NT5CC256M16CN-FLH [NANYA]

Commercial, Industrial and Automotive DDR3(L) 4Gb SDRAM;
NT5CC256M16CN-FLH
型号: NT5CC256M16CN-FLH
厂家: Nanya Technology Corporation.    Nanya Technology Corporation.
描述:

Commercial, Industrial and Automotive DDR3(L) 4Gb SDRAM

动态存储器 双倍数据速率
文件: 总164页 (文件大小:7336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nanya Technology Corp.  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Commercial, Industrial and Automotive DDR3(L) 4Gb SDRAM  
Features  
Signal Integrity  
JEDEC DDR3 Compliant  
- Configurable DS for system compatibility  
- Configurable On-Die Termination  
- 8n Prefetch Architecture  
- Differential Clock(CK/) and Data Strobe(DQS/)  
- Double-data rate on DQs, DQS and DM  
Data Integrity  
- ZQ Calibration for DS/ODT impedance accuracy via  
external ZQ pad (240 ohm ± 1%)  
Signal Synchronization  
- Write Leveling via MR settings 7  
- Auto Self Refresh (ASR) by DRAM built-in TS  
- Auto Refresh and Self Refresh Modes  
Power Saving Mode  
- Read Leveling via MPR  
Interface and Power Supply  
- Partial Array Self Refresh (PASR)1  
- SSTL_15 for DDR3:VDD/VDDQ=1.5V(±0.075V)  
- SSTL_1354 for DDR3L:VDD/VDDQ=1.35V(-0.067/+0.1V)  
- Power Down Mode  
Options  
Speed Grade (CL-TRCD-TRP) 2,3  
Temperature Range (Tc) 5  
- Commercial Grade = 0~95℃  
- 2133 Mbps / 14-14-14  
- 1866 Mbps / 13-13-13  
- 1600 Mbps / 11-11-11  
- Industrial Grade (-I) = -40~95℃  
- Automotive Grade 2 (-H) = -40~105℃  
- Automotive Grade 3 (-A) = -40~95℃  
Programmable Functions  
Self RefreshTemperature Range(Normal/Extended)  
Output Driver Impedance (34/40)  
CAS Latency (5/6/7/8/9/10/11/12/13/14)  
CAS Write Latency (5/6/7/8/9/10)  
On-Die Termination of Rtt_Nom(20/30/40/60/120)  
On-Die Termination of Rtt_WR(60/120)  
Precharge Power Down (slow/fast)  
Additive Latency (0/CL-1/CL-2)  
Write Recovery Time (5/6/7/8/10/12/14/16)  
Burst Type (Sequential/Interleaved)  
Burst Length (BL8/BC4/BC4 or 8 on the fly)  
Packages / Density Information  
Density and Addressing  
512Mb x 8  
Lead-free RoHS compliance and Halogen-free  
Organization  
256Mb x 16  
4Gb  
Length x Width  
(mm)  
Ball pitch  
(mm)  
Bank Address  
Auto precharge  
BL switch on the fly  
Row Address  
Column Address  
Page Size  
BA0 BA2  
A10 / AP  
A12 /   
A0 A15  
A0 A9  
1KB  
BA0 BA2  
A10 / AP  
A12 /   
A0 A14  
A0 A9  
2KB  
(Org. / Package)  
78-ball  
512Mbx8  
9.00 x 10.50  
9.00 x 13.00  
0.80  
0.80  
TFBGA  
96-ball  
tREFI(us) 5  
tRFC(ns) 6  
Tc<=85:7.8, Tc>85:3.9  
260ns  
256Mbx16  
TFBGA  
NOTE 1 Default state of PASR is disabed. This is enabled by using an electrical fuse. Please contact with NTC for the demand.  
NOTE 2 The timing specification of high speed bin is backward compatible with low speed bin.  
NOTE 3 Please refer to ordering information for the deailts (DDR3, DDR3L, DDR3L RS).  
NOTE 4 SSTL_135 compatible to SSTL_15. That means 1.35V DDR3L are backward compatible to 1.5V DDR3 parts. 1.35V DDR3L-RS parts are exceptional  
and unallowable to be compatible to 1.35V DDR3L and 1.5V DDR3 parts.  
NOTE 5 If TC exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9us interval refresh rate. Extended SRT or ASR must be enabled.  
NOTE 6 Violating tRFC specification will induce malfunction.  
NOTE 7 Only Support prime DQs feedback for each byte lane.  
Version 1.7  
04/2015  
1
Nanya Technology Cooperation ©  
NTC has the rights to change any specifications or product without notification.  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Core Timing  
DDR3-2133, DDR3(L)-1866, DDR3(L)-1600 and DDR3(L)-1333  
DDR3-2133  
DDR3(L)-1866 DDR3(L)-1600  
DDR3(L)-1333  
Speed Bins  
Parameter  
14-14-14  
13-13-13 11-11-11  
9-9-9 10-10-10  
Unit  
Min  
13.09  
13.09  
13.09  
46.09  
33  
Max  
Min  
Max  
Min  
Max  
Min  
13.5  
13.5  
13.5  
49.5  
36  
Max  
Min  
Max  
20  
13.91  
13.91  
13.91  
47.91  
34  
20  
13.75  
13.75  
13.75  
48.75  
35  
20  
20  
-
15  
15  
15  
51  
36  
20  
-
ns  
ns  
ns  
ns  
tAA  
tRCD  
tRP  
-
-
-
-
-
-
-
-
-
-
-
-
-
tRC  
9*tREFI  
9*tREFI  
9*tREFI  
9*tREFI  
9*tREFI ns  
tRAS  
DDR3(L)-1066 and DDR3(L)-800  
DDR3(L)-1066  
DDR3(L)-800  
Speed Bins  
Parameter  
7-7-7 8-8-8  
5-5-5 6-6-6  
Unit  
Min  
Max  
Min  
15  
Max  
Min  
Max  
Min  
15  
Max  
13.125  
13.125  
13.125  
50.625  
37.5  
20  
20  
12.5  
12.5  
12.5  
50  
20  
20  
-
ns  
ns  
ns  
ns  
tAA  
tRCD  
tRP  
-
15  
-
-
15  
-
15  
-
-
15  
-
-
52.5  
37.5  
-
-
52.5  
37.5  
-
tRC  
9*tREFI  
9*tREFI  
37.5  
9*tREFI  
9*tREFI ns  
tRAS  
Version 1.7  
04/2015  
2
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Descriptions  
The 4Gb Double-Data-Rate-3 (DDR3(L)) DRAM is a high-speed CMOS SDRAM containing 4,294,967,296 bits.  
It is internally configured as an octal-bank DRAM.  
The 4Gb chip is organized as 64Mbit x 8 I/O x 8 banks and 32Mbit x16 I/O x 8 banks. These synchronous  
devices achieve high speed double-data-rate transfer rates of up to 2133 Mb/sec/pin for general applications.  
The chip is designed to comply with all key DDR3(L) DRAM key features and all of the control and address  
inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross  
point of differential clocks (CK rising and  falling). All I/Os are synchronized with a single ended DQS or  
differential DQS pair in a source synchronous fashion.  
These devices operate with a single 1.5V ± 0.075V or 1.35V -0.067V/+0.1V power supply and are available in  
BGA packages.  
Version 1.7  
04/2015  
3
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Ordering Information  
Speed3  
Organization  
Part Number  
Package  
Clock  
(MHz)  
Data Rate  
CL-TRCD-TRP  
(Mb/s)  
DDR3 Commercial Grade  
NT5CB512M8CN-DI  
800  
933  
DDR3-1600  
DDR3-1866  
DDR3-2133  
DDR3-1600  
DDR3-1866  
DDR3-2133  
11-11-11  
13-13-13  
14-14-14  
11-11-11  
13-13-13  
14-14-14  
512M x 8  
NT5CB512M8CN-EK  
NT5CB512M8CN-FL  
NT5CB256M16CP-DI  
NT5CB256M16CP-EK  
NT5CB256M16CP-FL  
78-Ball  
96-Ball  
1066  
800  
256M x 16  
933  
1066  
DDR3L Commercial Grade  
Speed3  
Organization  
Part Number  
Package  
Clock  
(MHz)  
Data Rate  
(Mb/s)  
CL-TRCD-TRP  
NT5CC512M8CN-DI  
NT5CC512M8CN-DIB1  
NT5CC512M8CN-EK  
NT5CC256M16CP-DI  
NT5CC256M16CP-DIB1  
NT5CC256M16CP-EK  
800  
800  
933  
800  
800  
933  
DDR3L-1600 4  
DDR3L RS-1600  
DDR3L-1866 4  
DDR3L-1600 4  
DDR3L RS-1600  
DDR3L-1866 4  
11-11-11  
11-11-11  
13-13-13  
11-11-11  
11-11-11  
13-13-13  
512M x 8  
78-Ball  
256M x 16  
96-Ball  
DDR3(L) Industrial Grade  
NT5CB512M8CN-DII  
800  
800  
800  
800  
DDR3-1600  
11-11-11  
11-11-11  
11-11-11  
11-11-11  
512M x 8  
78-Ball  
NT5CC512M8CN-DII  
NT5CB256M16CP-DII  
NT5CC256M16CP-DII  
DDR3L-1600 4  
DDR3-1600  
256M x 16  
96-Ball  
DDR3L-1600 4  
DDR3 Automotive Grade 2 2  
NT5CB256M16CP-DIH 96-Ball 800  
DDR3 Automotive Grade 3 2  
NT5CB256M16CP-DIA 96-Ball 800  
256M x 16  
256M x 16  
DDR3-1600  
DDR3-1600  
11-11-11  
11-11-11  
NOTE 1 Reduced Standby  
NOTE 2 Please confirm with NTC for the available schedule.  
NOTE 3 The timing specification of high speed bin is backward compatible with low speed bin.  
NOTE 4 1.35V DDR3L are backward compatible to 1.5V DDR3 parts. 1.35V DDR3L-RS parts are exceptional and  
unallowable to be compatible to 1.35V DDR3L and 1.5V DDR3 parts.  
Version 1.7  
04/2015  
4
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
NANYA Component Part Numbering Guide  
NT  
5C  
B
512M8  
C
N
DI  
Special Type Option  
NA = Commercial Grade  
I = Industrial Grade  
NANYA  
Technology  
H = Automotive Grade2  
A = Automotive Grade3  
B = Reduced Standby  
Product Family  
5C = DDR3 SDRAM  
Speed  
DDR3 SDRAM  
DI = DDR3- 1600 11-11-11  
EK = DDR3- 1866 13-13-13  
Interface & Power ( VDD & VDDQ)  
B = SSTL_ 15 (1.5V,1.5V)  
C = SSTL_135 (1.35V,1.35V)  
FL = DDR3- 2133 14-14-14  
Organization (Depth , Width)  
256M 16 = 512M8 = 4Gb  
Note:M=Mono  
Package Code  
RoHS + Halogen Free  
N=78 -Ball BGA  
Device Version  
C =3rd Version  
P=96 -Ball BGA  
Version 1.7  
04/2015  
5
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Ball Configuration 78 Ball BGA Package (X8)  
<TOP View>  
See the balls through the package  
1
VSS  
VSS  
VDDQ  
VSSQ  
VREFDQ  
NC  
2
VDD  
VSSQ  
DQ2  
DQ6  
VDDQ  
VSS  
VDD  
  
3
4
5
6
7
NU,T  
DM,TDQS  
DQ1  
8
VSS  
VSSQ  
DQ3  
VSS  
DQ5  
VSS  
VDD  
ZQ  
9
A
B
C
D
E
F
NC  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
DQ0  
DQS  
  
DQ4  
RA  
A  
WE  
BA2  
A0  
VDD  
DQ7  
CK  
F
G
H
J
ODT  
NC  
  
CKE  
NC  
G
H
J
A10/AP  
A15  
VSS  
VDD  
VSS  
VDD  
VSS  
1
BA0  
A3  
VREFCA  
BA1  
A4  
VSS  
VDD  
VSS  
VDD  
VSS  
9
K
L
M
N
A12/  
A1  
K
L
A5  
A2  
A7  
A9  
A11  
A6  
M
N
REET  
2
A13  
3
A14  
A8  
4
5
6
7
8
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.7  
04/2015  
6
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Ball Configuration 96 Ball BGA Package (X16)  
<TOP View>  
See the balls through the package  
1
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
2
3
4
5
6
7
DQU4  
U  
DQSU  
DQU0  
DML  
DQL1  
VDD  
DQL7  
CK  
8
VDDQ  
DQU6  
DQU2  
VSSQ  
VSSQ  
DQL3  
VSS  
DQL5  
VSS  
VDD  
ZQ  
9
A
B
C
D
E
F
DQU5  
VDD  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
VDDQ  
VSS  
VDD  
  
DQU7  
VSS  
DQU1  
DMU  
DQL0  
DQSL  
L  
DQL4  
RA  
A  
WE  
VSS  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
VDDQ  
VSSQ  
VREFDQ  
NC  
G
H
J
G
H
J
K
L
M
N
P
ODT  
  
CKE  
NC  
K
L
M
N
P
NC  
A10/AP  
NC  
VSS  
BA0  
A3  
BA2  
A0  
VREFCA  
BA1  
VSS  
VDD  
VSS  
VDD  
VSS  
9
VDD  
VSS  
A12/  
A1  
A5  
A2  
A4  
R
T
VDD  
VSS  
A7  
A9  
A11  
A6  
R
T
REET  
2
A13  
3
A14  
A8  
1
4
5
6
7
8
Unit: mm  
* BSC (Basic Spacing between Center)  
Version 1.7  
04/2015  
7
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Ball Descriptions  
Symbol  
Type  
Function  
Clock: CK and  are differential clock inputs. All address and control input signals are sampled  
on the crossing of the positive edge of CK and negative edge of .  
  
Input  
Clock Enable: CKE high activates, and CKE low deactivates, internal clock signals and device  
input buffers and output drivers. Taking CKE low provides Precharge Power-Down and  
Self-Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is  
synchronous for power down entry and exit and for Self-Refresh entry. CKE is asynchronous for  
Self-Refresh exit. After VREF has become stable during the power on and initialization sequence,  
it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and  
exit, VREF must maintain to this input. CKE must be maintained high throughout read and write  
accesses. Input buffers, excluding CK, , ODT and CKE are disabled during Power Down. Input  
buffers, excluding CKE, are disabled during Self-Refresh.  
CKE  
Input  
Chip Select: All commands are masked when  is registered high.  provides for external  
rank selection on systems with multiple memory ranks.  is considered part of the command  
code.  
Input  
Input  
  
RA, A, WE  
Command Inputs: RA, A and WE (along with ) define the command being entered.  
For x8,  
DM  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH coincident with that input data during a Write access. DM is sampled on both  
edges of DQS. For x8 device, the function of DM or TDQS/T is enabled by Mode Register  
A11 setting in MR1.  
Input  
Input  
For x16,  
DMU, DML  
Bank Address Inputs: BA0, BA1, and BA2 define to which bank an Active, Read, Write or  
Precharge command is being applied. Bank address also determines which mode register is to be  
accessed during a MRS cycle.  
BA0 - BA2  
Auto-Precharge: A10 is sampled during Read/Write commands to determine whether  
Autoprecharge should be performed to the accessed bank after the Read/Write operation. (HIGH:  
Autoprecharge; LOW: no Autoprecharge). A10 is sampled during a Precharge command to  
determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only  
one bank is to be precharged, the bank is selected by bank addresses.  
A10 / AP  
Input  
Input  
For x8,  
A0 A15  
For x16,  
A0 A14  
Address Inputs: Provide the row address for Activate commands and the column address for  
Read/Write commands to select one location out of the memory array in the respective bank.  
(A10/AP and A12/ have additional function as below.) The address inputs also provide the  
op-code during Mode Register Set commands.  
Burst Chop: A12/is sampled during Read and Write commands to determine if burst chop  
A12/  
Input  
Input  
(on the fly) will be performed. (HIGH - no burst chop; LOW - burst chopped).  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the  
DDR3 SDRAM. When enabled, ODT is applied to each DQ, DQS, and DM/TDQS, NU/T  
(when TDQS is enabled via Mode Register A11=1 in MR1) signal for x8 configurations. The ODT  
pin will be ignored if Mode-registers, MR1and MR2, are programmed to disable RTT.  
ODT  
Version 1.7  
04/2015  
8
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Symbol  
Type  
Function  
Active Low Asynchronous Reset: Reset is active when REET is LOW, and inactive when  
REET is HIGH. REET must be HIGH during normal operation. REET is a CMOS rail to rail  
signal with DC high and low at 80% and 20% of VDD, i.e. 1.20V for DC high and 0.30V.  
Data Inputs/Output: Bi-directional data bus. DQ0 is the prime DQ in a low byte lane of  
x4/x8/x16 configuration and DQ8 is the prime DQ in a high byte lane of x16 configuration for write  
leveling.  
Input  
REET  
DQ  
Input/output  
Input/output  
Data Strobe: output with read data, input with write data. Edge aligned with read data, centered  
with write data. The data strobes DQS, DQSL, DQSU are paired with differential signals ,  
L, U, respectively, to provide differential pair signaling to the system during both reads  
and writes. DDR3 SDRAM supports differential data strobe only and does not support  
single-ended.  
For x8,  
DQS, ()  
For x16,  
DQSL,(L),  
DQSU,(U)  
Termination Data Strobe: TDQS/T is applicable for X8 DRAMs only. When enabled via  
Mode Register A11=1 in MR1, DRAM will enable the same termination resistance function on  
TDQS/T that is applied to DQS/. When disabled via mode register A11=0 in MR1,  
DM/T will provide the data mask function and T is not used. x16 DRAMs must disable the  
TDQS function via mode register A11=0 in MR1.  
For x8,  
Output  
TDQS, (T)  
NC  
-
No Connect: No internal electrical connection is present.  
VDDQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply: 1.35V -0.067V/+0.1V or 1.5V ± 0.075V  
Power Supply: 1.35V -0.067V/+0.1V or 1.5V ± 0.075V  
DQ Ground  
VSSQ  
VSS  
Ground  
VREFCA  
VREFDQ  
ZQ  
Reference voltage for CA  
Reference voltage for DQ  
Reference pin for ZQ calibration.  
Notes:  
1. Input only pins (BA0-BA2, A0-A15, RA, A, WE, , CKE, ODT, and REET) do not supply termination.  
2. The signal may show up in a different symbol but it indicates the same thing. e.g., /CK = CK# =  = CKb, /DQS = DQS# =  
 = DQSb, /CS = CS# =  = CSb.  
Version 1.7  
04/2015  
9
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Simplified State Diagram  
Power  
Applied  
MRS, MPR,  
Write  
Levelizing  
Power  
ON  
Reset  
Procedure  
Initialization  
Self Refresh  
SRE  
ZQCL  
MRS  
From any  
State  
SRX  
RESET  
ZQCL  
ZQCS  
ZQ Calibration  
Idle  
Refreshing  
REF  
PDX  
ACT  
PDE  
Precharge  
Power  
Activating  
Down  
Active  
Power  
Down  
PDE  
PDX  
Bank  
Active  
Write  
Read  
Read  
Write  
Read  
Write  
Writing  
Write A  
Writing  
Reading  
Read A  
Reading  
Write A  
Write A  
Read A  
Automatic  
Sequence  
Read A  
Command  
Sequence  
PRE,  
PREA  
PRE,  
PREA  
PRE,  
PREA  
Precharging  
State Diagram Command Definitions  
Abbr.  
Function  
Abbr.  
Function  
Abbr.  
Function  
ACT  
Active  
Read  
RD, RDS4, RDS8  
PDE  
PDX  
SRE  
SRX  
MPR  
-
Enter Power-down  
Exit Power-down  
Self-Refresh entry  
Self-Refresh exit  
Multi-Purpose Register  
-
PRE  
Precharge  
Read A  
Write  
RDA, RDAS4, RDAS8  
WR, WRS4, WRS8  
PREA  
MRS  
REF  
Precharge All  
Mode Register Set  
Refresh  
Write A  
RESET  
ZQCS  
WRA, WRAS4, WRAS8  
Start RESET Procedure  
ZQ Calibration Short  
ZQCL  
ZQ Calibration Long  
Version 1.7  
04/2015  
10  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Basic Functionality  
The DDR3(L) SDRAM is a high-speed dynamic random access memory internally configured as an eight-bank DRAM.  
The DDR3(L) SDRAM uses an 8n prefetch architecture to achieve high speed operation. The 8n prefetch architecture is  
combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write  
operation for the DDR3(L) SDRAM consists of a single 8n-bit wide, four clock data transfer at the internal DRAM core and  
two corresponding n-bit wide, one-half clock cycle data transfers at the I/O pins.  
Read and write operation to the DDR3(L) SDRAM are burst oriented, start at a selected location, and continue for a burst  
length of eight or a ‘chopped’ burst of four in a programmed sequence. Operation begins with the registration of an Active  
command, which is then followed by a Read or Write command. The address bits registered coincident with the Active  
command are used to select the bank and row to be activated (BA0-BA2 select the bank; A0-A15 select the row). The  
address bit registered coincident with the Read or Write command are used to select the starting column location for the  
burst operation, determine if the auto precharge command is to be issued (via A10), and select BC4 or BL8 mode ‘on the  
fly’ (via A12) if enabled in the mode register.  
Prior to normal operation, the DDR3(L) SDRAM must be powered up and initialized in a predefined manner. The following  
sections provide detailed information covering device reset and initialization, register definition, command descriptions  
and device operation.  
RESET and Initialization Procedure  
Power-up Initialization sequence  
The Following sequence is required for POWER UP and Initialization  
1. Apply power (REET is recommended to be maintained below 0.2 x VDD, all other inputs may be undefined). REET  
needs to be maintained for minimum 200μs with stable power. CKE is pulled “Low” anytime before REETbeing  
de-asserted (min. time 10ns). The power voltage ramp time between 300mV to VDDmin must be no greater than 200ms;  
and during the ramp, VDD>VDDQ and (VDD-VDDQ) <0.3 Volts.  
- VDD and VDDQ are driven from a single power converter output, AND  
- The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one  
side and must be larger than or equal to VSSQ and VSS on the other side. In addition, VTT is limited to 0.95V max once  
power ramp is finished, AND  
- Vref tracks VDDQ/2.  
OR  
- Apply VDD without any slope reversal before or at the same time as VDDQ.  
- Apply VDDQ without any slope reversal before or at the same time as VTT & Vref.  
- The voltage levels on all pins other than VDD, VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one  
side and must be larger than or equal to VSSQ and VSS on the other side.  
2. After REETis de-asserted, wait for another 500us until CKE become active. During this time, the DRAM will start  
internal state initialization; this will be done independently of external clocks.  
3. Clock (CK, ) need to be started and stabilized for at least 10ns or 5tCK (which is larger) before CKE goes active.  
Since CKE is a synchronous signal, the corresponding set up time to clock (tIS) must be meeting. Also a NOP or  
Version 1.7  
04/2015  
11  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Deselect command must be registered (with tIS set up time to clock) before CKE goes active. Once the CKE registered  
“High” after Reset, CKE needs to be continuously registered “High” until the initialization sequence is finished,  
including expiration of tDLLK and tZQinit  
.
4. The DDR3(L) DRAM will keep its on-die termination in high impedance state as long as REETis asserted. Further,  
the DRAM keeps its on-die termination in high impedance state after REET de-assertion until CKE is registered HIGH.  
The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is registered  
HIGH, the ODT input signal may be statically held at either LOW or HIGH. If RTT_NOM is to be enabled in MR1, the  
ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the power up  
initialization sequence is finished, including the expiration of tDLLK and tZQinit.  
5. After CKE being registered high, wait minimum of Reset CKE Exit time, tXPR, before issuing the first MRS command  
to load mode register. [TXPR=max (tXS, 5tCK)]  
6. Issue MRS command to load MR2 with all application settings. (To issue MRS command for MR2, provide “Low” to  
BA0 and BA2, “High” to BA1)  
7. Issue MRS command to load MR3 with all application settings. (To issue MRS command for MR3, provide “Low” to  
BA2, “High” to BA0 and BA1)  
8. Issue MRS Command to load MR1 with all application settings and DLL enabled. (To issue “DLL Enable” command,  
provide “Low” to A0, “High” to BA0 and “Low” to BA1 and BA2)  
9. Issue MRS Command to load MR0 with all application settings and “DLL reset”. (To issue DLL reset command,  
provide “High” to A8 and “Low” to BA0-BA2)  
10. Issue ZQCL command to starting ZQ calibration.  
11. Wait for both tDLLK and tZQinit completed.  
12. The DDR3 (L) SDRAM is now ready for normal operation.  
Version 1.7  
04/2015  
12  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Reset and Initialization Sequence at Power- on Ramping (Cont’d)  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
tCKSRX  
CK  
CK  
RESET  
CKE  
10ns  
tIS  
Valid  
Valid  
Valid  
Valid  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
ODT  
NOP*  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
NOP*  
Command  
BA0-BA2  
VDD,  
VDDQ  
tDLLK  
tMRD  
T=200us  
tXPR  
tMRD  
tMRD  
tMOD  
T=500us  
tZQinit.  
Do Not  
Care  
Time break  
* From time point Td until Tk. NOP or DES commands must be applied between MRS and ZQcal commnads.  
Reset Procedure at Stable Power (Cont’d)  
The following sequence is required for RESET at no power interruption initialization.  
1. Asserted RESET below 0.2*VDD anytime when reset is needed (all other inputs may be undefined). RESET needs to be  
maintained for minimum 100ns. CKE is pulled “Low” before RESET being de-asserted (min. time 10ns).  
2. Follow Power-up Initialization Sequence step 2 to 11.  
3. The Reset sequence is now completed. DDR3 (L) SDRAM is ready for normal operation.  
Reset Procedure at Power Stable Condition  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
tCKSRX  
CK  
CK  
RESET  
CKE  
10ns  
tIS  
Valid  
Valid  
Valid  
Valid  
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW  
ODT  
NOP*  
MRS  
MR2  
MRS  
MR3  
MRS  
MR1  
MRS  
MR0  
ZQCL  
NOP*  
Command  
BA0-BA2  
VDD,  
VDDQ  
tDLLK  
tMRD  
T=100ns  
tXPR  
tMRD  
tMRD  
tMOD  
T=500us  
tZQinit.  
Do Not  
Care  
Time break  
* From time point Td until Tk. NOP or DES commands must be applied between MRS and ZQcal commnads.  
Version 1.7  
04/2015  
13  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
VDDQ/VDDQ Voltage Switch Between DDR3L and DDR3  
Version 1.7  
04/2015  
14  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Register Definition  
Programming the Mode Registers  
For application flexibility, various functions, features, and modes are programmable in four Mode Registers, provided by the  
DDR3 (L) SDRAM, as user defined variables and they must be programmed via a Mode Register Set (MRS) command. As  
the default values of the Mode Registers (R) are not defined, contents of Mode Registers must be fully initialized and/or  
re-initialized, i.e. written, after power up and/or reset for proper operation. Also the contents of the Mode Registers can be  
altered by re-executing the MRS command during normal operation. When programming the mode registers, even if the  
user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must be  
redefined when the MRS command is issued. MRS command and DLL Reset do not affect array contents, which mean  
these commands can be executed any time after power-up without affecting the array contents.  
The mode register set command cycle time, tMRD is required to complete the write operation to the mode register and is the  
minimum time required between two MRS commands shown as below.  
tMRD Timing  
CK  
CK  
CMD  
ADDR  
CKE  
MRS  
VAL  
NOP  
NOP  
NOP  
NOP  
MRS  
VAL  
tMRD  
Do not  
Care  
Time break  
The MRS command to Non-MRS command delay, tMOD, is require for the DRAM to update the features except DLL reset,  
and is the minimum time required from an MRS command to a non-MRS command excluding NOP and DES shown as the  
following figure.  
Version 1.7  
04/2015  
15  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
tMOD Timing  
CK  
CK  
Non  
MRS  
CMD  
ADDR  
CKE  
MRS  
VAL  
NOP  
NOP  
NOP  
NOP  
tMOD  
VAL  
VAL  
Old Setting  
New Setting  
Updating Setting  
Programming the Mode Registers (Cont’d)  
The mode register contents can be changed using the same command and timing requirements during normal operation as  
long as the DRAM is in idle state, i.e. all banks are in the precharged state with tRP satisfied, all data bursts are completed  
and CKE is high prior to writing into the mode register. The mode registers are divided into various fields depending on the  
functionality and/or modes.  
Mode Register MR0  
The mode-register MR0 stores data for controlling various operating modes of DDR3 (L) SDRAM. It controls burst length,  
read burst type, CAS latency, test mode, DLL reset, WR, and DLL control for precharge Power-Down, which include  
various vendor specific options to make DDR3(L) SDRAM useful for various applications. The mode register is written by  
asserting low on , RA, A, WE, BA0, BA1, and BA2, while controlling the states of address pins according to the  
following figure.  
Version 1.7  
04/2015  
16  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
MR0 Definition  
BA2 BA1 BA0  
A15-A13  
A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
MR select  
WR  
CAS Latency  
BL  
0
0
PPD  
DLL TM  
RBT CL  
PPD  
Slow exit(DLL off)  
Fast exit(DLL on)  
DLL Reset  
No  
Read Burst Type  
Nibble Sequential  
Interleave  
A12  
0
1
A8  
0
1
A3  
0
1
Yes  
mode  
Normal  
Test  
BA1 BA0 MR select  
A7  
0
1
0
0
1
1
0
1
0
1
MR0  
MR1  
MR2  
MR3  
BL  
8(Fixed)  
A1  
0
A0  
0
BC4 or 8 (on the fly)  
BC4(Fixed)  
0
1
1
0
WR  
16  
5
6
7
Reserved  
A11 A10 A9  
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
10  
12  
14  
CAS Latency  
Reserved  
A6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A5  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A4  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A2  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
5
6
7
8
9
10  
11  
12  
13  
14  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
*1: BA2 and A13~A15 are RFU and must be programmed to 0 during MRS.  
*2: WR (write recovery for autoprecharge)min in clock cycles is calculated by dividing tWR(in ns) by tCK(in ns) and rounding up to the next  
integer: WRmin[cycles] = Roundup(tWR[ns] / tCK[ns]). The WR value in the mode register must be programmed to be equal or larger than  
WRmin. The programmed WR value is used with tRP to determine tDAL.  
*3: The table only shows the encodings for a given Cas Latency. For actual supported Cas Latency, please refer to speedbin tables for each frequency  
*4: The table only shows the encodings for Write Recovery. For actual Write recovery timing, please refer to AC timingtable.  
Version 1.7  
04/2015  
17  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Burst Length, Type, and Order  
Accesses within a given burst may be programmed to sequential or interleaved order. The burst type is selected via bit A3  
as shown in the MR0 Definition as above figure. The ordering of access within a burst is determined by the burst length,  
burst type, and the starting column address. The burst length is defined by bits A0-A1. Burst lengths options include fix BC4,  
fixed BL8, and on the fly which allow BC4 or BL8 to be selected coincident with the registration of a Read or Write  
command via A12/.  
