVE (REFERENCE VALUE)  
I
DD vs. VDD (Main system clock: 5.0 MHz)  
(TA = 25 °C)  
10.0  
5.0  
PCC = 00H  
PCC = 01H  
PCC = 02H  
PCC = 03H  
PCC = 04H  
PCC = 30H  
HALT (X1 and XT1 oscillate)  
1.0  
0.5  
f
f
X
= 5.0 MHz  
XT = 32.768 kHz  
0.1  
PCC = B0H  
0.05  
HALT (X1 stops but XT1 oscillates)  
(X1 stops but XT1 oscillates)  
STOP  
0.01  
0.005  
0.001  
0
2
3
4
5
6
7
8
Supply voltage VDD [V]  
5 8  
mPD78042F, 78043F, 78044F, 78045F  
I
DD vs. f  
X
(VDD = 3 V, T  
A
= 25 °C)  
4
3
2
1
0
PCC  
=
00H  
PCC  
PCC  
=
=
01H  
02H  
PCC  
PCC  
=
=
03H  
04H  
HALT  
(X1 oscil-  
lates)  
0
1
2
3
4
5
6
Clock oscillation frequency f  
X
[MHz]  
I
DD vs. f  
X
(VDD = 5 V, T  
A
= 25 °C)  
7
6
5
4
PCC  
=
00H  
PCC  
PCC  
=
=
01H  
02H  
3
2
PCC  
PCC  
=
=
03H  
04H  
HALT  
(X1 oscil-  
lates)  
1
0
0
1
2
3
4
5
6
Clock oscillation frequency f  
X
[MHz]  
5 9  
mPD78042F, 78043F, 78044F, 78045F  
VOL vs. IOL (Port 1)  
(TA = 25 °C)  
VDD = 6 V  
VDD = 5 V  
30  
20  
VDD = 4 V  
VDD = 3 V  
10  
0
0
0.5  
1.0  
1.5  
Low-level output voltage VOL [V]  
VOL vs. IOL (Ports 0, 2, and 3)  
(TA = 25 °C)  
V
DD = 6 V VDD = 5 V  
30  
20  
V
DD = 4 V  
V
DD = 3 V  
10  
0
0
0.5  
1.0  
1.5  
Low-level output voltage VOL [V]  
6 0  
mPD78042F, 78043F, 78044F, 78045F  
V
OL vs. IOL (Port 7)  
(TA = 25 °C)  
VDD = 6 V  
V
DD = 5 V  
VDD = 4 V  
30  
20  
VDD = 3 V  
10  
0
0
0.5  
1.0  
1.5  
Low-level output voltage VOL [V]  
6 1  
mPD78042F, 78043F, 78044F, 78045F  
V
DD – VOH vs. IOH (Port 0 - Port 3)  
(T  
A
= 25 °C)  
V
DD = 5 V  
VDD = 6 V  
VDD = 4 V  
–10  
V
DD = 3 V  
–5  
0
0
0.5  
1.0  
1.5  
High-level output voltage VDD – VOH [V]  
V
DD – VOH vs. IOH (Port 8 - Port 12)  
(TA  
= 25 °C)  
V
DD = 6 V VDD = 5 V  
–30  
V
DD = 4 V  
VDD = 3 V  
–20  
–10  
0
0
1.0  
2.0  
3.0  
High-level output voltage  
VDD – VOH [V]  
6 2  
mPD78042F, 78043F, 78044F, 78045F  
12. PACKAGE DRAWING  
80 PIN PLASTIC QFP (14 20)  
A
B
41  
40  
64  
65  
detail of lead end  
S
C D  
R
Q
25  
24  
80  
1
F
G
J
M
H
I
K
P
M
N
L
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.15 mm (0.006 inch) of  
its true position (T.P.) at maximum material condition.  
A
23.6±0.4  
0.929±0.016  
+0.009  
0.795  
B
20.0±0.2  
–0.008  
+0.009  
0.551  
C
14.0±0.2  
–0.008  
D
F
17.6±0.4  
1.0  
0.693±0.016  
0.039  
G
0.8  
0.031  
+0.004  
0.014  
H
0.35±0.10  
–0.005  
I
0.15  
0.006  
J
0.8 (T.P.)  
0.031 (T.P.)  
+0.008  
0.071  
K
L
1.8±0.2  
0.8±0.2  
–0.009  
+0.009  
0.031  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
M
–0.05  
–0.003  
N
P
Q
R
S
0.10  
0.004  
2.7  
0.106  
0.1±0.1  
5°±5°  
3.0 MAX.  
0.004±0.004  
5°±5°  
0.119 MAX.  
P80GF-80-3B9-3  
Remark The shape and material of the ES version are the same as those of the corresponding mass-produced  
product.  
6 3  
mPD78042F, 78043F, 78044F, 78045F  
13. RECOMMENDED SOLDERING CONDITIONS  
The conditions listed below shall be met when soldering the mPD78042F, mPD78043F, mPD78044F, or  
mPD78045F.  
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting  
Technology Manual (C10535E).  
Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under  
different conditions.  
Table 13-1 Soldering Conditions for Surface-Mount Devices  
mPD78042FGF-¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)  
mPD78043FGF-¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)  
mPD78044FGF-¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)  
mPD78045FGF-¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)  
Soldering process  
Infrared ray reflow  
Soldering conditions  
Recommended conditions  
IR35-00-3  
Peak package's surface temperature: 235 °C  
Reflow time: 30 seconds or less (210 °C or more)  
Maximum allowable number of reflow processes: 3  
VPS  