Burst Type and Burst Order  
Starting  
Column  
Address  
(A2,A1,A0)  
Burst type:  
Sequential  
(decimal)  
A3 = 0  
Burst type:  
Interleaved  
(decimal)  
A3 = 1  
Burst  
Length  
Read  
Write  
Note  
0,0,0  
0,0,1  
0,1,0  
0,1,1  
1,0,0  
1,0,1  
1,1,0  
1,1,1  
0,V,V  
1,V,V  
0,0,0  
0,0,1  
0,1,0  
0,1,1  
1,0,0  
1,0,1  
1,1,0  
1,1,1  
V,V,V  
0,1,2,3,T,T,T,T  
1,2,3,0,T,T,T,T  
2,3,0,1,T,T,T,T  
3,0,1,2,T,T,T,T  
4,5,6,7,T,T,T,T  
5,6,7,4,T,T,T,T  
6,7,4,5,T,T,T,T  
7,4,5,6,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,2,3,0,5,6,7,4  
2,3,0,1,6,7,4,5  
3,0,1,2,7,4,5,6  
4,5,6,7,0,1,2,3  
5,6,7,4,1,2,3,0  
6,7,4,5,2,3,0,1  
7,4,5,6,3,0,1,2  
0,1,2,3,4,5,6,7  
0,1,2,3,T,T,T,T  
1,0,3,2,T,T,T,T  
2,3,0,1,T,T,T,T  
3,2,1,0,T,T,T,T  
4,5,6,7,T,T,T,T  
5,4,7,6,T,T,T,T  
6,7,4,5,T,T,T,T  
7,6,5,4,T,T,T,T  
0,1,2,3,X,X,X,X  
4,5,6,7,X,X,X,X  
0,1,2,3,4,5,6,7  
1,0,3,2,5,4,7,6  
2,3,0,1,6,7,4,5  
3,2,1,0,7,6,5,4  
4,5,6,7,0,1,2,3  
5,4,7,6,1,0,3,2  
6,7,4,5,2,3,0,1  
7,6,5,4,3,2,1,0  
0,1,2,3,4,5,6,7  
Read  
Write  
1,2,3  
4
Chop  
1,2,4,5  
Read  
Write  
2
8
2,4  
Note:  
1. In case of burst length being fixed to 4 by MR0 setting, the internal write operation starts two clock cycles earlier than the BL8  
mode. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of burst length being selected  
on-the-fly via A12/, the internal write operation starts at the same point in time like a burst of 8 write operation. This means that  
during on-the-fly control, the starting point for tWR and tWTR will not be pulled in by two clocks.  
2. 0~7 bit number is value of CA [2:0] that causes this bit to be the first read during a burst.  
3. T: Output driver for data and strobes are in high impedance.  
4. V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
5. X: Do not Care.  
Version 1.7  
04/2015  
18  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
CAS Latency  
The CAS Latency is defined by MR0 (bit A2, A4~A6) as shown in the MR0 Definition figure. CAS Latency is the delay, in  
clock cycles, between the internal Read command and the availability of the first bit of output data. DDR3(L) SDRAM does  
not support any half clock latencies. The overall Read Latency (RL) is defined as Additive Latency (AL) + CAS Latency  
(CL); RL = AL + CL.  
Test Mode  
The normal operating mode is selected by MR0 (bit7=0) and all other bits set to the desired values shown in the MR0  
definition figure. Programming bit A7 to a ‘1’ places the DDR3(L) SDRAM into a test mode that is only used by the DRAM  
manufacturer and should not be used. No operations or functionality is guaranteed if A7=1.  
DLL Reset  
The DLL Reset bit is self-clearing, meaning it returns back to the value of ‘0’ after the DLL reset function has been issued.  
Once the DLL is enabled, a subsequent DLL Reset should be applied. Anytime the DLL reset function is used, tDLLK  
must be met before any functions that require the DLL can be used (i.e. Read commands or ODT synchronous  
operations.)  
Write Recovery  
The programmed WR value MR0(bits A9, A10, and A11) is used for the auto precharge feature along with tRP to  
determine tDAL WR (write recovery for auto-precharge)min in clock cycles is calculated by dividing tWR(ns) by tCK(ns)  
and rounding up to the next integer: WRmin[cycles] = Roundup(tWR[ns]/tCK[ns]). The WR must be programmed to be  
equal or larger than tWR (min).  
Precharge PD DLL  
MR0 (bit A12) is used to select the DLL usage during precharge power-down mode. When MR0 (A12=0), or ‘slow-exit’,  
the DLL is frozen after entering precharge power-down (for potential power savings) and upon exit requires tXPDLL to be  
met prior to the next valid command. When MR0 (A12=1), or ‘fast-exit’, the DLL is maintained after entering precharge  
power-down and upon exiting power-down requires tXP to be met prior to the next valid command.  
Version 1.7  
04/2015  
19  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Mode Register MR1  
The Mode Register MR1 stores the data for enabling or disabling the DLL, output strength, Rtt_Nom impedance, additive  
latency, WRITE leveling enable and Qoff. The Mode Register 1 is written by asserting low on , RA, A, WE high on  
BA0 and low on BA1 and BA2, while controlling the states of address pins according to the following figure.  
MR1 Definition  
BA2 BA1 BA0  
A15-A13  
A12 A11 A10 A9  
A8  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Rtt_Nom  
Rtt_Nom  
Rtt_Nom  
MR select  
AL  
0
0
Qoff TDQS  
0
Level  
D.I.C  
D.I.C DLL  
Rtt_Nom  
Disabled  
RZQ/4  
AL  
Disabled  
CL-1  
A11  
0
1
TDQS  
Disabled  
Enabled  
A9  
0
0
A6  
0
0
A2  
0
1
A4  
0
0
A3  
0
1
RZQ/2  
CL-2  
0
1
0
1
0
RZQ/6  
Reserved  
BA1 BA0 MR select  
0
1
1
1
1
RZQ/12  
RZQ/8  
Reserved  
Reserved  
0
0
1
1
0
1
0
1
MR0  
MR1  
MR2  
MR3  
1
1
1
1
0
0
1
1
0
1
0
1
DLL Enable  
Enable  
Disable  
A0  
0
1
Write Leveling enable  
Disabled  
Output Driver Impedance  
RZQ/6  
A7  
0
A5  
0
A1  
0
Enabled  
RZQ/7  
1
0
1
Reserved  
1
0
Reserved  
1
1
Qoff  
A12  
Output buffer enabled  
Output buffer disabled  
0
1
* 1 : BA2 and A8, A10, and A13 ~ A15 are RFU and must be programmed to 0 during MRS.  
*2: Outputs disabled - DQs, DQSs, s.  
*3: RZQ = 240  
*4: In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12]=1, all RTT_Nom settings are allowed; in Write Leveling Mode (MR1[bit7] = 1) with  
MR1[bit12]=0, only RTT_Nom settings of RZQ/2, RZQ/4 and RZQ/6 are allowed.  
*5: If RTT_Nom is used during Writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
Version 1.7  
04/2015  
20  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning to  
normal operation after having the DLL disabled. During normal operation (DLL-on) with MR1 (A0=0), the DLL is  
automatically disabled when entering Self-Refresh operation and is automatically re-enable upon exit of Self-Refresh  
operation. Any time the DLL is enabled and subsequently reset, tDLLK clock cycles must occur before a Read or  
synchronous ODT command can be issued to allow time for the internal clock to be synchronized with the external clock.  
Failing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON, or tAOF parameters. During  
tDLLK, CKE must continuously be registered high. DDR3(L) SDRAM does not require DLL for any Write operation, expect  
when RTT_WR is enabled and the DLL is required for proper ODT operation. For more detailed information on DLL Disable  
operation in DLL-off Mode.  
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by continu-  
ously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode register  
set command during DLL-off mode.  
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set Rtt_WR, MR2 {A10, A9}  
= {0, 0}, to disable Dynamic ODT externally.  
Output Driver Impedance Control  
The output driver impedance of the DDR3(L) SDRAM device is selected by MR1 (bit A1 and A5) as shown in MR1 definition  
figure.  
ODT Rtt Values  
DDR3(L) SDRAM is capable of providing two different termination values (Rtt_Nom and Rtt_WR). The nominal termination  
value Rtt_Nom is programmable in MR1. A separate value (Rtt_WR) may be programmable in MR2 to enable a unique Rtt  
value when ODT is enabled during writes. The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled.  
Version 1.7  
04/2015  
21  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Additive Latency (AL)  
Additive Latency (AL) operation is supported to make command and data bus efficient for sustainable bandwidth in DDR3(L)  
SDRAM. In this operation, the DDR3(L) SDRAM allows a read or write command (either with or without auto-precharge) to  
be issued immediately after the active command. The command is held for the time of the Additive Latency (AL) before it is  
issued inside the device. The Read Latency (RL) is controlled by the sum of the AL and CAS Latency (CL) register settings.  
Write Latency (WL) is controlled by the sum of the AL and CAS Write Latency (CWL) register settings. A summary of the AL  
register options are shown as the following table.  
Additive Latency (AL) Settings  
A4  
A3  
AL  
0, (AL Disable)  
CL-1  
0
0
0
1
1
0
CL-2  
1
1
Reserved  
Version 1.7  
04/2015  
22  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Write leveling  
For better signal integrity, DDR3(L) memory module adopted fly by topology for the commands, addresses, control signals,  
and clocks. The fly by topology has benefits from reducing number of stubs and their length but in other aspect, causes  
flight time skew between clock and strobe at every DRAM on DIMM. It makes difficult for the Controller to maintain tDQSS,  
tDSS, and tDSH specification. Therefore, the controller should support ‘write leveling’ in DDR3(L) SDRAM to compensate  
for skew.  
Output Disable  
The DDR3(L) SDRAM outputs maybe enable/disabled by MR1 (bit12) as shown in MR1 definition. When this feature is  
enabled (A12=1) all output pins (DQs, DQS, , etc.) are disconnected from the device removing any loading of the  
output drivers. This feature may be useful when measuring modules power for example. For normal operation A12 should  
be set to ‘0’.  
TDQS, T  
TDQS (Termination Data Strobe) is a feature of x8 DDR3(L) SDRAM that provides additional termination resistance outputs  
that may be useful in some system configurations.  
When enabled via the mode register, the same termination resistance function is applied to be TDQS/T pins that are  
applied to the DQS/ pins.  
In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termination resistance function only. The data  
strobe function of RDQS is not provided by TDQS.  
The TDQS and DM functions share the same pin. When the TDQS function is enabled via the mode register, the DM  
function is not supported. When the TDQS function is disabled, the DM function is provided and the T pin is not used.  
The TDQS function is available in x8 DDR3(L) SDRAM only and must be disabled via the mode register A11=0 in MR1 for  
x16 configurations.  
TDQS, T Function Matrix  
MR1 (A11)  
DM / TDQS  
DM  
NU / TDQS  
Hi-Z  
0 (TDQS Disabled)  
1 (TDQS Enabled)  
TDQS  
T  
Note:  
1. If TDQS is enabled, the DM function is disabled.  
2. When not used, TDQS function can be disabled to save termination power.  
3. TDQS function is only available for x8 DRAM and must be disabled for x16.  
Version 1.7  
04/2015  
23  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Mode Register MR2  
The Mode Register MR2 stores the data for controlling refresh related features, Rtt_WR impedance, and CAS write latency.  
The Mode Register 2 is written by asserting low on , RA, A, WE high on BA1 and low on BA0 and BA2, while  
controlling the states of address pins according to the table below.  
MR2 Definition  
BA2 BA1 BA0  
A15-A13  
A12 A11 A10 A9  
A8  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
CWL  
PASR  
MR select  
0
Rtt_WR  
0
SRT ASR  
ASR  
PASR  
Full Array  
A6  
0
1
A2  
0
0
0
0
A1  
0
0
1
1
A0  
0
1
0
1
Manual SR Reference (SRT)  
ASR enable  
HalfArray (BA[2:0]=000,001,010, &011)  
Quarter Array (BA[2:0]=000, & 001)  
1/8th Array (BA[2:0] = 000)  
3/4 Array (BA[2:0] = 010,011,100,101,110, & 111)  
HalfArray (BA[2:0] = 100, 101, 110, &111)  
Quarter Array (BA[2:0]=110, &111)  
1/8th Array (BA[2:0]=111)  
1
1
1
1
0
0
1
1
0
1
0
1
Rtt_WR  
Dynamic ODT off  
RZQ/4  
A10 A9  
0
0
1
1
0
1
0
1
RZQ/2  
Reserved  
CWL  
A5  
0
A4  
0
A3  
0
5 (tCK(avg)>=2.5ns)  
SRT  
6 (2.5ns>=tCK(avg)>=1.875ns)  
7 (1.875ns>=tCK(avg)>=1.5ns)  
8 (1.5ns>=tCK(avg)>=1.25ns)  
9 (1.25ns>=tCK(avg)>=1.07ns)  
10 (1.07ns>=tCK(avg)>=0.935ns)  
RFU  
A7  
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Normal operating  
temperature range  
Extended operating  
temperature range  
1
MR select  
MR0  
RFU  
BA1 BA0  
1
1
1
0
0
1
1
0
1
0
1
MR1  
MR2  
MR3  
* 1 : Default state of PASR is disabed. This is enabled by using an electrical fuse. Please contact with NTC for the demand.  
* 2 : BA2, A5, A8, A11 ~ A15 are RFU and must be programmed to 0 during MRS.  
* 3 : The Rtt_WR value can be applied during writes even when Rtt_Nom is disabled. During write leveling, Dynamic ODT is not available.  
Version 1.7  
04/2015  
24  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
CAS Write Latency (CWL)  
The CAS Write Latency is defined by MR2 (bits A3-A5) shown in MR2. CAS Write Latency is the delay, in clock cycles,  
between the internal Write command and the availability of the first bit of input data. DDR3(L) DRAM does not support any  
half clock latencies. The overall Write Latency (WL) is defined as Additive Latency (AL) + CAS Write Latency (CWL);  
WL=AL+CWL.  
Auto Self-Refresh (ASR) and Self-Refresh Temperature (SRT)  
DDR3(L) SDRAM must support Self-Refresh operation at all supported temperatures. Applications requiring Self-Refresh  
operation in the Extended Temperature Range must use the ASR function or program the SRT bit appropriately.  
Optional in DDR3(L) SDRAM: Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if  
DDR3(L) SDRAM devices support the following options or requirements referred to in this material. For more details refer to  
“Extended Temperature Usage”. DDR3(L) SDRAMs must support Self-Refresh operation at all supported temperatures.  
Applications requiring Self-Refresh operation in the Extended Temperature Range must use the optional ASR function or  
program the SRT bit appropriately.  
Dynamic ODT (Rtt_WR)  
DDR3(L) SDRAM introduces a new feature “Dynamic ODT”. In certain application cases and to further enhance signal  
integrity on the data bus, it is desirable that the termination strength of the DDR3(L) SDRAM can be changed without  
issuing an MRS command. MR2 Register locations A9 and A10 configure the Dynamic ODT settings. In Write leveling  
mode, only RTT_Nom is available. For details on Dynamic ODT operation, refer to “Dynamic ODT”.  
Version 1.7  
04/2015  
25  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Mode Register MR3  
The Mode Register MR3 controls Multi-purpose registers. The Mode Register 3 is written by asserting low on , RA, A,  
WE high on BA1 and BA0, and low on BA2 while controlling the states of address pins according to the table below.  
MR3 Definition  
BA2 BA1 BA0  
A15-A13  
A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
MR select  
0
MPR Loc  
0
MPR  
MPR  
MPR Loc  
Predefined pattern  
Reserved  
A2  
0
1
A1  
0
0
A0  
0
1
Normal operation  
Dataflow from MPR  
Reserved  
1
0
Reserved  
BA1 BA0 MR select  
1
1
0
0
1
1
0
1
0
1
MR0  
MR1  
MR2  
MR3  
* 1 : BA2, A3 - A15 are RFU and must be programmed to 0 during MRS.  
* 2 : The predefined pattern will be used for read synchronization.  
* 3 : When MPR control is set for normal operation (MR3 A[2] = 0) then MR3 A[1:0] will be ignored.  
Version 1.7  
04/2015  
26  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Multi-Purpose Register (MPR)  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence. To  
enable the MPR, a Mode Register Set (MRS) command must be issued to MR3 register with bit A2=1. Prior to issuing the  
MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any  
subsequent RD or RDA commands will be redirected to the Multi Purpose Register. When the MPR is enabled, only RD or  
RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2=0). Power  
down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR enable mode. The RESET  
function is supported during MPR enable mode.  
The Multi Purpose Register (MPR) function is used to Read out a predefined system timing calibration bit sequence.  
Fig. 1: MPR Block Diagram  
To enable the MPR, a MODE Register Set (MRS) command must be issued to MR3 Register with bit A2 = 1, prior to issuing  
the MRS command, all banks must be in the idle state (all banks precharged and tRP met). Once the MPR is enabled, any  
subsequent RD or RDA commands will be redirected to the Multi Purpose Register. The resulting operation, when a RD or  
RDA command is issued, is defined by MR3 bits A[1:0] when the MPR is enabled as shown. When the MPR is enabled,  
only RD or RDA commands are allowed until a subsequent MRS command is issued with the MPR disabled (MR3 bit A2 =  
0). Note that in MPR mode RDA has the same functionality as a READ command which means the auto precharge part of  
RDA is ignored. Power-Down mode, Self-Refresh and any other non-RD/RDA command is not allowed during MPR enable  
mode. The RESET function is supported during MPR enable mode.  
Version 1.7  
04/2015  
27  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
MPR MR3 Register Definition  
MR3 A[2]  
MR3 A[1:0]  
Function  
MPR  
MPR-Loc  
Normal operation, no MPR transaction.  
0b  
1b  
don't care (0b or 1b)  
See MR3 Table  
All subsequent Reads will come from DRAM array.  
All subsequent Write will go to DRAM array.  
Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0].  
MPR Functional Description  
One bit wide logical interface via all DQ pins during READ operation.  
Register Read on x8:  
DQ[0] drives information from MPR.  
DQ[7:1] either drive the same information as DQ [0], or they drive 0b.  
Register Read on x16:  
DQL[0] and DQU[0] drive information from MPR.  
DQL[7:1] and DQU[7:1] either drive the same information as DQL [0], or they drive 0b.  
Addressing during for Multi Purpose Register reads for all MPR agents:  
• BA [2:0]: don’t care  
A[1:0]: A[1:0] must be equal to ‘00’b. Data read burst order in nibble is fixed  
A[2]: For BL=8, A[2] must be equal to 0b, burst order is fixed to [0,1,2,3,4,5,6,7], *) For Burst Chop 4 cases, the burst  
order is switched on nibble base A [2]=0b, Burst order: 0,1,2,3 *)  
A[2]=1b, Burst order: 4,5,6,7 *)  
A[9:3]: don’t care  
• A10/AP: don’t care  
A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0.  
• A11, A13... (if available): don’t care  
Regular interface functionality during register reads:  
Support two Burst Ordering which are switched with A2 and A[1:0]=00b.  
Support of read burst chop (MRS and on-the-fly via A12/BC)  
All other address bits (remaining column address bits including A10, all bank address bits) will be ignored by the DDR3(L)  
SDRAM.  
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR Reads.  
NOTE: *Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Version 1.7  
04/2015  
28  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
MPR MR3 Register Definition  
Read Address  
A[2:0]  
Burst Order  
MR3 A[2]  
MR3 A[1:0]  
Function  
Burst Length  
and Data Pattern  
Burst order 0,1,2,3,4,5,6,7  
Pre-defined Data Pattern [0,1,0,1,0,1,0,1]  
Burst order 0,1,2,3  
BL8  
BC4  
BC4  
000b  
000b  
100b  
Read Predefined  
Pattern for System  
Calibration  
1b  
00b  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 4,5,6,7  
Pre-defined Data Pattern [0,1,0,1]  
BL8  
BC4  
BC4  
BL8  
000b  
000b  
100b  
000b  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
1b  
1b  
1b  
01b  
10b  
11b  
RFU  
RFU  
RFU  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
BC4  
000b  
Burst order 0,1,2,3  
BC4  
BL8  
BC4  
BC4  
100b  
000b  
000b  
100b  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
NOTE: Burst order bit 0 is assigned to LSB and the burst order bit 7 is assigned to MSB of the selected MPR agent.  
Version 1.7  
04/2015  
29  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3(L) SDRAM Command Description and Operation  
Command Truth Table  
CKE  
A0-  
BA0- A13- A12- A10-  
Function  
Abbr.  
 RA A WE  
A9, NOTES  
A11  
Previous Current  
BA2  
A15  AP  
Cycle  
Cycle  
Mode Register Set  
Refresh  
MRS  
REF  
SRE  
H
H
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
L
L
L
L
L
L
L
H
H
X
BA  
V
OP Code  
V
V
X
V
V
V
V
V
X
V
V
V
V
V
X
V
L
H
V
H
H
H
L
V
V
X
V
V
V
Self Refresh Entry  
L
L
7,9,12  
X
X
H
H
H
H
L
X
Self Refresh Exit  
SRX  
L
H
7,8,9,12  
V
H
L
H
L
Single Bank Precharge  
PRE  
PREA  
ACT  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
BA  
V
Precharge all Banks  
L
L
Bank Activate  
L
H
L
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
V
Row Address (RA)  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
V
V
L
H
V
L
H
V
L
H
V
L
H
V
X
V
X
V
X
X
X
Write (Fixed BL8 or BC4)  
WR  
H
H
H
H
H
H
H
H
H
H
H
H
H
X
L
L
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
V
Write (BC4, on the Fly)  
WRS4  
WRS8  
WRA  
WRAS4  
WRAS8  
RD  
L
L
Write (BL8, on the Fly)  
L
L
L
Write with Auto Precharge (Fixed BL8 or BC4)  
Write with Auto Precharge (BC4, on the Fly)  
Write with Auto Precharge (BL8, on the Fly)  
Read (Fixed BL8 or BC4)  
L
L
H
H
H
L
L
L
L
L
L
H
H
H
H
H
H
H
X
Read (BC4, on the Fly  
RDS4  
RDS8  
RDA  
L
L
Read (BL8, on the Fly)  
L
L
Read with Auto Precharge (Fixed BL8 or BC4)  
Read with Auto Precharge (BC4, on the Fly)  
Read with Auto Precharge (BL8, on the Fly)  
No Operation  
L
H
H
H
V
X
V
X
V
X
H
L
RDAS4  
RDAS8  
NOP  
L
L
H
X
H
X
H
X
H
H
10  
11  
X
X
X
Device Deselected  
DES  
V
V
V
H
X
H
X
Power Down Entry  
Power Down Exit  
PDE  
PDX  
H
L
L
6,12  
6,12  
X
X
X
V
V
V
H
X
H
X
H
X
X
X
X
X
X
ZQ Calibration Long  
ZQ Calibration Short  
ZQCL  
ZQCS  
H
H
H
H
H
H
L
X
X
X
L
Version 1.7  
04/2015  
30  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3(L) SDRAM Command Description and Operation  
Command Truth Table (Conti.)  
NOTE1. All DDR3(L) SDRAM commands are defined by states of , RA, A, WEand CKE at the rising edge of the clock. The MSB of  
BA, RA and CA are device density and configuration dependant.  
NOTE2. REET is Low enable command which will be used only for asynchronous reset so must be maintained HIGH during any function.  
NOTE3. Bank addresses (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.  
NOTE4. “V” means “H or L (but a defined logic level)” and “X” means either “defined or undefined (like floating) logic level”.  
NOTE5. Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS.  
NOTE6. The Power-Down Mode does not perform any refresh operation.  
NOTE7. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
NOTE8. Self Refresh Exit is asynchronous.  
NOTE9. VREF (Both VrefDQ and VrefCA) must be maintained during Self Refresh operation.  
NOTE10. The No Operation command should be used in cases when the DDR3(L) SDRAM is in an idle or wait state. The purpose of the  
No Operation command (NOP) is to prevent the DDR3(L) SDRAM from registering any unwanted commands between operations.  
A No Operation command will not terminate a pervious operation that is still executing, such as a burst read or write cycle.  
NOTE11. The Deselect command performs the same function as No Operation command.  
NOTE12. Refer to the CKE Truth Table for more detail with CKE transition.  
Version 1.7  
04/2015  
31  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
CKE Truth Table  
CKE  
Command (N)  
Current State  
Action (N)  
Notes  
Previous Cycle Current Cycle  
RA, A,WE,   
(N-1)  
(N)  
X
L
L
Maintain Power-Down  
Power-Down Exit  
14,15  
11,14  
Power-Down  
Self-Refresh  
L
H
L
DESELECT or NOP  
X
L
Maintain Self-Refresh  
Self-Refresh Exit  
15,16  
L
H
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
REFRESH  
8,12,16  
Bank(s) Active  
Reading  
H
Active Power-Down Entry  
Power-Down Entry  
11,13,14  
11,13,14,17  
11,13,14,17  
11,13,14,17  
11  
H
L
Writing  
H
L
Power-Down Entry  
Precharging  
Refreshing  
H
L
Power-Down Entry  
H
L
Precharge Power-Down Entry  
Precharge Power-Down Entry  
Self-Refresh  
H
L
11,13,14,18  
9,13,18  
All Banks Idle  
H
L
NOTE 1 CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
NOTE 2 Current state is defined as the state of the DDR3(L) SDRAM immediately prior to clock edge N.  
NOTE 3 COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N), ODT is not  
included here.  
NOTE 4 All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
NOTE 5 The state of ODT does not affect the states described in this table. The ODT function is not available during Self-Refresh.  
NOTE 6 CKE must be registered with the same value on tCKEmin consecutive positive clock edges. CKE must remain at the valid  
input level the entire time it takes to achieve the tCKEmin clocks of registrations. Thus, after any CKE transition, CKE may  
not transition from its valid level during the time period of tIS + tCKEmin + tIH.  
NOTE 7 DESELECT and NOP are defined in the Command Truth Table.  
NOTE 8 On Self-Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXS period.  
Read or ODT commands may be issued only after tXSDLL is satisfied.  
NOTE 9 Self-Refresh modes can only be entered from the All Banks Idle state.  
NOTE 10 Must be a legal command as defined in the Command Truth Table.  
NOTE 11 Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
NOTE 12 Valid commands for Self-Refresh Exit are NOP and DESELECT only.  
NOTE 13 Self-Refresh cannot be entered during Read or Write operations.  
NOTE 14 The Power-Down does not perform any refresh operations.  
NOTE 15 “X” means “don’t care“(including floating around VREF) in Self-Refresh and Power-Down. It also applies to Address pins.  
NOTE 16 VREF (Both Vref_DQ and Vref_CA) must be maintained during Self-Refresh operation.  
NOTE 17 If all banks are closed at the conclusion of the read, write or precharge command, then Precharge Power-Down is entered,  
otherwise Active Power-Down is entered.  
NOTE 18 ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is high, and all  
timings from previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, etc.) as well as all  
Self-Refresh exit and Power-Down Exit parameters are satisfied (tXS, tXP, tXPDLL, etc).  
Version 1.7  
04/2015  
32  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
No Operation (NOP) Command  
The No operation (NOP) command is used to instruct the selected DDR3(L) SDRAM to perform a NOP (low and RA,  
A, and WE high). This prevents unwanted commands from being registered during idle or wait states. Operations  
already in progress are not affected.  
Deselect Command  
The Deselect function (HIGH) prevents new commands from being executed by the DDR3(L) SDRAM. The DDR3(L)  
SDRAM is effectively deselected. Operations already in progress are not affected.  
DLL- Off Mode  
DDR3(L) DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operations until A0  
bit set back to “0”. The MR1 A0 bit for DLL control can be switched either during initialization or later.  
The DLL-off Mode operations listed below are an optional feature for DDR3(L). The maximum clock frequency for DLL-off  
Mode is specified by the parameter tCKDLL_OFF. There is no minimum frequency limit besides the need to satisfy the  
refresh interval, tREFI.  
Due to latency counter and timing restrictions, only one value of CAS Latency (CL) in MR0 and CAS Write Latency (CWL)  
in MR2 are supported. The DLL-off mode is only required to support setting of both CL=6 and CWL=6.  
DLL-off mode will affect the Read data Clock to Data Strobe relationship (tDQSCK) but not the data Strobe to Data  
relationship (tDQSQ, tQH). Special attention is needed to line up Read data to controller time domain.  
Comparing with DLL-on mode, where tDQSCK starts from the rising clock edge (AL+CL) cycles after the Read command,  
the DLL-off mode tDQSCK starts (AL+CL-1) cycles after the read command. Another difference is that tDQSCK may not be  
small compared to tCK (it might even be larger than tCK) and the difference between tDQSCKmin and tDQSCKmax is  
significantly larger than in DLL-on mode.  
The timing relations on DLL-off mode READ operation have shown at the following Timing Diagram (CL=6, BL=8)  
Version 1.7  
04/2015  
33  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL-off mode READ Timing Operation  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
CK  
CMD  
Address  
READ  
Bank, Col b  
RL = AL+CL = 6 (CL=6, AL=0)  
DQSdiff_DLL_on  
DQ_DLL_on  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
RL(DLL_off) = AL+(CL-1) = 5  
tDQSCKDLL_diff_min  
DQSdiff_DLL_off  
Din  
b+4  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+5  
Din  
b+6  
Din  
b+7  
DQ_DLL_off  
DQSdiff_DLL_off  
tDQSCKDLL_diff_max  
Din  
b+4  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+5  
Din  
b+6  
Din  
b+7  
DQ_DLL_off  
Note: The tDQSCK is used here for DQS, DQS, and DQ to have a simplified diagram; the DLL_off shift will affect both timings in the same  
way and the skew between all DQ, DQS, and signals will still be tDQSQ.  
Version 1.7  
04/2015  
34  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL on/off switching procedure  
DDR3(L) DLL-off mode is entered by setting MR1 bit A0 to “1”; this will disable the DLL for subsequent operation until A0 bit  
set back to “0”.  
DLL “on” to DLL “off” Procedure  
To switch from DLL “on” to DLL “off” requires the frequency to be changed during Self-Refresh outlined in the following  
procedure:  
1. Starting from Idle state (all banks pre-charged, all timing fulfilled, and DRAMs On-die Termination resistors, RTT, must  
be in high impedance state before MRS to MR1 to disable the DLL).  
2. Set MR1 Bit A0 to “1” to disable the DLL.  
3. Wait tMOD.  
4. Enter Self Refresh Mode; wait until (tCKSRE) satisfied.  
5. Change frequency, in guidance with “Input Clock Frequency Change” section.  
6. Wait until a stable clock is available for at least (tCKSRX) at DRAM inputs.  
7. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until all tMOD timings from any  
MRS command are satisfied. In addition, if any ODT features were enabled in the mode registers when Self Refresh  
mode was entered, the ODT signal must continuously be registered LOW until all tMOD timings from any MRS  
command are satisfied. If both ODT features were disabled in the mode registers when Self Refresh mode was entered,  
ODT signal can be registered LOW or HIGH.  
8. Wait tXS, and then set Mode Registers with appropriate values (especially an update of CL, CWL, and WR may be  
necessary. A ZQCL command may also be issued after tXS).  
9. Wait for tMOD, and then DRAM is ready for next command.  
Version 1.7  
04/2015  
35  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL Switch Sequence from DLL-on to DLL-off  
T
a
T
a
T
b
T
c
T
d
T
d
T
e
T
e
T
f
T0  
T1  
0
1
0
0
0
1
0
1
0
CK  
CK  
tMOD  
NOP  
tCKSRE  
NOP  
4)  
tCKSRX 5)  
SRX 6)  
tXS  
tMOD  
NOP  
Vali  
d
CMD  
CKE  
MRS 2)  
SRE 3)  
MRS 7)  
8)  
8)  
1)  
NOP  
tCKESR  
Vali  
d
Vali  
d
ODT  
8)  
Do  
Tim  
not  
Car  
e
e
break  
Note:  
ODT: Static LOW in case RTT_Nom and RTT_WR is enabled, otherwise static Low or High  
1) Starting with Idle State, RTT in Hi-Z State.  
2) Disable DLL by setting MR1 Bit A0 to 1.  
3) Enter SR.  
4) Change Frequency.  
5) Clock must be stable at least tCKSRX.  
6) Exit SR.  
7) Update Mode registers with DLL off parameters setting.  
8) Any valid command.  
Version 1.7  
04/2015  
36  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL “off” to DLL “on” Procedure  
To switch from DLL “off” to DLL “on” (with requires frequency change) during Self-Refresh:  
1. Starting from Idle state (all banks pre-charged, all timings fulfilled and DRAMs On-die Termination resistors (RTT) must  
be in high impedance state before Self-Refresh mode is entered).  
2. Enter Self Refresh Mode, wait until tCKSRE satisfied.  
3. Change frequency, in guidance with “Input clock frequency change” section.  
4. Wait until a stable is available for at least (tCKSRX) at DRAM inputs.  
5. Starting with the Self Refresh Exit command, CKE must continuously be registered HIGH until tDLLK timing from subse-  
quent DLL Reset command is satisfied. In addition, if any ODT features were enabled in the mode registers when Self  
Refresh mode was entered. The ODT signal must continuously be registered LOW until tDLLK timings from subsequent  
DLL Reset command is satisfied. If both ODT features are disabled in the mode registers when Self Refresh mode was  
entered, ODT signal can be registered LOW or HIGH.  
6. Wait tXS, then set MR1 Bit A0 to “0” to enable the DLL.  
7. Wait tMRD, then set MR0 Bit A8 to “1” to start DLL Reset.  
8. Wait tMRD, then set Mode registers with appropriate values (especially an update of CL, CWL, and WR may be  
necessary. After tMOD satisfied from any proceeding MRS command, a ZQCL command may also be issued during or  
after tDLLK).  
9. Wait for tMOD, then DRAM is ready for next command (remember to wait tDLLK after DLL Reset before applying  
command requiring a locked DLL!). In addition, wait also for tZQoper in case a ZQCL command was issued.  
Version 1.7  
04/2015  
37  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DLL Switch Sequence from DLL-off to DLL-on  
T0  
Ta0  
Ta1  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf1  
Th0  
Tg0  
CK  
CK  
CMD  
CKE  
1)  
NOP  
SRE 2)  
NOP  
SRX 5)  
MRS 6)  
MRS 7)  
MRS 8)  
tDLLK  
Valid  
Valid  
ODTLoff  
+ 1tck  
tCKSRE  
3)  
tCKSRX 4)  
tXS  
tMRD  
tMRD  
tCKESR  
ODT  
Do not  
Care  
Time  
break  
Note:  
ODT: Static LOW in case RTT_Nom and RTT_WR is enabled, otherwise static Low or High  
1) Starting from Idle State.  
2) Enter SR.  
3) Change Frequency.  
4) Clock must be stable at least tCKSRX.  
5) Exit SR.  
6) Set DLL-on by MR1 A0="0"  
7) Start DLL Reset  
8) Any valid command  
Version 1.7  
04/2015  
38  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Input Clock frequency change  
Once the DDR3(L) SDRAM is initialized, the DDR3(L) SDRAM requires the clock to be “stable” during almost all states of  
normal operation. This means once the clock frequency has been set and is to be in the “stable state”, the clock period is  
not allowed to deviate except for what is allowed for by the clock jitter and SSC (spread spectrum clocking) specification.  
The input clock frequency can be changed from one stable clock rate to another stable clock rate under two conditions: (1)  
Self-Refresh mode and (2) Precharge Power-Down mode. Outside of these two modes, it is illegal to change the clock  
frequency.  
For the first condition, once the DDR3(L) SDRAM has been successfully placed in to Self-Refresh mode and tCKSRE has  
been satisfied, the state of the clock becomes a don’t care. Once a don’t care, changing the clock frequency is permissible,  
provided the new clock frequency is stable prior to tCKSRX. When entering and exiting Self-Refresh mode of the sole  
purpose of changing the clock frequency. The DDR3(L) SDRAM input clock frequency is allowed to change only within the  
minimum and maximum operating frequency specified for the particular speed grade.  
The second condition is when the DDR3(L) SDRAM is in Precharge Power-Down mode (either fast exit mode or slow exit  
mode). If the RTT_Nom feature was enabled in the mode register prior to entering Precharge power down mode, the ODT  
signal must continuously be registered LOW ensuring RTT is in an off state. If the RTT_Nom feature was disabled in the  
mode register prior to entering Precharge power down mode, RTT will remain in the off state. The ODT signal can be  
registered either LOW or HIGH in this case. A minimum of tCKSRE must occur after CKE goes LOW before the clock  
frequency may change. The DDR3(L) SDRAM input clock frequency is allowed to change only within the minimum and  
maximum operating frequency specified for the particular speed grade. During the input clock frequency change, ODT and  
CKE must be held at stable LOW levels. Once the input clock frequency is changed, stable new clocks must be provided to  
the DRAM tCKSRX before precharge Power Down may be exited; after Precharge Power Down is exited and tXP has  
expired, the DLL must be RESET via MRS. Depending on the new clock frequency additional MRS commands may need to  
be issued to appropriately set the WR, CL, and CWL with CKE continuously registered high. During DLL re-lock period,  
ODT must remain LOW and CKE must remain HIGH. After the DLL lock time, the DRAM is ready to operate with new clock  
frequency.  
Version 1.7  
04/2015  
39  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Change Frequency during Precharge Power-down  
Previous Clock Frequency  
New Clock Frequency  
Te1  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Td0  
Td1  
Te0  
tCKb  
tCHb tCLb  
tCK  
CK  
CK  
tCH  
tCL  
tCKSRE  
tCKSRX  
CKE  
tIH  
tIS  
tIS  
tIH  
tCPDED  
tCKE  
Command  
Valid  
Valid  
MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tXP  
DLL  
Reset  
Address  
ODT  
tAOFPD/tAOF  
tIS  
tIH  
DQS,  
DQS  
High-Z  
tDLLK  
DQ  
High-Z  
DM  
Enter Precharge  
Power-Down mode  
Exit Precharge  
Power-Down mode  
Frequency  
Change  
NOTES:  
1. Applicable for both SLOW EXIT and FAST EXIT Precharge Power-down  
2. tAOFPD and tAOF must be statisfied and outputs High-Z prior to T1; refer to ODT timing section for exact requirements  
3. If the RTT_NOM feature was enabled in the mode register prior to entering Precharge power down mode, the ODT signal must  
continuously be registered LOW ensuring RTT is in an off state. If the RTT_NOM feature was disabled in the mode register prior to entering  
Precharge power down mode, RTT will remain in the off state. The ODT signal can be registered either LOW or HIGH in this case.  
Version 1.7  
04/2015  
40  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Write Leveling  
For better signal integrity, DDR3(L) memory adopted fly by topology for the commands, addresses, control signals, and  
clocks. The fly by topology has benefits from reducing number of stubs and their length but in other aspect, causes flight  
time skew between clock and strobe at every DRAM on DIMM. It makes it difficult for the Controller to maintain tDQSS,  
tDSS, and tDSH specification. Therefore, the controller should support “write leveling” in DDR3(L) SDRAM to compensate  
the skew.  
The memory controller can use the “write leveling” feature and feedback from the DDR3(L) SDRAM to adjust the DQS -  
 to CK -  relationship. The memory controller involved in the leveling must have adjustable delay setting on DQS -  
 to align the rising edge of DQS -  with that of the clock at the DRAM pin. DRAM asynchronously feeds back CK -  
, sampled with the rising edge of DQS - , through the DQ bus. The controller repeatedly delays DQS - until a  
transition from 0 to 1 is detected. The DQS -  delay established though this exercise would ensure tDQSS specification.  
Besides tDQSS, tDSS, and tDSH specification also needs to be fulfilled. One way to achieve this is to combine the actual  
tDQSS in the application with an appropriate duty cycle and jitter on the DQS- signals. Depending on the actual  
tDQSS in the application, the actual values for tDQSL and tDQSH may have to be better than the absolute limits provided in  
“AC Timing Parameters” section in order to satisfy tDSS and tDSH specification. A conceptual timing of this scheme is  
show as below figure.  
Write Leveling Concept  
Diff _CK  
Source  
Diff _DQS  
Diff _CK  
Destination  
Diff _ DQS  
DQ  
0 or 1  
0
0
Push DQS to capture  
0 -1 transition  
DQ  
0 or 1  
1
1
DQS/ driven by the controller during leveling mode must be determined by the DRAM based on ranks populated.  
Similarly, the DQ bus driven by the DRAM must also be terminated at the controller.  
A separated feedback mechanism should be able for each byte lane. The low byte lanes prime DQ, DQ0, carries the  
leveling feedback to the controller across the DRAM configurations x4/x8 whereas DQ0 indicates the lower diff_DQS  
(diff_LDQS) to clock relationship. The high byte lanes prime DQ, DQ8, provides the feedback of the upper diff_DQS  
(diff_UDQS) to clock relationship.  
Version 1.7  
04/2015  
41  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DRAM setting for write leveling and DRAM termination unction in that mode  
DRAM enters into Write leveling mode if A7 in MR1 set “High” and after finishing leveling, DRAM exits from write leveling  
mode if A7 in MR1 set “Low”. Note that in write leveling mode, only DQS/ terminations are activated and deactivated  
via ODT pin not like normal operation.  
MR setting involved in the leveling procedure  
Function  
MR1  
Enable  
Disable  
Write leveling enable  
Output buffer mode (Qoff)  
A7  
1
0
0
1
A12  
DRAM termination function in the leveling mode  
ODT pin at DRAM  
DQS/ termination  
DQs termination  
De-asserted  
off  
on  
off  
off  
Asserted  
Note: In write leveling mode with its output buffer disabled (MR1[bit7]=1 with MR1[bit12]=1) all RTT_Nom settings are allowed; in Write  
Leveling Mode with its output buffer enabled (MR1[bit7]=1 with MR1[bit12]=0) only RTT_Nom settings of RZQ/2, RZQ/4, and RZQ/6 are  
allowed.  
Procedure Description  
Memory controller initiates Leveling mode of all DRAMs by setting bit 7 of MR1 to 1. With entering write leveling mode, the  
DQ pins are in undefined driving mode. During write leveling mode, only NOP or Deselect commands are allowed. As well  
as an MRS command to exit write leveling mode. Since the controller levels one rank at a time, the output of other rank  
must be disabled by setting MR1 bit A12 to 1. Controller may assert ODT after tMOD, time at which DRAM is ready to  
accept the ODT signal.  
Controller may drive DQS low and  high after a delay of tWLDQSEN, at which time DRAM has applied on-die  
termination on these signals. After tDQSL and tWLMRD controller provides a single DQS, edge which is used by the  
DRAM to sample CK  driven from controller. tWLMRD (max) timing is controller dependent.  
DRAM samples CK -  status with rising edge of DQS and provides feedback on all the DQ bits asynchronously after  
tWLO timing. There is a DQ output uncertainty of tWLOE defined to allow mismatch on DQ bits; there are no read strobes  
(DQS/DQS) needed for these DQs. Controller samples incoming DQ and decides to increment or decrement DQS   
delay setting and launches the next DQS/ pulse after some time, which is controller dependent. Once a 0 to 1  
transition is detected, the controller locks DQS  delay setting and write leveling is achieved for the device. The  
following figure describes the timing diagram and parameters for the overall Write leveling procedure.  
Version 1.7  
04/2015  
42  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Timing details of Write leveling sequence (For Information. Only Support prime DQ)  
DQS -  is capturing CK -  low at T1 and CK -  high at T2  
T1  
tWLH  
T2  
tWLH  
tWLS  
tWLS  
CK  
CK  
CMD  
MRS  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tMOD  
ODT  
tDQSL  
tDQSH  
tDQSL  
tDQSH  
tWLDQSEN  
Diff_DQS  
tWLMRD  
tWLO  
One Prime DQ:  
Prime DQ  
tWLO  
tWLO  
Late  
Re ma ining  
DQs  
Early  
Re ma ining  
DQs  
tWLO  
tWLO  
tWLOE  
All DQs are Prime:  
tWLMRD  
tWLO  
tWLO  
Late  
Re ma ining  
DQs  
tWLOE  
Early  
Re ma ining  
DQs  
tWLOE  
tWLO  
Undefined  
Driving Mode  
Do not  
Care  
Time  
break  
Note:  
1. DRAM has the option to drive leveling feedback on a prime DQ or all DQs. If feedback is driven only on  
one DQ, the remaining DQs must be driven low as shown in above Figure, and maintained at this state  
through out the leveling procedure.  
2. MRS: Load MR1 to enter write leveling mode  
3. NOP: NOP or deselect  
4. diff_DQS is the differential data strobe (DQS, ). Timing reference points are the zero crossings. DQS  
is shown with solid line,  is shown with dotted line.  
6. DQS/ needs to fulfill minimum pulse width requirements tDQSH(min) and tDQSL(min) as defined for  
regular Writes; the max pulse width is system dependent.  
Write Leveling Mode Exit  
The following sequence describes how Write Leveling Mode should be exited:  
1. After the last rising strobe edge (see ~T0), stop driving the strobe signals (see ~Tc0). Note: From now on, DQ pins are in  
undefined driving mode, and will remain undefined, until tMOD after the respective MR command (Te1).  
2. Drive ODT pin low (tIS must be satisfied) and keep it low (see Tb0).  
3. After the RTT is switched off, disable Write Level Mode via MRS command (see Tc2).  
4. After tMOD is satisfied (Te1), any valid command may be registered. (MR commands may be issued after tMRD (Td1).  
Version 1.7  
04/2015  
43  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Timing detail of Write Leveling exit  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Te0  
Te1  
CK  
CK  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
MRS  
MR1  
NOP  
tMRD  
Valid  
tMOD  
Valid  
NOP  
Valid  
Valid  
BA  
ODT  
tAOFmin  
tIS  
tODTLoff  
tWLO  
RTT_DQS_DQS  
RTT_Nom  
tAOFmax  
DQS_DQS  
DQ  
Result = 1  
Undefined  
Driving Mode  
Time Break  
Transitioning  
Do not Care  
Extended Temperature Usage  
Nanyas DDR3(L) SDRAM supports the optional extended temperature range of 0°C to +95°C, TC. Thus, the SRT and ASR  
options must be used at a minimum. The extended temperature range DRAM must be refreshed externally at 2X (double  
refresh) anytime the case temperature is above +85°C (in supporting temperature range). The external refreshing  
requirement is accomplished by reducing the refresh period from 64ms to 32ms. However, self refresh mode requires either  
ASR or SRT to support the extended temperature. Thus either ASR or SRT must be enabled when TC is above +85°C or  
self refresh cannot be used until the case temperature is at or below +85°C.  
Mode Register Description  
Field  
Bits  
Description  
Auto Self-Refresh (ASR)  
When enabled, DDR3(L) SDRAM automatically provides Self-Refresh power management functions for all  
supported operating temperature values. If not enabled, the SRT bit must be programmed to indicate TOPER  
during subsequent Self-Refresh operation.  
ASR  
MR2(A6)  
0 = Manual SR Reference (SRT)  
1 = ASR enable  
Self-Refresh Temperature (SRT) Range  
If ASR = 0, the SRT bit must be programmed to indicate TOPER during subsequent Self-Refresh operation. If  
ASR = 1, SRT bit must be set to 0.  
SRT  
MR2(A7)  
0 = Normal operating temperature range  
1 = Extended operating temperature range  
Version 1.7  
04/2015  
44  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Auto Self-Refresh mode - ASR mode  
DDR3(L) SDRAM provides an Auto-Refresh mode (ASR) for application ease. ASR mode is enabled by setting MR2 bit  
A6=1 and MR2 bit A7=0. The DRAM will manage Self-Refresh entry in either the Normal or Extended Temperature Ranges.  
In this mode, the DRAM will also manage Self-Refresh power consumption when the DRAM operating temperature  
changes, lower at low temperatures and higher at high temperatures. If the ASR option is not supported by DRAM, MR2 bit  
A6 must set to 0. If the ASR option is not enabled (MR2 bit A6=0), the SRT bit (MR2 bit A7) must be manually programmed  
with the operating temperature range required during Self-Refresh operation. Support of the ASR option does not  
automatically imply support of the Extended Temperature Range.  
Self-Refresh Temperature Range - SRT  
SRT applies to devices supporting Extended Temperature Range only. If ASR=0, the Self-Refresh Temperature (SRT)  
Range bit must be programmed to guarantee proper self-refresh operation. If SRT=0, then the DRAM will set an  
appropriate refresh rate for Self-Refresh operation in the Normal Temperature Range. If SRT=1, then the DRAM will set an  
appropriate, potentially different, refresh rate to allow Self-Refresh operation in either the Normal or Extended Temperature  
Ranges. The value of the SRT bit can effect self-refresh power consumption, please refer to IDD table for details.  
Self-Refresh mode summary  
Allowed Operating  
MR2  
A[6]  
MR2  
A[7]  
Self-Refresh operation  
Temperature Range for  
Self-Refresh mode  
Normal 1  
0
0
0
1
Self-Refresh rate appropriate for the Normal Temperature Range  
Self-Refresh appropriate for either the Normal or Extended Temperature Ranges.  
The DRAM must support Extended Temperature Range. The value of the SRT bit can  
effect self-refresh power consumption, please refer to the IDD table for details.  
Normal and Extended 2  
ASR enabled (for devices supporting ASR and Normal Temperature Range).  
Self-Refresh power consumption is temperature dependent.  
Normal 1  
1
1
0
ASR enabled (for devices supporting ASR and Extended Temperature Range).  
Self-Refresh power consumption is temperature dependent.  
Normal and Extended 2  
0
1
1
Illegal  
NOTES:  
1. The Normal range depends on products grade.  
- Commercial Grade = 0~85℃  
- Industrial Grade (-I) = -40~85℃  
- Automotive Grade 2 (-H) = -40~85℃  
- Automotive Grade 3 (-A) = -40~85℃  
2. The Normal and Extended range depends on products grade.  
- Commercial Grade = 0~95℃  
- Industrial Grade (-I) = -40~95℃  
- Automotive Grade 2 (-H) = -40~105℃  
- Automotive Grade 3 (-A) = -40~95℃  
Version 1.7  
04/2015  
45  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
MPR MR3 Register Definition  
MR3 A[2]  
MR3 A[1:0]  
Function  
Normal operation, no MPR transaction.  
don't care  
(0 or 1)  
0
1
All subsequent Reads will come from DRAM array.  
All subsequent Writes will go to DRAM array.  
Enable MPR mode, subsequent RD/RDA commands defined by MR3 A[1:0].  
See the following table  
MPR Functional Description  
One bit wide logical interface via all DQ pins during READ operation.  
Register Read on x8:  
DQ [0] drives information from MPR.  
DQ [7:1] either drive the same information as DQ [0], or they drive 0.  
Addressing during for Multi Purpose Register reads for all MPR agents:  
BA [2:0]: don’t care.  
A [1:0]: A [1:0] must be equal to “00”. Data read burst order in nibble is fixed.  
A[2]: For BL=8, A[2] must be equal to 0, burst order is fixed to [0,1,2,3,4,5,6,7]; For Burst chop 4 cases, the burst order is  
switched on nibble base, A[2]=0, burst order: 0,1,2,3, A[2]=1, burst order: 4,5,6,7. *)  
A [9:3]: don’t care.  
A10/AP: don’t care.  
A12/BC: Selects burst chop mode on-the-fly, if enabled within MR0  
A11, A13: don’t care.  
Regular interface functionality during register reads:  
Support two Burst Ordering which are switched with A2 and A[1:0]=00.  
Support of read burst chop (MRS and on-the-fly via A12/BC).  
All other address bits (remaining column addresses bits including A10, all bank address bits) will be ignored by the  
DDR3(L) SDRAM.  
Regular read latencies and AC timings apply.  
DLL must be locked prior to MPR READs.  
Note: Burst order bit 0 is assigned to LSB and burst order bit 7 is assigned to MSB of the selected MPR agent.  
Version 1.7  
04/2015  
46  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
MPR Register Address Definition  
The following table provide an overview of the available data location, how they are addressed by MR3 A[1:0] during a MRS  
to MR3, and how their individual bits are mapped into the burst order bits during a Multi Purpose Register Read.  
MPR MR3 Register Definition  
Burst  
Length  
Read Address  
A[2:0]  
MR3 A[2]  
MR3 A[1:0]  
Function  
Burst Order and Data Pattern  
Burst order 0,1,2,3,4,5,6,7  
Pre-defined Data Pattern [0,1,0,1,0,1,0,1]  
Burst order 0,1,2,3  
BL8  
BC4  
BC4  
000  
000  
100  
Read  
Predefined  
Pattern for  
System  
1
00  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 4,5,6,7  
Calibration  
Pre-defined Data Pattern [0,1,0,1]  
Burst order 0,1,2,3,4,5,6,7  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
BL8  
BC4  
BC4  
000  
000  
100  
000  
000  
100  
000  
000  
100  
1
1
1
01  
10  
11  
RFU  
RFU  
RFU  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Burst order 0,1,2,3,4,5,6,7  
Burst order 0,1,2,3  
Burst order 4,5,6,7  
Note: Burst order bit 0 is assigned to LSB and the burst order bit 7 is assigned to MSB of the selected MPR agent.  
ACTIVE Command  
The ACTIVE command is used to open (or activate) a row in a particular bank for subsequent access. The value on the  
BA0-BA2 inputs selects the bank, and the addresses provided on inputs A0-A15 selects the row. These rows remain active  
(or open) for accesses until a precharge command is issued to that bank. A PRECHARGE command must be issued before  
opening a different row in the same bank.  
Version 1.7  
04/2015  
47  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
PRECHARGE Command  
The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. The  
bank(s) will be available for a subsequent row activation a specified time (tRP) after the PRECHARGE command is issued,  
except in the case of concurrent auto precharge, where a READ or WRITE command to a different bank is allowed as long  
as it does not interrupt the data transfer in the current bank and does not violate any other timing parameters. Once a bank  
has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to  
that bank. A PRECHARGE command is allowed if there is no open row in that bank (idle bank) or if the previously open row  
is already in the process of precharging. However, the precharge period will be determined by the last PRECHARGE  
command issued to the bank.  
Version 1.7  
04/2015  
48  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
READ Operation  
Read Burst Operation  
During a READ or WRITE command DDR3(L) will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (AUTO PRECHARGE can be enabled or disabled).  
A12=0, BC4 (BC4 = burst chop, tCCD=4)  
A12=1, BL8  
A12 will be used only for burst length control, not a column address.  
Read Burst Operation RL=5 (AL=0, CL=5, BL=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK  
CK  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Address  
tRPRE  
tRPST  
DQS, DQS  
DQ  
Dout  
n
Dout  
n +1  
Dout  
n +2  
Dout  
n +3  
Dout  
n +4  
Dout  
n +5  
Dout  
n +6  
Dout  
n +7  
CL=5  
RL = AL + CL  
READ Burst Operation RL = 9 (AL=4, CL=5, BL=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
CK  
CK  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Address  
AL = 4  
tRPRE  
DQS, DQS  
DQ  
CL=5  
Dout  
n
Dout  
n +1  
Dout  
n +2  
RL = AL + CL  
Version 1.7  
04/2015  
49  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
READ Timing Definitions  
Read timing is shown in the following figure and is applied when the DLL is enabled and locked.  
Rising data strobe edge parameters:  
tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK, .  
tDQSCK is the actual position of a rising strobe edge relative to CK, .  
tQSH describes the DQS,  differential output high time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge parameters:  
tQSL describes the DQS,  differential output low time.  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Version 1.7  
04/2015  
50  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Read Timing; Clock to Data Strobe relationship  
Clock to Data Strobe relationship is shown in the following figure and is applied when the DLL is enabled and locked.  
Rising data strobe edge parameters:  
tDQSCK min/max describes the allowed range for a rising data strobe edge relative to CK and .  
tDQSCK is the actual position of a rising strobe edge relative to CK and .  
tQSH describes the data strobe high pulse width.  
Falling data strobe edge parameters:  
tQSL describes the data strobe low pulse width.  
Clock to Data Strobe Relationship  
RL Measured  
to this point  
CK  
CK  
tLZ(DQS)min  
tDQSCKmin  
tHZ(DQS)min  
tRPRE  
tQSH tQSL  
tRPST  
DQS, DQS  
Early Strobe  
tHZ(DQS)max  
tDQSCKmax  
tRPST  
tLZ(DQS)max  
DQS, DQS  
Late Strobe  
tRPRE  
NOTES:  
1. Within a burst, rising strobe edge is not necessarily fixed to be always at tDQSCK(min) or tDQSCK(max). Instead, rising strobe edge  
can vary between tDQSCK(min) and tDQSCK(max).  
2. The DQS,  differential output high time is defined by tQSH and the DQS,  differential output low time is defined by tQSL.  
3. Likewise, tLZ(DQS)min and tHZ(DQS)min are not tied to tDQSCKmin (early strobe case) and tLZ(DQS)max and tHZ(DQS)max are not  
tied to tDQSCKmax (late strobe case).  
4. The minimum pulse width of read preamble is defined by tRPRE(min).  
5. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZDSQ(max) on the right side.  
6. The minimum pulse width of read postamble is defined by tRPST(min).  
7. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side.  
Version 1.7  
04/2015  
51  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Read Timing; Data Strobe to Data Relationship  
The Data Strobe to Data relationship is shown in the following figure and is applied when the DLL and enabled and locked.  
Rising data strobe edge parameters:  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge parameters:  
tDQSQ describes the latest valid transition of the associated DQ pins.  
tQH describes the earliest invalid transition of the associated DQ pins.  
tDQSQ; both rising/falling edges of DQS, no tAC defined  
Data Strobe to Data Relationship  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK  
CK  
CMD  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Bank  
Col n  
Address  
DQS, DQS  
tDQSQmax  
tRPRE  
tQH  
tRPST  
tHZ(DQ)min  
tLZ(DQ)min  
tDQSQmin  
tQH  
RL = AL + CL  
Dout  
n
Dout  
n +1  
Dout  
n +2  
Dout  
n +3  
Dout  
n +4  
Dout  
n +5  
Dout  
n +6  
Dout  
n +7  
DQ (Last data valid)  
DQ (First data no  
longer valid)  
Dout  
n
Dout  
n +1  
Dout  
n +2  
Dout  
n +3  
Dout  
n +4  
Dout  
n +5  
Dout  
n +6  
Dout  
n +7  
All DQ collectively  
Valid data  
Valid data  
Version 1.7  
04/2015  
52  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Read to Read (CL=5, AL=0)  
Version 1.7  
04/2015  
53  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
READ to WRITE (CL=5, AL=0; CWL=5, AL=0)  
Version 1.7  
04/2015  
54  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
READ to READ (CL=5, AL=0)  
Version 1.7  
04/2015  
55  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
READ to WRITE (CL=5, AL=0; CWL=5, AL=0)  
Version 1.7  
04/2015  
56  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Write Operation  
DDR3(L) Burst Operation  
During a READ or WRITE command, DDR3(L) will support BC4 and BL8 on the fly using address A12 during the READ or  
WRITE (Auto Precharge can be enabled or disabled).  
A12=0, BC4 (BC4 = Burst Chop, tCCD=4)  
A12=1, BL8  
A12 is used only for burst length control, not as a column address.  
WRITE Timing Violations  
Motivation  
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure the  
DRAM works properly. However, it is desirable for certain minor violations that the DRAM is guaranteed not to “hang up”  
and errors be limited to that particular operation.  
For the following, it will be assumed that there are no timing violations with regard to the Write command itself (including  
ODT, etc.) and that it does satisfy all timing requirements not mentioned below.  
Data Setup and Hold Violations  
Should the strobe timing requirements (tDS, tDH) be violated, for any of the strobe edges associated with a write burst, then  
wrong data might be written to the memory location addressed with the offending WRITE command.  
Subsequent reads from that location might result in unpredictable read data, however, the DRAM will work properly  
otherwise.  
Strobe to Strobe and Strobe to Clock Violations  
Should the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements (tDSS,  
tDSH, tDQSS) be violated, for any of the strobe edges associated with a Write burst, then wrong data might be written to  
the memory location addressed with the offending WRITE command. Subsequent reads from that location might result in  
unpredictable read data, however the DRAM will work properly otherwise.  
Write Timing Parameters  
This drawing is for example only to enumerate the strobe edges that “belong” to a write burst. No actual timing violations  
are shown here. For a valid burst all timing parameters for each edge of a burst need to be satisfied (not only for one edge -  
as shown).  
Version 1.7  
04/2015  
57  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Write Timing Definition  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
Tn  
CK  
CK  
CMD  
Write  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tDSH  
NOP  
tDSH  
NOP  
NOP  
NOP  
Bank  
Col n  
Address  
tWPST(min)  
tDSH  
tDQSS tDSH  
tDSS  
tWPRE(min)  
DQS, DQS  
(tDQSS min)  
tDQSL(min)  
tDSS  
tDQSH  
tDSS  
Din  
tDQSH tDQSL tDQSH  
tDSS  
Din  
Din  
n
Din  
n +1  
Din  
n +3  
Din  
n +5  
Din  
Din  
DQ  
n +2  
n +4  
n +6  
n +7  
tDSS  
WL = AL + CWL  
tWPST(min)  
tDSH  
tDSH  
tDSH  
tDSH  
tDSS  
tWPRE(min)  
DQS, DQS  
(tDQSS nominal)  
tDQSL(min)  
tDSS  
tDQSH  
tDSS  
tDQSH tDQSL tDQSH  
tDSS  
Din  
n
Din  
n +1  
Din  
n +2  
Din  
n +3  
Din  
n +4  
Din  
n +5  
Din  
n +6  
Din  
DQ  
n +7  
tDSS  
tDSH  
tDQSS  
tWPST(min)  
tDQSL(min)  
tDSH  
tDSH  
tDSH  
tWPRE(min)  
DQS, DQS  
(tDQSS max)  
tDSS  
tDSS  
tDSS  
tDQSH  
tDQSH tDQSL tDQSH  
Din  
n
Din  
n +1  
Din  
n +2  
Din  
n +3  
Din  
n +4  
Din  
n +5  
Din  
n +6  
Din  
n +7  
tDSS  
DQ  
tDSS  
Note:  
1. BL=8, WL=5 (AL=0, CWL=5).  
2. Din n = data in from column n.  
3. NOP commands are shown for ease of illustration; other command may be valid at these times.  
4. BL8 setting activated by either MR0 [A1:0=00] or MR0 [A1:0=01] and A12 = 1 during WRITE command at T0.  
5. tDQSS must be met at each rising clock edge.  