Peak package's surface temperature: 215 °C  
Reflow time: 40 seconds or less (200 °C or more)  
Maximum allowable number of reflow processes: 3  
VP15-00-3  
WS60-00-1  
Wave soldering  
Solder temperature: 260 °C or less  
Flow time: 10 seconds or less  
Number of flow processes: 1  
Preheating temperature : 120 °C max.  
(measured on the package surface)  
Partial heating method  
Terminal temperature: 300 °C or less  
Heat time: 3 seconds or less (for one side of a device)  
Caution Do not apply two or more different soldering methods to one chip (except for partial heating  
method for terminal sections).  
6 4  
mPD78042F, 78043F, 78044F, 78045F  
APPENDIX A DEVELOPMENT TOOLS  
The following tools are available for development of systems using the mPD78042F, mPD78043F, mPD78044F,  
or mPD78045F.  
Language processing software  
Notes 1, 2, 3, 4  
RA78K/0  
CC78K/0  
DF78044  
Assembler package common to 78K/0 series  
C compiler package common to 78K/0 series  
Device file for mPD78044A subseries  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
Notes 1, 2, 3, 4  
CC78K/0-L  
C compiler library source file common to 78K/0 series  
PROM writing tools  
PG-1500  
PROM programmer  
PA-78P048GF  
Programmer adapter connected to PG-1500  
PA-78P048KL-S  
Notes 1, 2  
PG-1500 controller  
Control program for PG-1500  
Debugging tools  
IE-78000-R  
In-circuit emulator common to 78K/0 series  
In-circuit emulator common to 78K/0 series (for integrated debugger)  
Break board common to 78K/0 series  
Note 8  
IE-78000-R-A  
IE-78000-R-BK  
IE-78044-R-EM  
EP-78130GF-R  
EV-9200G-80  
Emulation board for evaluating mPD78044A subseries  
Emulation probe common to mPD78134  
Socket mounted on target system created for 80-pin plastic QFP  
System simulator common to 78K/0 series  
Integrated debugger for IE-78000-R-A  
Notes 5, 6, 7  
SM78K0  
Notes 4, 5, 6, 7, 8  
ID78K0  
Notes 1, 2  
SD78K/0  
Screen debugger for IE-78000-R  
Notes 1, 2, 5, 6, 7  
DF78044  
Device file common to mPD78044A subseries  
Real-time OS  
Notes 1, 2, 3, 4  
RX78K/0  
Real-time OS for 78K/0 series  
OS for 78K/0 series  
Notes 1, 2, 3, 4  
MX78K0  
Notes 1. PC-9800 series (MS-DOSTM) based  
2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based  
3. HP9000 series 300TM (HP-UXTM) based  
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWS-  
UX/V) based  
5. PC-9800 series (MS-DOS + WindowsTM) based  
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based  
7. NEWSTM (NEWS-OSTM) based  
8. Under development  
6 5  
mPD78042F, 78043F, 78044F, 78045F  
Fuzzy inference development support system  
Note 1  
Note 3  
FE9000  
FT9080  
/FE9200  
/FT9085  
Fuzzy knowledge data creation tool  
Note 1  
Note 2  
Translator  
Notes 1, 2  
FI78K0  
Fuzzy inference module  
Fuzzy inference debugger  
Notes 1, 2  
FD78K0  
Notes 1. PC-9800 series (MS-DOS) based  
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based  
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based  
Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party develop-  
ment tools.  
2. RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 are used in combination with  
DF78044.  
6 6  
mPD78042F, 78043F, 78044F, 78045F  
APPENDIX B RELATED DOCUMENTS  
• Documents Related to Devices  
Document No.  
Document name  
Japanese  
U10908J  
English  
U10908E  
This manual  
U10611E  
mPD78044F Sub-Series User’s Manual  
mPD78042F, 78043F, 78044F, 78045F Data Sheet  
mPD78P048A Data Sheet  
U10700J  
U10611J  
U10701J  
IEU-849  
U10903J  
U10904J  
mPD78044A, 78044F Sub-Series Special Function Registers  
78K/0 Series User’s Manual, Instruction  
78K/0 Series Instruction Summary Sheet  
78K/0 Series Instruction Set  
IEU-1372  
Documents Related to Development Tools (User’s Manual)  
Document No.  
Japanese  
Document name  
English  
EEU-1399  
EEU-1404  
EEU-1402  
EEU-1280  
EEU-1284  
EEA-1208  
RA78K Series Assembler Package  
Operation  
Language  
EEU-809  
EEU-815  
EEU-817  
EEU-656  
EEU-655  
EEA-618  
EEU-777  
EEU-651  
EEU-704  
EEU-5008  
EEU-810  
U10057J  
EEU-867  
EEU-833  
EEU-943  
EEU-5002  
U10092J  
RA78K Series Structured Assembler Preprocessor  
CC78K Series C Compiler  
Operation  
Language  
CC78K/0 Compiler Application Note  
CC78K Series Library Source File  
PG-1500 PROM Programmer  
PG-1500 Controller PC-9800 Series (MS-DOS) Base  
PG-1500 Controller IBM PC Series (PC DOS) Base  
IE-78000-R  
Programming Know-How  
EEU-1335  
EEU-1291  
U10540E  
U11376E  
U10057E  
EEU-1427  
EEU-1424  
EEU-1470  
U10181E  
U10092E  
IE-78000-R-A  
IE-78000-R-BK  
IE-78044-R-EM  
EP-78130GF-R  
SM78K0 System Simulator  
SM78K Series System Simulator  
Reference  
External Parts User Open  
Interface Specifications  
ID78K0 Integrated Debugger  
SD78K/0 Screen Debugger  
PC-9800 Series (MS-DOS) Base  
SD78K/0 Screen Debugger  
IBM PC/AT (PC DOS) Base  
Reference  
Tutorial  
U11151J  
EEU-852  
EEU-816  
EEU-5024  
U11279J  
U10539E  
Reference  
Tutorial  
EEU-1414  
EEU-1413  
Reference  
Caution The above documents may be revised without notice. Use the latest versions when you design  
an application system.  
6 7  
mPD78042F, 78043F, 78044F, 78045F  
Documents Related to Software to Be Incorporated into the Product (User’s Manual)  
Document No.  
Document name  
Japanese  
EEU-912  
English  
78K/0 Series Real-Time OS  
OS for 78K/0 Series MX78K0  
Basic  
Installation  
Technical  
Basic  
EEU-911  
EEU-913  
EEU-5010  
EEU-829  
EEU-829  
Tool for Creating Fuzzy Knowledge Data  
EEU-1438  
EEU-1444  
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development  
Support System, Translator  
78K/0 Series Fuzzy Inference Development Support System,  
Fuzzy Inference Module  
EEU-858  
EEU-921  
EEU-1441  
EEU-1458  
78K/0 Series Fuzzy Inference Development Support System,  
Fuzzy Inference Debugger  
Other Documents  
Document No.  
Document name  
Japanese  
English  
IC PACKAGE MANUAL  
C10943X  
C10535J  
IEI-620  
SMD Surface Mount Technology Manual  
C10535E  
IEI-1209  
C10983E  
Quality Grades on NEC Semiconductor Device  
NEC Semiconductor Device Reliability/Quality Control System  
Electrostatic Discharge (ESD) Test  
C10983J  
MEM-539  
MEI-603  
MEI-604  
Guide to Quality Assurance for Semiconductor Device  
Guide for Products Related to Micro-Computer: Other Companies  
MEI-1202  
Caution The above documents may be revised without notice. Use the latest versions when you design  
an application system.  
6 8  
mPD78042F, 78043F, 78044F, 78045F  
[MEMO]  
6 9  
mPD78042F, 78043F, 78044F, 78045F  
Cautions on CMOS Devices  
Countermeasures against static electricity for all MOSs  
Caution When handling MOS devices, take care so that they are not electrostatically charged.  
Strong static electricity may cause dielectric breakdown in gates. When transporting or storing  
MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC  
uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not  
allow MOS devices to stand on plastic plates or do not touch pins.  
Also handle boards on which MOS devices are mounted in the same way.  
CMOS-specific handling of unused input pins  
Caution Hold CMOS devices at a fixed input level.  
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-  
level input may be caused by noise. This allows current to flow in the CMOS device, resulting  
in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused  
pins may function as output pins at unexpected times, each unused pin should be separately  