Version 1.7  
04/2015  
58  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
WRITE to WRITE (WL=5; CWL=5, AL=0)  
Version 1.7  
04/2015  
59  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
WRITE to READ (RL=5, CL=5, AL=0; WL=5, CWL=5, AL=0; BL=4)  
Version 1.7  
04/2015  
60  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
WRITE to WRITE (WL=5, CWL=5, AL=0)  
Version 1.7  
04/2015  
61  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Refresh Command  
The Refresh command (REF) is used during normal operation of the DDR3(L) SDRAMs. This command is not persistent,  
so it must be issued each time a refresh is required. The DDR3(L) SDRAM requires Refresh cycles at an average periodic  
interval of tREFI. When , RA, and A are held Low and WE High at the rising edge of the clock, the chip enters a  
Refresh cycle. All banks of the SDRAM must be precharged and idle for a minimum of the precharge time tRP(min) before  
the Refresh Command can be applied. The refresh addressing is generated by the internal refresh controller. This makes  
the address bits “Don’t Care” during a Refresh command. An internal address counter suppliers the address during the  
refresh cycle. No control of the external address bus is required once this cycle has started. When the refresh cycle has  
completed, all banks of the SDRAM will be in the precharged (idle) state. A delay between the Refresh Command and the  
next valid command, except NOP or DES, must be greater than or equal to the minimum Refresh cycle time tRFC(min) as  
shown in the following figure.  
In general, a Refresh command needs to be issued to the DDR3(L) SDRAM regularly every tREFI interval. To allow for  
improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided.  
A maximum of 8 Refresh commands can be postponed during operation of the DDR3(L) SDRAM, meaning that at no point  
in time more than a total of 8 Refresh commands are allowed to be postponed. In case that 8 Refresh commands are  
postponed in a row, the resulting maximum interval between the surrounding Refresh commands is limited to 9 x tREFI. A  
maximum of 8 additional Refresh commands can be issued in advance (“pulled in”), with each one reducing the number of  
regular Refresh commands required later by one. Note that pulling in more than 8 Refresh commands in advance does not  
further reduce the number of regular Refresh commands required later, so that the resulting maximum interval between two  
surrounding Refresh command is limited to 9 x tREFI. Before entering Self-Refresh Mode, all postponed Refresh  
commands must be executed.  
Self-Refresh Entry/Exit Timing  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tb3  
Tc0  
Tc1  
CK  
CK  
CMD  
REF  
NOP  
NOP  
REF  
NOP  
NOP  
Valid  
Valid  
Valid  
Valid  
Vaid  
REF  
Valid  
tRFC  
tRFC(min)  
DRAM must be idle  
tREFI (max, 9 x tREFI)  
DRAM must be idle  
Time Break  
Postponing Refresh Commands (Example)  
tREFI  
9 x tREFI  
t
tREFI  
8 REF-Command postponed  
Version 1.7  
04/2015  
62  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Pulled-in Refresh Commands (Example)  
tREFI  
9 x tREFI  
t
tREFI  
8 REF-Commands pulled-in  
Self-Refresh Operation  
The Self-Refresh command can be used to retain data in the DDR3(L) SDRAM, even if the reset of the system is powered  
down. When in the Self-Refresh mode, the DDR3(L) SDRAM retains data without external clocking. The DDR3(L) SDRAM  
device has a built-in timer to accommodate Self-Refresh operation. The Self-Refresh Entry (SRE) Command is defined by  
having , RA, A, and E held low with WE high at the rising edge of the clock.  
Before issuing the Self-Refreshing-Entry command, the DDR3(L) SDRAM must be idle with all bank precharge state with  
tRP satisfied. Also, on-die termination must be turned off before issuing Self-Refresh-Entry command, by either registering  
ODT pin low “ODTL + 0.5tCK” prior to the Self-Refresh Entry command or using MRS to MR1 command. Once the  
Self-Refresh Entry command is registered, CKE must be held low to keep the device in Self-Refresh mode. During normal  
operation (DLL on), MR1 (A0=0), the DLL is automatically disabled upon entering Self-Refresh and is automatically  
enabled (including a DLL-RESET) upon exiting Self-Refresh.  
When the DDR3(L) SDRAM has entered Self-Refresh mode, all of the external control signals, except CKE and REET,  
are “don’t care”. For proper Self-Refresh operation, all power supply and reference pins (VDD, VDDQ, VSS, VSSQ,  
VRefCA, and VRefDQ) must be at valid levels. The DRAM initiates a minimum of one Refresh command internally within  
tCKE period once it enters Self-Refresh mode.  
The clock is internally disabled during Self-Refresh operation to save power. The minimum time that the DDR3(L) SDRAM  
must remain in Self-Refresh mode is tCKE. The user may change the external clock frequency or halt the external clock  
tCKSRE after Self-Refresh entry is registered; however, the clock must be restarted and stable tCKSRX before the device  
can exit Self-Refresh mode.  
The procedure for exiting Self-Refresh requires a sequence of events. First, the clock must be stable prior to CKE going  
back HIGH. Once a Self-Refresh Exit Command (SRX, combination of CKE going high and either NOP or Deselect on  
command bus) is registered, a delay of at least tXS must be satisfied before a valid command not requiring a locked DLL  
can be issued to the device to allow for any internal refresh in progress. Before a command which requires a locked DLL  
can be applied, a delay of at least tXSDLL and applicable ZQCAL function requirements must be satisfied.  
Version 1.7  
04/2015  
63  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Before a command that requires a locked DLL can be applied, a delay of at least tXSDLL must be satisfied. Depending on  
the system environment and the amount of time spent in Self-Refresh, ZQ calibration commands may be required to  
compensate for the voltage and temperature drift as described in “ZQ Calibration Commands”. To issue ZQ calibration  
commands, applicable timing requirements must be satisfied.  
CKE must remain HIGH for the entire Self-Refresh exit period tXSDLL for proper operation except for Self-Refresh re-entry.  
Upon exit from Self-Refresh, the DDR3(L) SDRAM can be put back into Self-Refresh mode after waiting at least tXS period  
and issuing one refresh command (refresh period of tRFC). NOP or deselect commands must be registered on each  
positive clock edge during the Self-Refresh exit interval tXS. ODT must be turned off during tXSDLL.  
The use of Self-Refresh mode instructs the possibility that an internally times refresh event can be missed when CKE is  
raised for exit from Self-Refresh mode. Upon exit from Self-Refresh, the DDR3(L) SDRAM requires a minimum of one extra  
refresh command before it is put back into Self-Refresh mode.  
Self-Refresh Entry/Exit Timing  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Tf  
CK, CK  
tCKSRE  
tCKS  
RX  
tCPDED  
CKE  
ODT  
CMD  
Valid  
Valid  
Valid  
tCKESR  
ODTL  
NOP  
SRE  
NOP  
SRX  
NOP 1)  
tXS  
Valid 2) Valid 3)  
Valid  
Valid  
tRF  
tXSDLL  
Enter Self Refresh  
Note:  
1. Only NOP or DES commands  
Exit Self Refresh  
Do Not  
Care  
Time  
Break  
2. Valid commands not requiring a locked DLL  
3. Valid commands requiring a locked DLL  
Version 1.7  
04/2015  
64  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Power-Down Modes  
Power-Down Entry and Exit  
Power-Down is synchronously entered when CKE is registered low (along with NOP or Deselect command). CKE is not  
allowed to go low while mode register set command, MPR operations, ZQCAL operations, DLL locking or read/write  
operation are in progress. CKE is allowed to go low while any of other operation such as row activation, precharge or auto  
precharge and refresh are in progress, but power-down IDD spec will not be applied until finishing those operation.  
The DLL should be in a locked state when power-down is entered for fastest power-down exit timing. If the DLL is not  
locked during power-down entry, the DLL must be reset after exiting power-down mode for proper read operation and  
synchronous ODT operation. DRAM design provides all AC and DC timing and voltage specification as well proper DLL  
operation with any CKE intensive operations as long as DRAM controller complies with DRAM specifications.  
During Power-Down, if all banks are closed after any in progress commands are completed, the device will be in precharge  
Power-Down mode; if any bank is open after in progress commands are completed, the device will be in active  
Power-Down mode.  
Entering Power-down deactivates the input and output buffers, excluding CK, CK, ODT, E, and REET. To protect  
DRAM internal delay on CKE line to block the input signals, multiple NOP or Deselect commands are needed during the  
CKE switch off and cycle(s) after, this timing period are defined as tCPDED. CKE_low will result in deactivation of  
command and address receivers after tCPDED has expired.  
Power-Down Entry Definitions  
Status of DRAM  
MRS bit A12  
DLL  
PD Exit  
Relevant Parameters  
Active  
Don't Care  
On  
Fast  
tXP to any valid command.  
(A Bank or more open)  
tXP to any valid command. Since it is in precharge state,  
commands here will be ACT, AR, MRS/EMRS, PR, or PRA.  
tXPDLL to commands who need DLL to operate, such as RD,  
RDA, or ODT control line.  
Precharged  
0
1
Off  
On  
Slow  
Fast  
(All Banks Precharged)  
Precharged  
tXP to any valid command.  
(All Banks Precharged)  
Also the DLL is disabled upon entering precharge power-down (Slow Exit Mode), but the DLL is kept enabled during  
precharge power-down (Fast Exit Mode) or active power-down. In power-down mode, CKE low, REET high, and a stable  
clock signal must be maintained at the inputs of the DDR3(L) SDRAM, and ODT should be in a valid state but all other input  
signals are “Don’t care” (If REET goes low during Power-Down, the DRAM will be out of PD mode and into reset state).  
CKE low must be maintain until tCKE has been satisfied. Power-down duration is limited by 9 times tREFI of the device.  
Version 1.7  
04/2015  
65  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
The power-down state is synchronously exited when CKE is registered high (along with a NOP or Deselect command).  
CKE high must be maintained until tCKE has been satisfied. A valid, executable command can be applied with power-down  
exit latency, tXP and/or tXPDLL after CKE goes high. Power-down exit latency is defined at AC spec table of this datasheet.  
Active Power-Down Entry and Exit timing diagram  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
CK  
CK  
CMD  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
tPD  
tIH  
CKE  
Valid  
Valid  
tIH  
tIS  
tCKE  
Address  
Valid  
Valid  
tCPDED  
tXP  
Enter  
Power-Down  
Exit  
Power-Down  
Do not  
care  
Time  
Break  
Timing Diagrams for CKE with PD Entry, PD Exit with Read, READ with Auto Precharge, Write and Write with Auto Precharge, Activate,  
Precharge, Refresh, MRS:  
Power-Down Entry after Read and Read with Auto Precharge  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tb3  
Tc0  
CK  
CK  
WRITE  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
tIS  
tCPDED  
CKE  
Bank,  
Col n  
Address  
DQS  
WL=AL+CWL  
WR (1)  
tPD  
Start Internal  
Precharge  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
BL8  
BC4  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
tWRAPDEN  
Power-Down  
Entry  
Do not  
care  
Time  
Break  
Version 1.7  
04/2015  
66  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Power-Down Entry after Write with Auto Precharge  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Tb0  
Tb1  
CK  
CK  
RD or  
RDA  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
Valid  
tIS  
tCPDED  
CKE  
tPD  
Address  
DQS  
Valid  
Valid  
RL = AL + CL  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
BL8  
BC4  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
tRDPDEN  
Power-Down  
Entry  
Do not  
care  
Time  
Break  
Version 1.7  
04/2015  
67  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Power-Down Entry after Write  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
Tb2  
Tc0  
CK  
CK  
WRITE  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tIS  
tCPDED  
CKE  
Bank,  
Col n  
Address  
DQS  
WL=AL+CWL  
WR  
tPD  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
BL8  
BC4  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
tWRPDEN  
Power-Down  
Entry  
Do not  
care  
Time  
Break  
Precharge Power-Down (Fast Exit Mode) Entry and Exit  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
NOP  
NOP  
Tc0  
CK  
CK  
WRITE  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
tCKE  
NOP  
tCPDED  
tIS  
tIH  
CKE  
Valid  
tIS  
tPD  
tXP  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
Do not  
care  
Time  
Break  
Precharge Power-Down (Slow Exit Mode) Entry and Exit  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Td0  
CK  
CK  
WRITE  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
tCPDED  
tCKE  
tIS  
tIH  
CKE  
Valid  
tIS  
tXP  
tPD  
tXPDLL  
Enter  
Power-Down  
Mode  
Exit  
Power-Down  
Mode  
Time  
Break  
Do not  
care  
Version 1.7  
04/2015  
68  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Refresh Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK  
CK  
CMD  
REF  
NOP  
NOP  
NOP  
Valid  
Valid  
Address  
Valid  
tCPDED  
tIS  
tPD  
CKE  
Valid  
tREFPDEN  
Do not  
care  
Time  
Break  
Version 1.7  
04/2015  
69  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Active Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK  
CK  
CMD  
Active  
Valid  
NOP  
NOP  
NOP  
Valid  
Valid  
Address  
tCPDED  
tIS  
tPD  
CKE  
Valid  
tACTPDEN  
Do not  
care  
Time  
Break  
Precharge/Precharge all Command to Power-Down Entry  
T0  
T1  
T2  
T3  
Ta0  
Ta1  
CK  
CK  
PRE  
PREA  
CMD  
NOP  
NOP  
NOP  
Valid  
Valid  
Address  
Valid  
tCPDED  
tIS  
tPD  
CKE  
Valid  
tPREPDEN  
Do not  
care  
Time  
Break  
MRS Command to Power-Down Entry  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
CK  
CK  
CMD  
MRS  
Valid  
NOP  
NOP  
NOP  
Valid  
Valid  
Address  
tCPDED  
tIS  
tPD  
CKE  
Valid  
tMRSPDEN  
Do not  
care  
Time  
Break  
Version 1.7  
04/2015  
70  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
On-Die Termination (ODT)  
ODT (On-Die Termination) is a feature of the DDR3(L) SDRAM that allows the DRAM to turn on/off termination resistance  
for each DQ, DQS, , and DM for x8 configuration and TDQS, T for x8 configuration, when enabled via A11=1 in  
MR1) via the ODT control pin. The ODT feature is designed to improve signal integrity of the memory channel by allowing  
the DRAM controller to independently turn on/off termination resistance for any or all DRAM devices.  
The ODT feature is turned off and not supported in Self-Refresh mode.  
A simple functional representation of the DRAM ODT feature is shown as below.  
Functional Representation of ODT  
ODT  
/ 2  
VDDQ  
To other  
circuitry  
like  
RTT  
Switch  
RCV, ...  
DQ , DQS, DM, TDQS  
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other control information. The  
value of RTT is determined by the settings of Mode Register bits. The ODT pin will be ignored if the Mode Register MR1  
and MR2 are programmed to disable ODT and in self-refresh mode.  
ODT Mode Register and ODT Truth Table  
The ODT Mode is enabled if either of MR1 {A2, A6, A9} or MR2 {A9, A10} are non-zero. In this case, the value of RTT is  
determined by the settings of those bits.  
Application: Controller sends WR command together with ODT asserted.  
One possible application: The rank that is being written to provides termination.  
DRAM turns ON termination if it sees ODT asserted (except ODT is disabled by MR)  
DRAM does not use any write or read command decode information.  
Termination Truth Table  
ODT pin  
DRAM Termination State  
OFF  
0
1
ON, (OFF, if disabled by MR1 {A2, A6, A9} and MR2{A9, A10} in general)  
Version 1.7  
04/2015  
71  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Synchronous ODT Mode  
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down definition, these  
modes are:  
Any bank active with CKE high  
Refresh with CKE high  
Idle mode with CKE high  
Active power down mode (regardless of MR0 bit A12)  
Precharge power down mode if DLL is enabled during precharge power down by MR0 bit A12  
The direct ODT feature is not supported during DLL-off mode. The on-die termination resistors must be disabled by continu-  
ously registering the ODT pin low and/or by programming the RTT_Nom bits MR1{A9,A6,A2} to {0,0,0} via a mode register  
set command during DLL-off mode.  
In synchronous ODT mode, RTT will be turned on ODTLon clock cycles after ODT is sampled high by a rising clock edge  
and turned off ODTLoff clock cycles after ODT is registered low by a rising clock edge. The ODT latency is tied to the write  
latency (WL) by: ODTLonn = WL - 2; ODTLoff = WL-2.  
ODT Latency and Posted ODT  
In synchronous ODT Mode, the Additive Latency (AL) programmed into the Mode Register (MR1) also applies to the ODT  
signal. The DRAM internal ODT signal is delayed for a number of clock cycles defined by the Additive Latency (AL) relative  
to the external ODT signal. ODTLon = CWL + AL - 2; ODTLoff = CWL + AL - 2. For details, refer to DDR3(L) SDRAM  
latency definitions.  
ODT Latency  
Symbol  
ODTLon  
ODTLoff  
Parameter  
DDR3-1600  
Unit  
tCK  
ODT turn on Latency  
ODT turn off Latency  
WL - 2 = CWL + AL - 2  
WL - 2 = CWL + AL - 2  
tCK  
Version 1.7  
04/2015  
72  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Timing Parameters  
In synchronous ODT mode, the following timing parameters apply: ODTLon, ODTLoff, tAON min/max, tAOF min/max.  
Minimum RTT turn-on time (tAON min) is the point in time when the device leaves high impedance and ODT resistance  
begins to turn on. Maximum RTT turn-on time (tAON max) is the point in time when the ODT resistance is fully on. Both are  
measured from ODTLon.  
Minimum RTT turn-off time (tAOF min) is the point in time when the device starts to turn off the ODT resistance. Maximum  
RTT turn off time (tAOF max) is the point in time when the on-die termination has reached high impedance. Both are  
measured from ODTLoff.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered by the SDRAM with  
ODT high, then ODT must remain high until ODTH4 (BL=4) or ODTH8 (BL=8) after the write command. ODTH4 and  
ODTH8 are measured from ODT registered high to ODT registered low or from the registration of a write command until  
ODT is registered low.  
Synchronous ODT Timing Example for AL=3; CWL=5; ODTLon=AL+CWL-2=6;  
ODTLoff=AL+CWL-2=6  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK  
CK  
CKE  
ODT  
tAONmax  
tAONmin  
AL=3  
ODTH4, min  
AL=3  
CWL - 2  
tAONmax  
ODTLon = CWL + AL -2  
tAONmin  
ODTLoff = CWL + AL -2  
RTT_NOM  
DRAM_RTT  
Transitioning  
Do not care  
Synchronous ODT example with BL=4, WL=7  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
CK  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
WRS4  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODTH4  
ODTH4  
ODT  
ODTH4min  
ODTLoff = WL - 2  
ODTLoff = CWL -2  
tAOFmax  
tAONmax  
tAONmin  
tAOFmax  
tAOFmin  
tAONmin  
tAONmax  
tAOFmin  
DRAM_RTT  
RTT_NOM  
ODTLon = CWL -2  
ODTLon = CWL -2  
Transitioning  
Do not care  
ODT must be held for at least ODTH4 after assertion (T1); ODT must be kept high ODTH4 (BL=4) or ODTH8 (BL=8) after  
Write command (T7). ODTH is measured from ODT first registered high to ODT first registered low, or from registration of  
Write command with ODT high to ODT registered low. Note that although ODTH4 is satisfied from ODT registered at T6  
ODT must not go low before T11 as ODTH4 must also be satisfied from the registration of the Write command at T7.  
Version 1.7  
04/2015  
73  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT during Reads:  
As the DDR3(L) SDRAM cannot terminate and drive at the same time, RTT must be disabled at least half a clock cycle  
before the read preamble by driving the ODT pin low appropriately. RTT may not be enabled until the end of the post-amble  
as shown in the following figure. DRAM turns on the termination when it stops driving which is determined by tHZ. If DRAM  
stops driving early (i.e. tHZ is early), then tAONmin time may apply. If DRAM stops driving late (i.e. tHZ is late), then DRAM  
complies with tAONmax timing. Note that ODT may be disabled earlier before the Read and enabled later after the Read  
than shown in this example.  
ODT must be disabled externally during Reads by driving ODT low. (Example: CL=6;  
AL=CL-1=5; RL=AL+CL=11; CWL=5; ODTLon=CWL+AL-2=8; ODTLoff=CWL+AL-2=8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
CK  
CK  
CMD  
Read  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODT  
RL = AL + CL  
ODTLon = CWL + AL - 2  
ODTLoff = CWL + AL - 2  
RTTR_TNTOM  
tAONmax  
tAOFmin  
DRAM  
ODT  
RTT_NOM  
tAOFmax  
DQSdiff  
Din  
b
Din  
b+1  
Din  
b+2  
Din  
b+3  
Din  
b+4  
Din  
b+5  
Din  
b+6  
Din  
b+7  
DQ  
Version 1.7  
04/2015  
74  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination  
strength of the DDR3(L) SDRAM can be changed without issuing an MRS command. This requirement is supported by the  
“Dynamic ODT” feature as described as follows:  
Functional Description  
The Dynamic ODT Mode is enabled if bit (A9) or (A10) of MR2 is set to ‘1’. The function is described as follows:  
Two RTT values are available: RTT_Nom and RTT_WR.  
The value for RTT_Nom is preselected via bits A[9,6,2] in MR1.  
The value for RTT_WR is preselected via bits A[10,9] in MR2.  
During operation without write commands, the termination is controlled as follows:  
Nominal termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and latencies ODTLon and ODTLoff.  
When a Write command (WR, WRA, WRS4, WRS8, WRAS4, WRAS8) is registered, and if Dynamic ODT is enabled, the  
termination is controlled as follows:  
A latency ODTLcnw after the write command, termination strength RTT_WR is selected.  
A latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected OTF) after the  
write command, termination strength RTT_Nom is selected.  
Termination on/off timing is controlled via ODT pin and ODTLon, ODTLoff.  
The following table shows latencies and timing parameters which are relevant for the on-die termination control in Dynamic  
ODT mode.  
The dynamic ODT feature is not supported at DLL-off mode. User must use MRS command to set RTT_WR, MR2[A10,A9  
= [0,0], to disable Dynamic ODT externally.  
When ODT is asserted, it must remain high until ODTH4 is satisfied. If a Write command is registered by the SDRAM with  
ODT high, then ODT must remain high until ODTH4 (BL=4) or ODTH8 (BL=8) after the Write command. ODTH4 and  
ODTH8 are measured from ODT registered high to ODT registered low or from the registration of Write command until ODT  
is register low.  
Version 1.7  
04/2015  
75  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Latencies and timing parameters relevant for Dynamic ODT  
Definition for all  
DDR3(L) speed pin  
Name and Description  
Abbr.  
Defined from  
Defined to  
Unit  
tCK  
registering external  
ODT signal high  
ODT turn-on Latency  
ODTLon  
turning termination on  
ODTLon=WL-2  
ODTLoff=WL-2  
ODTLcnw=WL-2  
ODTLcwn4=4+ODTLoff  
ODTLcwn8=6+ODTLoff  
ODTH4=4  
registering external  
ODT signal low  
ODT turn-off Latency  
ODTLoff  
ODTLcnw  
ODTLcwn4  
ODTLcwn8  
ODTH4  
turning termination off  
tCK  
ODT Latency for changing from  
RTT_Nom to RTT_WR  
registering external  
write command  
change RTT strength from  
RTT_Nom to RTT_WR  
tCK  
ODT Latency for change from  
RTT_WR to RTT_Nom (BL=4)  
registering external  
write command  
change RTT strength from  
RTT_WR to RTT_Nom  
tCK  
ODT Latency for change from  
RTT_WR to RTT_Nom (BL=8)  
registering external  
write command  
change RTT strength from  
RTT_WR to RTT_Nom  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
Minimum ODT high time  
after ODT assertion  
registering ODT high ODT registered low  
Minimum ODT high time  
after Write (BL=4)  
registering write with  
ODT registered low  
ODT high  
ODTH4  
ODTH4=4  
Minimum ODT high time  
after Write (BL=8)  
registering write with  
ODT register low  
ODT high  
ODTH8  
ODTH8=6  
ODTLcnw  
RTT valid  
ODTLcwn  
tADC(min)=0.3tCK(avg)  
tADC(max)=0.7tCK(avg)  
RTT change skew  
tADC  
Note: tAOF,nom and tADC,nom are 0.5tCK (effectively adding half a clock cycle to ODTLoff, ODTcnw, and ODTLcwn)  
Version 1.7  
04/2015  
76  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT Timing Diagrams  
Dynamic ODT: Behavior with ODT being asserted before and after the write  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
CK  
CK  
CMD  
NOP  
NOP  
NOP  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODT  
ODTLoff  
ODTH4  
tAOFmin  
ODTLcwn4  
tADCmin  
tADCmin  
tAONmin  
RTT_Nom  
RTT_WR  
RTT_Nom  
RTT  
tAOFmax  
tAONmax  
tADCmax  
tADCmax  
ODTLon  
ODTLcnw  
ODTH4  
DQS/DQS  
WL  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
DQ  
Do not  
care  
Transitioning  
Note: Example for BC4 (via MRS or OTF), AL=0, CWL=5. ODTH4 applies to first registering ODT high and to the registration of the Write  
command. In this example ODTH4 would be satisfied if ODT went low at T8. (4 clocks after the Write command).  
Dynamic ODT: Behavior without write command, AL=0, CWL=5  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
CK  
CMD  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
ODT  
ODTLoff  
ODTLoff  
ODTH4  
tADCmin  
tAONmin  
RTT_Nom  
RTT  
tADCmax  
tAONmax  
ODTLon  
DQS/DQS  
DQ  
Do not  
care  
Transitioning  
Note: ODTH4 is defined from ODT registered high to ODT registered low, so in this example ODTH4 is satisfied; ODT registered low at T5  
would also be legal.  
Version 1.7  
04/2015  
77  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Dynamic ODT: Behavior with ODT pin being asserted together with write command  
for the duration of 6 clock cycles.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
CK  
CMD  
NOP  
WRS8  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ODTLcnw  
ODTLon  
Address  
ODT  
ODTH8  
ODTLoff  
tAOFmin  
tAONmin  
RTT_WR  
RTT  
tAOFmax  
tAONmax  
ODTLcwn8  
DQS/DQS  
WL  
Din  
h
Din  
h+1  
Din  
h+2  
Din  
h+3  
Din  
h+4  
Din  
h+5  
Din  
h+6  
Din  
h+7  
DQ  
Do not  
care  
Transitioning  
Note: Example for BL8 (via MRS or OTF), AL=0, CWL=5. In this example ODTH8=6 is exactly satisfied.  
Dynamic ODT: Behavior with ODT pin being asserted together with write  
command for a duration of 6 clock cycles, example for BC4 (via MRS or OTF),  
AL=0, CWL=5.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
CK  
ODTLcnw  
CMD  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODT  
ODTH4  
tAONmin  
ODTLoff  
tADCmin  
tAOFmin  
RTT_WR  
RTT_Nom  
tADCmax  
RTT  
tAOFmax  
tAONmax  
ODTLon  
ODTLcwn4  
DQS/DQS  
WL  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
DQ  
Do not  
care  
Transitioning  
Version 1.7  
04/2015  
78  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Dynamic ODT: Behavior with ODT pin being asserted together with write command  
for the duration of 4 clock cycles.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
CK  
CK#  
ODTLcnw  
CMD  
NOP  
WRS4  
Valid  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Address  
ODT  
ODTH4  
tAONmin  
ODTLoff  
RTT_WR  
tAOFmin  
RTT  
tAONmax  
tAOFmax  
ODTLon  
ODTLcwn4  
DQS/DQS  
WL  
Din  
n
Din  
n+1  
Din  
n+2  
Din  
n+3  
DQ  
Do not  
care  
Transitioning  
Version 1.7  
04/2015  
79  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Asynchronous ODT Mode  
Asynchronous ODT mode is selected when DRAM runs in DLLon mode, but DLL is temporarily disabled (i.e. frozen) in  
precharge power-down (by MR0 bit A12). Based on the power down mode definitions, this is currently Precharge power  
down mode if DLL is disabled during precharge power down by MR0 bit A12.  
In asynchronous ODT timing mode, internal ODT command is NOT delayed by Additive Latency (AL) relative to the  
external ODT command.  
In asynchronous ODT mode, the following timing parameters apply: tAONPD min/max, tAOFPD min/max.  
Minimum RTT turn-on time (tAONPD min) is the point in time when the device termination circuit leaves high impedance state  
and ODT resistance begins to turn on. Maximum RTT turn on time (tAONPD max) is the point in time when the ODT  
resistance is fully on.  
tAONPDmin and tAONPDmax are measured from ODT being sampled high.  
Minimum RTT turn-off time (tAOFPDmin) is the point in time when the devices termination circuit starts to turn off the ODT  
resistance. Maximum ODT turn off time (tAOFPDmax) is the point in time when the on-die termination has reached high  
impedance. tAOFPDmin and tAOFPDmax are measured from ODT being sample low.  
Asynchronous ODT Timings on DDR3(L) SDRAM with fast ODT transition: AL is  
ignored.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
CK  
CK#  
CKE  
ODT  
tIS  
tIH  
tIS  
tIH  
tAONPDmax  
tAOFPDmin  
RTT  
tAONPDmin  
tAOFPDmax  
Do not  
care  
Transitioning  
In Precharge Power Down, ODT receiver remains active; however no Read or Write command can be issued, as the  
respective ADD/CMD receivers may be disabled.  
Asynchronous ODT Timing Parameters for all Speed Bins  
Symbol  
Description  
Min.  
Max.  
8.5  
Unit  
ns  
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)  
tAONPD  
2
2
tAOFPD  
8.5  
ns  
Version 1.7  
04/2015  
80  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT timing parameters for Power Down (with DLL frozen) entry and exit transition  
period  
Description  
Min.  
Max.  
min{ ODTLon * tCK + tAONmin; tAONPDmin }  
min{ (WL - 2) * tCK + tAONmin; tAONPDmin }  
min{ ODTLoff * tCK + tAOFmin; tAOFPDmin }  
min{ (WL - 2) * tCK + tAOFmin; tAOFPDmin }  
max{ ODTLon * tCK + tAONmax; tAONPDmax }  
max{ (WL - 2) * tCK + tAONmax; tAONPFmax }  
max{ ODTLoff * tCK + tAOFmax; tAOFPDmax }  
max{ (WL - 2) * tCK + tAOFmax; tAOFPDmax }  
ODT to RTT turn-on delay  
ODT to RTT turn-off delay  
tANPD  
WL-1  
Synchronous to Asynchronous ODT Mode Transition during Power-Down Entry  
If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to “0”, there is a transition  
period around power down entry, where the DDR3(L) SDRAM may show either synchronous or asynchronous ODT  
behavior.  
The transition period is defined by the parameters tANPD and tCPDED(min). tANPD is equal to (WL-1) and is counted  
backwards in time from the clock cycle where CKE is first registered low. tCPDED(min) starts with the clock cycle where  
CKE is first registered low. The transition period begins with the starting point of tANPD and terminates at the end point of  
tCPDED(min). If there is a Refresh command in progress while CKE goes low, then the transition period ends at the later  
one of tRFC(min) after the Refresh command and the end point of tCPDED(min). Please note that the actual starting point  
at tANPD is excluded from the transition period, and the actual end point at tCPDED(min) and tRFC(min, respectively, are  
included in the transition period.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPDmin and  
(ODTLon*tCK + tAONmin) and as late as the larger of tAONPDmax and (ODTLon*tCK + tAONmax). ODT de-assertion  
during the transition period may result in an RTT change as early as the smaller of tAOFPDmin and (ODTLoff*tCK +  
tAOFmin) and as late as the larger of tAOFPDmax and (ODTLoff*tCK + tAOFmax). Note that, if AL has a large value, the  
range where RTT is uncertain becomes quite large. Figure 85 shows the three different cases: ODT_A, synchronous  
behavior before tANPD; ODT_B has a state change during the transition period; ODT_C shows a state change after the  
transition period.  
Version 1.7  
04/2015  
81  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Synchronous to asynchronous transition during Precharge Power Down (with DLL  
frozen) entry (AL=0; CWL=5; tANPD=WL-1=4)  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
CK  
CK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CMD  
CKE  
tCPDEDmin  
tANPD  
tCPDED  
PD entry transition period  
Last sync.  