connected to the VDD or GND pin through a resistor.  
If handling of unused pins is documented, follow the instructions in the document.  
Statuses of all MOS devices at initialization  
Caution The initial status of a MOS device is unpredictable when power is turned on.  
Since characteristics of a MOS device are determined by the amount of ions implanted in  
molecules, the initial status cannot be determined in the manufacture process. NEC has no  
responsibility for the output statuses of pins, input and output settings, and the contents of  
registers at power on. However, NEC assures operation after reset and items for mode setting  
if they are defined.  
When you turn on a device having a reset function, be sure to reset the device first.  
FIP is a trademark of NEC Corporation.  
IEBus is trademark of NEC Corporation.  
MS-DOS and Windows are trademarks of Microsoft Corporation.  
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.  
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.  
SPARCstation is a trademark of SPARC International, Inc.  
SunOS is a trademark of Sun Microsystems, Inc.  
NEWS and NEWS-OS are trademarks of SONY Corporation.  
7 0  
mPD78042F, 78043F, 78044F, 78045F  
Regional Information  
Some information contained in this document may vary from country to country. Before using any NEC  
product in your application, please contact the NEC office in your country to obtain a list of authorized  
representatives and distributors. They will verify:  
• Device availability  
• Ordering information  
• Product release schedule  
• Availability of related technical literature  
• Development environment specifications (for example, specifications for third-party tools and  
components, host computers, power plugs, AC supply voltages, and so forth)  
• Network requirements  
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary  
from country to country.  
NEC Electronics Inc. (U.S.)  
Mountain View, California  
Tel: 800-366-9782  
NEC Electronics Hong Kong Ltd.  
Hong Kong  
Tel: 2886-9318  
NEC Electronics (Germany) GmbH  
Benelux Office  
Eindhoven, The Netherlands  
Tel: 040-2445845  
Fax: 800-729-9288  
Fax: 2886-9022/9044  
Fax: 040-2444580  
NEC Electronics (Germany) GmbH  
Duesseldorf, Germany  
Tel: 0211-65 03 02  
NEC Electronics Hong Kong Ltd.  
Seoul Branch  
Seoul, Korea  
NEC Electronics (France) S.A.  
France  
Fax: 0211-65 03 490  
Tel: 02-528-0303  
Fax: 02-528-4411  
Tel: 01-30-67 58 00  
Fax: 01-30-67 58 99  
NEC Electronics (UK) Ltd.  
Milton Keynes, UK  
Tel: 01908-691-133  
NEC Electronics Singapore Pte. Ltd.  
United Square, Singapore 1130  
Tel: 253-8311  
NEC Electronics (France) S.A.  
Spain Office  
Madrid, Spain  
Fax: 01908-670-290  
Fax: 250-3583  
Tel: 01-504-2787  
NEC Electronics Italiana s.r.1.  
Milano, Italy  
Tel: 02-66 75 41  
Fax: 01-504-2860  
NEC Electronics Taiwan Ltd.  
Taipei, Taiwan  
Tel: 02-719-2377  
NEC Electronics (Germany) GmbH  
Scandinavia Office  
Taeby Sweden  
Fax: 02-66 75 42 99  
Fax: 02-719-5951  
Tel: 8-63 80 820  
NEC do Brasil S.A.  
Sao Paulo-SP, Brasil  
Tel: 011-889-1680  
Fax: 011-889-1689  
Fax: 8-63 80 388  
J96. 3  
7 1  
mPD78042F, 78043F, 78044F, 78045F  
Note that “prelim inary” is not indicated in this docum ent, even though the related docum ents m ay be  
prelim inary versions.  
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited  
without governmental license, the need for which must be judged by the customer. The export or re-export of this product  
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales  
representative.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on  
a customer designated "quality assurance program" for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94. 11  