ODT  
tAOFmin  
RTT  
RTT  
tAOFmax  
ODTLoff  
Sync. Or  
async. ODT  
RTT  
RTT  
tAOFPDmin  
tAOFPDmax  
ODTLoff+tAOFPDmin  
ODTLoff+tAOFPDmax  
First async.  
ODT  
tAOFPDmax  
RTT  
RTT  
tAOFPDmin  
Do not  
care  
Time  
Break  
Transitioning  
Version 1.7  
04/2015  
82  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Asynchronous to Synchronous ODT Mode transition during Power-Down Exit  
If DLL is selected to be frozen in Precharge Power Down Mode by the setting of bit A12 in MR0 to “0”, there is also a  
transition period around power down exit, where either synchronous or asynchronous response to a change in ODT must  
be expected from the DDR3(L) SDRAM.  
This transition period starts tANPD before CKE is first registered high, and ends tXPDLL after CKE is first registered high.  
tANPD is equal to (WL -1) and is counted (backwards) from the clock cycle where CKE is first registered high.  
ODT assertion during the transition period may result in an RTT change as early as the smaller of tAONPDmin and (ODT-  
Lon*tCK+tAONmin) and as late as the larger of tAONPDmax and (ODTLon*tCK+tAONmax). ODT de-assertion during the tran-  
sition period may result in an RTT change as early as the smaller of tAOFPDmin and (ODTLoff*tCK+tAOFmin) and as late as  
the larger of tAOFPDmax and (ODToff*tCK+tAOFmax). Note that if AL has a large value, the range where RTT is uncertain  
becomes quite large. The following figure shows the three different cases: ODT_C, asynchronous response before tANPD  
;
ODT_B has a state change of ODT during the transition period; ODT_A shows a state change of ODT after the transition  
period with synchronous response.  
Asynchronous to synchronous transition during Precharge Power Down (with DLL  
frozen) exit (CL=6; AL=CL-1; CWL=5; tANPD=WL-1=9)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
CK  
CK  
CKE  
CMD  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tANPD  
tXPDLL  
PD exit transition period  
ODT_C  
_sync  
tAOFPDmin  
tAOFPDmax  
DRAM  
_RTT_  
C_sync  
RTT  
ODT_B  
_tran  
tAOFPDmin  
DRAM  
_RTT_  
B_tran  
RTT  
tAOFPDmax  
ODTLoff + tAOFmin  
ODTLoff + tAOFmax  
ODTLoff  
ODT_A  
_async  
tAOFmax  
tAOFmin  
DRAM_  
RTT_A_  
async  
RTT  
Do not  
care  
Time  
Break  
Transitioning  
Version 1.7  
04/2015  
83  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Asynchronous to Synchronous ODT Mode during short CKE high and short CKE low  
periods  
If the total time in Precharge Power Down state or Idle state is very short, the transition periods for PD entry and PD exit  
may overlap. In this case, the response of the DDR3(L) SDRAMs RTT to a change in ODT state at the input may be  
synchronous or asynchronous from the state of the PD entry transition period to the end of the PD exit transition period  
(even if the entry ends later than the exit period).  
If the total time in Idle state is very short, the transition periods for PD exit and PD entry may overlap. In this case, the  
response of the DDR3(L) SDRAMs RTT to a change in ODT state at the input may be synchronous or asynchronous from  
the state of the PD exit transition period to the end of the PD entry transition period. Note that in the following figure, it is  
assumed that there was no Refresh command in progress when Idle state was entered.  
Transition period for short CKE cycles with entry and exit period overlapping  
(AL=0; WL=5; tANPD=WL-1=4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
CK  
CK  
CMD  
REF  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CKE  
tANPD  
tANPD  
tXPDLL  
PD exit transition period  
PD entry transition period  
tRFC(min)  
CKE  
Short CKE high transition period  
tXPDLL  
Do not  
care  
Transitioning  
Version 1.7  
04/2015  
84  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ZQ Calibration Commands  
ZQ Calibration Description  
ZQ Calibration command is used to calibrate DRAM Ron and ODT values. DDR3(L) SDRAM needs longer time to calibrate  
output driver and on-die termination circuits at initialization and relatively smaller time to perform periodic calibrations.  
ZQCL command is used to perform the initial calibration during power-up initialization sequence. This command may be  
issued at any time by the controller depending on the system environment. ZQCL command triggers the calibration engine  
inside the DRAM and once calibration is achieved the calibrated values are transferred from calibration engine to DRAM IO  
which gets reflected as updated output driver and on-die termination values.  
The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the  
transfer of values. All other ZQCL commands except the first ZQCL command issued after RESET is allowed a timing  
period of tZQoper.  
ZQCS command is used to perform periodic calibrations to account for voltage and temperature variations. A shorter timing  
window is provided to perform the calibration and transfer of values as defined by timing parameter tZQCS.  
No other activities should be performed on the DRAM channel by the controller for the duration of tZQinit, tZQoper, or  
tZQCS. The quiet time on the DRAM channel allows calibration of output driver and on-die termination values. Once DRAM  
calibration is achieved, the DRAM should disable ZQ current consumption path to reduce power.  
All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.  
ZQ calibration commands can also be issued in parallel to DLL lock time when coming out of self refresh. Upon self-refresh  
exit, DDR3(L) SDRAM will not perform an IO calibration without an explicit ZQ calibration command. The earliest possible  
time for ZQ Calibration command (short or long) after self refresh exit is tXS.  
In systems that share the ZQ resistor between devices, the controller must not allow any overlap of tZQoper, tZQinit, or  
tZQCS between ranks.  
Version 1.7  
04/2015  
85  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ZQ Calibration Timing  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
CK  
CK  
CMD  
ZQCL  
NOP  
NOP  
NOP  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ZQCS  
NOP  
NOP  
NOP  
Valid  
Address  
A10  
Valid  
Valid  
Valid  
Valid  
CKE  
ODT  
(1)  
(2)  
Valid  
(1)  
(2)  
Valid  
DQ Bus  
Activities  
(3)  
Hi-Z  
tZQCS  
Activities  
(3)  
Hi-Z  
tZQCS  
Do not  
care  
Time  
Break  
Note:  
1. CKE must be continuously registered high during the calibration procedure.  
2. On-die termination must be disabled via the ODT signal or MRS during the calibration procedure.  
3. All devices connected to the DQ bus should be high impedance during the calibration procedure.  
ZQ External Resistor Value, Tolerance, and Capacitive loading  
In order to use the ZQ calibration function, a 240 ohm +/- 1% tolerance external resistor connected between the ZQ pin and  
ground. The single resistor can be used for each SDRAM or one resistor can be shared between two SDRAMs if the ZQ  
calibration timings for each SDRAM do not overlap. The total capacitive loading on the ZQ pin must be limited.  
Version 1.7  
04/2015  
86  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Absolute Maximum Ratings  
Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Unit  
V
Note  
1,3  
1,3  
1
VDD  
-0.4 V ~ 1.80 V  
-0.4 V ~ 1.80 V  
-0.4 V ~ 1.80 V  
-55 ~ 100  
VDDQ  
Vin, Vout  
Tstg  
V
V
1,2  
C  
Note:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.This is a stress  
rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
3. VDD and VDDQ must be within 300mV of each other at all times; and Vref must be not greater than 0.6VDDQ, when VDD and  
VDDQ are less than 500Mv; Vref may be equal to or less than 300mV.  
Refresh parameters by device density  
Parameter  
1Gb  
2Gb  
4Gb  
8Gb  
Unit  
Symbol  
REF command to ACT or REF command time  
tRFC  
110  
160  
260  
350  
ns  
Version 1.7  
04/2015  
87  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Temperature Range  
Condition  
Parameter  
Value  
Unit  
C  
Notes  
Normal Operating Temperature Range  
Extended Temperature Range  
0 Toper 85  
1
1,2  
1
Commercial  
85 < Toper 95  
-40 Toper 85  
85 < Toper 95  
-40 Toper 85  
85 < Toper 105  
-40 Toper 85  
85 < Toper 95  
C  
Normal Operating Temperature Range  
Extended Temperature Range  
C  
Industrial  
1,2  
1
C  
Normal Operating Temperature Range  
Extended Temperature Range  
C  
Automotive Grade 2  
Automotive Grade 3  
1,2  
1
C  
Normal Operating Temperature Range  
Extended Temperature Range  
C  
1,2  
C  
Note:  
1. Operating Temperature Toper is the case surface temperature on the center/top side of the DRAM.  
2. Some applications require operation of the DRAM in the Extended Temperature Range.  
Full specifications are guaranteed in this range, but the following additional apply.  
a) Refresh commands must be doubled in frequency, therefore, reducing the Refresh interval tREFI to 3.9us. It is also possible to  
specify a component with 1x refresh (tREFI to 7.8us) in the Extended Temperature Range.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual  
Self-Refresh mode with Extended Temperature Range capability (MR2 A6=0 and MR2 A7=1) or enable the optional Auto  
Self-Refresh mode (MR2 A6=1 and MR2 A7=0).  
Version 1.7  
04/2015  
88  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
AC & DC Operating Conditions  
Recommended DC Operating Conditions  
Rating  
Typ.  
Symbol  
Parameter  
Unit  
Note  
Min.  
1.425  
1.283  
Max.  
1.575  
1.45  
DDR3  
1.5  
1,2  
VDD  
Supply Voltage  
V
DDR3L  
1.35  
3,4,5,6  
DDR3  
1.425  
1.283  
1.5  
1.575  
1.45  
1,2  
VDDQ  
Supply Voltage for Output  
V
DDR3L  
1.35  
3,4,5,6  
Note:  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. Maximun DC value may not be great than 1.425V.The DC value is the linear average of VDD/ VDDQ(t) over a very long period of time  
(e.g., 1 sec).  
4. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.  
5. Under these supply voltages, the device operates to this DDR3L specification.  
6. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed  
for DDR3L operation.  
7. VDD= VDDQ= 1.35V (1.2831.45V )  
Backward compatible to VDD= VDDQ= 1.5V ±0.075V  
Supports DDR3L devices to be backward com-patible in 1.5V applications  
Version 1.7  
04/2015  
89  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
AC & DC Input Measurement Levels  
DDR3 AC and DC Logic Input Levels for Command and Address  
DDR3  
Symbol  
Parameter  
800,1066,1333,1600  
1866,2133  
Unit  
Notes  
Min  
Max  
Min  
Max  
VIH.CA(DC100)  
VIL.CA(DC100)  
VIH.CA(AC175)  
VIL.CA(AC175)  
VIH.CA(AC150)  
VIL.CA(AC150)  
VIH.CA(AC135)  
VIL.CA(AC135)  
VIH.CA(AC125)  
VIL.CA(AC125)  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
Vref + 0.1  
VDD  
Vref + 0.1  
VDD  
V
V
V
V
V
V
V
V
V
V
1, 5  
VSS  
Vref - 0.1  
VSS  
Vref - 0.1  
1, 6  
Vref + 0.175  
Note 2  
-
-
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
Note 2  
Vref - 0.175  
-
-
Vref + 0.150  
Note 2  
-
-
Note 2  
Vref - 0.150  
-
Vref + 0.135  
Note 2  
-
-
-
-
-
-
-
-
-
-
Note 2  
Vref - 0.135  
Note 2  
Vref - 0.125  
Note 2  
Reference Voltage for ADD,  
CMD inputs  
VRefCA(DC)  
0.49 * VDD  
0.51 * VDD  
0.49 * VDD  
0.51 * VDD  
V
3, 4, 9  
NOTE 1. For input only pins except REET. Vref = VrefCA(DC).  
NOTE 2. See “Overshoot and Undershoot Specifications” .  
NOTE 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).  
NOTE 4. For reference: approx. VDD/2 +/- 15 mV.  
NOTE 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)  
NOTE 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)  
NOTE 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175)  
value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value  
is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is used when Vref + 0.125V is referenced.  
NOTE 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value  
is used when Vref - 0.175V is referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used  
when Vref - 0.135V is referenced, and VIL.CA(AC125) value is used when Vref - 0.125V is referenced.  
NOTE 9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device  
Version 1.7  
04/2015  
90  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3L AC and DC Logic Input Levels for Command and Address  
DDR3L  
Symbol  
Parameter  
800,1066  
1333,1600  
1866  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
V
1
VIH.CA(DC90)  
VIL.CA(DC90)  
VIH.CA(AC160)  
VIL.CA(AC160)  
VIH.CA(AC135)  
VIL.CA(AC135)  
VIH.CA(AC125)  
VIL.CA(AC125)  
VRefCA(DC)  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
Vref + 0.09  
VSS  
VDD  
Vref + 0.09  
VSS  
VDD  
Vref + 0.09  
VDD  
V
1
Vref - 0.09  
Note 2  
Vref - 0.09  
Note 2  
VSS  
Vref - 0.09  
-
V
-
Vref + 0.16  
Note 2  
Vref + 0.16  
Note 2  
1,2  
V
V
V
V
V
1,2  
-
-
Vref - 0.16  
Note 2  
Vref - 0.16  
Note 2  
Vref + 0.135  
Vref + 0.135  
Vref + 0.135  
Note 2  
1,2  
1,2  
Note 2  
Vref - 0.135  
Note 2  
Vref - 0.135  
Note 2  
Vref - 0.135  
Note 2  
Vref + 0.125  
-
-
-
-
-
-
-
-
1,2  
1,2  
Note 2  
Vref - 0.125  
Reference Voltage for  
ADD, CMD inputs  
0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD  
V
3,4  
NOTE 1 For input only pins except REET. Vref = VrefCA(DC).  
NOTE 2 See “Overshoot and Undershoot Specifications”  
NOTE 3 The AC peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).  
NOTE 4 For reference: approx. VDD/2 +/- 13.5 mV  
Version 1.7  
04/2015  
91  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3 AC and DC Logic Input Levels for DQ and DM  
DDR3  
1333,1600  
Symbol  
Parameter  
800,1066  
1866,2133  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
VIH.DQ(DC100) DC input logic high  
VIL.DQ(DC100) DC input logic low  
Vref + 0.1  
VSS  
VDD  
Vref + 0.1  
VSS  
VDD  
Vref + 0.1  
VDD  
V
V
V
V
V
V
V
V
1, 5  
Vref - 0.1  
Note 2  
Vref - 0.1  
-
VSS  
Vref - 0.1  
1, 6  
VIH.DQ(AC175) AC input logic high Vref + 0.175  
VIL.DQ(AC175) AC input logic low Note 2  
VIH.DQ(AC150) AC input logic high Vref + 0.150  
VIL.DQ(AC150) AC input logic low Note 2  
VIH.DQ(AC135) AC input logic high Vref + 0.135  
-
-
-
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
1, 2, 7  
1, 2, 8  
Vref - 0.175  
Note 2  
-
-
-
-
Vref + 0.150  
Note 2  
Vref + 0.135  
Note 2  
Note 2  
Vref - 0.150  
Note 2  
Vref - 0.135  
-
-
-
-
Vref - 0.150  
Note 2  
Vref + 0.135  
Note 2  
Note 2  
Vref - 0.135  
VIL.DQ(AC135)  
VRefDQ(DC)  
AC input logic low  
Note 2  
Vref - 0.135  
Reference Voltage  
for DQ, DM inputs  
0.49 * VDD  
0.51 * VDD 0.49 * VDD 0.51 * VDD  
0.49 * VDD  
0.51 * VDD  
V
3, 4, 9  
NOTE 1. Vref = VrefDQ(DC).  
NOTE 2. See “Overshoot and Undershoot Specifications” .  
NOTE 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference:approx. +/- 15 mV).  
NOTE 4. For reference: approx. VDD/2 +/- 15 mV.  
NOTE 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)  
NOTE 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)  
NOTE 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135);VIH.DQ(AC175) value is used when  
Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when  
Vref + 0.135V is referenced.  
NOTE 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135);VIL.DQ(AC175) value is used when  
Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref -0.150V is referenced, and VIL.DQ(AC135) value is used when  
Vref - 0.135V is referenced.  
NOTE 9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device  
Version 1.7  
04/2015  
92  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3L AC and DC Logic Input Levels for DQ and DM  
DDR3L  
Symbol  
Parameter  
800,1066  
1333,1600  
1866  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
V
V
VIH.DQ(DC90) DC input logic high Vref + 0.09  
VIL.DQ(DC90) DC input logic low VSS  
VIH.DQ(AC160) AC input logic high Vref + 0.16  
VIL.DQ(AC160) AC input logic low Note 2  
VIH.DQ(AC135) AC input logic high Vref + 0.135  
VDD  
Vref + 0.09  
VSS  
VDD  
Vref + 0.09  
VSS  
VDD  
1
1
Vref - 0.09  
Note 2  
Vref - 0.16  
Note 2  
Vref - 0.135  
-
Vref - 0.09  
Note 2  
Vref - 0.16  
Note 2  
Vref - 0.135  
-
Vref - 0.09  
-
V
Vref + 0.16  
Note 2  
Vref + 0.135  
Note 2  
-
-
1,2  
V
V
V
V
V
1,2  
-
-
Vref + 0.135  
Note 2  
Vref + 0.13  
Note 2  
Note 2  
Vref - 0.135  
Note 2  
Vref - 0.13  
1,2  
1,2  
VIL.DQ(AC135) AC input logic low  
VIH.DQ(AC130) AC input logic high  
VIL.DQ(AC130) AC input logic low  
Note 2  
-
-
1,2  
1,2  
-
-
-
Reference Voltage  
VRefDQ(DC)  
0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD  
V
3,4  
for DQ, DM inputs  
NOTE 1 For input only pins except REET. Vref = VrefDQ(DC).  
NOTE 2 See “Overshoot and Undershoot Specifications”.  
NOTE 3 The AC peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).  
NOTE 4 For reference: approx. VDD/2 +/- 13.5 mV.  
Version 1.7  
04/2015  
93  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Vref Tolerances  
The dc-tolerance limits and ac-moist limits for the reference voltages VrefCA and VrefDQ are illustrated in the following  
figure. It shows a valid reference voltage Vref(t) as a function of time. (Vref stands for VrefCA and VrefDQ likewise).  
Vref(DC) is the linear average of Vref(t) over a very long period of time (e.g.,1 sec). This average has to meet the min/max  
requirement in previous page. Furthermore Vref(t) may temporarily deviate from Vref(DC) by no more than ±1% VDD.  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on Vref.  
“Vref” shall be understood as Vref(DC).  
The clarifies that dc-variations of Vref affect the absolute voltage a signal has to reach to achieve a valid high or low level  
and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for  
Vref(DC) deviations from the optimum position within the data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and de-rating values need to include time and voltage associated  
with Vref ac-noise. Timing and voltage effects due to ac-noise on Vref up to the specified limit (±1% of VDD) are included in  
DRAM timing and their associated de-ratings.  
Illustration of Vref(DC) tolerance and Vrefac-noise limits  
Voltage  
VDD  
Vref ac-noise  
Vref(DC)max  
VDD/2  
Vref(DC)  
Vref(DC)min  
VSS  
time  
Version 1.7  
04/2015  
94  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3 Differential AC and DC Input Levels for clock (CK - ) and strobe (DQS - )  
DDR3-800, 1066, 1333, & 1600  
Symbol  
Parameter  
Unit  
Notes  
Min  
+ 0.200  
Max  
Note 3  
1
1
2
2
VIHdiff  
VILdiff  
Differential input high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
V
V
V
V
Note 3  
- 0.200  
VIHdiff(ac)  
VILdiff(ac)  
2 x (VIH(ac) - Vref)  
Note 3  
Note 3  
2 x (VIL(ac) - Vref)  
NOTE 1. Used to define a differential signal slew-rate.  
NOTE 2. For CK -  use VIH/VIL(ac) of ADD/CMD and VREFCA; for DQS - , DQSL, L, DQSU ,U use VIH/VIL(ac) of  
DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,then the reduced level applies also here.  
NOTE 3. These values are not defined; however, the single-ended signals CK, , DQS, , DQSL, L, DQSU,  
U need to be within the respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for  
overshoot and undershoot. Refer to “Overshoot and Undershoot Specifications”  
DDR3L Differential AC and DC Input Levels for clock (CK - ) and strobe (DQS - )  
DDR3L-800, 1066, 1333, 1600 & 1866  
Symbol  
Parameter  
Unit  
Notes  
Min  
+ 0.180  
Max  
Note 3  
1
1
2
2
VIHdiff  
VILdiff  
Differential input high  
Differential input logic low  
Differential input high ac  
Differential input low ac  
V
V
V
V
Note 3  
- 0.180  
VIHdiff(ac)  
VILdiff(ac)  
2 x (VIH(ac) - Vref)  
Note 3  
Note 3  
2 x (VIL(ac) - Vref)  
NOTE 1 Used to define a differential signal slew-rate.  
NOTE 2 For CK -  use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - , DQSL, L, DQSU , U use VIH/VIL(AC) of  
DQs and VREFDQ; if a reduced AC-high or AC-low level is used for a signal group, then the reduced level applies also here.  
NOTE 3 These values are not defined, however the single-ended signals CK, , DQS, , DQSL, L, DQSU, U need to be  
within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and  
undershoot. Refer to “Overshoot and Undershoot Specifications”.  
Version 1.7  
04/2015  
95  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Definition of differential ac-swing and “time above ac-level”  
tDVAC  
VIH.Diff.AC.min  
VIH.Diff. DC min  
0
Half cycle  
VIL. Diff. DC max  
VIL.Diff.AC.max  
tDVAC  
Time  
Version 1.7  
04/2015  
96  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3 Allowed time before ringback (tDVAC) for CK -  and DQS -   
DDR3-800 / 1066 / 1333 / 1600  
DDR3-1866 / 2133  
Slew Rate  
[V/ns]  
tDVAC [ps]  
@ |VIH/Ldiff(AC)| =  
350mV  
tDVAC [ ps ]  
@ |VIH/Ldiff(AC)| =  
300mV  
tDVAC [ ps ]  
@ |VIH/Ldiff(AC)| =  
tDVAC [ ps ]  
@ |VIH/Ldiff(AC)| =  
300mV  
tDVAC [ ps ]  
@ |VIH/Ldiff(AC)| =  
(CK - ) only  
(DQS - ) only  
Min  
Max  
Min  
175  
170  
167  
119  
102  
81  
Max  
Min  
214  
214  
191  
146  
131  
113  
88  
Max  
Min  
134  
134  
112  
67  
Max  
Min  
139  
139  
118  
77  
Max  
> 4.0  
4.0  
75  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
57  
3.0  
50  
2.0  
38  
1.8  
34  
52  
63  
1.6  
29  
33  
45  
1.4  
22  
54  
9
23  
1.2  
note  
note  
note  
19  
56  
note  
note  
note  
note  
note  
note  
1.0  
note  
note  
11  
< 1.0  
note  
NOTE 1. Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become  
equal to or less than VILdiff(ac) level.  
Version 1.7  
04/2015  
97  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3L Allowed time before ringback (tDVAC) for CK -  and DQS -   
DDR3L-800/1066/1333/1600  
DDR3L-1866  
tDVAC [ps]  
Slew Rate  
[V/ns]  
tDVAC [ps]  
@|VIH/Ldiff(AC)| =  
320 mV  
tDVAC [ps]  
@|VIH/Ldiff(AC)| =  
270 mV  
tDVAC [ps]  
@|VIH/Ldiff(AC)| =  
270 mV  
tDVAC [ps]  
@|VIH/Ldiff(AC)| =  
260 mV  
@|VIH/Ldiff(AC)| =  
250 mV  
Min  
189  
189  
162  
109  
91  
Max  
Min  
201  
201  
179  
134  
119  
100  
76  
Max  
Min  
163  
163  
140  
95  
Max  
Min  
168  
168  
147  
105  
91  
Max  
Min  
176  
176  
154  
111  
97  
Max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
80  
1.6  
69  
62  
74  
78  
1.4  
40  
37  
52  
56  
1.2  
note  
note  
note  
44  
5
22  
24  
1.0  
note  
note  
note  
note  
note  
note  
note  
note  
< 1.0  
NOTE 1. Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become  
equal to or less than VILdiff(ac) level.  
Version 1.7  
04/2015  
98  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, , ,L, or U) has also to comply  
with certain requirements for single-ended signals.  
CK and have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for  
ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, , L have to reach VSEHmin / VSELmax (approxi-  
mately the ac-levels (VIH (ac) / VIL (ac)) for DQ signals) in every half-cycle proceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH150  
(ac)/VIL150(ac) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and   
Version 1.7  
04/2015  
99  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Single-ended levels for CK, DQS, DQSL, DQSU, , , L, or U  
DDR3(L)-800, 1066, 1333, & 1600  
Symbol  
Parameter  
Unit  
Notes  
Min.  
(VDDQ/2) + 0.175  
(VDDQ/2) + 0.175  
note3  
Max.  
note3  
Single-ended high-level for strobes  
Single-ended high-level for CK,   
Single-ended low-level for strobes  
Single-ended Low-level for CK,   
1, 2  
1, 2  
1, 2  
1, 2  
V
V
V
V
VSEH  
note3  
(VDDQ/2) - 0.175  
(VDDQ/2) - 0.175  
VSEL  
Note:  
note3  
1. For CK,  use VIH/VIL(ac) of ADD/CMD; for strobes (DQS, DQSL, DQSU, CK, , L, or U) use VIH/VIL(ac) of DQs.  
2. VIH(ac)/VIL(ac) for DQs is based on VREFDQ; VIH(ac)/VIL(ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low  
level is used for a signal group, then the reduced level applies also there.  
3. These values are not defined, however the single-ended signals CK, , DQS, , DQSL, L, DQSU, U need to be within  
the respective limits (VIH(dc)max, VIL(dc)min) for single-ended signals as well as limitations for overshoot and undershoot.  
Version 1.7  
04/2015  
100  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross  
point voltage of differential input signals (CK,  and DQS, ) must meet the requirements in the following table. The  
differential input cross point voltage Vix is measured from the actual cross point of true and complete signal to the midlevel  
between of VDD and VSS.  
Vix Definition  
VDD  
,  
VIX  
VDD/2  
VIX  
VIX  
CK,DQS  
VSEL  
VSS  
Cross point voltage for differential input signals (CK, DQS)  
DDR3  
DDR3L  
800/1066/1333/1600/  
1866/2133  
800/1066/1333/1600/  
1866  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
Min  
Max  
Differential Input Cross Point  
Voltage relative to  
- 150  
+ 150  
mV  
mV  
1
2
VIX(CK)  
- 150  
+ 150  
- 175  
- 150  
- 175  
VDD/2 for CK,   
Differential Input Cross Point  
Voltage relative to  
VIX(DQS)  
+ 150  
- 150  
+ 150  
mV  
1
VDD/2 for DQS,   
Note 1 The relation between Vix Min/Max and VSEL/VSEH should satisfy following:  
(VDD/2) + VIX (min) - VSEL >= 25 mV ;  
VSEH - ((VDD/2) + VIX (max)) >= 25 mV;  
Note 2 Extended range for Vix is only allowed for clock and if single-ended clock input signals CK and  are monotonic with a  
single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK -  is larger  
than 3 V/ns.  
Version 1.7  
04/2015  
101  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Slew Rate Definition for Differential Input Signals  
Input slew rate for differential signals (CK,  and DQS, ) are defined and measured as shown below.  
Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
From  
To  
Differential input slew rate for rising edge  
(CK-& DQS-)  
VILdiffmax  
VIHdiffmin  
[VIHdiffmin-VILdiffmax] / DeltaTRdiff  
[VIHdiffmin-VILdiffmax] / DeltaTFdiff  
Differential input slew rate for falling edge  
(CK- & DQS-)  
VIHdiffmin  
VILdiffmax  
The differential signal (i.e., CK-& DQS-) must be linear between these thresholds.  
Version 1.7  
04/2015  
102  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Input Nominal Slew Rate Definition for single ended signals  
Delta  
TRdiff  
VIHdiffMin  
0
VILdiffMax  
Delta  
TFdiff  
AC and DC Output Measurement Levels  
Single Ended AC and DC Output Levels  
Symbol  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
Parameter  
DDR3(L)  
0.8xVDDQ  
Unit Notes  
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (fro IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
V
V
V
0.5xVDDQ  
0.2xVDDQ  
VTT+0.1xVDDQ  
VTT-0.1xVDDQ  
V
V
1
1
Note:  
1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ/2.  
Differential AC and DC Output Levels  
Symbol  
Parameter  
DDR3(L)  
+0.2 x VDDQ  
-0.2 x VDDQ  
Unit Notes  
VOHdiff(AC) AC differential output high measurement level (for output SR)  
VOLdiff(AC) AC differential output low measurement level (for output SR)  
V
V
1
1
Note:  
1. The swing of ± 0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT=VDDQ/2 at each of the differential outputs.  
Version 1.7  
04/2015  
103  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Single Ended Output Slew Rate  
Measured  
Description  
Defined by  
From  
To  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOL(AC)  
VOH(AC)  
VOH(AC)  
[VOH(AC)-VOL(AC)] / DeltaTRse  
[VOH(AC)-VOL(AC)] / DeltaTFse  
VOL(AC)  
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.  
Single Ended Output Slew Rate Definition  
Delta TFse  
VOH (AC)  
VTT  
VOL (AC)  
Delta TFse  
Version 1.7  
04/2015  
104  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Output Slew Rate (Single-ended)  
800  
1066  
1333  
1600  
1866  
2133  
Parameter Symbol  
-
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Single-ended  
DDR3  
2.5  
5
5
2.5  
5
5
2.5  
5
5
2.5  
5
5
2.5  
5
5
2.5  
5
5
V/ns  
V/ns  
Output Slew  
Rate  
SRQse  
DDR3L  
1.75  
1.75  
1.75  
1.75  
1.75  
1.75  
Description: SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.  
Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high)  
while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).  
Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high)  
while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low  
respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.  
Version 1.7  
04/2015  
105  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Differential Output Slew Rate  
Measured  
From  
Description  
Defined by  
To  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOLdiff(AC)  
VOHdiff(AC)  
VOHdiff(AC)  
VOLdiff(AC)  
[VOHdiff(AC)-VOLdiff(AC)] / DeltaTRdiff  
[VOHdiff(AC)-VOLdiff(AC)] / DeltaTFdiff  
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.  
Differential Output Slew Rate Definition  
Delta TFse  
VOh diff (AC)  
0
VOL diff (AC)  
Delta TFse  
Output Slew Rate (Differential)  
800  
1066  
1333  
1600  
1866  
2133  
Parameter Symbol  
-
Unit  
Min  
Max  
10  
Min  
Max  
10  
Min  
Max  
10  
Min  
Max  
10  
Min  
Max  
10  
Min  
Max  
10  
Differential  
DDR3  
5
5
5
5
5
5
V/ns  
V/ns  
Output Slew  
Rate  
SRQdiff  
DDR3L  
3.5  
12  
3.5  
12  
3.5  
12  
3.5  
12  
3.5  
12  
3.5  
12  
Description:  
SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff: Differential Signals  
For Ron = RZQ/7 setting  
Version 1.7  
04/2015  
106  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Reference Load for AC Timing and Output Slew Rate  
The following figure represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters  
of the device as well as output slew rate measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the actual load  
presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing  
reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more  
coaxial transmission lines terminated at the tester electronics.  
VDDQ  
25 Ohm  
DUT  
CK ,   
Vtt = VDDQ/2  
DQ  
DQS  
  
Timing Reference Points  
Version 1.7  
04/2015  
107  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Address and Control Pins  
-
800  
1066  
1333  
1600  
1866  
2133  
0.4  
Unit  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area.  