相关型号:

78043

Wire And Cable
ALPHAWIRE

78044F

Common to 78K/0 Series
NEC

78044H

Common to 78K/0 Series
NEC

78045

Heat Sink,
AAVID

78045-0660

Board Connector, 6 Contact(s), 2 Row(s), Female, 0.079 inch Pitch, Crimp Terminal, Locking, Black Insulator, Plug
MOLEX

78045-1060

2.00mm (.079) Pitch, Milli-Grid™ Crimp Housing, 10 Circuits, with Center Polarization Key and side Locking Ramps, Leadfree
MOLEX

78045-1260

Board Connector, 12 Contact(s), 2 Row(s), Female, 0.079 inch Pitch, Crimp Terminal, Locking, Black Insulator, Plug
MOLEX

78046

Wire And Cable
ALPHAWIRE

78046-1020

2.00mm (.079") Pitch Milli-Grid Header, Right Angle, Through Hole, Shrouded, 10 Circuits
MOLEX

78047-0243

Board Connector, 2 Contact(s), 1 Row(s), Male, Straight, 0.059 inch Pitch, Surface Mount Terminal, Locking, Beige Insulator,
MOLEX

78047-0342

Board Connector, 3 Contact(s), 1 Row(s), Male, Straight, 0.059 inch Pitch, Surface Mount Terminal, Locking, Beige Insulator,
MOLEX

78047-0343

Board Connector, 3 Contact(s), 1 Row(s), Male, Straight, 0.059 inch Pitch, Surface Mount Terminal, Locking, Beige Insulator,
MOLEX