Maximum overshoot area above VDD  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
0.67  
0.67  
0.5  
0.4  
0.33  
0.33  
0.28  
0.28  
0.25  
0.25  
V-ns  
V-ns  
Maximum undershoot area below VSS  
0.5  
0.4  
NOTE 1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings  
NOTE 2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Version 1.7  
04/2015  
108  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Overshoot and Undershoot Specifications  
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask  
800  
1066  
1333  
1600  
1866  
2133  
Unit  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area.  
Maximum overshoot area above VDD  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
0.25  
0.25  
0.19  
0.19  
0.15  
0.15  
0.13  
0.13  
0.11  
0.11  
0.10  
0.10  
V-ns  
V-ns  
Maximum undershoot area below VSS  
NOTE 1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings  
NOTE 2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Version 1.7  
04/2015  
109  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
34 Ohm Output Driver DC Electrical Characteristics  
A Functional representation of the output buffer is shown as below. Output driver impedance RON is defined by the value of  
the external reference resistor RZQ as follows:  
RON34 = RZQ / 7 (nominal 34.4ohms +/-10% with nominal RZQ=240ohms)  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:  
VDDQ VOut  
under the condition that RONPd is turned off  
under the condition that RONPu is turned off  
(1)  
(2)  
RONPu =  
RONPd =  
| IOut  
|
VOut  
| IOut  
|
Output Driver: Definition of Voltages and Currents  
Version 1.7  
04/2015  
110  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Output Driver DC Electrical Characteristics, assuming RZQ = 240ohms; entire  
operating temperature range; after proper ZQ calibration  
RONNom  
Resistor  
RON34Pd  
RON34Pu  
RON40Pd  
RON40Pu  
Vout  
DDR3L  
Min. Nom. Max.  
Unit  
Notes  
VOLdc = 0.2 x VDDQ  
VOMdc = 0.5 x VDDQ  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
VOMdc = 0.5 x VDDQ  
VOHdc = 0.8 x VDDQ  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
34 ohms  
VOLdc = 0.2 × VDDQ  
1,2,3  
0.6  
1.0  
1.15  
RZQ / 6  
VOMdc = 0.5 × VDDQ  
VOHdc = 0.8 × VDDQ  
VOLdc = 0.2 × VDDQ  
VOMdc = 0.5 × VDDQ  
VOHdc = 0.8 × VDDQ  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.15  
1.45  
1.45  
1.15  
1.15  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RZQ / 6  
40 ohms  
Mismatch between pull-up and pull-down,  
MMPuPd  
VOMdc = 0.5 x VDDQ  
1,2,4  
-10  
+10  
%
DDR3  
VOLdc = 0.2 x VDDQ  
VOMdc = 0.5 x VDDQ  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
VOMdc = 0.5 x VDDQ  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 7  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RZQ / 6  
RON34Pd  
34 ohms  
RON34Pu  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 × VDDQ  
VOMdc = 0.5 × VDDQ  
VOHdc = 0.8 × VDDQ  
VOLdc = 0.2 × VDDQ  
VOMdc = 0.5 × VDDQ  
VOHdc = 0.8 × VDDQ  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
RON40Pd  
40 ohms  
RON40Pu  
Mismatch between pull-up and pull-down,  
VOMdc = 0.5 x VDDQ  
1,2,4  
-10  
+10  
%
MMPuPd  
Version 1.7  
04/2015  
111  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
NOTE 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance  
limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.  
NOTE 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
NOTE 3. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 x VDDQ. Other calibration  
schemes may be used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ.  
NOTE 4. Measurement definition for mismatch between pull-up and pull-down, MMPuPd:  
Measure RONPu and RONPd, both at 0.5 * VDDQ:  
RonPu RonPd  
MMPuPd  
=
X 100  
RonNom  
Version 1.7  
04/2015  
112  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Output Driver Temperature and Voltage sensitivity  
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table.  
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ  
Note: dRONdT and dRONdV are not subject to production test but are verified by design and characterization.  
Output Driver Sensitivity Definition  
Items  
Min.  
Max.  
Unit  
RONPU@VOHdc  
0.6 - dRONdTH*lDelta Tl - dRONdVH*lDelta Vl  
1.1 + dRONdTH*lDelta Tl - dRONdVH*lDelta Vl  
RZQ/7  
RON@VOMdc  
0.9 - dRONdTM*lDelta Tl - dRONdVM*lDelta Vl  
0.6 - dRONdTL*lDelta Tl - dRONdVL*lDelta Vl  
1.1 + dRONdTM*lDelta Tl - dRONdVM*lDelta Vl  
1.1 + dRONdTL*lDelta Tl - dRONdVL*lDelta Vl  
RZQ/7  
RZQ/7  
RONPD@VOLdc  
Output Driver Voltage and Temperature Sensitivity  
Speed Bin  
DDR3(L)-800/1066/1333  
DDR3(L)-1600  
Unit  
Items  
Min.  
Max.  
1.5  
Min.  
Max.  
1.5  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
0
0
0
0
0
0
0
0
0
0
0
0
%/C  
%/mV  
%/C  
%/mV  
%/C  
%/mV  
0.15  
1.5  
0.13  
1.5  
0.15  
1.5  
0.13  
1.5  
0.15  
0.13  
Note: These parameters may not be subject to production test. They are verified by design and characterization.  
Version 1.7  
04/2015  
113  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6, and A2 of the MR1 Register.  
ODT is applied to the DQ, DM, DQS/, and TDQS/T (x8 devices only) pins.  
A functional representation of the on-die termination is shown in the following figure. The individual pull-up and pull-down  
resistors (RTTPu and RTTPd) are defined as follows:  
VDDQ VOut  
under the condition that RTTPd is turned off  
under the condition that RTTPu is turned off  
(3)  
(4)  
RTTPu =  
RTTPd =  
| IOut  
|
VOut  
| IOut  
|
On-Die Termination: Definition of Voltages and Currents  
Version 1.7  
04/2015  
114  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT DC Electrical Characteristics  
The following table provides an overview of the ODT DC electrical characteristics. The values for RTT60Pd120, RTT60Pu120  
RTT120Pd240, RTT120Pu240, RTT40Pd80, RTT40Pu80, RTT30Pd60, RTT30Pu60, RTT20Pd40, RTT20Pu40 are not specification  
requirements, but can be used as design guide lines:  
,
ODT DC Electrical Characteristics, assuming RZQ = 240ohms +/- 1% entire operating  
temperature range; after proper ZQ calibration(DDR3L)  
MR1 A9,A6,A2  
RTT  
Resistor  
Vout  
Min.  
Nom. Max.  
Unit  
Notes  
DDR3L  
VOLdc = 0.2 x VDDQ  
0.6  
1
1.15  
RZQ  
1,2,3,4  
RTT120Pd240  
0.5 x VDDQ  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
+5  
RZQ  
RZQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
0,1,0  
120Ω  
RZQ  
RTT120Pu240  
RTT120  
RZQ  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RZQ  
RZQ /2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
%
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60Pd120  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
0, 0, 1  
0, 1, 1  
1, 0, 1  
1, 0, 0  
60Ω  
40Ω  
30Ω  
20Ω  
RTT60Pu120  
RTT60  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT40Pd80  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT40Pu80  
RTT40  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT30Pd60  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT30Pu60  
RTT30  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT20Pd40  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT20Pu40  
RTT20  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
Deviation of VM w.r.t. VDDQ/2, DVM  
1,2,5,6  
Version 1.7  
04/2015  
115  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT DC Electrical Characteristics, assuming RZQ = 240ohms +/- 1% entire operating  
temperature range; after proper ZQ calibration (DDR3)  
MR1 A9,A6,A2 RTT  
Resistor  
Vout  
Min.  
Nom. Max.  
Unit  
Notes  
DDR3  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1.1  
1.1  
1.4  
1.4  
1,1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
+5  
RZQ  
RZQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT120Pd240  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RZQ  
0,1,0  
0, 0, 1  
0, 1, 1  
1, 0, 1  
1, 0, 0  
120Ω  
60Ω  
40Ω  
30Ω  
20Ω  
RZQ  
RTT120Pu240  
RTT120  
RZQ  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RZQ  
RZQ /2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
%
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60Pd120  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT60Pu120  
RTT60  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT40Pd80  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT40Pu80  
RTT40  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT30Pd60  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT30Pu60  
RTT30  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT20Pd40  
VOHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
0.5 x VDDQ  
RTT20Pu40  
RTT20  
VOHdc = 0.8 x VDDQ  
VIL(ac) to VIH(ac)  
Deviation of VM w.r.t. VDDQ/2, DVM  
1,2,5,6  
Version 1.7  
04/2015  
116  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
NOTE 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits  
if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.  
NOTE 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.  
NOTE 3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5 x VDDQ. Other calibration schemes may be  
used to achieve the linearity spec shown above, e.g. calibration at 0.2 x VDDQ and 0.8 x VDDQ.  
NOTE 4. Not a specification requirement, but a design guide line.  
NOTE 5. Measurement definition for RTT:  
Apply VIH(ac) to pin under test and measure current I(VIH(ac)), then apply VIL(ac) to pin under test and measure current  
I(VIL(ac)) respectively.  
VIH(ac) VIL(ac)  
RTT =  
I(VIH(ac)) I(VIL(ac))  
NOTE 6. Measurement definition for VM and DVM:  
Measure voltage (VM) at test pin (midpoint) with no load:  
2 x VM  
VM = (  
1) x 100  
VDDQ  
Version 1.7  
04/2015  
117  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT Temperature and Voltage sensitivity  
If temperature and/or voltage after calibration, the tolerance limits widen according to the following table.  
Delta T = T - T(@calibration); Delta V = VDDQ - VDDQ(@calibration); VDD = VDDQ  
ODT Sensitivity Definition  
Min.  
Max.  
Unit  
0.9 dRTTdT * lTl dRTTdV * lVl  
1.6 + dRTTdT * lTl + dRTTdV * lVl  
RZQ/2,4,6,8,12  
RTT  
ODT Voltage and Temperature Sensitivity  
Min.  
Max.  
1.5  
Unit  
dRTTdT  
dRTTdV  
0
0
%/C  
%/mV  
0.15  
Note: These parameters may not be subject to production test. They are verified by design and characterization.  
Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in the following figure.  
VDDQ  
RTT=  
25 Ohm  
DUT  
CK ,  
  
Vtt =  
VSSQ  
DQ , DM  
DQS ,   
TDQS , T  
Timing Reference Points  
VSSQ  
ODT Timing Reference Load  
Version 1.7  
04/2015  
118  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
ODT Timing Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD, and tADC are provided in the following table and subsequent figures.  
Symbol  
tAON  
Begin Point Definition  
End Point Definition  
Extrapolated point at VSSQ  
Rising edge of CK - CK defined by the end point of ODTLon  
Rising edge of CK - CK with ODT being first registered high  
Rising edge of CK - CK defined by the end point of ODTLoff  
Rising edge of CK - CK with ODT being first registered low  
Rising edge of CK - CK defined by the end point of ODTLcnw,  
ODTLcwn4, or ODTLcwn8  
Extrapolated point at VSSQ  
tAONPD  
tAOF  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_Wr and  
VRTT_Nom respectively  
tAOFPD  
tADC  
Reference Settings for ODT Timing Measurements  
DDR3  
DDR3L  
Parameter  
RTT_Nom  
RTT_Wr  
VSW1[V]  
0.05  
VSW2[V]  
0.10  
VSW1[V]  
0.05  
VSW2[V]  
0.10  
RZQ/4  
RZQ/12  
RZQ/4  
NA  
NA  
tAON  
0.10  
0.20  
0.10  
0.20  
NA  
0.05  
0.10  
0.05  
0.10  
tAONPD  
tAOF  
RZQ/12  
RZQ/4  
NA  
0.10  
0.20  
0.10  
0.20  
NA  
0.05  
0.10  
0.05  
0.10  
RZQ/12  
RZQ/4  
NA  
0.10  
0.20  
0.10  
0.20  
NA  
0.05  
0.10  
0.05  
0.10  
tAOFPD  
tADC  
RZQ/12  
RZQ/12  
NA  
0.10  
0.20  
0.10  
0.20  
0.20  
0.30  
0.20  
0.25  
RZQ/2  
Definition of tAON  
Begin point: Rising edge of CK CK#  
Defined by the end point of ODTLon  
CK  
VTT  
CK#  
tAON  
Tsw2  
Tsw1  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
Vsw2  
Vsw1  
VSSQ  
End point: Extrapolated point at VSSQ  
Version 1.7  
04/2015  
119  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Definition of tAONPD  
Begin point: Rising edge of CK CK#  
with ODT being first register high  
CK  
VTT  
CK#  
tAONPD  
Tsw2  
Tsw1  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
Vsw2  
Vsw1  
VSSQ  
End point: Extrapolated point at VSSQ  
Definition of tAOF  
Begin point: Rising edge of CK CK#  
defined by the end point of ODTLoff  
CK  
VTT  
CK#  
tAOF  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
Vsw2  
Tsw2  
Tsw1  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
Vsw1  
VSSQ  
Version 1.7  
04/2015  
120  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Definition of tAOFPD  
Begin point: Rising edge of CK CK#  
with ODT being first registered low  
CK  
VTT  
CK#  
tAOFPD  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
Vsw2  
Tsw2  
Tsw1  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
Vsw1  
VSSQ  
Definition of tADC  
Begin point: Rising edge of CK CK#  
Begin point: Rising edge of CK CK# defined  
defined by the end of ODTLcnw  
by the end of ODTLcwn4 or ODTLcwn8  
CK  
CK  
VTT  
CK#  
CK#  
tADC  
tADC  
VRTT_Nom  
End point: Extrapolated point at VRTT_Nom  
VRTT_Nom  
Tsw22  
Tsw21  
DQ, DM  
DQS, DQS#  
TDQS, TDQS#  
Tsw12  
Tsw11  
VRTT_Wr  
End point: Extrapolated point at VRTT_Wr  
Vsw2  
Vsw1  
VSSQ  
Version 1.7  
04/2015  
121  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Input/Output Capacitance  
800  
1066  
1333  
1600  
1866  
2133  
Unit  
pF  
Notes  
1,2,3  
1,2,3  
Parameter  
Symbol  
Min Max Min Max Min Max Min Max Min Max Min Max  
CIO  
(DDR3)  
CIO  
1.4  
1.4  
3.0  
2.5  
1.4  
1.4  
2.7  
2.5  
1.4  
1.4  
2.5  
2.3  
1.4 2.3 1.4 2.2 1.4  
2.1  
-
Input/output capacitance  
(DQ, DM, DQS, ,  
TDQS,T)  
1.4 2.2 1.4 2.1  
-
pF  
(DDR3L)  
CCK  
0.8  
0
1.6  
0.8  
0
1.6  
0.8  
0
1.4  
0.8 1.4 0.8 1.3 0.8  
1.3  
pF  
pF  
2,3  
Input capacitance, CK and   
Input capacitance delta, CK and   
Input/output capacitance delta  
DQS and   
0.15  
0.15  
0.15  
0
0
0.15  
0.15  
0
0
0.15  
0.15  
0
0
0.15  
2,3,4  
CDCK  
0
0.15  
1.4  
0
0.15  
0
0.15  
0.15  
pF  
pF  
pF  
pF  
pF  
2,3,5  
2,3,6  
CDDQS  
CI  
(DDR3)  
CI  
0.75  
0.75  
-0.5  
-0.5  
0.75 1.35 0.75 1.3 0.75 1.3 0.75 1.2 0.75 1.2  
Input capacitance,  
(CTRL, ADD,CMD input-only pins)  
1.3  
0.75  
1.3 0.75 1.3 0.75 1.2 0.75 1.2  
-
-
2,3,6  
(DDR3L)  
Input capacitance delta,  
(All CTRL input-only pins  
CDI_CTRL  
0.3  
0.5  
-0.5 0.3 -0.4 0.2 -0.4 0.2 -0.4 0.2 -0.4 0.2  
-0.5 0.5 -0.4 0.4 -0.4 0.4 -0.4 0.4 -0.4 0.4  
-0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3  
2,3,7,8  
CDI_ADD_  
CMD  
2,3,9,  
10  
Input capacitance delta,  
(All ADD/CMD input-only pins)  
Input/output capacitance delta, DQ,  
DM, DQS, , TDQS, T  
Input/output capacitance of ZQ pin  
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
2,3,12  
CDIO  
CZQ  
-
3
-
3
-
3
-
3
-
3
NOTE 1. Although the DM, TDQS and T pins have different functions, the loading matches DQ and DQS  
NOTE 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured  
according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER(VNA)”)  
with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, REET and ODT as necessary).  
VDD=VDDQ=1.5V, VBIAS=VDD/2 and ondie termination off.  
NOTE 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
NOTE 4. Absolute value of CCK-  
NOTE 5. Absolute value of CIO(DQS)-CIO()  
NOTE 6. CI applies to ODT, , CKE, A0-A15, BA0-BA2, RA, A, WE.  
NOTE 7. CDI_CTRL applies to ODT,  and CKE  
NOTE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(L))  
NOTE 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RA, A and WE  
NOTE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(L))  
NOTE 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO())  
NOTE 12. Maximum external load capacitance on ZQ pin: 5 pF.  
Version 1.7  
04/2015  
122  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3L IDD Currents  
DDR3L-1600  
(-DI/DII) (11-11-11)  
DDR3L-1866  
(13-13-13)  
Symbol  
Parameter/Condition  
Unit  
X8  
X16  
X8  
X16  
Operating Current 0  
IDD0  
IDD1  
50  
60  
56  
66  
84  
mA  
mA  
mA  
mA  
One Bank Activate-> Precharge  
Operating Current 1  
56  
80  
61  
One Bank Activate-> Read-> Precharge  
Precharge Power-Down Current  
IDD2P0  
IDD2P1  
16  
Slow Exit - MR0 bit A12 = 0  
Precharge Power-Down Current  
24  
29  
Fast Exit - MR0 bit A12 = 1  
IDD2Q  
IDD2N  
Precharge Quiet Standby Current  
Precharge Standby Current  
24  
24  
27  
27  
mA  
mA  
mA  
IDD2NT  
Precharge Standby ODT Current  
30  
34  
33  
37  
Active Power-Down Current  
IDD3P  
30  
33  
mA  
Always Fast Exit  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
Active Standby Current  
32  
40  
35  
42  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
132  
108  
210  
150  
150  
123  
230  
170  
175  
185  
IDD6TC 1  
Self-Refresh Current:  
3.7  
20  
22  
mA  
mA  
mA  
(RS -DIB)  
Room Temperature Range  
Self-Refresh Current  
IDD6 2  
Normal  
Self-Refresh Current:  
IDD6ET 3  
Extended  
IDD7  
IDD8  
All Bank Interleave Read Current  
Reset Low Current  
170  
210  
190  
240  
mA  
mA  
18  
18  
NOTE 1 IDD6TC (RS-DIB):TC Room Temperature; SRT is disabled, ASR is enabled. Value is maximum.  
NOTE 2 IDD6: SRT is ‘Normal’, ASR is disabled. Value is maximum.  
- Commercial Grade = 0~85℃  
- Industrial Grade (-I) = -40~85℃  
- Automotive Grade 2 (-H) = -40~85℃  
- Automotive Grade 3 (-A) = -40~85℃  
NOTE 3 IDD6ET: SRT is ‘Extended’, ASR is disabled. Value is maximum.  
- Commercial Grade = 0~95℃  
- Industrial Grade (-I) = -40~95℃  
- Automotive Grade 2 (-H) = -40~105℃  
- Automotive Grade 3 (-A) = -40~95℃  
Version 1.7  
04/2015  
123  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
DDR3 IDD Currents  
DDR3-1600  
(11-11-11)  
DDR3-1866  
(13-13-13)  
DDR3-2133  
(14-14-14)  
Symbol  
Parameter/Condition  
Unit  
X8  
X16  
X8  
X16  
X8  
X16  
Operating Current 0  
IDD0  
IDD1  
52  
63  
58  
70  
67  
79  
mA  
mA  
mA  
mA  
One Bank Activate -> Precharge  
Operating Current 1  
60  
83  
64  
87  
69  
92  
One Bank Activate-> Read-> Precharge  
Precharge Power-Down Current  
IDD2P0  
IDD2P1  
18  
27  
18  
32  
18  
38  
Slow Exit - MR0 bit A12 = 0  
Precharge Power-Down Current  
Fast Exit - MR0 bit A12 = 1  
IDD2Q  
IDD2N  
Precharge Quiet Standby Current  
Precharge Standby Current  
27  
27  
30  
30  
32  
32  
mA  
mA  
mA  
IDD2NT  
Precharge Standby ODT Current  
35  
38  
38  
41  
42  
45  
Active Power-Down Current  
IDD3P  
35  
38  
41  
mA  
Always Fast Exit  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
Active Standby Current  
35  
43  
38  
45  
41  
48  
mA  
mA  
mA  
mA  
Operating Current Burst Read  
Operating Current Burst Write  
Burst Refresh Current  
140  
115  
220  
160  
155  
130  
240  
180  
173  
150  
270  
190  
180  
190  
22  
200  
Self-Refresh Current  
IDD6 1  
mA  
mA  
Normal  
Self-Refresh Current  
IDD6ET 2  
26  
20  
Extended  
IDD7  
IDD8  
All Bank Interleave Read Current  
Reset Low Current  
175  
220  
200  
250  
235  
280  
mA  
mA  
NOTE 1 IDD6: SRT is ‘Normal’, ASR is disabled. Value is maximum.  
- Commercial Grade = 0~85℃  
- Industrial Grade (-I) = -40~85℃  
- Automotive Grade 2 (-H) = -40~85℃  
- Automotive Grade 3 (-A) = -40~85℃  
NOTE 2 IDD6ET: SRT is ‘Extended’, ASR is disabled. Value is maximum.  
- Commercial Grade = 0~95℃  
- Industrial Grade (-I) = -40~95℃  
- Automotive Grade 2 (-H) = -40~105℃  
- Automotive Grade 3 (-A) = -40~95℃  
Version 1.7  
04/2015  
124  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD Measurement Conditions  
Symbol  
Parameter/Condition  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On;  
tCK, nRC, nRAS, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
:High between ACT and PRE;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: MID-LEVEL;  
IDD0  
DM:stable at 0;  
Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On;  
tCK, nRC, nRAS, nRCD, CL: see see the table of Timings used for IDD and IDDQ;  
BL: 8(1,7); AL:0;  
: High between ACT, RD and PRE;  
Command, Address, Bank Address Inputs, Data IO: partially toggling;  
Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,...;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
IDD1  
Precharge Standby Current  
CKE: High; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0; : stable at 1;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: MID-LEVEL;  
IDD2N  
DM:stable at 0;  
Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
IDD2P(0)  
: stable at 1;  
Version 1.7  
04/2015  
125  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Command, Address, Bank Address Inputs: stable at 0;  
Data IO: MID-LEVEL;  
DM:stable at 0;  
Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Pecharge Power Down Mode: Slow Exit(3)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0;  
IDD2P(1)  
Data IO: MID-LEVEL;  
DM:stable at 0;  
Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Pecharge Power Down Mode: Fast Exit(3)  
Precharge Quiet Standby Current  
CKE: High; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0;  
Data IO: MID-LEVEL;  
IDD2Q  
DM:stable at 0;  
Bank Activity: all banks closed;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
IDD3N  
: stable at 1;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: MID-LEVEL;  
DM:stable at 0;  
Version 1.7  
04/2015  
126  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Bank Activity: all banks open;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Active Power-Down Current  
CKE: Low; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
: stable at 1;  
Command, Address, Bank Address Inputs: stable at 0;  
Data IO: MID-LEVEL;  
IDD3P  
DM:stable at 0;  
Bank Activity: all banks open;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0  
Operating Burst Read Current  
CKE: High; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1,7); AL: 0;  
: High between RD;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: seamless read data burst with different data between one burst and the next one;  
DM:stable at 0;  
IDD4R  
Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Operating Burst Write Current  
CKE: High; External clock: On;  
tCK, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
: High between WR;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: seamless write data burst with different data between one burst and the next one ;  
DM: stable at 0;  
IDD4W  
Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at HIGH;  
Version 1.7  
04/2015  
127  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Burst Refresh Current  
CKE: High; External clock: On;  
tCK, CL, nRFC: see the table of Timings used for IDD and IDDQ;  
BL: 8(1); AL: 0;  
: High between REF;  
Command, Address, Bank Address Inputs: partially toggling;  
Data IO: MID-LEVEL;  
IDD5B  
DM:stable at 0;  
Bank Activity: REF command every nRFC;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C;  
Auto Self-Refresh (ASR): Disabled(4);  
Self-Refresh Temperature Range (SRT):Normal(5);  
CKE: Low; External clock: Off;  
CK and : LOW; CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1);AL: 0;  
IDD6  
, Command, Address, Bank Address, Data IO: MID-LEVEL;  
DM:stable at 0;  
Bank Activity:Self-Refresh operation;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: MID-LEVEL  
Self-Refresh Current: Extended Temperature Range (optional)(6)  
TCASE: 0 - 95°C;  
Auto Self-Refresh (ASR): Disabled(4);  
Self-Refresh Temperature Range (SRT):Extended(5);  
CKE: Low; External clock: Off; CK and : LOW; CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1);AL: 0;  
IDD6ET  
, Command, Address, Bank Address, Data IO: MID-LEVEL;  
DM:stable at 0;  
Bank Activity:Extended Temperature Self-Refresh operation;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: MID-LEVEL  
Auto Self-Refresh Current (optional)(6)  
TCASE: 0 - 95°C;  
IDD6TC  
Auto Self-Refresh (ASR): Enabled(4);  
Version 1.7  
04/2015  
128  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Self-Refresh Temperature Range (SRT):Normal(5);  
CKE: Low; External clock: Off; CK and : LOW; CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1);AL: 0;  
, Command, Address, Bank Address, Data IO: MID-LEVEL;  
DM:stable at 0;  
Bank Activity:Auto Self-Refresh operation;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: MIDLEVEL  
Operating Bank Interleave Read Current  
CKE: High; External clock: On;  
tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see the table of Timings used for IDD and IDDQ;  
BL: 8(1,7); AL: CL-1;  
: High between ACT and RDA;  
Command, Address, Bank Address Inputs:partially toggling;  
Data IO: read data bursts with different data between one burst and the next one;  
DM:stable at 0;  
IDD7  
Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing;  
Output Buffer and RTT: Enabled in Mode Registers(2);  
ODT Signal: stable at 0;  
RESET Low Current  
RESET: LOW; External clock: Off;  
CK and : LOW; CKE: FLOATING;  
IDD8  
, Command, Address,Bank Address, Data IO: FLOATING;  
ODT Signal: FLOATING  
RESET Low current reading is valid once power is stable and RESET has been LOW for at least 1ms.  
NOTE 1. Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
NOTE 2. Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr  
enable: set MR2 A[10,9] = 10B  
NOTE 3. Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
NOTE 4. Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
NOTE 5. Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
NOTE 6. Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by  
DDR3 SDRAM device  
NOTE 7. Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B  
Version 1.7  
04/2015  
129  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD0 Measurement-Loop Pattern  
Version 1.7  
04/2015  
130  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD1 Measurement-Loop Pattern  
Version 1.7  
04/2015  
131  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD2N and IDD3N Measurement-Loop Pattern  
Version 1.7  
04/2015  
132  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD4R and IDDQ4R Measurement-Loop Pattern  
IDD4W Measurement-Loop Pattern  
Version 1.7  
04/2015  
133  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD5B Measurement-Loop Pattern  
Version 1.7  
04/2015  
134  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
IDD7 Measurement-Loop Pattern  
Version 1.7  
04/2015  
135  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Operating Frequency  
DDR3-2133  
DDR3-2133  
Speed Bins  
14-14-14  
Unit  
Parameter  
Min  
Max  
CWL5  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
CL5  
CWL6/7/8/9/10  
CWL5  
2.5  
3.3  
CL6  
CWL6  
Reserved  
Reserved  
Reserved  
CWL7/8/9/10  
CWL5  
CWL6  
1.875  
1.875  
1.5  
< 2.5  
< 2.5  
CL7  
CL8  
CL9  
CWL7  
Reserved  
Reserved  
Reserved  
CWL8/9/10  
CWL5  
CWL6  
CWL7  
Reserved  
Reserved  
Reserved  
CWL8/9/10  
CWL5/6  
CWL7  
tCK  
(Avg)  
< 1.875  
< 1.875  
CWL8  
Reserved  
Reserved  
Reserved  
CWL9/10  
CWL5/6  
CWL7  
1.5  
CL10  
CWL8  
Reserved  
Reserved  
Reserved  
Reserved  
CWL9  
CWL10  
CWL5/6/7  
CWL8  
1.25  
< 1.5  
CL11  
CL12  
CWL9  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CWL10  
CWL5/6/7/8  
CWL9  
CWL10  
CWL5/6/7/8  
CWL9  
tCK  
CL13  
CL14  
1.07  
< 1.25  
< 1.07  
(Avg)  
CWL10  
CWL5/6/7/8/9  
CWL10  
Reserved  
Reserved  
0.938  
Supported CL  
5,6,7,8,9,10,11,12,13,14  
5,6,7,8,9,10  
Supported CWL  
Version 1.7  
04/2015  
136  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Operating Frequency  
DDR3-1866 and DDR3L-1866  
DDR3(L)-1866  
Speed Bins  
13-13-13  
Unit  
Parameter  
Min  
Max  
CWL5  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
CL5  
CWL6/7/8/9  
CWL5  
2.5  
3.3  
CL6  
CWL6  
Reserved  
Reserved  
Reserved  
CWL7/8/9  
CWL5  
CL7  
CL8  
CWL6  
1.875  
1.875  
< 2.5  
< 2.5  
CWL7/8/9  
CWL5  
Reserved  
Reserved  
CWL6  
CWL7  
Reserved  
Reserved  
Reserved  
CWL8/9  
CWL5/6  
CWL7  
tCK  
(Avg)  
1.5  
< 1.875  
CL9  
CWL8  
Reserved  
Reserved  
Reserved  
CWL9  
CWL5/6  
CWL7  
CL10  
CL11  
1.5  
< 1.875  
< 1.5  
CWL8  
Reserved  
Reserved  
CWL5/6/7  
CWL8  
1.25  
CWL9  
Reserved  
Reserved  
Reserved  
Reserved  
CWL5/6/7/8  
CWL9  
CL12  
CL13  
CWL5/6/7/8  
CWL9  
1.07  
< 1.25  
Supported CL  
Supported CWL  
6,7,8,9,10,11,13  
5, 6, 7, 8, 9  
Version 1.7  
04/2015  
137  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Operating Frequency  
DDR3-1600 and DDR3L-1600  
DDR3(L)-1600  
Speed Bins  
Unit  
11-11-11  
Parameter  
CWL5  
Min  
Max  
3.0  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
CL5  
CWL6/7/8  
CWL5  
Reserved  
2.5  
3.3  
CL6  
CWL6  
Reserved  
Reserved  
Reserved  
CWL7/8  
CWL5  
CWL6  
1.875  
1.875  
< 2.5  
CL7  
CWL7  
Reserved  
Reserved  
Reserved  
CWL8  
CWL5  
tCK  
CWL6  
< 2.5  
(Avg)  
CL8  
CL9  
CWL7  
Reserved  
Reserved  
Reserved  
CWL8  
CWL5/6  
CWL7  
1.5  
1.5  
<1.875  
< 1.875  
<1.5  
CWL8  
Reserved  
Reserved  
CWL5/6  
CWL7  
CL10  
CL11  
CWL8  
Reserved  
Reserved  
CWL5/6/7  
CWL8  
1.25  
Supported CL  
5, 6, 7, 8, 9, 10, 11  
5, 6, 7, 8  
Supported CWL  
Version 1.7  
04/2015  
138  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Operating Frequency  
DDR3-1333 and DDR3L-1333  
DDR3(L)-1333  
9-9-9  
DDR3(L)-1333  
10-10-10  
Speed Bins  
Parameter  
Unit  
Min  
Max  
Min  
Max  
CWL5  
3.0  
2.5  
3.3  
3.0  
2.5  
3.3  
ns  
ns  
CL5  
CWL6/7  
CWL5  
CWL6  
CWL7  
CWL5  
CWL6  
CWL7  
CWL5  
CWL6  
CWL7  
CWL5/6  
CWL7  
CWL5/6  
CWL7  
Reserved  
Reserved  
3.3  
3.3  
ns  
CL6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
ns  
ns  
CL7  
CL8  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
tCK  
Reserved  
Reserved  
ns  
(Avg)  
ns  
1.875  
< 2.5  
ns  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
ns  
CL9  
1.5  
1.5  
< 1.875  
< 1.875  
ns  
Reserved  
ns  
CL10  
1.5  
< 1.875  
ns  
Supported CL  
Supported CWL  
5, 6, 7, 8, 9, 10  
5, 6, 7  
5, 6, 8, 10  
5, 6, 7  
nCK  
nCK  
Version 1.7  
04/2015  
139  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Fundamental AC Specifications Operating Frequency  
DDR3-1066 and DDR3L-1066  
DDR3(L)-1066  
7-7-7  
DDR3(L)-1066  
8-8-8  
Speed Bins  
Parameter  
Unit  
Min  
Max  
Min  
Max  
CWL5  
3.0  
2.5  
3.3  
3.0  
2.5  
3.3  
ns  
ns  
CL5  
CL6  
CL7  
CL8  
CWL6  
CWL5  
CWL6  
CWL5  
CWL6  
CWL5  
CWL6  
Reserved  
Reserved  
3.3  
3.3  
ns  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
tCK  
(Avg)  
ns  
1.875  
1.875  
< 2.5  
< 2.5  
ns  
Reserved  
ns  
1.875  
< 2.5  
ns  
Supported CL  
5, 6, 7, 8  
5, 6  
5, 6, 8  
5, 6  
nCK  
nCK  
Supported CWL  
DDR3-800 and DDR3L-800  
DDR3(L)-800  
5-5-5  
DDR3(L)-800  
6-6-6  
Speed Bins  
Unit  
Parameter  
CL5  
Min  
Max  
3.3  
Min  
Max  
3.3  
CWL5  
CWL5  
2.5  
2.5  
3.0  
2.5  
ns  
ns  
tCK  
(Avg)  
CL6  
3.3  
3.3  
Supported CL  
5, 6  
5
5, 6  
5
nCK  
nCK  
Supported CWL  
Fundamental AC Specifications Notes  
NOTE 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of  
tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.  
NOTE 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all  
possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard  
tCK(AVG) value (3.0, 2.5, 1.875, 1.5, 1.25, 1.07, or 0.938 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding  
up to the next ‘Supported CL’, where tCK(AVG) = 3.0 ns should only be used for CL = 5 calculation.  
NOTE 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next  
valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.5 ns or 1.25 ns or 1.07 ns or 0.938 ns). This result is tCK(AVG).MAX  
corresponding to CL SELECTED.  
NOTE 4. ‘Reserved’ settings are not allowed. User must program a different value.  
NOTE 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to  
Version 1.7  
04/2015  
140  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
supplier’s data sheet and/or the DIMM SPD information if and how this setting is supported.  
NOTE 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject  
to Production Tests but verified by Design/Characterization.  
NOTE 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject  
to Production Tests but verified by Design/Characterization.  
NOTE 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject  
to Production Tests but verified by Design/Characterization.  
NOTE 9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject  
to Production Tests but verified by Design/Characterization.  
NOTE 10.Any DDR3-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject  
to Production Tests but verified by Design/Characterization.  
NOTE 11.For devices supporting optional down binning to CL=7 and CL=9, tAA/tRCD/tRPmin must be 13.125 ns. SPD settings must be  
programmed to match. For example, DDR3-1333(9-9-9) devices supporting down binning to DDR3-1066(7-7-7) should  
program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(11-11-11)  
devices supporting down binning to DDR3-1333(9-9-9) or DDR3-1066(7-7-7) should program 13.125 ns in SPD bytes for  
tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte  
21,23) also should be programmed accodingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for  
DDR3-1333(9-9-9) and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600(11-11-11).  
NOTE 12.DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
NOTE 13.For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.  
NOTE 14.For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting  
must be programed to match. For example, DDR3-1866(13-13-13) devices supporting down binning to DDR3-1600(11-11-11)  
or DDR3-1333(9-9-9) or 1066(7-7-7) should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and  
tRPmin (byte20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed  
accordingly. For example, 47.125ns (tRASmin + tRPmin = 34 ns+ 13.125 ns)  
Version 1.7  
04/2015  
141  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Electrical Characteristics & AC Timing  
Timing Parameters for DDR3(L)-800, DDR3(L)-1066, and DDR3(L)-1333  
DDR3(L)-800  
DDR3(L)-1066 DDR3(L)-1333  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode) tCK (DLL_off)  
8
-
8
-
8
-
ns  
Average Clock Period  
Average high pulse width  
Average low pulse width  
tCK(avg)  
tCH(avg)  
tCL(avg)  
Refer to “Fundamental AC Specifications”  
ps  
tCK(avg)  
tCK(avg)  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
Min.: tCK(avg)min + tJIT(per)min  
Max.: tCK(avg)max + tJIT (per)max  
Absolute Clock Period  
tCK(abs)  
ps  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter  
tCH(abs)  
tCL(abs)  
JIT(per)  
0.43  
0.43  
-100  
-90  
-
-
0.43  
0.43  
-90  
-
-
90  
80  
0.43  
0.43  
-80  
-
-
80  
70  
tCK(avg)  
tCK(avg)  
ps  
100  
90  
Clock Period Jitter during DLL locking period JIT(per, lck)  
-80  
-70  
ps  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period Jitter during DLL  
locking period  
Duty Cycle Jitter  
Cumulative error across n = 2, 14 . . . 49, 50  
cycles  
tJIT(cc)  
200  
180  
180  
160  
160  
140  
ps  
JIT(cc, lck)  
tJIT(duty)  
tERR(nper)  
ps  
ps  
ps  
-
-
-
-
-
-
tERR(nper) min = (1 + 0.68ln(n)) * tJIT(per)min  
tERR (nper) max = (1 + 0.68ln(n)) * tJIT (per)max  
Data Timing  
DQS,  to DQ skew, per group, per  
access  
tDQSQ  
-
200  
-
150  
-
125  
ps  
DQ output hold time from DQS,   
DQ low-impedance time from CK,   
DQ high impedance time from CK,   
tQH  
tLZ(DQ)  
tHZ(DQ)  
tDS(base)  
DDR3-AC175  
tDS(base)  
0.38  
-800  
-
-
0.38  
-600  
-
-
0.38  
-500  
-
-
tCK(avg)  
400  
400  
300  
300  
250  
250  
ps  
ps  
75  
125  
90  
-
-
-
-
-
25  
75  
-
-
-
-
-
-
-
-
-
-
-
ps  
ps  
ps  
ps  
ps  
30  
-
Data setup time to DQS,  referenced to DDR3-AC150  
Vih(ac) / Vil(ac) levels  
tDS(base)  
DDR3L-AC160  
tDS(base)  
DDR3L-AC135  
tDH(base)  
DDR3-DC100  
tDH(base)  
DDR3L-DC90  
40  
140  
150  
90  
45  
65  
Data hold time from DQS,  referenced  
to  
Vih(dc) / Vil(dc) levels  
100  
160  
600  
-
-
110  
490  
-
-
75  
-
-
ps  
ps  
DQ and DM Input pulse width for each input tDIPW  
400  
Data Strobe Timing  
DQS, differential READ Preamble  
DQS,  differential READ Postamble  
DQS,  differential output high time  
DQS,  differential output low time  
DQS,  differential WRITE Preamble  
DQS,  differential WRITE Postamble  
DQS,  rising edge output access time  
from rising CK,   
DQS and  low-impedance time  
(Referenced from RL 1)  
DQS and  high-impedance time  
(Referenced from RL + BL/2)  
tRPRE  
tRPST  
tQSH  
tQSL  
tWPRE  
tWPST  
0.9  
0.3  
0.38  
0.38  
0.9  
Note 19  
Note 11  
0.9  
0.3  
0.38  
0.38  
0.9  
Note 19  
Note 11  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19 tCK(avg)  
Note 11 tCK(avg)  
-
-
-
-
-
-
-
-
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
0.3  
0.3  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
-255  
-500  
-
255  
250  
250  
ps  
ps  
ps  
DQS,  differential input low pulse width tDQSL  
DQS,  differential input high pulse width tDQSH  
DQS,  rising edge to CK,  rising edge tDQSS  
0.45  
0.45  
-0.25  
0.55  
0.55  
0.25  
0.45  
0.45  
-0.25  
0.55  
0.55  
0.25  
0.45  
0.45  
-0.25  
0.55  
0.55  
0.25  
tCK(avg)  
tCK(avg)  
tCK(avg)  
DQS,  falling edge setup time to  
tDSS  
0.2  
0.2  
-
-
0.2  
0.2  
-
-
0.2  
0.2  
-
-
tCK(avg)  
tCK(avg)  
CK,  rising edge  
DQS,  falling edge hold time from  
tDSH  
CK,  rising edge  
Version 1.7  
04/2015  
142  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Command and Address Timing  
DLL locking time  
tDLLK  
512  
-
512  
-
512  
-
nCK  
Internal READ Command to  
PRECHARGE Command delay  
tRTPmin.: max(4tCK, 7.5ns)  
tRTPmax.: -  
tRTP  
Delay from start of internal write  
transaction to internal read command  
WRITE recovery time  
tWTRmin.: max(4tCK, 7.5ns)  
tWTRmax.: -  
tWTR  
tWR  
tMRD  
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
nCK  
Mode Register Set command cycle time  
tMODmin.: max(12tCK, 15ns)  
tMODmax.:  
Mode Register Set command update delay tMOD  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
tRCD  
tRP  
tRC  
Refer to “Fundamental AC Specifications”  
ACTIVE to PRECHARGE command period tRAS  
A to A command delay  
Auto precharge write recovery + precharge  
time  
tCCD  
4
-
4
-
4
1
-
nCK  
nCK  
nCK  
tDAL(MIN)  
tMPRR  
WR + roundup(tRP / tCK(avg))  
Multi-Purpose Register Recovery Time  
1
-
1
-
-
-
-
max(4t  
CK,7.5n  
s)  
max(4tCK,1  
0ns)  
max(4tCK  
,6ns)  
ACTIVE to ACTIVE command period (1KB  
page size)  
tRRD  
tRRD  
-
max(4t  
CK,10n  
max(4tCK,1  
0ns)  
max(4tCK  
,7.5ns)  
ACTIVE to ACTIVE command period (2KB  
page size)  
-
-
-
s)  
Four activate window (1KB page size)  
Four activate window (2KB page size)  
tFAW  
tFAW  
40  
50  
-
-
37.5  
50  
-
-
30  
45  
-
-
ns  
ns  
tIS(BASE)  
DDR3-AC175  
tIS(BASE)  
DDR3-AC150  
tIS(BASE)  
DDR3L-AC160  
tIS(BASE)  
DDR3L-AC135  
tIH(BASE)  
200  
350  
215  
365  
275  
285  
900  
-
-
-
-
-
-
-
125  
275  
140  
290  
200  
210  
780  
-
-
-
-
-
-
-
65  
-
-
-
-
-
-
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
190  
80  
Command and Address setup time to CK,  
 referenced to Vih(ac) / Vil(ac) levels  
205  
140  
150  
620  
Command and Address hold time from CK, DDR3-DC100  
 referenced to Vih(dc) / Vil(dc) levels  
tIH(BASE)  
DDR3L-DC90  
Control and Address Input pulse width for  
each input  
tIPW  
Calibration Timing  
tZQINITmin: max(512tCK, 640ns)  
tZQINITmax: -  
tZQOPERmin: max(256tCK, 320ns)  
tZQOPERmax: -  
tZQCSmin: max(64 tCK, 80ns)  
tZQCSmax: -  
Power-up and RESET calibration time  
tZQINIT  
tZQOPER  
tZQCS  
Normal operation Full calibration time  
Normal operation Short calibration time  
Reset Timing  
Exit Reset from CKE HIGH to a valid  
command  
tXPRmin.: max(5 tCK, tRFC(min) + 10ns)  
tXPRmax.: -  
tXPR  
Self Refresh Timings  
Exit Self Refresh to commands not requiring  
a locked DLL  
tXSmin.: max(5 tCK, tRFC (min) + 10ns)  
tXSmax.: -  
tXS  
Exit Self Refresh to commands requiring a  
locked DLL  
tXSDLLmin.: tDLLK(min)  
tXSDLLmax.: -  
tXSDLL  
nCK  
Minimum CKE low width for Self Refresh  
entry to  
exit timing  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down Entry (PDE)  
Valid Clock Requirement before Self  
Refresh Exit (SRX) or Power-Down Exit  
(PDX) or Reset Exit  
tCKESRmin.: tCKE(min) + 1 tCK  
tCKESRmax.: -  
tCKESR  
tCKSRE  
tCKSREmin.: max(5 tCK, 10 ns)  
tCKSREmax.: -  
tCKSRXmin.: max(5 tCK, 10 ns)  
tCKSRXmax.: -  
tCKSRX  
Version 1.7  
04/2015  
143  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Power Down Timings  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with  
DLL frozen to commands not requiring a  
locked DLL  
max(3t  
CK,7.5n  
s)  
max(3tCK,7.  
5ns)  
max(3tCK  
,6ns)  
tXP  
-
-
-
-
-
-
max(3t  
CK,5.62  
5ns)  
max(3tCK7.  
5ns)  
max(3tCK  
,5.625ns)  
CKE minimum pulse width  
tCKE  
Exit Precharge Power Down with DLL frozen  
to commands requiring a locked DLL  
tXPDLLmin.: max(10tCK, 24ns)  
tXPDLLmax.: -  
tXPDLL  
tCPDEDmin.: 1  
tCPDEDmin.:  
Command pass disable delay  
tCPDED  
tPD  
nCK  
-
tPDmin.: tCKE(min)  
tPDmax.: 9*tREFI  
tACTPDENmin.: 1  
tACTPDENmax.: -  
tPRPDENmin.: 1  
tPRPDENmax.: -  
tRDPDENmin.: RL+4+1  
tRDPDENmax.: -  
Power Down Entry to Exit Timing  
Timing of ACT command to Power Down  
entry  
Timing of PRE or PREA command to Power  
Down entry  
Timing of RD/RDA command to Power  
Down entry  
Timing of WR command to Power Down  
entry  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WRA command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power Down  
entry (BC4MRS)  
Timing of WRA command to Power Down  
entry (BC4MRS)  
Timing of REF command to Power Down  
entry  
nCK  
nCK  
nCK  
nCK  
tACTPDEN  
tPRPDEN  
tRDPDEN  
tWRPDENmin.: WL + 4 + (tWR /tCK(avg))  
tWRPDENmax.: -  
tWRPDEN  
tWRAPDENmin.: WL+4+WR+1  
tWRAPDENmax.: -  
tWRPDENmin.: WL + 2 + (tWR /tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL + 2 +WR + 1  
tWRAPDENmax.: -  
tREFPDENmin.: 1  
tREFPDENmax.: -  
tMRSPDENmin.: tMOD(min)  
tMRSPDENmax.: -  
nCK  
nCK  
nCK  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
nCK  
Timing of MRS command to Power Down  
entry  
ODT Timings  
ODT turn on Latency  
ODT turn off Latency  
ODTLon  
ODTLoff  
WL-2=CWL+AL-2  
WL-2=CWL+AL-2  
nCK  
nCK  
ODT high time without write command or  
with write command and BC4  
ODTH4min.: 4  
ODTH4max.: -  
ODTH4  
nCK  
ODTH8min.: 6  
ODTH8max.: -  
ODT high time with Write command and BL8 ODTH8  
nCK  
ns  
Asynchronous RTT turn-on delay  
tAONPD  
2
8.5  
2
8.5  
2
8.5  
(Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay  
(Power-Down with DLL frozen)  
RTT turn-on  
RTT_Nom and RTT_WR turn-off time  
from ODTLoff reference  
RTT dynamic change skew  
tAOFPD  
2
8.5  
400  
0.7  
0.7  
2
8.5  
300  
0.7  
0.7  
2
8.5  
250  
0.7  
0.7  
ns  
tAON  
tAOF  
tADC  
-400  
0.3  
0.3  
-300  
0.3  
0.3  
-250  
0.3  
0.3  
ps  
tCK(avg)  
tCK(avg)  
Write Leveling Timings  
First DQS/ rising edge after  
write leveling mode is programmed  
DQS/ delay after write leveling mode is  
programmed  
Write leveling setup time from rising CK,   
crossing to rising DQS,  crossing  
Write leveling hold time from rising DQS,  
 crossing to rising CK,  crossing  
Write leveling output delay  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
40  
25  
-
-
-
-
40  
25  
-
-
-
-
nCK  
nCK  
ps  
325  
325  
245  
245  
195  
195  
tWLH  
ps  
tWLO  
tWLOE  
0
0
9
2
0
0
9
2
0
0
9
2
ns  
ns  
Write leveling output error  
Version 1.7  
04/2015  
144  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Timing Parameters for DDR3(L)-1600, DDR3(L)-1866, and DDR3(L)-2133  
DDR3(L)-1600  
DDR3(L)-1866  
DDR3(L)-2133  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode) tCK (DLL_off)  
8
-
8
-
8
-
ns  
Average Clock Period  
Average high pulse width  
Average low pulse width  
tCK(avg)  
tCH(avg)  
tCL(avg)  
Refer to “Fundamental AC Specifications”  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
0.47  
0.47  
0.53  
0.53  
tCK(avg)  
tCK(avg)  
Min.: Tck(avg)min + Tjit(per)min  
Max.: Tck(avg)max + Tjit(per)max  
Absolute Clock Period  
tCK(abs)  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter  
tCH(abs)  
tCL(abs)  
JIT(per)  
0.43  
0.43  
-70  
-
-
70  
60  
0.43  
0.43  
-60  
-
-
60  
50  
0.43  
0.43  
-50  
-
-
50  
40  
tCK(avg)  
tCK(avg)  
ps  
Clock Period Jitter during DLL locking period JIT(per, lck)  
-60  
-50  
-40  
ps  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period Jitter during DLL  
locking period  
Duty Cycle Jitter  
Cumulative error across n = 2, 14 . . . 49, 50  
cycles  
tJIT(cc)  
140  
120  
120  
100  
100  
80  
JIT(cc, lck)  
tJIT(duty)  
tERR(nper)  
-
-
-
-
-
-
ps  
ps  
tERR(nper) min = (1 + 0.68ln(n)) * tJIT(per)min  
tERR (nper) max = (1 + 0.68ln(n)) * tJIT (per)max  
Data Timing  
DQS,  to DQ skew, per group, per  
access  
tDQSQ  
-
100  
-
85  
-
75  
ps  
DQ output hold time from DQS,   
DQ low-impedance time from CK,   
DQ high impedance time from CK,   
tQH  
tLZ(DQ)  
tHZ(DQ)  
0.38  
-450  
-
-
0.38  
-390  
-
-
0.38  
-360  
-
-
tCK(avg)  
225  
225  
195  
195  
180  
180  
ps  
ps  
tDS(base)  
DDR3-1600(AC  
175)  
DDR3-1866/21  
33(AC150)  
tDS(base)  
DDR3-1600(AC  
150)  
-
-
-
-
-
-
-
-
-
ps  
ps  
Data setup time to DQS,  referenced to  
10  
68  
53  
Vih(ac) / Vil(ac) levels  
DDR3-1866/21  
33(AC135)  
tDS(base)  
DDR3L-1600(AC1  
35) ,SR=1V/ns  
DDR3L-1866(AC1  
30),SR=2V/ns  
tDH(base)  
DC100  
25  
45  
-
-
70  
-
-
-
-
-
-
-
ps  
ps  
tDH(base)  
Data hold time from DQS,  referenced  
to  
Vih(dc) / Vil(dc) levels  
DC90  
DDR3L-1600(SR  
=1V/ns)  
55  
-
-
75  
-
-
-
-
-
ps  
ps  
DDR3L-1866(SR  
=2V/ns)  
DQ and DM Input pulse width for each input tDIPW  
Data Strobe Timing  
360  
320  
280  
DQS, differential READ Preamble  
DQS,  differential READ Postamble  
DQS,  differential output high time  
DQS,  differential output low time  
DQS,  differential WRITE Preamble  
DQS,  differential WRITE Postamble  
DQS,  rising edge output access time  
from rising CK,   
tRPRE  
tRPST  
tQSH  
tQSL  
tWPRE  
tWPST  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
Note 11  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
Note 11  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19 tCK(avg)  
Note 11 tCK(avg)  
-
-
-
-
-
-
-
-
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tDQSCK  
-225  
225  
-195  
195  
-180  
180  
ps  
DQS and  low-impedance time  
(Referenced from RL 1)  
DQS and  high-impedance time  
tLZ(DQS)  
tHZ(DQS)  
-450  
-
225  
225  
-390  
-
195  
195  
-360  
-
180  
180  
ps  
ps  
Version 1.7  
04/2015  
145  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
(Referenced from RL + BL/2)  
DQS,  differential input low pulse width tDQSL  
DQS,  differential input high pulse width tDQSH  
DQS,  rising edge to CK,  rising edge tDQSS  
0.45  
0.45  
-0.27  
0.55  
0.55  
0.27  
0.45  
0.45  
-0.27  
0.55  
0.55  
0.27  
0.45  
0.45  
-0.27  
0.55  
0.55  
0.27  
tCK(avg)  
tCK(avg)  
tCK(avg)  
DQS,  falling edge setup time to  
CK,  rising edge  
DQS,  falling edge hold time from  
CK,  rising edge  
tDSS  
0.18  
0.18  
-
-
0.18  
0.18  
-
-
0.18  
0.18  
-
-
tCK(avg)  
tCK(avg)  
tDSH  
Command and Address Timing  
DLL locking time  
tDLLK  
tRTP  
512  
-
512  
-
512  
-
nCK  
Internal READ Command to  
PRECHARGE Command delay  
tRTPmin.: max(4tCK, 7.5ns)  
tRTPmax.: -  
Delay from start of internal write  
transaction to internal read command  
WRITE recovery time  
tWTRmin.: max(4tCK, 7.5ns)  
tWTRmax.: -  
tWTR  
tWR  
tMRD  
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
nCK  
tMODmin.: max(12tCK, 15ns)  
tMODmax.:  
Mode Register Set command update delay tMOD  
ACT to internal read or write delay time  
PRE command period  
ACT to ACT or REF command period  
tRCD  
tRP  
tRC  
Refer to “Fundamental AC Specifications”  
ACTIVE to PRECHARGE command period tRAS  
A to A command delay  
Auto precharge write recovery + precharge  
time  
tCCD  
4
-
4
-
4
-
nCK  
nCK  
nCK  
tDAL(MIN)  
tMPRR  
WR + roundup(tRP / tCK(avg))  
Multi-Purpose Register Recovery Time  
1
-
1
-
1
-
max(4tCK,  
6ns)  
max(4tCK  
,5ns)  
max(4tCK  
,5ns)  
ACTIVE to ACTIVE command period (1KB  
page size)  
tRRD  
tRRD  
-
-
-
max(4tCK,  
max(4tCK  
max(4tCK  
ACTIVE to ACTIVE command period (2KB  
page size)  
-
-
-
7.5ns)  
30  
,6ns)  
27  
,6ns)  
25  
Four activate window (1KB page size)  
Four activate window (2KB page size)  
tFAW  
tFAW  
-
-
-
-
-
-
ns  
ns  
40  
35  
35  
tIS(BASE)  
DDR3-1600(AC  
175)  
DDR3-1866/21  
33(AC150)  
tIS(BASE)  
DDR3-1600(AC  
150)  
45  
-
-
-
-
-
-
-
-
ps  
ps  
170  
150  
135  
DDR3-1866/21  
33(AC125)  
tIS(BASE)  
DDR3L  
(AC160)  
tIS(BASE)  
DDR3L  
(AC135)  
tIS(BASE)  
DDR3L  
(AC125)  
tIH(BASE)  
DDR3  
Command and Address setup time to CK,  
 referenced to Vih(ac) / Vil(ac) levels  
60  
185  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ps  
ps  
ps  
ps  
65  
150  
100  
-
120  
95  
DC100  
Command and Address hold time from CK,  
 referenced to Vih(dc) / Vil(dc) levels  
tIH(BASE)  
DDR3L  
130  
560  
-
-
110  
535  
-
-
-
-
-
ps  
ps  
DC90  
Control and Address Input pulse width for  
each input  
tIPW  
470  
Calibration Timing  
tZQINITmin: max(512tCK, 640ns)  
tZQINITmax: -  
Power-up and RESET calibration time  
tZQINIT  
tZQOPERmin: max(256tCK, 320ns)  
tZQOPERmax: -  
Normal operation Full calibration time  
tZQOPER  
Version 1.7  
04/2015  
146  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
tZQCSmin: max(64 tCK, 80ns)  
tZQCSmax: -  
Normal operation Short calibration time  
tZQCS  
tXPR  
Reset Timing  
Exit Reset from CKE HIGH to a valid  
command  
tXPRmin.: max(5 tCK, tRFC(min) + 10ns)  
tXPRmax.: -  
Self Refresh Timings  
Exit Self Refresh to commands not requiring  
a locked DLL  
tXSmin.: max(5 tCK, tRFC (min) + 10ns)  
tXSmax.: -  
tXS  
Exit Self Refresh to commands requiring a  
locked DLL  
tXSDLLmin.: tDLLK(min)  
tXSDLLmax.: -  
tXSDLL  
nCK  
Minimum CKE low width for Self Refresh  
entry to  
exit timing  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down Entry (PDE)  
tCKESRmin.: tCKE(min) + 1 tCK  
tCKESRmax.: -  
tCKESR  
tCKSRE  
tCKSREmin.: max(5 tCK, 10 ns)  
tCKSREmax.: -  
Valid Clock Requirement before Self  
Refresh Exit (SRX) or Power-Down Exit  
(PDX) or Reset Exit  
tCKSRXmin.: max(5 tCK, 10 ns)  
tCKSRXmax.: -  
tCKSRX  
Power Down Timings  
Exit Power Down with DLL on to any valid  
command; Exit Precharge Power Down with  
DLL frozen to commands not requiring a  
locked DLL  
max(3tCK,  
6ns)  
max(3tCK  
,6ns)  
max(3tCK  
,6ns)  
tXP  
-
-
-
-
-
-
max(3tCK  
5ns)  
max(3tCK  
,5ns)  
max(3tCK  
,5ns)  
CKE minimum pulse width  
tCKE  
Exit Precharge Power Down with DLL frozen  
to commands requiring a locked DLL  
tXPDLLmin.: max(10tCK, 24ns)  
tXPDLLmax.: -  
tXPDLL  
tCPDEDmin.: 1  
tCPDEDmin.:  
Command pass disable delay  
tCPDED  
tPD  
nCK  
-
tPDmin.: tCKE(min)  
tPDmax.: 9*tREFI  
tACTPDENmin.: 1  
tACTPDENmax.: -  
tPRPDENmin.: 1  
tPRPDENmax.: -  
tRDPDENmin.: RL+4+1  
tRDPDENmax.: -  
Power Down Entry to Exit Timing  
Timing of ACT command to Power Down  
entry  
Timing of PRE or PREA command to Power  
Down entry  
Timing of RD/RDA command to Power  
Down entry  
Timing of WR command to Power Down  
entry  
(BL8OTF, BL8MRS, BC4OTF)  
Timing of WRA command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
Timing of WR command to Power Down  
entry (BC4MRS)  
Timing of WRA command to Power Down  
entry (BC4MRS)  
Timing of REF command to Power Down  
entry  
nCK  
nCK  
nCK  
nCK  
tACTPDEN  
tPRPDEN  
tRDPDEN  
tWRPDENmin.: WL + 4 + (tWR /tCK(avg))  
tWRPDENmax.: -  
tWRPDEN  
tWRAPDENmin.: WL+4+WR+1  
tWRAPDENmax.: -  
tWRPDENmin.: WL + 2 + (tWR /tCK(avg))  
tWRPDENmax.: -  
tWRAPDENmin.: WL + 2 +WR + 1  
tWRAPDENmax.: -  
tREFPDENmin.: 1  
tREFPDENmax.: -  
tMRSPDENmin.: tMOD(min)  
tMRSPDENmax.: -  
nCK  
nCK  
nCK  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
tREFPDEN  
tMRSPDEN  
nCK  
Timing of MRS command to Power Down  
entry  
ODT Timings  
ODT turn on Latency  
ODT turn off Latency  
ODTLon  
ODTLoff  
WL-2=CWL+AL-2  
WL-2=CWL+AL-2  
nCK  
nCK  
ODT high time without write command or  
with write command and BC4  
ODTH4min.: 4  
ODTH4max.: -  
ODTH4  
nCK  
ODTH8min.: 6  
ODTH8max.: -  
ODT high time with Write command and BL8 ODTH8  
nCK  
ns  
Asynchronous RTT turn-on delay  
tAONPD  
2
8.5  
2
8.5  
2
8.5  
(Power-Down with DLL frozen)  
Asynchronous RTT turn-off delay  
(Power-Down with DLL frozen)  
RTT turn-on  
tAOFPD  
2
8.5  
2
8.5  
2
8.5  
ns  
ps  
tAON  
-225  
225  
-195  
195  
-180  
180  
Version 1.7  
04/2015  
147  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
RTT_Nom and RTT_WR turn-off time  
tAOF  
0.3  
0.3  
0.7  
0.7  
0.3  
0.3  
0.7  
0.7  
0.3  
0.3  
0.7  
0.7  
tCK(avg)  
tCK(avg)  
from ODTLoff reference  
RTT dynamic change skew  
tADC  
Write Leveling Timings  
First DQS/ rising edge after  
write leveling mode is programmed  
DQS/ delay after write leveling mode is  
programmed  
Write leveling setup time from rising CK,   
crossing to rising DQS,  crossing  
Write leveling hold time from rising DQS,  
 crossing to rising CK,  crossing  
Write leveling output delay  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
40  
25  
-
-
-
-
40  
25  
-
-
-
-
nCK  
nCK  
ps  
165  
165  
140  
140  
125  
125  
tWLH  
ps  
tWLO  
tWLOE  
0
0
7.5  
2
0
0
7.5  
2
0
0
7.5  
2
ns  
ns  
Write leveling output error  
Jitter Notes  
Note 1  
Unit “Tck(avg)” represents the actual Tck(avg) of the input clock under operation. Unit “Nck” represents one clock cycle of  
the input clock, counting the actual clock edges. Ex) Tmrd=4 [Nck] means; if one Mode Register Set command is regis-  
tered at Tm, anther Mode Register Set command may be registered at Tm+4, even if (Tm+4-Tm) is 4 x Tck(avg) +  
Terr(4per), min.  
Note 2  
These parameters are measured from a command/address signal (CKE, , RA, A, WE, ODT, BA0, A0, A1, etc)  
transition edge to its respective clock signal (CK/) crossing. The spec values are not affected by the amount of clock  
jitter applied (i.e. Tjit(per), Tjit(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the  
command/address. That is, these parameters should be met whether clock jitter is present or not.  
Note 3  
These parameters are measured from a data strobe signal (DQS(L/U), LU)) crossing to its respective clock signal  
(CK, ) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. Tjit(per), Tjit(cc), etc), as  
these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or  
not.  
Note 4  
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective  
data strobe signal (DQS(L/U), LU) crossing.  
Note 5  
For these parameters, the DDR3(L) SDRAM device supports tnPARAM [Nck] = RU{Tparam[ns] / tCK(avg)[ns]}, which is  
in clock cycles, assuming all input clock jitter specifications are satisfied.  
Note 6  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual Terr(mper), act of  
the input clock, where 2 <= m <=12. (Output derating is relative to the SDRAM input clock.)  
Note 7  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual Tjit(per),act of the  
input clock. (Output deratings are relative to the SDRAM input clock.)  
Version 1.7  
04/2015  
148  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Timing Parameter Notes  
1. Actual value dependent upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ ( and RAP) are synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register.  
5. Value must be rouned-up to next higher integer value.  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFi  
.
7. For definition of RTT-on time tAON See “Timing Parameters”.  
8. For definition of RTT-off time tAOF See “Timing Parameters”.  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.  
10. WR in clock cycles are programmed in MR0.  
11. The maximum read postamble is bounded by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this  
parameter needs to be derated by TBD.  
13. Value is only valid for RON34.  
14. Single ended signal parameter.  
15. tREFi depends on TOPER  
.
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate. Note for  
DQ and DM signals, VREF(DC)=VrefDQ(DC). For input only pins except RESET, Vref(DC)=VrefCA(DC).  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for  
DQ and DM signals, VREF(DC)=VrefDQ(DC). For input only pins except RESET, Vref(DC)=VrefCA(DC).  
18. Start of internal write transaction is defined as follows:  
For BL8 (fixed by MRS and on-the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly): Rising clock edge 4 clock cycles after WL.  
For BC4 (fixed by MRS): Rising clock edge 2 clock cycles after WL.  
19. The maximum preamble is bound by tLZ (DQS) max on the left side and tDQSCK(max) on the right side.  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in  
progress, but power-down IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases  
where additional time such as tXPDLL(min) is also required.  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
Version 1.7  
04/2015  
149  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
23. One ZQCS command can effectively correct a minimum of 0.5% (ZQCorrection) of RON and RTT impedance error within 64  
Nck for all speed bins assuming the maximum sensitivities specified in the “Output Driver Voltage and Temperature Sensitivity”  
and “ODT Voltage and Temperature Sensitivity” tables. The appropriate interval between ZQCS commands can be determined  
from these tables and other application-specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate)  
drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection / [(Tsens x Tdriftrate) + (Vsens x Vdriftrate)] where Tsens = max(dRTTdT, dRONdTM) and Vsens =  
max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if Tsens = 1.5%/C, Vsens = 0.15%/Mv, Tdriftrate = 1 C/sec and Vdriftrate = 15Mv/sec, then the interval between  
ZQCS commands is calculated as 0.5 / [(1.5x1)+(0.15x15)] = 0.133 ~ 128ms  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100ps of derating to  
accommodate for the lower altemate threshold of 150Mv and another 25ps to account for the earlier reference point [(175Mv –  
150Mv) / 1V/ns].  
Version 1.7  
04/2015  
150  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Address / Command Setup, Hold, and Derating  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base)  
and tIH(base) and tIH(base) value to the delta tIS and delta tIH derating value respectively.  
Example: tIS (total setup time) = tIS(base) + delta tIS  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vref(dc) and the first  
crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of Vref(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line  
between shaded ‘Vref(dc) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the  
nominal slew rate line anywhere between shaded ‘Vref(dc) to ac region’, the slew rate of the tangent line to the actual signal  
from the ac level to dc level is used for derating value.  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the  
first crossing of Vref(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VIH(dc)min and the first crossing of Vref(dc). If the actual signal is always later than the nominal slew rate line  
between shaded ‘dc to Vref(dc) region’, use nominal slew rate for derating value. If the actual signal is earlier than the  
nominal slew rate line anywhere between shaded ‘dc to Vref(dc) region’, the slew rate of a tangent line to the actual signal  
from the dc level to Vref(dc) level is used for derating value. For a valid transition the input signal has to remain  
above/below VIH/IL(ac) for some time tVAC. Although for slow slew rates the total setup time might be negative (i.e. a valid  
input signal will not have reached VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to  
complete the transition and reach VIH/IL(ac).  
ADD/CMD Setup and Hold Base-Values for 1V/ns  
Grade  
Symbol  
Reference  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(dc)  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(ac)  
VIH/L(ac)  
800  
200  
350  
-
1066  
125  
275  
-
1333  
65  
1600  
45  
1866  
-
2133  
Unit  
ps  
Notes  
tIS(base) AC175  
tIS(base) AC150  
tIS(base) AC135  
tIS(base) AC125  
tIH(base) DC100  
tIS(base) AC160  
tIS(base) AC135  
tIS(base) AC125  
tIH(base) DC90  
-
1
1
190  
-
170  
-
-
-
60  
135  
95  
-
ps  
DDR3  
65  
ps  
1
-
-
-
-
150  
100  
-
ps  
1
275  
215  
365  
-
200  
140  
290  
-
140  
80  
120  
60  
ps  
1
ps  
1
205  
-
185  
-
65  
-
ps  
1,2  
1,3  
1
DDR3L  
150  
110  
-
ps  
285  
210  
150  
130  
-
ps  
NOTE 1 (AC/DC referenced for 1 V/ns Address/Command slew rate and 2 V/ns differential CK- slew rate)  
NOTE 2 The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125 ps for  
DDR3L-800/1066 or 100 ps for DDR3L-1333/1600 of derating to accommodate for the lower alternate threshold of 135 mV and another 25 ps to  
account for the earlier reference point [(160 mV - 135 mV) / 1 V/ns].  
NOTE 3 The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75 ps for DDR3L-1866  
of derating to accommodate for the lower alternate threshold of 135 mV and another 10 ps to account for the earlier reference point [(135 mV -  
125 mV) / 1 V/ns].  
Version 1.7  
04/2015  
151  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3L-800/1066/1333/1600 tIS/tIH - AC/DC based AC160 Threshold  
DDR3L AC160 Threshold -> VIH(ACAC)=VREF(DC)+160 mV, VIL(AC)=VREF(DC)-160 mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
80  
53  
45  
30  
80  
53  
45  
30  
80  
53  
45  
30  
88  
61  
53  
38  
96  
69  
61  
46  
104  
77  
69  
54  
112  
85  
79  
64  
120  
93  
95  
80  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-1  
-3  
-3  
-1  
-3  
-3  
-1  
-3  
-3  
7
5
5
15  
13  
11  
8
13  
9
23  
21  
19  
16  
4
21  
17  
11  
4
31  
29  
27  
24  
12  
-8  
31  
27  
21  
14  
4
39  
37  
35  
32  
20  
0
47  
43  
37  
30  
20  
5
-8  
-8  
-8  
1
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
3
-5  
3
-8  
-8  
-8  
0
-12  
-22  
-37  
-4  
-20  
-40  
-20  
-40  
-20  
-40  
-12  
-32  
-4  
-14  
-29  
-6  
-24  
-16  
-21  
-11  
Derating values DDR3L-800/1066/1333/1600 tIS/tIH - AC/DC based AC135 Threshold  
DDR3L Alternate AC135 Threshold -> VIH(AC)=VREF(DC)+135 mV, VIL(AC)=VREF(DC)-135 mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
68  
45  
45  
30  
68  
45  
45  
30  
68  
45  
45  
30  
76  
53  
53  
38  
84  
61  
61  
46  
92  
69  
69  
54  
100  
77  
79  
64  
108  
85  
95  
80  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2
3
-3  
2
3
-3  
2
3
-3  
10  
11  
14  
17  
13  
6
5
18  
19  
22  
25  
21  
14  
13  
9
26  
27  
30  
33  
29  
22  
21  
17  
11  
4
34  
35  
38  
41  
37  
30  
31  
27  
21  
14  
4
42  
43  
46  
49  
45  
38  
47  
43  
37  
30  
20  
5
-8  
-8  
-8  
1
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
-5  
3
9
9
9
-12  
-22  
-37  
-4  
5
5
5
-14  
-29  
-6  
-3  
-3  
-3  
-21  
-11  
Version 1.7  
04/2015  
152  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3L-1866 tIS/tIH - AC/DC based AC125 Threshold  
DDR3L Alternate AC125 Threshold -> VIH(AC)=VREF(DC)+125 mV, VIL(AC)=VREF(DC)-125 mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
63  
42  
45  
30  
63  
42  
45  
30  
63  
42  
45  
30  
71  
50  
53  
38  
79  
58  
61  
46  
87  
66  
69  
54  
95  
74  
79  
64  
103  
82  
95  
80  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
3
-3  
3
-3  
3
-3  
11  
14  
18  
24  
23  
21  
5
19  
22  
26  
32  
31  
29  
13  
9
27  
30  
34  
40  
39  
37  
21  
17  
11  
-4  
35  
38  
42  
48  
47  
45  
31  
27  
21  
14  
4
43  
46  
50  
56  
55  
53  
47  
43  
37  
30  
20  
5
6
-8  
6
-8  
6
-8  
1
10  
16  
15  
13  
-13  
-20  
-30  
-45  
10  
16  
15  
13  
-13  
-20  
-30  
-45  
10  
16  
15  
13  
-13  
-20  
-30  
-45  
-5  
3
-12  
-22  
-37  
4
-14  
-29  
-6  
-21  
-11  
Derating values DDR3-800/1066/1333/1600 tIS/tIH - AC/DC based AC175 Threshold  
DDR3 AC175 Threshold -> VIH(ac)=VREF(dc)+175mV, VIL(ac)=VREF(dc)-175mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
88  
59  
50  
34  
88  
59  
50  
34  
88  
59  
50  
34  
96  
67  
58  
42  
104  
75  
66  
50  
112  
83  
74  
58  
120  
91  
84  
68  
128  
99  
100  
84  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-2  
-4  
-2  
-4  
-2  
-4  
6
2
4
14  
10  
5
12  
6
22  
18  
13  
7
20  
14  
8
30  
26  
21  
15  
-2  
30  
24  
18  
8
38  
34  
29  
23  
5
46  
40  
34  
24  
10  
-10  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-2  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-8  
0
-9  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
-27  
-54  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
-30  
-26  
-22  
Version 1.7  
04/2015  
153  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3-800/1066/1333/1600 tIS/tIH - AC/DC based AC150 Threshold  
DDR3 Alternate AC150 Threshold -> VIH(ac)=VREF(dc)+150mV, VIL(ac)=VREF(dc)-150mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH  
2
75  
50  
50  
34  
75  
50  
50  
34  
75  
50  
50  
34  
83  
58  
58  
42  
91  
66  
66  
50  
99  
74  
74  
58  
107  
82  
84  
68  
115  
90  
100  
84  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
-4  
0
0
-4  
0
0
-4  
8
8
4
16  
16  
16  
15  
6
12  
6
24  
24  
24  
23  
14  
-1  
20  
14  
8
32  
32  
32  
31  
22  
7
30  
24  
18  
8
40  
40  
40  
39  
30  
15  
46  
40  
34  
24  
10  
-10  
-10  
-16  
-26  
-40  
-60  
-10  
-16  
-26  
-40  
-60  
-10  
-16  
-26  
-40  
-60  
-2  
0
0
0
8
-8  
0
-1  
-1  
-1  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
-10  
-25  
-10  
-25  
-10  
-25  
-2  
-17  
-16  
-36  
-6  
-9  
-26  
Derating values DDR3-1866/2133 tIS/tIH - AC/DC based AC135 Threshold  
DDR3 Alternate AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS  
tIH  
2
68  
45  
50  
34  
68  
45  
50  
34  
68  
45  
50  
34  
76  
53  
58  
42  
84  
61  
66  
50  
92  
69  
74  
58  
100  
77  
84  
68  
108  
85  
100  
84  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2
3
-4  
2
3
-4  
2
3
-4  
10  
11  
14  
17  
13  
6
4
18  
19  
22  
25  
21  
14  
12  
6
26  
27  
30  
33  
29  
22  
20  
14  
8
34  
35  
38  
41  
37  
30  
30  
24  
18  
8
42  
43  
46  
49  
45  
38  
46  
40  
34  
24  
10  
-10  
-10  
-16  
-26  
-40  
-60  
-10  
-16  
-26  
-40  
-60  
-10  
-16  
-26  
-40  
-60  
-2  
6
6
6
-8  
0
9
9
9
-18  
-32  
-52  
-10  
-24  
-44  
-2  
5
5
5
-16  
-36  
-6  
-3  
-3  
-3  
-26  
Version 1.7  
04/2015  
154  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3-1866/2133 tIS/tIH - AC/DC based AC125 Threshold  
DDR3 Alternate AC125 Threshold -> VIH(ac)=VREF(dc)+125mV, VIL(ac)=VREF(dc)-125mV  
CK,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS tIH tIS  
tIH  
2
63  
42  
50  
34  
63  
42  
50  
34  
63  
42  
50  
34  
71  
50  
58  
42  
79  
58  
66  
50  
87  
66  
74  
58  
95  
74  
84  
68  
103  
82  
100  
84  
1.5  
1
0
0
0
0
0
0
8
8
16  
16  
24  
24  
32  
34  
40  
50  
CMD/ADD  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
4
-4  
4
-4  
4
-4  
12  
14  
19  
24  
23  
21  
4
20  
22  
27  
32  
31  
29  
12  
6
28  
30  
35  
40  
39  
37  
20  
14  
8
36  
38  
43  
48  
47  
45  
30  
24  
18  
8
44  
46  
51  
56  
55  
53  
46  
40  
34  
24  
10  
-10  
6
-10  
-16  
-26  
-40  
-60  
6
-10  
-16  
-26  
-40  
-60  
6
-10  
-16  
-26  
-40  
-60  
-2  
11  
16  
15  
13  
11  
16  
15  
13  
11  
16  
15  
13  
-8  
0
-18  
-32  
-52  
-10  
-24  
-44  
-2  
-16  
-36  
-6  
-26  
Version 1.7  
04/2015  
155  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Required time tVAC above VIH(AC) {below VIL(AC)} for ADD/CMD transition  
Slew  
Rate  
[V/ns]  
> 2.0  
2.0  
DDR3  
800/1066/1333/1600  
175mV [ps] 150mV[ps] 135mV [ps] 125mV [ps]  
DDR3L  
800/1066/1333/1600  
1866/2133  
1866  
Unit  
160 mV [ps] 135 mV [ps] 135 mV [ps] 125 mV [ps]  
75  
57  
175  
170  
167  
130  
113  
93  
168  
168  
145  
100  
85  
173  
173  
152  
110  
96  
200  
200  
173  
120  
102  
80  
213  
213  
190  
145  
130  
111  
87  
200  
200  
178  
133  
118  
99  
205  
205  
184  
143  
129  
111  
89  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
50  
1.5  
38  
1.0  
34  
0.9  
29  
66  
79  
0.8  
22  
66  
42  
56  
51  
75  
0.7  
note  
note  
note  
30  
10  
27  
13  
55  
43  
59  
0.6  
note  
note  
note  
note  
note  
note  
Note  
Note  
10  
Note  
Note  
18  
0.5  
10  
18  
<0.5  
NOTE Rising input signal shall become equal to or greater than VIH(ac) level and falling input signal shall become equal to or less  
than VIL(ac) level.  
Version 1.7  
04/2015  
156  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Data Setup, Hold, and Slew Rate De-rating  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base)  
and tDH(base) value to the delta tDS and delta tDH derating value respectively.  
Example: tDS (total setup time) = tDS(base) + delta tDS  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vref(dc) and the  
first crossing of VIH(ac)min. Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of Vref(dc) and the first crossing of VIL(ac)max. If the actual signal is always earlier than the nominal slew rate line  
between shaded ‘Vref(dc) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the  
nominal slew rate line anywhere between shaded ‘Vref(dc) to ac region’, the slew rate of the tangent line to the actual signal  
from the ac level to dc level is used for derating value.  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the  
first crossing of Vref(dc). Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of VIH(dc)min and the first crossing of Vref(dc). If the actual signal is always later than the nominal slew rate line  
between shaded ‘dc level to Vref(dc) region’, use nominal slew rate for derating value. If the actual signal is earlier than the  
nominal slew rate line anywhere between shaded ‘dc to Vref(dc) region’, the slew rate of a tangent line to the actual signal  
from the dc level to Vref(dc) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(ac)  
at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).  
For slew rates in between the values listed in the following tables, the derating values may be obtained by linear  
interpolation. These values are typically not subject to production test. They are verified by design and characterization.  
Derating values DDR3L-800/1066 tDS/tDH - AC/DC based AC160 Threshold  
DDR3L AC160 Threshold -> VIH(AC)=VREF(DC)+160mV, VIL(AC)=VREF(DC)-160mV  
DQS,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2
80  
53  
45  
30  
80  
53  
45  
30  
80  
53  
45  
30  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
61  
38  
1
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
-
DQ  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
-1  
-
-3  
-
-1  
-3  
-
-3  
-8  
-
7
5
3
-
5
1
-5  
-
15  
13  
11  
8
13  
9
23  
21  
19  
16  
4
21  
17  
11  
4
-
-
-
-
29  
27  
24  
12  
-8  
27  
21  
14  
4
-
-
-
-
3
35  
32  
20  
0
37  
30  
20  
5
-
-
-
-
-4  
-
-
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-
-
-
-11  
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Version 1.7  
04/2015  
157  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3L- 800/1066/1333/1600 tDS/tDH - AC/DC based AC135/ Threshold  
DDR3L Alternate AC135 Threshold -> VIH(AC)=VREF(DC)+135mV, VIL(AC)=VREF(DC)-135mV  
DQS,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2
45  
45  
68  
30  
45  
45  
68  
30  
45  
45  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
30  
53  
38  
-
-
1
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
DQ  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-3  
-
2
3
-
-3  
-8  
-
10  
11  
14  
-
5
1
-5  
-
18  
19  
22  
25  
-
13  
9
26  
27  
30  
33  
29  
-
21  
17  
11  
4
-
-
-
-
35  
38  
41  
37  
30  
27  
21  
14  
4
-
-
-
-
3
46  
49  
45  
38  
37  
30  
20  
5
-
-
-
-
-4  
-
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-
-
-11  
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Derating values DDR3L- 1866 tDS/tDH - AC/DC based AC130 Threshold  
DDR3L Alternate AC130 Threshold -> VIH(AC)=VREF(DC)+130mV, VIL(AC)=VREF(DC)-130mV  
DQS,  Differential Slew Rate  
8.0 V/ns 7.0 V/ns 6.0 V/ns 5.0 V/ns 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
4
33 23 33 23 33 23  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.5 28 19 28 19 28 19 28 19  
3
22 15 22 15 22 15 22 15 22 15  
-
-
2.5  
-
-
-
-
13  
-
9
-
13  
0
9
0
13  
0
9
0
13  
0
9
0
13  
9
2
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
DQ  
Slew  
rate  
1.5  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-22 -15 -22 -15 -22 -15 -22 -15 -14 -7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-65 -45 -65 -45 -65 -45 -57 -37 -49 -29  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
-62 -48 -62 -48 -54 -40 -46 -32 -38 -24  
V/ns  
-
-
-
-
-
-
-
-
-
-
-61 -53 -53 -45 -45 -37 -37 -29 -29 -19  
-
-
-
-
-
-
-
-
-49 -50 -41 -42 -33 -34 -25 -24 -17 -8  
-
-
-
-
-
-
-37 -49 -29 -41 -21 -31 -13 -15  
-
-
-
-
-31 -51 -23 -41 -15 -25  
-28 -56 -20 -40  
-
-
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Version 1.7  
04/2015  
158  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3- 800/1066 tDS/tDH - AC/DC based AC175 Threshold  
DDR3 AC175 Threshold  
DQS,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2
50  
59  
88  
34  
50  
59  
88  
34  
50  
59  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
34  
67  
42  
-
-
1
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
DQ  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
-2  
-
-4  
-
-2  
-6  
-
-4  
6
2
-3  
-
4
-2  
-8  
-
14  
10  
5
12  
6
22  
18  
13  
7
20  
14  
8
-
-
-
-
-
-10  
26  
21  
15  
-2  
24  
18  
8
-
-
-
-
-
-
-
0
29  
23  
5
34  
24  
10  
-10  
-
-
-
-1  
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-11  
-
-6  
-
-
-
-
-
-
-
-30  
-26  
-22  
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Derating values DDR3- 800/1066/1333/1600 tDS/tDH - AC/DC based AC150 Threshold  
DDR3 AC150 Threshold  
DQS,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2
50  
50  
75  
34  
50  
50  
75  
34  
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
34  
58  
42  
-
-
1
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
DQ  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-4  
-
0
0
-
-4  
8
8
8
-
4
-2  
-8  
-
16  
16  
16  
15  
-
12  
6
24  
24  
24  
23  
14  
-
20  
14  
8
-
-
-
-
-10  
32  
32  
31  
22  
7
24  
18  
8
-
-
-
-
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
-
-
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-26  
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Version 1.7  
04/2015  
159  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Derating values DDR3- 1866/2133 tDS/tDH - AC/DC based AC135 Threshold  
DDR3  
Alternate AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV  
Alternate DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
DQS,  Differential Slew Rate  
8.0 V/ns 7.0 V/ns 6.0 V/ns 5.0 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
34 25 34 25 34 25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
29 21 29 21 29 21 29  
23 17 23 17 23 17 23  
21  
17  
10  
-
-
3.5  
3
23  
14  
17  
10  
-
-
-
-
-
-
14 10 14 10 14  
14  
10  
2.5  
DQ  
Slew  
rate  
-
-
0
0
0
0
0
0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-23 -17 -23 -17 -23 -17 -23 -17 -15 -9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-68 -50 -68 -50 -68 -50 -60 -42 -52 -34  
-
-
-
-
-
-
-
-
-
-
-
-
-66 -54 -66 -54 -58 -46 -50 -38 -42 -30  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-64 -60 -56 -52 -48 -44 -40 -36 -32 -26  
V/ns  
-
-
-
-
-
-
-
-
-53 -59 -45 -51 -37 -43 -29 -33 -21 -17  
-
-
-
-
-
-
-43 -61 -35 -53 -27 -43 -19 -27  
-
-
-
-
-39 -66 -31 -56 -23 -40  
-38 -76 -30 -60  
-
-
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Derating values DDR3- 800/1066/1333/1600 tDS/tDH - AC/DC based AC135 Threshold  
DDR3  
Alternate AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV  
Alternate DC100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV  
DQS,  Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2
68  
45  
50  
34  
68  
45  
50  
34  
68  
45  
50  
34  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
53  
42  
1
0
0
0
0
0
0
8
8
16  
16  
-
-
-
-
-
-
DQ  
Slew rate  
V/ns  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-4  
-
2
3
-
-4  
10  
11  
14  
-
4
-2  
-8  
-
18  
19  
22  
25  
-
12  
6
26  
27  
30  
33  
29  
-
20  
14  
8
-
-
-
-
-10  
35  
38  
41  
37  
30  
24  
18  
8
-
-
-
-
-
-
-
-
0
46  
49  
45  
38  
34  
24  
10  
-10  
-
-
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-6  
-
-
-
-
-
-
-
-26  
NOTE1: Cell contents shaded in gray are defined as ‘not supported’.  
Version 1.7  
04/2015  
160  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Required time tVAC above VIH(AC) {below VIL(AC)} for DQ transition  
DDR3  
DDR3L  
Slew  
Rate  
800/1066/  
800/1066/  
800/1066/  
1333/1600  
Unit  
800/1066  
1866  
2133  
800/1066  
1866  
1333/1600 1333/1600  
[V/ns]  
175mV [ps] 150mV[ps] 135mV [ps] 135mV [ps] 135 mV [ps] 160 mV [ps] 135 mV [ps] 130 mV [ps]  
75  
57  
105  
105  
80  
113  
113  
90  
93  
93  
70  
25  
Note  
Note  
-
73  
165  
165  
138  
85  
113  
113  
90  
95  
95  
73  
30  
16  
Note  
-
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
> 2.0  
2.0  
73  
50  
50  
1.5  
38  
30  
45  
5
45  
1.0  
34  
13  
30  
Note  
67  
30  
0.9  
29  
Note  
Note  
Note  
Note  
Note  
11  
Note  
45  
11  
0.8  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
-
-
-
-
16  
Note  
Note  
Note  
Note  
0.7  
-
Note  
Note  
Note  
-
0.6  
-
-
0.5  
-
-
<0.5  
NOTE Rising input signal shall become equal to or greater than VIH(ac) level and falling input signal shall become equal to or less than  
VIL(ac) level.  
Version 1.7  
04/2015  
161  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
Revision History  
Version  
1.0  
Page  
Modified  
Description  
Released  
03/2012  
07/2012  
10/2012  
12/2012  
01/2013  
02/2013  
02/2013  
03/2013  
05/2013  
-
-
-
-
-
-
-
-
-
-
-
Preliminary Revision  
Official Revision  
1.0  
-
1.0  
-
Add IT grade parts (Industry Temperature) IDDs.  
Re-move speed 1066 and 1333 Spec  
Voltage SPEC modified  
1.0  
-
1.0  
-
1.0  
-
Modified MR2 Function  
1.0  
-
Add RS (Reduced Standaby) Part Numbers  
Modified Part Numbers  
1.0  
-
1.0  
-
Add tRFC SPEC and Automobile Part Numbers  
Renew the first page  
P1  
1. Remove on page xxx’  
All  
-
2. Follow NTCs data center to change the Revision Rule  
P3  
Ordering Information Add Part Number ‘NT5CB256M16CP-DIH’.  
Special Type Option  
Part Number Naming  
P4  
1. Add H = Automotive Grade 2  
Rule  
2. Modify A = Automotive 3 (was: A = Automotive)  
Fundamental AC  
Specifications  
Package Outline  
Drawing  
1. Make all options follow JEDEC standards.  
2. Add 800, 1066 and 1333 specifications.  
1. Add side view of package to POD  
2. Redraw the ballout  
P5-11  
P13-14  
P24,27,30,32  
MR0,1,2,3  
Redraw the MR functions  
1.1  
06/2013  
1. Follow JEDEC specifications  
Absolute Maximum DC  
Ratings  
VDD: -0.4V ~ 1.8V (was: -0.4V ~ 1.975V)  
VDDQ: -0.4V ~ 1.8V (was: -0.4V ~ 1.975V)  
Vin,Vout: -0.4V ~ 1.8V (was: -0.4V ~ 1.975V)  
P89  
P90  
Temperature Spec  
All  
1. Automatic Grade 3: -40 to 85 (was: -40 to 95)  
1. Make all specifications follow JEDEC specifications  
2. Add DDR3(L) 800, 1066 and 1333 specifications  
P92-123  
P124-136  
P137-143  
IDD specifications  
Timing specifications  
1. Add IDD test conditions  
1. Make all specifications follow JEDEC specifications  
2. Add DDR3(L) 800, 1066 and 1333 specifications  
1. Make all specifications follow JEDEC specifications  
2. Add DDR3(L) 800, 1066 and 1333 specifications  
P146-156  
Derating table  
P14  
96 ballout  
MR  
1. Update POD spec to 12mm (was: 11.2mm caused by typo)  
1. Add notes below the MR tables  
P24,27,30,32  
1. Automotive Grade 3: -40 ~ 95 (was: -40~85)  
2. Add Automotive Grade 2 Spec on page 90.  
P1,P90  
Temperature spec  
1.2  
06/2013  
P147-150,  
152-155  
tIS/tIH/tDS/tDH Derating  
table  
1. Add DC conditions  
1. Correct the typo in 1st paragraph: tDS(base) and tDH(base), was: tDH(base) and  
tDH(base)  
P152  
P1  
Data Setup,Hold  
-
1. Renew.  
1. Divide the table. Put Core Timing on page 2 and Operating Frequency on  
P130-135  
P2.133-138  
P4  
Fundamental AC Spec.  
Ordering Info  
1. Package: TFBGA (was: WBGA)  
Package Outline  
Drawing  
1. Ball descriptions (was: Pin descriptions)  
2. Add seating plane, wiring bonding molding height and top view  
1. Ball descriptions (was: Pin descriptions)  
2. Add Note 2 to the table.  
P6-7  
1.3  
08/2013  
P8-9  
All  
Ball descriptions  
-
1. Format adjustment  
1. in supporting temperature range(was: and does not exceed +95°C)  
Extended Temperature  
Usage  
P44  
P62  
2. removed: Table 14 summarizes the two extended temperature options and Table  
15 summarizes how the two extended temperature options relate to one another.  
Self Refresh Operation 1. ZQCALfunction requirements [TBD]  
Version 1.7  
04/2015  
162  
Nanya Technology Cooperation ©  
All Rights Reserved.  
DDR3(L) 4Gb SDRAM  
NT5CB(C)512M8CN / NT5CB(C)256M16CP  
P117  
P1  
tAON  
-
1. Add tAON diagram.  
1. Write Leveling :Add Note 7  
2. Density and Addressing: Add tREFI  
Add: DQ0 is the prime DQ in a low byte lane of x4/x8/x16 configuration and DQ8 is  
the prime DQ in a high byte lane of x16 configuration for write leveling.  
Emphasize Write Leveling only supports prime DQs feedback.  
1. A separated feedback mechanism should be able for each byte lane. The low byte  
lanes prime DQ, DQ0, carries the leveling feedback to the controller across the  
DRAM configurations x4/x8 whereas DQ0 indicates the lower diff_DQS  
(diff_LDQS) to clock relationship..The high byte lanes prime DQ, DQ8, provides  
the feedback of the upper diff_DQS (diff_UDQS) to clock relationship.  
2. Timing details of Write leveling sequence: Add (For Information. Only Support prime  
DQ)  
P9  
DQ Description  
Write Leveling  
1.4  
09/2013  
P41-P43  
P124  
All  
IDD specifications  
-
Add 2133 IDD specs.  
Format adjusted and realigned.  
1. Add DDR3L-1866 part number and specifications.  
2. Update IDD specification.  
1.5  
1.6  
P2,4,123,124,137  
P1,4  
DDR3L-1866  
12/2013  
04/2014  
Voltage backward  
compatible  
1. Temperature Range: Add part numbers code  
2. NOTE 4: Enhance the statement of voltage backward compatible.  
P19  
P45, P123, 124  
P5  
CAS Latency  
Self refresh  
Correct the description: bit A2, A4~A6 (was: bit A9~A11)  
Emphasize the difference among the grades about Self refresh temperature range  
Part Numbering Guide Simplify part numbering guide.  
1.7  
04/2015  
P88  
Temperature Range Revise the note description of the table.  
Version 1.7  
04/2015  
163  
Nanya Technology Cooperation ©  
All Rights Reserved.  
http://www.nanya.com/  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY