MX68GL1G0F [Macronix]

SINGLE VOLTAGE 3V ONLY FLASH MEMORY;
MX68GL1G0F
型号: MX68GL1G0F
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

SINGLE VOLTAGE 3V ONLY FLASH MEMORY

文件: 总71页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX68GL1G0F  
MX68GL1G0F  
DATASHEET  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
1
MX68GL1G0F  
Contents  
1. FEATURES ........................................................................................................................................................ 5  
2. PIN CONFIGURATION ...................................................................................................................................... 6  
3. PIN DESCRIPTION............................................................................................................................................ 7  
4. BLOCK DIAGRAM............................................................................................................................................. 8  
5. BLOCK DIAGRAM DESCRIPTION................................................................................................................... 9  
6. BLOCK STRUCTURE...................................................................................................................................... 10  
Table 1. SECTOR ARCHITECTURE ..................................................................................................10  
7. BUS OPERATION.............................................................................................................................................11  
Table 2. BUS OPERATION-1.............................................................................................................. 11  
Table 3. BUS OPERATION-2..............................................................................................................12  
8. FUNCTIONAL OPERATION DESCRIPTION .................................................................................................. 13  
8-1. READ OPERATION............................................................................................................................13  
8-2. PAGE READ .......................................................................................................................................13  
8-3. WRITE OPERATION ..........................................................................................................................13  
8-4. WRITE BUFFER PROGRAMMING OPERATION..............................................................................13  
8-5. DEVICE RESET..................................................................................................................................14  
8-6. STANDBY MODE ...............................................................................................................................14  
8-7. OUTPUT DISABLE.............................................................................................................................14  
8-8. BYTE/WORD SELECTION.................................................................................................................15  
8-9. HARDWARE WRITE PROTECT ........................................................................................................15  
8-10. ACCELERATED PROGRAMMING OPERATION ..............................................................................15  
8-11. SECTOR PROTECT OPERATION.....................................................................................................15  
8-12. AUTOMATIC SELECT BUS OPERATIONS .......................................................................................15  
8-13. SECTOR LOCK STATUS VERIFICATION..........................................................................................15  
8-14. READ SILICON ID MANUFACTURER CODE....................................................................................16  
8-15. READ INDICATOR BIT (Q7) FOR SECURITY SECTOR...................................................................16  
8-16. INHERENT DATA PROTECTION.......................................................................................................16  
8-17. COMMAND COMPLETION................................................................................................................16  
8-18. LOW VCC WRITE INHIBIT.................................................................................................................16  
8-19. WRITE PULSE "GLITCH" PROTECTION ..........................................................................................16  
8-20. LOGICAL INHIBIT...............................................................................................................................16  
8-21. POWER-UP SEQUENCE...................................................................................................................17  
8-22. POWER-UP WRITE INHIBIT..............................................................................................................17  
8-23. POWER SUPPLY DECOUPLING.......................................................................................................17  
9. COMMAND OPERATIONS.............................................................................................................................. 18  
9-1. READING THE MEMORY ARRAY .....................................................................................................18  
9-2. AUTOMATIC PROGRAMMING OF THE MEMORY ARRAY.............................................................18  
9-3. ERASING THE MEMORY ARRAY......................................................................................................19  
9-4. SECTOR ERASE................................................................................................................................19  
9-5. CHIP ERASE .....................................................................................................................................20  
9-6. ERASE SUSPEND/RESUME.............................................................................................................21  
9-7. SECTOR ERASE RESUME ...............................................................................................................21  
9-8. PROGRAM SUSPEND/RESUME.......................................................................................................22  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
2
MX68GL1G0F  
9-9. PROGRAM RESUME.........................................................................................................................22  
9-10. BUFFER WRITE ABORT....................................................................................................................22  
9-11. AUTOMATIC SELECT OPERATIONS................................................................................................23  
9-12. AUTOMATIC SELECT COMMAND SEQUENCE...............................................................................23  
9-13. READ MANUFACTURER ID OR DEVICE ID.....................................................................................23  
9-14. RESET ...............................................................................................................................................24  
9-15. Advanced Sector Protection/Un-protection.........................................................................................25  
Figure 1. Advance Sector Protection/Unprotection SPB Program Algorithm ......................................25  
9-15-1. Lock Register..........................................................................................................................26  
Figure 2. Lock Register Program Algorithm ........................................................................................26  
9-15-2. Solid Protection Mode ............................................................................................................27  
9-15-3. Temporary Un-protect Solid write Protect Bits (USPB)...........................................................28  
Figure 3. SPB Program Algorithm.......................................................................................................28  
9-15-4. Solid Protection Bit Lock Bit ...................................................................................................29  
9-15-5. Password Protection Method..................................................................................................29  
Table 4. Sector Protection Status........................................................................................................30  
9-16. SECURITY SECTOR FLASH MEMORY REGION.............................................................................31  
9-17. FACTORY LOCKED: SECURITY SECTOR PROGRAMMED AND PROTECTED AT THE FACTORY.  
............................................................................................................................................................31  
9-18. CUSTOMER LOCKABLE: SECURITY SECTOR NOT PROGRAMMED OR PROTECTED AT THE ...  
FACTORY...........................................................................................................................................31  
Table 5. COMMAND DEFINITIONS....................................................................................................32  
10. COMMON FLASH MEMORY INTERFACE (CFI) MODE .............................................................................. 35  
Table 6. CFI mode: Identification Data Values ....................................................................................35  
Table 7. CFI mode: System Interface Data Values .............................................................................35  
Table 8. CFI mode: Device Geometry Data Values.............................................................................36  
Table 9. CFI mode: Primary Vendor-Specific Extended Query Data Values.......................................37  
11. ELECTRICAL CHARACTERISTICS.............................................................................................................. 38  
11-1. ABSOLUTE MAXIMUM STRESS RATINGS ......................................................................................38  
11-2. OPERATING TEMPERATURE AND VOLTAGE .................................................................................38  
Figure 4. Maximum Negative Overshoot Waveform ...........................................................................38  
Figure 5. Maximum Positive Overshoot Waveform.............................................................................38  
Table 10. DC CHARACTERISTICS ....................................................................................................39  
Figure 6. SWITCHING TEST CIRCUITS ............................................................................................40  
Figure 7. SWITCHING TEST WAVEFORMS.....................................................................................40  
Table 11. AC CHARACTERISTICS.....................................................................................................41  
12. WRITE COMMAND OPERATION.................................................................................................................. 43  
Figure 8. COMMAND WRITE OPERATION .......................................................................................43  
13. READ/RESET OPERATION .......................................................................................................................... 44  
Figure 9. READ TIMING WAVEFORMS .............................................................................................44  
Table 12. AC CHARACTERISTICS-RESET#......................................................................................45  
Figure 10. RESET# TIMING WAVEFORM.........................................................................................45  
14. ERASE/PROGRAM OPERATION ................................................................................................................. 46  
Figure 11. AUTOMATIC CHIP ERASE TIMING WAVEFORM.............................................................46  
Figure 12. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART..................................................47  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
3
MX68GL1G0F  
Figure 13. AUTOMATIC SECTOR ERASE TIMING WAVEFORM......................................................48  
Figure 14. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART ...........................................49  
Figure 15. ERASE SUSPEND/RESUME FLOWCHART ....................................................................50  
Figure 16. AUTOMATIC PROGRAM TIMING WAVEFORMS.............................................................51  
Figure 17. ACCELERATED PROGRAM TIMING DIAGRAM..............................................................51  
Figure 18. CE# CONTROLLED WRITE TIMING WAVEFORM ..........................................................52  
Figure 19. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART ...........................................53  
15. SILICON ID READ OPERATION................................................................................................................... 54  
Figure 20. SILICON ID READ TIMING WAVEFORM..........................................................................54  
16. WRITE OPERATION STATUS....................................................................................................................... 55  
Figure 21. DATA# POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)..........55  
Figure 22. STATUS POLLING FOR PROGRAM/ERASE ...................................................................56  
Figure 23. STATUS POLLING FOR WRITE BUFFER PROGRAM.....................................................57  
Figure 24. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)...............58  
Figure 25. TOGGLE BIT ALGORITHM ...............................................................................................59  
17. PAGE READ OPERATION ............................................................................................................................ 60  
Figure 26. BYTE# TIMING WAVEFORM FOR READ OPERATIONS (BYTE# switching from byte  
mode to word mode) ...........................................................................................................................60  
Figure 27. PAGE READ TIMING WAVEFORM...................................................................................61  
18. DEEP POWER DOWN MODE OPERATION................................................................................................. 62  
Table 13. AC CHARACTERISTICS - Deep Power Down Mode..........................................................62  
Figure 28. DEEP POWER DOWN MODE WAVEFORM ....................................................................62  
19. WRITE BUFFER PROGRAM OPERATION .................................................................................................. 63  
Figure 29. WRITE BUFFER PROGRAM FLOWCHART.....................................................................63  
20. RECOMMENDED OPERATING CONDITIONS............................................................................................. 64  
Figure 30. AC Timing at Device Power-Up..........................................................................................64  
21. ERASE AND PROGRAMMING PERFORMANCE........................................................................................ 65  
22. DATA RETENTION ........................................................................................................................................ 65  
23. LATCH-UP CHARACTERISTICS.................................................................................................................. 65  
24. PIN CAPACITANCE....................................................................................................................................... 65  
25. ORDERING INFORMATION.......................................................................................................................... 66  
26. PART NAME DESCRIPTION......................................................................................................................... 67  
27. PACKAGE INFORMATION............................................................................................................................ 68  
28. REVISION HISTORY ..................................................................................................................................... 70  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
4
MX68GL1G0F  
SINGLE VOLTAGE 3V ONLY FLASH MEMORY  
1. FEATURES  
GENERAL FEATURES  
• 2.7 to 3.6 volt for read, erase, and program operations  
• Byte/Word mode switchable  
- 134,217,728 x 8 / 67,108,864 x 16  
• 64KW/128KB uniform sector architecture  
- 1024 equal sectors  
• 16-byte/8-word page read buffer  
• 64-byte/32-word write buffer  
• Extra 128-word sector for security  
- Features factory locked and identifiable, and customer lockable  
• Advanced sector protection function (Solid and Password Protect)  
• Compatible with JEDEC standard  
- Pinout and software compatible to single power supply Flash  
PERFORMANCE  
• High Performance  
- Fast access time:  
- MX68GL1G0F H/L: 110ns (VCC=2.7~3.6V)  
- MX68GL1G0F U/D: 120ns (VCC=2.7~3.6V, V I/O=1.65 to VCC)  
- Page access time:  
- MX68GL1G0F H/L: 25ns  
- MX68GL1G0F U/D: 30ns  
- Fast program time: 10us/word  
- Fast erase time: 0.5s/sector  
• Low Power Consumption  
- Low active read current: 10mA (typical) at 5MHz  
- Low standby current: 60uA (typical)  
• Minimum 100,000 erase/program cycle  
• 20 years data retention  
SOFTWARE FEATURES  
• Program/Erase Suspend & Program/Erase Resume  
• Status Reply  
- Data# Polling & Toggle bits provide detection of program and erase operation completion  
• Support Common Flash Interface (CFI)  
HARDWARE FEATURES  
• Ready/Busy# (RY/BY#) Output  
- Provides a hardware method of detecting program and erase operation completion  
• Hardware Reset (RESET#) Input  
- Provides a hardware method to reset the internal state machine to read mode  
• WP#/ACC input pin  
- Hardware write protect pin/Provides accelerated program capability  
PACKAGE  
• 56-Pin TSOP  
• 64-Ball LFBGA (11mm x 13mm)  
All devices are RoHS Compliant and Halogen-free  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
5
MX68GL1G0F  
2. PIN CONFIGURATION  
56 TSOP  
A24  
A23  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
A25  
A22  
A15  
A14  
A13  
A12  
A11  
2
A16  
3
BYTE#  
GND  
Q15/A-1  
Q7  
4
5
6
7
Q14  
Q6  
A10  
A9  
8
9
Q13  
Q5  
A8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
A19  
A20  
WE#  
RESET#  
A21  
WP#/ACC  
RY/BY#  
A18  
A17  
A7  
Q12  
Q4  
V
CC  
Q11  
Q3  
Q10  
Q2  
Q9  
Q1  
Q8  
A6  
Q0  
A5  
OE#  
GND  
CE#  
A0  
A4  
A3  
A2  
A1  
NC  
NC  
V
I/O  
NC  
64 LFBGA  
A23  
A24  
A25  
NC  
A22  
GND  
NC  
8
VIO  
A15  
A11  
Q15/  
A-1  
A13  
A9  
A12  
A8  
A14  
A10  
A16  
Q7  
BYTE#  
Q14  
GND  
7
6
Q13  
VCC  
Q11  
Q9  
Q6  
RES-  
ET#  
5
WE#  
A21  
A18  
A6  
A19  
A20  
A5  
Q5  
Q2  
Q0  
Q12  
Q10  
Q8  
Q4  
Q3  
Q1  
RY/  
BY#  
WP#/  
ACC  
4
3
A17  
A7  
A3  
NC  
A4  
A2  
A1  
A0  
CE#  
VIO  
OE#  
NC  
GND  
2
1
NC  
NC  
NC  
NC  
NC  
A
B
C
D
E
F
G
H
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
6
MX68GL1G0F  
LOGIC SYMBOL  
3. PIN DESCRIPTION  
SYMBOL PIN NAME  
26  
A0~A25 Address Input  
16 or 8  
A0-A25  
Q0-Q15  
(A-1)  
Q0~Q14 Data Inputs/Outputs  
Q15/A-1 Q15(Word Mode)/LSB addr(Byte Mode)  
CE#  
WE#  
OE#  
Chip Enable Input  
Write Enable Input  
Output Enable Input  
CE#  
RESET# Hardware Reset Pin, Active Low  
OE#  
Hardware Write Protect/Programming  
Acceleration input  
WP#/ACC*  
WE#  
RY/BY# Ready/Busy Output  
RESET#  
WP#/ACC  
BYTE#  
VI/O  
RY/BY#  
BYTE# Selects 8 bits or 16 bits mode  
VCC  
GND  
NC  
+3.0V single power supply  
Device Ground  
Not Connected  
VI/O  
Power Supply for Input/Output  
Notes:  
1. WP#/ACC has internal pull up.  
2. VI/O voltage must tight with VCC for MX68GL1G0F H/L.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
7
MX68GL1G0F  
4. BLOCK DIAGRAM  
CE#  
OE#  
WRITE  
STATE  
CONTROL  
INPUT  
PROGRAM/ERASE  
HIGH VOLTAGE  
WE#  
RESET#  
BYTE#  
WP#/ACC  
MACHINE  
(WSM)  
LOGIC  
STATE  
FLASH  
ARRAY  
ADDRESS  
LATCH  
REGISTER  
ARRAY  
A0-AM  
AND  
SOURCE  
HV  
BUFFER  
Y-PASS GATE  
COMMAND  
DATA  
DECODER  
PGM  
SENSE  
DATA  
HV  
AMPLIFIER  
COMMAND  
DATA LATCH  
PROGRAM  
DATA LATCH  
Q0-Q15/A-1  
I/O BUFFER  
AM: MSB address  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
8
MX68GL1G0F  
5. BLOCK DIAGRAM DESCRIPTION  
The "BLOCK DIAGRAM" illustrates a simplified architecture of this device. Each block in the block diagram rep-  
resents one or more circuit modules in the real chip used to access, erase, program, and read the memory array.  
The "CONTROL INPUT LOGIC" block receives input pins CE#, OE#, WE#, RESET#, BYTE#, and WP#/ACC.  
It creates internal timing control signals according to the input pins and outputs to the "ADDRESS LATCH AND  
BUFFER" to latch the external address pins A0-AM. The internal addresses are output from this block to the  
main array and decoders composed of "X-DECODER", "Y-DECODER", "Y-PASS GATE", AND "FLASH ARRAY".  
The X-DECODER decodes the word-lines of the flash array, while the Y-DECODER decodes the bit-lines of the  
flash array. The bit lines are electrically connected to the "SENSE AMPLIFIER" and "PGM DATA HV" selectively  
through the Y-PASS GATES. SENSE AMPLIFIERS are used to read out the contents of the flash memory, while  
the "PGM DATA HV" block is used to selectively deliver high power to bit-lines during programming. The "I/O  
BUFFER" controls the input and output on the Q0-Q15/A-1 pads. During read operation, the I/O BUFFER re-  
ceives data from SENSE AMPLIFIERS and drives the output pads accordingly. In the last cycle of program com-  
mand, the I/O BUFFER transmits the data on Q0-Q15/A-1 to "PROGRAM DATA LATCH", which controls the high  
power drivers in "PGM DATA HV" to selectively program the bits in a word or byte according to the user input  
pattern.  
The "PROGRAM/ERASE HIGH VOLTAGE" block comprises the circuits to generate and deliver the necessary  
high voltage to the X-DECODER, FLASH ARRAY, and "PGM DATA HV" blocks. The logic control module com-  
prises of the "WRITE STATE MACHINE, WSM", "STATE REGISTER", "COMMAND DATA DECODER", and  
"COMMAND DATA LATCH". When the user issues a command by toggling WE#, the command on Q0-Q15/A-1  
is latched in the COMMAND DATA LATCH and is decoded by the COMMAND DATA DECODER. The STATE  
REGISTER receives the command and records the current state of the device. The WSM implements the in-  
ternal algorithms for program or erase according to the current command state by controlling each block in the  
block diagram.  
ARRAY ARCHITECTURE  
The main flash memory array can be organized as Byte mode (x8) or Word mode (x16). The details of the ad-  
dress ranges and the corresponding sector addresses are shown in Table 1 .  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
9
MX68GL1G0F  
6. BLOCK STRUCTURE  
Table 1. SECTOR ARCHITECTURE  
Sector Size  
Sector Address  
A25-A16  
Address Range  
(x16)  
Sector  
Kbytes  
128  
Kwords  
64  
SA0  
SA1  
SA2  
0000000000xxxx  
0000000001xxxx  
0000000010xxxx  
0000000h-000FFFFh  
0010000h-001FFFFh  
0020000h-002FFFFh  
128  
64  
128  
64  
:
:
:
:
:
:
:
:
:
:
128  
64  
SA1023  
1111111111xxxx  
3FF0000h-3FFFFFFh  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
10  
MX68GL1G0F  
7. BUS OPERATION  
Table 2. BUS OPERATION-1  
Byte#  
Data  
RE-  
Mode Select  
SET#  
Address  
(Note4)  
Vil  
Vih  
WP#/  
ACC  
CE# WE# OE#  
I/O  
Data (I/O)  
Q15~Q8  
Q7~Q0  
Device Reset  
Standby Mode  
L
X
X
X
X
X
X
X
HighZ  
HighZ  
HighZ  
HighZ  
L/H  
H
Vcc ± Vcc±  
0.3V  
HighZ  
HighZ  
HighZ  
0.3V  
Output Disable  
Read Mode  
H
L
H
H
L
H
L
X
HighZ  
DOUT  
DIN  
HighZ  
DOUT  
DIN  
L/H  
L/H  
H
H
H
L
L
L
AIN  
AIN  
AIN  
Q8-Q14=  
HighZ,  
Q15=A-1  
Write  
H
H
Note1,2  
Vhv  
Accelerate Program  
L
DIN  
DIN  
Notes:  
1. The first or last sector was protected if WP#/ACC=Vil.  
2. When WP#/ACC = Vih, the protection conditions of the outmost sector depends on previous protection condi-  
tions. Refer to the advanced protect feature.  
3. Q0~Q15 are input (DIN) or output (DOUT) pins according to the requests of command sequence, sector pro-  
tection, or data polling algorithm.  
4. In Word Mode (Byte#=Vih), the addresses are AM to A0, AM: MSB of address.  
In Byte Mode (Byte#=Vil), the addresses are AM to A-1 (Q15), AM: MSB of address.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
11  
MX68GL1G0F  
Table 3. BUS OPERATION-2  
Control Input  
CE# WE# OE#  
AM A11  
to  
A12 A10  
A8  
A5 A3  
Item  
to A9 to A6 to  
to A1 A0 Q7 ~ Q0 Q15 ~ Q8  
A4 A2  
A7  
01h or  
00h  
(Note 1)  
Sector Lock Status  
Verification  
L
L
H
H
L
L
SA  
X
X
X
Vhv  
Vhv  
X
L
L
X
X
L
L
H
L
L
L
X
X
Read Silicon ID  
Manufacturer  
Code  
X
C2H  
Read Silicon ID  
Cycle 1  
22H(Word),  
XXH(Byte)  
22H(Word),  
XXH(Byte)  
L
L
L
H
H
H
L
L
L
X
X
X
X
X
X
Vhv  
Vhv  
Vhv  
X
X
X
L
L
L
X
X
X
L
H
H
L
H
H
H
L
7EH  
28H  
01H  
Cycle 2  
22H(Word),  
XXH(Byte)  
Cycle 3  
H
Notes:  
1. Sector unprotected code:00h. Sector protected code:01h.  
2. Factory locked code:  
WP# protects high address sector: 99h.  
WP# protects low address sector: 89h  
Factory unlocked code: WP# protects high address sector: 19h.  
WP# protects low address sector: 09h  
3. AM: MSB of address.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
12  
MX68GL1G0F  
8. FUNCTIONAL OPERATION DESCRIPTION  
8-1. READ OPERATION  
To perform a read operation, the system addresses the desired memory array or status register location by pro-  
viding its address on the address pins and simultaneously enabling the chip by driving CE# & OE# LOW, and  
WE# HIGH. After the Tce and Toe timing requirements have been met, the system can read the contents of the  
addressed location by reading the Data (I/O) pins. If either the CE# or OE# is held HIGH, the outputs will remain  
tri-stated and no data will appear on the output pins.  
8-2. PAGE READ  
This device offered high performance page read. Page size is 16 bytes or 8 words. The higher address Amax ~  
A3 select the certain page, while A2~A0 for word mode, A2~A-1 for byte mode select the particular word or byte  
in a page. The page access time is Taa or Tce, following by Tpa for the rest of the page read time. When CE#  
toggles, access time is Taa or Tce. Page mode can be turned on by keeping "page-read address" constant and  
changing the "intra-read page" addresses.  
8-3. WRITE OPERATION  
To perform a write operation, the system provides the desired address on the address pins, enables the chip by  
asserting CE# LOW, and disables the Data (I/O) pins by holding OE# HIGH. The system then places data to be  
written on the Data (I/O) pins and pulses WE# LOW. The device captures the address information on the falling  
edge of WE# and the data on the rising edge of WE#. To see an example, please refer to the timing diagram in  
"Figure 8. COMMAND WRITE OPERATION". The system is not allowed to write invalid commands (commands  
not defined in this datasheet) to the device. Writing an invalid command may put the device in an undefined  
state.  
8-4. WRITE BUFFER PROGRAMMING OPERATION  
Programs 64bytes/32words in a programming operation. To trigger the Write Buffer Programming, start by the  
first two unlock cycles, then third cycle writes the Write Buffer Load command at the destined programming Sec-  
tor Address. The forth cycle writes the "word locations subtract one" number.  
Following above operations, system starts to write the mingling of address and data. After the programming of  
the first address or data, the "write-buffer-page" is selected. The following data should be within the above men-  
tioned page.  
The "write-buffer-page" is selected by choosing address Amax-A5.  
"Write-Buffer-Page" address has to be the same for all address/ data write into the write buffer. If not, operation  
will ABORT.  
To program the content of the write buffer page this command must be followed by a write to buffer Program con-  
firm command.  
The operation of write-buffer can be suspended or resumed by the standard commands, once the write buffer  
programming operation is finished, it’ll return to normal READ mode.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
13  
MX68GL1G0F  
FUNCTIONAL OPERATION DESCRIPTION (cont'd)  
WRITE BUFFER PROGRAMMING OPERATION (cont'd)  
ABORT will be executed for the Write Buffer Programming Sequence if following condition occurs:  
The value loaded is bigger than the page buffer size during "Number of Locations to Program"  
Address written in a sector is not the same as the one assigned during the Write-Buffer-Load command.  
Address/ Data pair written to a different write-buffer-page than the one assigned by the "Starting Address"  
during the "write buffer data loading" operation.  
Writing not "Confirm Command" after the assigned number of "data load" cycles.  
At Write Buffer Abort mode, the status register will be Q1=1, Q7=DATA# (last address written), Q6=toggle.  
A Write-to-Buffer-Abort Reset command sequence has to be written to reset the device for the next operation.  
Write buffer programming can be conducted in any sequence. However the CFI functions, autoselect, Secured  
Silicon sector are not functional when program operation is in progress. Multiple write buffer programming opera-  
tions on the same write buffer address range without intervening erases is available. Any bit in a write buffer ad-  
dress range can’t be programmed from 0 back to 1.  
8-5. DEVICE RESET  
Driving the RESET# pin LOW for a period of Trp or more will return the device to Read mode. If the device is in  
the middle of a program or erase operation, the reset operation will take at most a period of Tready1 before the  
device returns to Read mode. Until the device does returns to Read mode, the RY/BY# pin will remain Low (Busy  
Status).  
When the RESET# pin is held at GND±0.3V, the device only consumes standby (Isbr) current. However, the de-  
vice draws larger current if the RESET# pin is held at a voltage greater than GND+0.3V and less than or equal to  
Vil.  
It is recommended to tie the system reset signal to the RESET# pin of the flash memory. This allows the device  
to be reset with the system and puts it in a state where the system can immediately begin reading boot code  
from it.  
8-6. STANDBY MODE  
The device enters Standby mode whenever the RESET# and CE# pins are both held High except in the embed-  
ded mode. While in this mode, WE# and OE# will be ignored, all Data Output pins will be in a high impedance  
state, and the device will draw minimal (Isb) current.  
8-7. OUTPUT DISABLE  
While in active mode (RESET# HIGH and CE# LOW), the OE# pin controls the state of the output pins. If OE# is  
held HIGH, all Data (I/O) pins will remain tri-stated. If held LOW, the Byte or Word Data (I/O) pins will drive data.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
14  
MX68GL1G0F  
FUNCTIONAL OPERATION DESCRIPTION (cont'd)  
8-8. BYTE/WORD SELECTION  
The BYTE# input pin is used to select the organization of the array data and how the data is input/output on the  
Data (I/O) pins. If the BYTE# pin is held HIGH, Word mode will be selected and all 16 data lines (Q0 to Q15) will  
be active.  
If BYTE# is forced LOW, Byte mode will be active and only data lines Q0 to Q7 will be active. Data lines Q8 to  
Q14 will remain in a high impedance state and Q15 becomes the A-1 address input pin.  
8-9. HARDWARE WRITE PROTECT  
By driving the WP#/ACC pin LOW. The highest or lowest was protected from all erase/program operations. If  
WP#/ACC is held HIGH (Vih to VCC), these sectors revert to their previously protected/unprotected status.  
8-10. ACCELERATED PROGRAMMING OPERATION  
By applying high voltage (Vhv) to the WP#/ACC pin, the device will enter the Accelerated Programming mode.  
This mode permits the system to skip the normal command unlock sequences and program byte/word locations  
directly. During accelerated programming, the current drawn from the WP#/ACC pin is no more than ICP1.  
8-11. SECTOR PROTECT OPERATION  
The device provides user programmable protection operations for selected sectors. Please refer to Table 1 which  
show all Sector assignments.  
During the protection operation, the sector address of any sector may be used to specify the Sector being pro-  
tected.  
8-12. AUTOMATIC SELECT BUS OPERATIONS  
The following five bus operations require A9 to be raised to Vhv. Please see AUTOMATIC SELECT COMMAND  
SEQUENCE in the COMMAND OPERATIONS section for details of equivalent command operations that do not  
require the use of Vhv.  
8-13. SECTOR LOCK STATUS VERIFICATION  
To determine the protected state of any sector using bus operations, the system performs a READ OPERATION  
with A9 raised to Vhv, the sector address applied to address pins A25 to A16, address pins A6, A3, A2 & A0 held  
LOW, and address pin A1 held HIGH. If data bit Q0 is LOW, the sector is not protected, and if Q0 is HIGH, the  
sector is protected.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
15  
MX68GL1G0F  
FUNCTIONAL OPERATION DESCRIPTION (cont'd)  
8-14. READ SILICON ID MANUFACTURER CODE  
To determine the Silicon ID Manufacturer Code, the system performs a READ OPERATION with A9 raised to  
Vhv and address pins A6, A3, A2, A1, & A0 held LOW. The Macronix ID code of C2h should be present on data  
bits Q7 to Q0.  
8-15. READ INDICATOR BIT (Q7) FOR SECURITY SECTOR  
To determine if the Security Sector has been locked at the factory, the system performs a READ OPERATION  
with A9 raised to Vhv, address pin A6, A3 & A2 held LOW, and address pins A1 & A0 held HIGH. If the Security  
Sector has been locked at the factory, the code 99h(H)/89h(L) will be present on data bits Q7 to Q0. Otherwise,  
the factory unlocked code of 19h(H)/09h(L) will be present.  
8-16. INHERENT DATA PROTECTION  
To avoid accidental erasure or programming of the device, the device is automatically reset to Read mode during  
power up. Additionally, the following design features protect the device from unintended data corruption.  
8-17. COMMAND COMPLETION  
Only after the successful completion of the specified command sets will the device begin its erase or program  
operation. The failure in observing valid command sets will result in the memory returning to read mode.  
8-18. LOW VCC WRITE INHIBIT  
The device refuses to accept any write command when Vcc is less than VLKO. This prevents data from  
spuriously being altered during power-up, power-down, or temporary power interruptions. The device  
automatically resets itself when Vcc is lower than VLKO and write cycles are ignored until Vcc is greater than  
VLKO. The system must provide proper signals on control pins after Vcc rises above VLKO to avoid unintentional  
program or erase operations.  
8-19. WRITE PULSE "GLITCH" PROTECTION  
CE#, WE#, OE# pulses shorter than 5ns are treated as glitches and will not be regarded as an effective write  
cycle.  
8-20. LOGICAL INHIBIT  
A valid write cycle requires both CE# and WE# at Vil with OE# at Vih. Write cycle is ignored when either CE# at  
Vih, WE# at Vih, or OE# at Vil.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
16  
MX68GL1G0F  
FUNCTIONAL OPERATION DESCRIPTION (cont'd)  
8-21. POWER-UP SEQUENCE  
Upon power up, the device is placed in Read mode. Furthermore, program or erase operation will begin only  
after successful completion of specified command sequences.  
8-22. POWER-UP WRITE INHIBIT  
When WE#, CE# is held at Vil and OE# is held at Vih during power up, the device ignores the first command on  
the rising edge of WE#.  
8-23. POWER SUPPLY DECOUPLING  
A 0.1uF capacitor should be connected between the Vcc and GND to reduce the noise effect.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
17  
MX68GL1G0F  
9. COMMAND OPERATIONS  
9-1. READING THE MEMORY ARRAY  
Read mode is the default state after power up or after a reset operation. To perform a read operation, please re-  
fer to READ OPERATION in the BUS OPERATIONS section above at Table 2 and Table 3.  
If the device receives an Erase Suspend command while in the Sector Erase state, the erase operation will  
pause (after a time delay not exceeding 20us) and the device will enter Erase-Suspended Read mode. While in  
the Erase-Suspended Read mode, data can be programmed or read from any sector not being erased. Reading  
from addresses within sector (s) being erased will only return the contents of the status register, which is in fact  
how the current status of the device can be determined.  
If a program command is issued to any inactive (not currently being erased) sector during Erase-Suspended  
Read mode, the device will perform the program operation and automatically return to Erase-Suspended Read  
mode after the program operation completes successfully.  
While in Erase-Suspended Read mode, an Erase Resume command must be issued by the system to reactivate  
the erase operation. The erase operation will resume from where is was suspended and will continue until it  
completes successfully or another Erase Suspend command is received.  
After the memory device completes an embedded operation (automatic Chip Erase, Sector Erase, or Program)  
successfully, it will automatically return to Read mode and data can be read from any address in the array. If the  
embedded operation fails to complete, as indicated by status register bit Q5 (exceeds time limit flag) going HIGH  
during the operations, the system must perform a reset operation to return the device to Read mode.  
There are several states that require a reset operation to return to Read mode:  
1. A program or erase failure--indicated by status register bit Q5 going HIGH during the operation. Failures dur-  
ing either of these states will prevent the device from automatically returning to Read mode.  
2. The device is in Auto Select mode or CFI mode. These two states remain active until they are terminated by a  
reset operation.  
In the two situations above, if a reset operation (either hardware reset or software reset command) is not per-  
formed, the device will not return to Read mode and the system will not be able to read array data.  
9-2. AUTOMATIC PROGRAMMING OF THE MEMORY ARRAY  
The device provides the user the ability to program the memory array in Byte mode or Word mode. As long as  
the users enters the correct cycle defined in the Table 5 (including 2 unlock cycles and the A0H program com-  
mand), any byte or word data provided on the data lines by the system will automatically be programmed into the  
array at the specified location.  
After the program command sequence has been executed, the internal write state machine (WSM) automatically  
executes the algorithms and timings necessary for programming and verification, which includes generating suit-  
able program pulses, checking cell threshold voltage margins, and repeating the program pulse if any cells do  
not pass verification or have low margins. The internal controller protects cells that do pass verification and mar-  
gin tests from being over-programmed by inhibiting further program pulses to these passing cells as weaker cells  
continue to be programmed.  
With the internal WSM automatically controlling the programming process, the user only needs to enter the pro-  
gram command and data once.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
18  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
AUTOMATIC PROGRAMMING OF THE MEMORY ARRAY (cont'd)  
Programming will only change the bit status from "1" to "0". It is not possible to change the bit status from "0" to  
"1" by programming. This can only be done by an erase operation. Furthermore, the internal write verification  
only checks and detects errors in cases where a "1" is not successfully programmed to "0".  
Any commands written to the device during programming will be ignored except hardware reset or program sus-  
pend. Hardware reset will terminate the program operation after a period of time no more than 10us. When the  
embedded program algorithm is complete or the program operation is terminated by a hardware reset, the de-  
vice will return to Read mode. Program suspend ready, the device will enter program suspend read mode.  
After the embedded program operation has begun, the user can check for completion by reading the following  
bits in the status register:  
Status  
Q7*1  
Q7#  
Q7#  
Q6*1  
Q5  
0
Q1  
0
RY/BY# (Note)  
In progress  
Toggling  
Toggling  
0
0
Exceed time limit  
1
N/A  
Note: RY/BY# is an open drain output pin and should be connected to VCC through a high value pull-up resistor.  
9-3. ERASING THE MEMORY ARRAY  
There are two types of erase operations performed on the memory array -- Sector Erase and Chip Erase. In  
the Sector Erase operation, one or more selected sectors may be erased simultaneously. In the Chip Erase  
operation, the complete memory array is erased except for any protected sectors. More details of the protected  
sectors are explained in section 5.  
9-4. SECTOR ERASE  
The sector erase operation is used to clear data within a sector by returning all of its memory locations to the  
"1" state. It requires six command cycles to initiate the erase operation. The first two cycles are "unlock cycles",  
the third is a configuration cycle, the fourth and fifth are also "unlock cycles", and the sixth cycle is the Sector  
Erase command. After the sector erase command sequence has been issued, an internal 50us time-out counter  
is started. Until this counter reaches zero, additional sector addresses and Sector Erase commands may be  
issued thus allowing multiple sectors to be selected and erased simultaneously. After the 50us time-out counter  
has expired, no new commands will be accepted and the embedded sector erase operation will begin. Note that  
the 50us timer-out counter is restarted after every erase command sequence. If the user enters any command  
other than Sector Erase or Erase Suspend during the time-out period, the erase operation will abort and the  
device will return to Read mode.  
After the embedded sector erase operation begins, all commands except Erase Suspend will be ignored. The  
only way to interrupt the operation is with an Erase Suspend command or with a hardware reset. The hardware  
reset will completely abort the operation and return the device to Read mode.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
19  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
SECTOR ERASE (cont'd)  
The system can determine the status of the embedded sector erase operation by the following methods:  
Status  
Q7  
0
Q6  
Q5  
0
Q3*1  
0
Q2  
RY/BY#*2  
Time-out period  
In progress  
Toggling  
Toggling  
Toggling  
Toggling  
Toggling  
Toggling  
0
0
0
0
0
1
Exceeded time limit  
0
1
1
Note:  
1. The Q3 status bit is the 50us time-out indicator. When Q3=0, the 50us time-out counter has not yet reached  
zero and a new Sector Erase command may be issued to specify the address of another sector to be erased.  
When Q3=1, the 50us time-out counter has expired and the Sector Erase operation has already begun. Erase  
Suspend is the only valid command that may be issued once the embedded erase operation is underway.  
2. RY/BY# is open drain output pin and should be connected to VCC through a high value pull-up resistor.  
3. When an attempt is made to erase only protected sector (s), the erase operation will abort thus preventing any  
data changes in the protected sector (s). Q7 will output "0" and Q6 will toggle briefly (100us or less) before  
aborting and returning the device to Read mode. If unprotected sectors are also specified, however, they will  
be erased normally and the protected sector (s) will remain unchanged.  
4. Q2 is a localized indicator showing a specified sector is undergoing erase operation or not. Q2 toggles when  
user reads at addresses where the sectors are actively being erased (in erase mode) or to be erased (in erase  
suspend mode).  
9-5. CHIP ERASE  
The Chip Erase operation is used erase all the data within the memory array. All memory cells containing a "0"  
will be returned to the erased state of "1". This operation requires 6 write cycles to initiate the action. The first  
two cycles are "unlock" cycles, the third is a configuration cycle, the fourth and fifth are also "unlock" cycles, and  
the sixth cycle initiates the chip erase operation.  
During the chip erase operation, no other software commands will be accepted, but if a hardware reset is re-  
ceived or the working voltage is too low, that chip erase will be terminated. After Chip Erase, the chip will auto-  
matically return to Read mode.  
The system can determine the status of the embedded chip erase operation by the following methods:  
Status  
Q7  
0
Q6  
Q5  
0
Q2  
RY/BY#*1  
In progress  
Toggling  
Toggling  
Toggling  
Toggling  
0
0
Exceed time limit  
0
1
*1: RY/BY# is open drain output pin and should be connected to VCC through a high value pull-up resistor.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
20  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
9-6. ERASE SUSPEND/RESUME  
After beginning a sector erase operation, Erase Suspend is the only valid command that may be issued. If sys-  
tem issues an Erase Suspend command during the 50us time-out period following a Sector Erase command, the  
time-out period will terminate immediately and the device will enter Erase-Suspended Read mode. If the system  
issues an Erase Suspend command after the sector erase operation has already begun, the device will not enter  
Erase-Suspended Read mode until 20us time has elapsed. The system can determine if the device has entered  
the Erase-Suspended Read mode through Q6, Q7, and RY/BY#.  
After the device has entered Erase-Suspended Read mode, the system can read or program any sector (s) ex-  
cept those being erased by the suspended erase operation. Reading any sector being erased or programmed  
will return the contents of the status register. Whenever a suspend command is issued, user must issue a re-  
sume command and check Q6 toggle bit status, before issue another erase command. The system can use the  
status register bits shown in the following table to determine the current state of the device:  
Status  
Q7  
1
Q6  
No toggle  
Data  
Q5  
Q3  
Q2  
Q1 RY/BY#  
Erase suspend read in erase suspended sector  
Erase suspend read in non-erase suspended sector  
Erase suspend program in non-erase suspended sector  
0
N/A toggle N/A  
1
1
0
Data  
Q7#  
Data Data Data Data  
N/A N/A N/A  
Toggle  
0
When the device has suspended erasing, user can execute the command sets, such as read silicon ID, sector  
protect verify, program, CFI query and erase resume.  
After the device has entered Erase-Suspended Read Mode, Sector Erase, Chip Erase and Program Suspend  
commands are forbidden.  
9-7. SECTOR ERASE RESUME  
The sector Erase Resume command is valid only when the device is in Erase-Suspended Read mode. After  
erase resumes, the user can issue another Ease Suspend command, but there should be a 400us interval be-  
tween Ease Resume and the next Erase Suspend command.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
21  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
9-8. PROGRAM SUSPEND/RESUME  
After beginning a program operation, Program Suspend is the only valid command that may be issued. The sys-  
tem can determine if the device has entered the Program-Suspended Read mode through Q6 and RY/BY#.  
After the device has entered Program-Suspended mode, the system can read any sector (s) except those be-  
ing programmed by the suspended program operation. Reading the sector being program suspended is invalid.  
Whenever a suspend command is issued, user must issue a resume command and check Q6 toggle bit status,  
before issue another program command. The system can use the status register bits shown in the following table  
to determine the current state of the device:  
Status  
Q7  
Q6  
Q5  
Q3  
Q2  
Q1 RY/BY#  
Program suspend read in program suspended sector  
Invalid  
1
Program suspend read in non-program suspended  
sector  
Data Data Data Data Data Data  
1
When the device has Program suspended, user can execute read array, auto-select, read CFI, read security sili-  
con. Program and Erase Suspend commands are forbidden after the device entered Program-Suspend mode.  
9-9. PROGRAM RESUME  
The Program Resume command is valid only when the device is in Program-Suspended mode. After program  
resumes, the user can issue another Program Suspend command, but there should be a 5us interval between  
Program Resume and the next Program Suspend command.  
9-10. BUFFER WRITE ABORT  
Q1 is the indicator of Buffer Write Abort. When Q1=1, the device will abort from buffer write and go back to read  
status register shown as following table:  
Status  
Q7  
Q6  
Q5  
0
Q3  
N/A  
N/A  
N/A  
Q2  
N/A  
N/A  
N/A  
Q1  
0
RY/BY#  
Buffer Write Busy  
Buffer Write Abort  
Buffer Write Exceeded Time Limit  
Q7#  
Q7#  
Q7#  
Toggle  
Toggle  
Toggle  
0
0
0
0
1
1
0
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
22  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
9-11. AUTOMATIC SELECT OPERATIONS  
When the device is in Read mode, Program Suspended mode, Erase-Suspended Read mode, or CFI mode, the  
user can issue the Automatic Select command shown in Table 5 (two unlock cycles followed by the Automatic  
Select command 90h) to enter Automatic Select mode. After entering Automatic Select mode, the user can query  
the Manufacturer ID, Device ID, Security Sector locked status, or Sector protected status multiple times without  
issuing a new Automatic Select command.  
While In Automatic Select mode, issuing a Reset command (F0h) will return the device to Read mode (or Ease-  
Suspended Read mode if Erase-Suspend was active) or Program Suspended Read mode if Program Suspend  
was active.  
Another way to enter Automatic Select mode is to use one of the bus operations shown in Table 2 BUS OPERA-  
TION. After the high voltage (Vhv) is removed from the A9 pin, the device will automatically return to Read mode  
or Erase-Suspended Read mode.  
9-12. AUTOMATIC SELECT COMMAND SEQUENCE  
Automatic Select mode is used to access the manufacturer ID, device ID and to verify whether or not secured  
silicon is locked and whether or not a sector is protected. The automatic select mode has four command cycles.  
The first two are unlock cycles, and followed by a specific command. The fourth cycle is a normal read cycle,  
and user can read at any address any number of times without entering another command sequence. The Reset  
command is necessary to exit the Automatic Select mode and back to read array.  
After entering automatic select mode, no other commands are allowed except the reset command.  
9-13. READ MANUFACTURER ID OR DEVICE ID  
The Manufacturer ID (identification) is a unique hexadecimal number assigned to each manufacturer by the JE-  
DEC committee. Each company has its own manufacturer ID, which is different from the ID of all other compa-  
nies. The number assigned to Macronix is C2h.  
After entering Automatic Select mode, performing a read operation with A1 & A0 held LOW will cause the device  
to output the Manufacturer ID on the Data I/O (Q7 to Q0) pins.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
23  
MX68GL1G0F  
COMMAND OPERATIONS (cont'd)  
9-14. RESET  
In the following situations, executing reset command will reset device back to Read mode:  
• Among erase command sequence (before the full command set is completed)  
• Sector erase time-out period  
• Erase fail (while Q5 is high)  
• Among program command sequence (before the full command set is completed, erase-suspended program  
included)  
• Program fail (while Q5 is high, and erase-suspended program fail is included)  
• Auto-select mode  
• CFI mode  
While device is at the status of program fail or erase fail (Q5 is high), user must issue reset command to reset  
device back to read array mode. While the device is in Auto-Select mode or CFI mode, user must issue reset  
command to reset device back to read array mode.  
When the device is in the progress of programming (not program fail) or erasing (not erase fail), device will ig-  
nore reset command.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
24  
MX68GL1G0F  
9-15. Advanced Sector Protection/Un-protection  
There are two ways to implement software Advanced Sector Protection on this device: Password method or  
Solid methods. Through these two protection methods, user can disable or enable the programming or erasing  
operation to any individual sector or the whole chip. The figure below helps to describe an overview of these  
methods.  
The device is default to the Solid mode. All sectors are default as unprotected when shipped from factory.  
The detailed algorithm of advance sector protection is shown as follows:  
Figure 1. Advance Sector Protection/Unprotection SPB Program Algorithm  
Start  
To choose  
protection mode  
set lock register bit  
(Q1/Q2)  
Q1=0  
Q2=0  
Solid Protection Mode  
Password Protection Mode  
Set 64 bit Password  
SPBLK = 0  
Set  
SPB Lock bit locked  
SPB Lock Bit  
All SPBs can not changeable  
SPBLK = 1  
SPB Lock bit Unlocked  
All SPBs are changeable  
Dynamic write Protect bit  
(DPB)  
Temporary Unprotect  
SPB bit (USPB)  
Solid write Protect bit (SPB)  
Sector Array  
DPB=0 sector protect  
SPB=0 sector protect  
USPB=0 SPB bit is disabled  
USPB=1 SPB bit is enabled  
DPB=1 sector unprotect  
SPB=1 sector unprotect  
DPB 0  
DPB 1  
SA 0  
SA 1  
SPB 0  
SPB 1  
USPB 0  
USPB 1  
DPB 2  
SA 2  
SPB 2  
USPB 2  
:
:
:
:
:
:
:
:
DPB N-1  
DPB N  
SA N-1  
SA N  
SPB N-1  
SPB N  
USPB N-1  
USPB N  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
25  
MX68GL1G0F  
9-15-1. Lock Register  
User can choose the sector protecting method via setting Lock Register bits as Q1 and Q2. Lock Register is a  
16-bit one-time programmable register. Once programming either Q1 or Q2, they will be locked in that mode and  
the others will be disabled permanently. Q1 and Q2 can not be programmed at the same time, otherwise the  
device will abort the operation.  
If users select Password Protection mode, the password setting is required. Users can set password by issuing  
password program command.  
Lock Register bits  
Q15-Q3  
Q2  
Q1  
Q0  
Password Protection Mode  
Lock Bit  
Solid Protection Mode  
Lock Bit  
Secured Silicon Sector  
Protection Bit  
Don't care  
Please refer to the command for Lock Register command set about how to read and program the Lock Register  
bits.  
Figure 2. Lock Register Program Algorithm  
START  
Write Data AAH, Address 555H  
Lock register command set Entry  
Write Data 55H, Address 2AAH  
Write Data 40H, Address 555H  
Write Data A0H,  
Address don’t care  
Lock register data program  
Write Program Data,  
Address don’t care  
Data # Polling Algorithm  
YES  
Done  
NO  
Pass  
NO  
Q5 = 1  
YES  
Exit Lock Register  
command  
Fail  
Reset command  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
26  
MX68GL1G0F  
9-15-2. Solid Protection Mode  
Solid write Protection Bits (SPB)  
The Solid write Protection bits (SPB) are nonvolatile bit with the same endurances as the Flash memory. Each  
SPB is assigned to each sector individually. The SPB is preprogrammed, and verified prior to erasure are  
managed by the device, so system monitoring is not necessary.  
When SPB is set to “0”, the associated sector may be protected, preventing any program or erase operation on  
this sector. Whether the sector is protected depends also upon the value of the USPB, as described elsewhere.  
The SPB bits are set individually by SPB program command. However, it cannot be cleared individually. Issuing  
the All SPB Erase command will erase all SPB in the same time. During SPB programming period, the read and  
write operations are disabled for normal sector until exiting this mode.  
To unprotect a protected sector, the SPB lock bit must be cleared first by using a hardware reset or a power-up  
cycle. After the SPB lock bit is cleared, the SPB status can be changed to the desired settings. To lock the Solid  
Protection Bits after the modification has finished, the SPB Lock Bit must be set once again.  
To verify the state of the SPB for a given sector, issuing a SPB Status Read Command to the device is required.  
Refer to the flow chart for details in Figure 3.  
Dynamic write Protection Bits (DPB)  
The Dynamic Protection features a volatile type protection to each individual sector. It can protect sectors from  
being unintentionally changed, and is easy to disable.  
All Dynamic write Protection bit (DPB) can be modified individually. DPBs protect the unprotected sectors with  
their SPBs cleared. To modify the DPB status by issuing the DPB Set (programmed to “0”) or DPB Clear (erased  
to “1”) commands, and place each sector in the protected or unprotected state seperately. After the DPB Clear  
command is issued (erased to “1”), the sector may be modified depending on the SPB state of that sector.  
The DPBs are default to be erased to “1” when first shipped from factory.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
27  
MX68GL1G0F  
9-15-3. Temporary Un-protect Solid write Protect Bits (USPB)  
Temporary Un-protect Solid write Protect Bits are volatile. They are unique for each sector and can be  
individually modified. Software can temporarily unprotect write protect sectors despite of SPB's property when  
DPBs are cleared. While the USPB is set (to “0”), the corresponding sector's SPB property is masked.  
Notes:  
1. Upon power up, the USPBs are cleared (all “1”). The USPBs can be set (to “0”) or cleared (to “1”) as often as  
needed. The hardware reset will reset USPB/DPB to their default values.  
2. To change the protected sector status of solid write protect bit, users don't need to clear all SPBs. The users  
can just implement software to set corresponding USPB to "0", in which the corresponding DPB status is  
cleared too. Consequently, the original solid write protect status of protected sectors can be temporarily  
changed.  
Figure 3. SPB Program Algorithm  
SPB command  
set entry  
Program SPB  
Read Q7~Q0  
Twice  
NO  
Q6 Toggle ?  
YES  
NO  
Q5 = 1 ?  
Wait 500 µs  
YES  
Read Q7~Q0  
Twice  
Read Q7~Q0  
Twice  
NO  
Q6 Toggle ?  
YES  
Q0=  
'1' (Erase)  
'0' (Program)  
NO  
YES  
Program Fail  
Write Reset CMD  
Pass  
SPB command  
set Exit  
Note: SPB program/erase status polling flowchart: check Q6 toggle, when Q6 stop toggle, the read status is 00H  
/01H (00H for program/ 01H for erase), otherwise, the status is “fail” and “exit”.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
28  
MX68GL1G0F  
9-15-4. Solid Protection Bit Lock Bit  
The Solid Protection Bit Lock Bit (SPBLK) is assigned to control all SPB status. It is an unique and volatile. When  
SPBLK=0 (set), all SPBs are locked and can not be changed. When SPBLK=1 (cleared), all SPBs are allowed to  
be changed.  
There is no software command sequence requested to unlock this bit, unless the device is in the password  
protection mode. To clear the SPB Lock Bit, just execute a hardware reset or a power-up cycle. In order to  
prevent modification, the SPB Lock Bit must be set (SPBLK=0) after all SPBs are set to desired status.  
9-15-5. Password Protection Method  
The security level of Password Protection Method is higher than the Solid protection mode. The 64 bit password  
is requested before modifying SPB lock bit status. When device is under password protection mode, the SPB  
lock bit is set as “0”, after a power-up cycle or Reset Command.  
A correct password is required for password Unlock command to unlock the SPB lock bit. Await 2us is necessary  
to unlock the device after a valid password is given. After that, the SPB bits are allowed to be changed. The  
Password Unlock command is issued slower than 2 μs every time, to prevent hacker from trying all the 64-bit  
password combinations.  
There are a few steps to start password protection mode:  
(1).Set a 64-bit password for verification before entering the password protection mode. This verification is only  
allowed in password programming.  
(2).Set the Password Protection Mode Lock Bit to”0” to activate the password protection mode.  
Once the password protection mode lock bit is programmed, the programmed Q2 bit can not be erased any more  
and the device will remain permanently in password protection mode. The previous set 64-bit password can not  
be retrieved or programmed. All the commands to the password-protected address will also be disabled.  
All the combinations of the 64-bit password can be used as a password, and programming the password does  
not require special address. The password is defaulted to be all “1” when shipped from the factory. Under  
password program command, only "0" can be programmed. In order to prevent access, the Password Mode  
Locking Bit must be set after the Password is programmed and verified. To set the Password Mode Lock Bit will  
prevent this 64-bits password to be read on the data bus. Any modification is impossible then, and the password  
can not be checked anymore after the Password Mode Lock Bit is set.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
29  
MX68GL1G0F  
Table 4. Sector Protection Status  
Protection Bit Status  
Sector Status  
DPB  
clear  
clear  
clear  
clear  
set  
SPB  
clear  
clear  
set  
USPB  
clear  
set  
Unprotect  
Unprotect  
Protect  
clear  
set  
set  
Unprotect  
Protect  
clear  
clear  
set  
clear  
set  
set  
Protect  
set  
clear  
set  
Protect  
set  
set  
Protect  
Notes: If SPBLK is set, SPB will be unchangeable.  
If SPBLK is cleared, SPB will be changeable.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
30  
MX68GL1G0F  
9-16. SECURITY SECTOR FLASH MEMORY REGION  
The Security Sector region is an extra OTP memory space of 128 words in length. The security sector can be  
locked upon shipping from factory, or it can be locked by customer after shipping. Customer can issue Security  
Sector Factory Protect Verify and/or Security Sector Protect Verify to query the lock status of the device. After  
enter Security Sector region, it is forbidden to enter Lock Register, DPB, SPB, SPB lock region.  
In factory-locked device, security sector region is protected when shipped from factory and the security silicon  
sector indicator bit is set to "1". In customer lockable device, security sector region is unprotected when shipped  
from factory and the security silicon indicator bit is set to "0".  
9-17. FACTORY LOCKED: SECURITY SECTOR PROGRAMMED AND PROTECTED AT THE FACTORY  
In a factory locked device, the Security Sector is permanently locked before shipping from the factory. The de-  
vice will have a 16-byte (8-word) ESN in the security region. The ESN occupies addresses 00000h to 0000Fh in  
byte mode or 00000h to 00007h in word mode.  
Secured Silicon Sector  
Address Range  
Express Flash  
Factory Locked  
Standard Factory Locked  
Customer Lockable  
ESN or Determined by  
Customer  
Determined by Customer  
0000000h-0000007h  
0000008h-000007Fh  
ESN  
Determined by Customer  
Unavailable  
9-18. CUSTOMER LOCKABLE: SECURITY SECTOR NOT PROGRAMMED OR PROTECTED AT THE  
FACTORY  
When the security feature is not required, the security region can act as an extra memory space.  
Security silicon sector can also be protected by two methods. Note that once the security silicon sector is pro-  
tected, there is no way to unprotect the security silicon sector and the content of it can no longer be altered.  
After the security silicon is locked and verified, system must write Exit Security Sector Region, go through a pow-  
er cycle, or issue a hardware reset to return the device to read normal array mode.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
31  
MX68GL1G0F  
Table 5. COMMAND DEFINITIONS  
Automatic Select  
Security  
Sector  
Region  
Exit Security  
Comm-  
and  
Read Reset  
Mode Mode  
Factory Protect Sector Protect Verify  
Sector  
Silicon ID  
Device ID  
Verify  
Word Byte Word Byte  
Addr Addr XXX 555 AAA 555 AAA  
Word  
555  
AA  
2AA  
55  
555  
90  
Byte  
AAA  
AA  
555  
55  
Word  
555  
AA  
2AA  
55  
Byte  
AAA  
AA  
555  
55  
Word Byte Word Byte  
555 AAA 555 AAA  
1st Bus  
Cycle  
Data Data  
Addr  
Data  
Addr  
Data  
F0  
AA  
2AA 555 2AA 555  
55 55 55 55  
555 AAA 555 AAA  
90 90 90 90  
AA  
AA  
AA  
AA  
2AA 555 2AA 555  
55 55 55 55  
555 AAA 555 AAA  
88 88 90 90  
AA  
AA  
AA  
2nd Bus  
Cycle  
AAA  
90  
555  
90  
AAA  
90  
3rd Bus  
Cycle  
(Sector) (Sector)  
Addr  
Data  
X00 X00 X01 X02  
C2h C2h ID1 ID1  
X03  
X06  
XXX XXX  
00 00  
X02  
X04  
4th Bus  
Cycle  
99/19(H)  
89/09(L)  
00/01  
00/01  
Addr  
Data  
Addr  
Data  
X0E X1C  
ID2 ID2  
X0F X1E  
ID3 ID3  
5th Bus  
Cycle  
6th Bus  
Cycle  
Write to  
Buffer  
Program  
Write to  
Buffer  
Program  
Write to  
Buffer  
Program  
Program/ Program/  
Erase Erase  
Suspend Resume  
Sector  
Erase  
Program  
Chip Erase  
CFI Read  
Comm-  
and  
Abort Reset confirm  
Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte  
Addr 555 AAA 555 AAA 555 AAA SA SA 555 AAA 555 AAA 55 AA xxx xxx xxx xxx  
1st Bus  
Cycle  
Data AA AA AA AA AA AA 29  
Addr 2AA 555 2AA 555 2AA 555  
29  
AA AA AA AA 98 98 B0 B0 30  
2AA 555 2AA 555  
30  
2nd Bus  
Cycle  
Data 55  
Addr 555 AAA SA SA 555 AAA  
Data A0 A0 25 25 F0 F0  
55  
55  
55  
55  
55  
55  
555 AAA 555 AAA  
80 80 80 80  
55 55 55  
3rd Bus  
Cycle  
Addr Addr Addr SA SA  
Data Data Data N-1 N-1  
555 AAA 555 AAA  
AA AA AA AA  
2AA 555 2AA 555  
4th Bus  
Cycle  
Addr  
Data  
WA WA  
WD WD  
5th Bus  
Cycle  
55  
55 55 55  
Sec- Sec-  
tor tor  
10 30 30  
Addr  
Data  
WBL WBL  
WD WD  
555 AAA  
6th Bus  
Cycle  
10  
WA= Write Address  
WD= Write Data  
SA= Sector Address  
N-1= Word Count  
WBL= Write Buffer Location  
PWD= Password  
PWDn=Password word 0, word 1, word n  
ID1/ID2/ID3: Refer to Table 3 for detail ID.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
32  
MX68GL1G0F  
Deep Power Down  
Password Protection  
Password  
Password  
Command Set  
Entry  
Command  
Password  
Program  
Password  
Read  
Password  
Unlock  
Enter  
Exit  
Command Set  
Exit  
Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte  
Addr 555  
AAA XXX XXX  
555  
AA  
2AA  
55  
555  
60  
AAA XXX XXX  
AA A0 A0 PWD0 PWD0 25  
555 PWA PWA X01 X01 00  
PWD PWD PWD1 PWD1 03  
X02 X02 X00  
X00  
X00  
00  
00  
25  
00  
03  
X00  
XXX XXX  
90 90  
XXX XXX  
00 00  
1st Bus  
Cycle  
Data AA  
Addr 2AA  
AA  
555  
55  
AB  
AB  
2nd Bus  
Cycle  
Data  
55  
55  
AAA  
60  
Addr XXX XXX  
Data B9  
Addr  
3rd Bus  
Cycle  
B9  
PWD2 PWD2 PWD0 PWD0  
X03 X03 X01 X01  
PWD3 PWD3 PWD1 PWD1  
X04 X02 X02  
PWD4 PWD2 PWD2  
X05 X03 X03  
PWD5 PWD3 PWD3  
X06 00 X04  
PWD6 29 PWD4  
4th Bus  
Cycle  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
5th Bus  
Cycle  
6th Bus  
Cycle  
7th Bus  
Cycle  
X07  
PWD7  
X05  
PWD5  
X06  
PWD6  
X07  
PWD7  
00  
29  
8th Bus  
Cycle  
9th Bus  
Cycle  
10th Bus  
Cycle  
11th Bus  
Cycle  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
33  
MX68GL1G0F  
Lock Register  
Global Non-Volatile  
Lock register  
Command  
Set Entry  
Lock register  
Command Command  
Set Exit Set Entry  
SPB  
Command  
SPB  
Program  
All SPB  
Erase  
SPB Status  
Read  
Program  
Read  
Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte  
Addr 555 AAA XXX XXX XXX XXX XXX XXX 555 AAA XXX XXX XXX XXX SA SA  
1st Bus  
Cycle  
Data  
Addr 2AA 555 XXX XXX  
Data 55 55 Data Data  
Addr 555 AAA  
AA  
AA  
A0  
A0 DATA DATA 90  
XXX XXX 2AA 555 SA SA  
00 00 55 55 00 00  
555 AAA  
C0 C0  
90  
AA  
AA  
A0  
A0  
80  
00  
30  
80 00/01 00/01  
00  
30  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
Data  
Addr  
Data  
40  
40  
4th Bus  
Cycle  
Addr  
Data  
5th Bus  
Cycle  
Global Non-  
Volatile  
Global Volatile Freeze  
SPB Lock SPB Lock  
Volatile  
SPB  
Command  
Set Exit  
SPB Lock  
Command  
Set Entry  
SPB Lock  
Command Command DPB Set DPB Clear  
Set Exit Set Entry  
DPB  
Command  
Set  
Status Read  
Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte Word Byte  
Addr XXX XXX 555 AAA XXX XXX XXX XXX XXX XXX 555 AAA XXX XXX XXX XXX  
Data 90 90 AA AA A0 A0 00/01 00/01 90 90 AA AA A0 A0 A0 A0  
Addr XXX XXX 2AA 555 XXX XXX XXX XXX 2AA 555 SA SA SA SA  
00 00 55 55 00 00 01 01  
555 AAA  
E0 E0  
1st Bus  
Cycle  
2nd Bus  
Cycle  
Data 00  
Addr  
Data  
00  
55  
55  
00  
00  
555 AAA  
50  
3rd Bus  
Cycle  
50  
Addr  
Data  
4th Bus  
Cycle  
Addr  
Data  
5th Bus  
Cycle  
Volatile  
Command  
DPB Status DPB Command  
Read  
Set Exit  
Word  
SA  
Byte  
SA  
Word Byte  
Addr  
XXX  
XXX  
1st Bus  
Cycle  
Data 00/01 00/01  
90  
XXX  
00  
90  
XXX  
00  
Addr  
Data  
Addr  
Data  
Addr  
Data  
2nd Bus  
Cycle  
3rd Bus  
Cycle  
4th Bus  
Cycle  
Addr  
Data  
5th Bus  
Cycle  
Notes:  
* It is not recommended to adopt any other code not in the command definition table which will potentially enter  
the hidden mode.  
* For the SPB Lock and DPB Status Read "00" means lock (protect), "01" means unlock (unprotect).  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
34  
MX68GL1G0F  
10. COMMON FLASH MEMORY INTERFACE (CFI) MODE  
QUERY COMMAND AND COMMAND FLASH MEMORY INTERFACE (CFI) MODE  
The device features CFI mode. Host system can retrieve the operating characteristics, structure and vendor-  
specified information such as identifying information, memory size, byte/word configuration, operating voltages  
and timing information of this device by CFI mode. If the system writes the CFI Query command "98h", to ad-  
dress "55h"/"AAh" (depending on Word/Byte mode), the device will enter the CFI Query Mode, any time the de-  
vice is ready to read array data. The system can read CFI information at the addresses given in Table 6 ~ Table 9.  
Once user enters CFI query mode, user can issue reset command to exit CFI mode and return to read array  
mode. The CFI unused area is reserved by Macronix.  
(Note 1)  
Table 6. CFI mode: Identification Data Values  
(All values in these tables are in hexadecimal)  
Address (h)  
Address (h)  
Description  
Data (h)  
(Word Mode) (Byte Mode)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
0051  
0052  
0059  
0002  
0000  
0040  
0000  
0000  
0000  
0000  
0000  
Query-unique ASCII string "QRY"  
Primary vendor command set and control interface ID code  
Address for primary algorithm extended query table  
Alternate vendor command set and control interface ID code  
Address for alternate algorithm extended query table  
Note 1. Query data are always presented on the lowest data output Q7~Q0 only, Q8~Q15 are "0".  
Table 7. CFI mode: System Interface Data Values  
Address (h)  
Address (h)  
Description  
Data (h)  
(Word Mode) (Byte Mode)  
Vcc supply minimum program/erase voltage  
Vcc supply maximum program/erase voltage  
VPP supply minimum program/erase voltage  
VPP supply maximum program/erase voltage  
Typical timeout per single word/byte write, 2n us  
Typical timeout for maximum-size buffer write, 2n us (00h, not  
1B  
1C  
1D  
1E  
1F  
36  
38  
3A  
3C  
3E  
0027  
0036  
0000  
0000  
0003  
20  
40  
0006  
support)  
Typical timeout per individual block erase, 2n ms  
Typical timeout for full chip erase, 2n ms (00h, not support)  
Maximum timeout for word/byte write, 2n times typical  
Maximum timeout for buffer write, 2n times typical  
Maximum timeout per individual block erase, 2n times typical  
Maximum timeout for chip erase, 2n times typical (00h, not  
21  
22  
23  
24  
25  
42  
44  
46  
48  
4A  
0009  
0018  
0003  
0005  
0003  
26  
4C  
0002  
support)  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
35  
MX68GL1G0F  
Table 8. CFI mode: Device Geometry Data Values  
Address (h)  
Address (h)  
Description  
Data (h)  
(Word Mode) (Byte Mode)  
Device size = 2n in number of bytes (1B=1Gb)  
Flash device interface description (02=asynchronous x8/x16)  
27  
28  
4E  
001B  
50  
52  
54  
56  
58  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
0002  
0000  
0006  
0000  
0001  
00FF  
0003  
0000  
0002  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
29  
2A  
2B  
2C  
2D  
Maximum number of bytes in buffer write = 2n (00h, not support)  
Number of erase regions within device (01h:uniform, 02h:boot)  
Index for Erase Bank Area 1:  
[2E,2D] = # of same-size sectors in region 1-1  
[30, 2F] = sector size in multiples of 256 bytes  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
Index for Erase Bank Area 2  
Index for Erase Bank Area 3  
Index for Erase Bank Area 4  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
36  
MX68GL1G0F  
Table 9. CFI mode: Primary Vendor-Specific Extended Query Data Values  
Address (h)  
Address (h)  
Description  
Data (h)  
(Word Mode) (Byte Mode)  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
80  
82  
84  
86  
88  
8A  
8C  
8E  
90  
92  
94  
96  
0050  
0052  
0049  
0031  
0033  
0014  
0002  
0001  
0000  
0008  
0000  
0000  
Query - Primary extended table, unique ASCII string, PRI  
Major version number, ASCII  
Minor version number, ASCII  
Unlock recognizes address (0= recognize, 1= don't recognize)  
Erase suspend (2= to both read and program)  
Sector protect (N= # of sectors/group)  
Temporary sector unprotect (1=supported)  
Sector protect/Chip unprotect scheme  
Simultaneous R/W operation (0=not supported)  
Burst mode (0=not supported)  
Page mode (0=not supported, 01 = 4 word page, 02 = 8 word  
page)  
4C  
98  
0002  
Minimum ACC(acceleration) supply (0= not supported), [D7:D4]  
for volt, [D3:D0] for 100mV  
Maximum ACC(acceleration) supply (0= not supported), [D7:D4]  
for volt, [D3:D0] for 100mV  
4D  
4E  
9A  
9C  
0095  
00A5  
WP# Protection  
04=Uniform sectors bottom WP# protect  
05=Uniform sectors top WP# protect  
0004/  
0005  
4F  
50  
9E  
A0  
Program Suspend (0=not supported, 1=supported)  
0001  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
37  
MX68GL1G0F  
11. ELECTRICAL CHARACTERISTICS  
11-1. ABSOLUTE MAXIMUM STRESS RATINGS  
Storage Temperature  
VCC  
-65°C to +150°C  
-0.5V to +4.0V  
-0.5V to +4.0V  
-0.5V to +10.5V  
-0.5V to Vcc +0.5V  
200 mA  
VI/O  
Voltage Range  
A9 , WP#/ACC  
The other pins.  
Output Short Circuit Current (less than one second)  
11-2. OPERATING TEMPERATURE AND VOLTAGE  
Industrial (I) Grade Surrounding Temperature (T )  
range  
A
-40°C to +85°C  
+2.7V to 3.6V  
+3.0V to 3.6V  
+1.65V to 3.6V  
Full VCC  
Regulated VCC  
range  
range  
Supply Voltages  
VCC  
VI/O  
NOTICE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage  
to the device. This is stress rating only and functional operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot GND to -2.0V and Vcc to +2.0V for periods up to 20ns, see  
below Figure.  
Figure 5. Maximum Positive Overshoot Waveform  
Figure 4. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
GND  
Vcc + 2.0V  
GND - 2.0V  
Vcc  
20ns  
20ns  
20ns  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
38  
MX68GL1G0F  
Table 10. DC CHARACTERISTICS  
Symbol Description  
Min.  
Typ.  
Max.  
Remark  
Iilk  
Iilk9  
Iolk  
Input Leak  
A9 Leak  
±8.0uA  
140uA A9=10.5V  
±1.0uA  
Output Leak  
CE#=Vil, OE#=Vih,  
5mA  
10mA  
15mA  
15mA  
20mA  
30mA  
Vcc=Vccmax;  
f=1MHz,  
CE#=Vil, OE#=Vih,  
Vcc=Vccmax;  
f=5MHz,  
CE#=Vil, OE#=Vih,  
Vcc=Vccmax;  
f=10MHz  
Icr1  
Icr2  
Read Current  
CE#=Vil, OE#=Vih,  
Vcc=Vccmax;  
f=10MHz  
4mA  
8mA  
10mA  
20mA  
VCC Page Read Current  
CE#=Vil, OE#=Vih,  
Vcc=Vccmax;  
f=33MHz  
Iio  
VIO non-active current  
Write Current  
0.2mA  
14mA  
10mA  
30mA  
Icw  
CE#=Vil, OE#=Vih  
Vcc=Vcc max, other  
pin disable  
Isb  
Standby Current  
Reset Current  
60uA  
60uA  
200uA  
Vcc=Vccmax,  
200uA RESET# enable,  
Isbr  
other pin disable  
Isbs  
Idpd  
Sleep Mode Current *1  
60uA  
4uA  
200uA  
40uA  
Vcc deep power down current  
Accelerated Pgm Current, WP#/Acc pin  
(Word/Byte)  
Accelerated Pgm Current, Vcc pin,  
(Word/Byte)  
Icp1  
Icp2  
1.5mA  
14mA  
4mA  
CE#=Vil, OE#=Vih  
CE#=Vil, OE#=Vih  
28mA  
Vil  
Input Low Voltage  
Input High Voltage  
-0.1V  
0.3xVI/O  
Vih  
0.7xVI/O  
VI/O+0.3V  
Very High Voltage for Auto Select/  
Accelerated Program  
Vhv  
9.5V  
10.5V  
0.45V  
Vol  
Voh  
Vlko  
Output Low Voltage  
Iol=100uA  
Ouput High Voltage  
0.85xVI/O  
Ioh=-100uA  
Low Vcc Lock-out voltage *2  
2.1V  
2.4V  
Note:  
1. Sleep mode enables the lower power when address remain stable for taa+30ns.  
2. Not 100% tested.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
39  
MX68GL1G0F  
Figure 6. SWITCHING TEST CIRCUITS  
3.3V  
2.7KΩ  
DEVICE UNDER  
TEST  
CL  
6.2KΩ  
Test Condition  
Output Load Capacitance, CL : 1TTL gate, 30pF  
Rise/Fall Times : 5ns  
Input Pulse levels :0.0 ~ VI/O  
In/Out reference levels :0.5VI/O  
Figure 7. SWITCHING TEST WAVEFORMS  
VI/O  
VI/O / 2  
VI/O / 2  
Test Points  
0.0V  
INPUT  
OUTPUT  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
40  
MX68GL1G0F  
Table 11. AC CHARACTERISTICS  
Symbol Description  
VCC=2.7V~3.6V  
Unit  
Min. Typ. Max.  
VI/O=VCC  
110  
120  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Taa Valid data output after address  
Tpa Page access time  
VI/O=1.65 toVCC  
VI/O=VCC  
VI/O=1.65 toVCC  
VI/O=VCC  
30  
110  
120  
25  
Tce Valid data output after CE# low  
Toe Valid data output after OE# low  
VI/O=1.65 toVCC  
VI/O=VCC  
VI/O=1.65 toVCC  
30  
Tdf  
Data output floating after OE# high or CE# high  
20  
Tsrw Latency between read and write operation (Note)  
35  
0
Toh Output hold time from the earliest rising edge of address, CE#, OE#  
VI/O=VCC  
110  
120  
110  
120  
110  
120  
0
Trc  
Read period time  
VI/O=1.65 toVCC  
VI/O=VCC  
Twc Write period time  
VI/O=1.65 toVCC  
VI/O=VCC  
Tcwc Command write period time  
Tas Address setup time  
VI/O=1.65 toVCC  
Taso Address setup time to OE# low during toggle bit polling  
Tah Address hold time  
15  
45  
0
Taht Address hold time from CE# or OE# high during toggle bit polling  
Tds Data setup time  
30  
0
Tdh Data hold time  
Tvcs Vcc setup time  
500  
0
Tcs  
Chip enable Setup time  
Tch Chip enable hold time  
0
Toes Output enable setup time  
0
Read  
0
Toeh Output enable hold time  
Toggle & Data# Polling 10  
Tws WE# setup time  
Twh WE# hold time  
0
0
Tcepw CE# pulse width  
Tcepwh CE# pulse width high  
Twp WE# pulse width  
Twph WE# pulse width high  
35  
30  
35  
30  
VI/O=VCC  
110  
120  
Tbusy Program/Erase active time by RY/BY#  
VI/O=1.65 toVCC  
Tghwl Read recover time before write  
Tghel Read recover time before write  
0
0
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
41  
MX68GL1G0F  
VCC=2.7V~3.6V  
Unit  
Symbol Description  
Min. Typ. Max.  
Byte  
10  
10  
10  
0.5  
us  
us  
Twhwh1 Program operation  
Word  
Twhwh1 Acc program operation (Word/Byte)  
Twhwh2 Sector erase operation  
us  
3.5  
50  
sec  
us  
Tbal Sector add hold time  
Trdp Release from deep power down mode  
200  
us  
Note : Not 100% tested.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
42  
MX68GL1G0F  
12. WRITE COMMAND OPERATION  
Figure 8. COMMAND WRITE OPERATION  
Tcwc  
Vih  
CE#  
Vil  
Tch  
Tcs  
Vih  
WE#  
Vil  
Toes  
Twph  
Twp  
Vih  
Vil  
OE#  
Vih  
Vil  
Addresses  
VA  
Tah  
Tas  
Tdh  
Tds  
Vih  
Vil  
Data  
DIN  
VA: Valid Address  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
43  
MX68GL1G0F  
13. READ/RESET OPERATION  
Figure 9. READ TIMING WAVEFORMS  
Tce  
Vih  
CE#  
Vil  
Vih  
WE#  
Vil  
Toeh  
Tdf  
Toe  
Vih  
OE#  
Vil  
Toh  
Taa  
Trc  
Vih  
ADD Valid  
Addresses  
Vil  
Tsrw  
HIGH Z  
HIGH Z  
Voh  
Vol  
Outputs  
DATA Valid  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
44  
MX68GL1G0F  
Table 12. AC CHARACTERISTICS-RESET#  
Item Description  
Setup Speed  
Unit  
us  
Trp1 RESET# Pulse Width (During Automatic Algorithms)  
Trp2 RESET# Pulse Width (NOT During Automatic Algorithms)  
MIN  
MIN  
MIN  
MIN  
MIN  
MAX  
MAX  
10  
500  
200  
0
ns  
Trh  
RESET# High Time Before Read  
ns  
Trb1 RY/BY# Recovery Time (to CE#, OE# go low)  
ns  
Trb2 RY/BY# Recovery Time (to WE# go low)  
50  
ns  
Tready1 RESET# PIN Low (During Automatic Algorithms) to Read or Write  
Tready2 RESET# PIN Low (NOT During Automatic Algorithms) to Read or Write  
20  
us  
500  
ns  
Figure 10. RESET# TIMING WAVEFORM  
Trb1  
CE#, OE#  
Trb2  
WE#  
Tready1  
RY/BY#  
RESET#  
Trp1  
Reset Timing during Automatic Algorithms  
CE#, OE#  
Trh  
RY/BY#  
RESET#  
Trp2  
Tready2  
Reset Timing NOT during Automatic Algorithms  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
45  
MX68GL1G0F  
14. ERASE/PROGRAM OPERATION  
Figure 11. AUTOMATIC CHIP ERASE TIMING WAVEFORM  
CE#  
Tch  
Twhwh2  
Twp  
WE#  
Twph  
Tcs  
Tghwl  
OE#  
Last 2 Erase Command Cycle  
Read Status  
Tah  
Twc  
Tas  
VA  
VA  
2AAh  
555h  
Address  
Tds  
Tdh  
In  
Complete  
Progress  
55h  
10h  
Data  
Tbusy  
Trb  
RY/BY#  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
46  
MX68GL1G0F  
Figure 12. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 10H Address 555H  
Data# Polling Algorithm or  
Toggle Bit Algorithm  
NO  
Data=FFh ?  
YES  
Auto Chip Erase Completed  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
47  
MX68GL1G0F  
Figure 13. AUTOMATIC SECTOR ERASE TIMING WAVEFORM  
Read Status  
CE#  
Tch  
Twhwh2  
Twp  
WE#  
Twph  
Tcs  
Tghwl  
OE#  
Tbal  
Last 2 Erase Command Cycle  
Twc  
Tas  
Sector  
Sector  
Sector  
VA  
VA  
2AAh  
Address  
Address 0  
Address 1  
Address n  
Tah  
Tds Tdh  
In  
Progress  
Complete  
55h  
30h  
30h  
30h  
Data  
Tbusy  
Trb  
RY/BY#  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
48  
MX68GL1G0F  
Figure 14. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 80H Address 555H  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data 30H Sector Address  
NO  
Last Sector  
to Erase  
YES  
Data# Polling Algorithm or  
Toggle Bit Algorithm  
NO  
Data=FFh  
YES  
Auto Sector Erase Completed  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
49  
MX68GL1G0F  
Figure 15. ERASE SUSPEND/RESUME FLOWCHART  
START  
Write Data B0H  
ERASE SUSPEND  
NO  
Toggle Bit checking Q6  
not toggled  
YES  
Read Array or  
Program  
Reading or  
NO  
Programming End  
YES  
Write Data 30H  
Continue Erase  
ERASE RESUME  
Another  
NO  
Erase Suspend ?  
YES  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
50  
MX68GL1G0F  
Figure 16. AUTOMATIC PROGRAM TIMING WAVEFORMS  
CE#  
Tch  
Twhwh1  
Twp  
WE#  
Tcs  
Twph  
Tghwl  
OE#  
Last 2 Program Command Cycle  
Tas  
Last 2 Read Status Cycle  
Tah  
VA  
VA  
555h  
PA  
Address  
Tdh  
Tds  
Status  
A0h  
PD  
DOUT  
Data  
Tbusy  
Trb  
RY/BY#  
Figure 17. ACCELERATED PROGRAM TIMING DIAGRAM  
Vcc (min)  
Vcc  
GND  
Tvcs  
(9.5V ~ 10.5V)  
Vhv  
WP#/ACC  
Vil or Vih  
Vil or Vih  
250ns  
250ns  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
51  
MX68GL1G0F  
Figure 18. CE# CONTROLLED WRITE TIMING WAVEFORM  
WE#  
Tcepw  
Twh  
Tws  
Twhwh1 or Twhwh2  
CE#  
OE#  
Tcepwh  
Tghwl  
Tah  
Tas  
VA  
VA  
555h  
PA  
Address  
Tdh  
Tds  
Status  
A0h  
PD  
DOUT  
Data  
Tbusy  
RY/BY#  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
52  
MX68GL1G0F  
Figure 19. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART  
START  
Write Data AAH Address 555H  
Write Data 55H Address 2AAH  
Write Data A0H Address 555H  
Write Program Data/Address  
Data# Polling Algorithm or  
Toggle Bit Algorithm  
next address  
No  
Read Again Data:  
Program Data?  
YES  
No  
Last Word to be  
Programed  
YES  
Auto Program Completed  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
53  
MX68GL1G0F  
15. SILICON ID READ OPERATION  
Figure 20. SILICON ID READ TIMING WAVEFORM  
VCC  
3V  
Vhv  
ADD  
A9  
Vih  
Vil  
Vih  
Vil  
ADD  
A0  
Taa  
Taa  
Taa  
Taa  
Vih  
Vil  
A1  
A2  
Vih  
Vil  
Vih  
Vil  
ADD  
Disable  
Enable  
CE#  
Tce  
Vih  
Vil  
WE#  
Toe  
Vih  
Vil  
OE#  
Tdf  
Toh  
Toh  
Toh  
Toh  
Vih  
Vil  
DATA  
Q15~Q0  
DATA OUT  
Manufacturer ID  
DATA OUT  
DATA OUT  
DATA OUT  
Device ID  
Cycle 1  
Device ID  
Cycle 2  
Device ID  
Cycle 3  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
54  
MX68GL1G0F  
16. WRITE OPERATION STATUS  
Figure 21. DATA# POLLING TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
Tce  
CE#  
Tch  
WE#  
Toe  
OE#  
Toeh  
Tdf  
Trc  
VA  
VA  
Address  
Taa  
Toh  
High Z  
High Z  
Complement  
Complement  
Status Data  
True  
True  
Valid Data  
Valid Data  
Q7  
Q6~Q0  
Status Data  
Tbusy  
RY/BY#  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
55  
MX68GL1G0F  
Figure 22. STATUS POLLING FOR PROGRAM/ERASE  
Start  
Read Data at valid address  
(Note 1)  
No  
Q7 = Data# ?  
Yes  
No  
Q5 = 1 ?  
Yes  
Read Data at valid address  
(Note 1)  
No  
Q7 = Data# ?  
(Note 2)  
Yes  
Fail  
Pass  
Notes:  
1. For programming, valid address means program address.  
For erasing, valid address means erase sectors address.  
2. Q7 may change simultaneously with Q5, so even Q5=1, Q7 should be reverify.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
56  
MX68GL1G0F  
Figure 23. STATUS POLLING FOR WRITE BUFFER PROGRAM  
Start  
Read Data at last write  
address (Note 1)  
No  
Q7 = Data# ?  
Yes  
Q1=1 ?  
Yes  
Only for write  
buffer program  
No  
No  
Q5=1 ?  
Read Data at last write  
address (Note 1)  
Yes  
Read Data at last write  
address (Note 1)  
No  
Q7 = Data# ?  
(Note 2)  
No  
Q7 = Data# ?  
(Note 2)  
Yes  
Write Buffer Abort  
Yes  
Fail  
Pass  
Notes:  
1. For programming, valid address means program address.  
For erasing, valid address means erase sectors address.  
2. Q7 may change simultaneously with Q5, so even Q5=1, Q7 should be reverify.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
57  
MX68GL1G0F  
Figure 24. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALGORITHMS)  
Tce  
CE#  
Tch  
WE#  
OE#  
Toe  
Toeh  
Tdf  
Taht  
Taso  
Trc  
VA  
VA  
VA  
VA  
Address  
Taa  
Toh  
Valid Status  
(second read)  
Valid Status  
(first read)  
Valid Data  
Valid Data  
Q6/Q2  
(stops toggling)  
Tbusy  
RY/BY#  
VA : Valid Address  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
58  
MX68GL1G0F  
Figure 25. TOGGLE BIT ALGORITHM  
Start  
Read Data Twice  
(Note 1)  
No  
Q6 Toggle ?  
Yes  
No  
Q5 = 1 ?  
Yes  
Read Data Twice  
(Note 1, 2)  
No  
Q6 Toggle ?  
Yes  
Fail  
Pass  
Notes:  
1. Toggle bit Q7-Q0 should be read twice to check if it is toggling.  
2. While Q5=1, the toggle bit (Q6) may stop toggling. Therefore, the system should be read again.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
59  
MX68GL1G0F  
17. PAGE READ OPERATION  
AC CHARACTERISTICS  
WORD/BYTE CONFIGURATION (BYTE#)  
Test  
Parameter Description  
All Speed Options  
Unit  
Setup  
Max.  
Max.  
Min.  
Telfl/Telfh CE# to BYTE# from L/H  
5
ns  
ns  
ns  
Tflqz  
BYTE# from L to Output Hiz  
30  
90  
Tfhqv  
BYTE# from H to Output Active  
Figure 26. BYTE# TIMING WAVEFORM FOR READ OPERATIONS (BYTE# switching from byte mode to  
word mode)  
CE#  
OE#  
Telfh  
BYTE#  
DOUT  
(Q0-Q7)  
DOUT  
(Q0-Q14)  
Q14~Q0  
Q15/A-1  
DOUT  
(Q15)  
VA  
Tfhqv  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
60  
MX68GL1G0F  
Figure 27. PAGE READ TIMING WAVEFORM  
Amax:A3  
VALID ADD  
2'nd ADD  
Tpa  
3'rd ADD  
Tpa  
Data 2  
(A-1),A0,A1,A2  
DATA  
1'st ADD  
Taa  
Data 1  
Data 3  
Toe  
Tce  
OE#  
CE#  
Note: CE#, OE# are enable.  
Page size is 8 words in Word mode, 16 bytes in Byte mode.  
Address are A2~A0 for Word mode, A2~A-1 for Byte mode.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
61  
MX68GL1G0F  
18. DEEP POWER DOWN MODE OPERATION  
Table 13. AC CHARACTERISTICS - Deep Power Down Mode  
Item  
Typ.  
100us  
10us  
Max.  
200us  
20us  
WEB high to release from deep power down mode  
WEB high to deep power down mode  
tRDP  
tDP  
Figure 28. DEEP POWER DOWN MODE WAVEFORM  
CEB  
WEB  
tDP  
tRDP  
ADD  
XX  
55  
2AA  
XX (don't care)  
DATA  
AA  
55  
B9  
AB  
Standby mode  
Standby mode  
Deep power down mode  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
62  
MX68GL1G0F  
19. WRITE BUFFER PROGRAM OPERATION  
Figure 29. WRITE BUFFER PROGRAM FLOWCHART  
Addr=555h  
Data=AAh,  
Write CMD:  
Write CMD:  
Write CMD:  
Write CMD:  
Addr=2AA  
h
Data=55h,  
Addr=SA  
Data=29h,  
Write CMD:  
Addr=SA  
Data=25h,  
tus  
Polling Sta  
Addr=SA  
Data=PWC,  
Yes  
Pass  
No  
Write CMD:  
Data=PGM_data, Addr  
Return to read Mode  
=PGM_addr  
?
-1  
No  
PWC=PWC  
Fail  
Write a different sector  
address to cause Abort  
Yes  
Want to Abort  
No  
Yes  
Yes  
r Abort  
Write Buffe  
No  
Yes  
PWC =0?  
No  
d page  
SA: Sector Address of to be Programme  
m Word Count  
CMD  
Write Abort reset CMD  
to return to read Mode  
Write reset  
to return to read Mode  
PWC: Progra  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
63  
MX68GL1G0F  
20. RECOMMENDED OPERATING CONDITIONS  
At Device Power-Up  
AC timing illustrated in Figure 30 is recommended for the supply voltages and the control signals at device pow-  
er-up (e.g. VCC and CE# ramp up simultaneously). If the timing in the figure is ignored, the device may not oper-  
ate correctly.  
Figure 30. AC Timing at Device Power-Up  
VCC(min)  
VCC  
GND  
Tvr  
Tvcs  
VI/O(min)  
GND  
VI/O  
Tvios  
Tvr  
Tf  
Tce  
Tr  
Vih  
Vil  
CE#  
WE#  
OE#  
Vih  
Vil  
Tf  
Toe  
Tr  
Vih  
Vil  
Taa  
Tr or Tf  
Tr or Tf  
Vih  
Vil  
Valid  
Address  
ADDRESS  
Voh  
Vol  
High Z  
Valid  
Ouput  
DATA  
Vih  
Vil  
WP#/ACC  
Symbol  
Parameter  
VCC Rise Time  
Input Signal Rise Time  
Input Signal Fall Time  
VCC Setup Time  
VI/O Setup Time  
Min.  
20  
Max.  
500000  
20  
Unit  
us/V  
us/V  
us/V  
us  
Tvr  
Tr  
Tf  
Tvcs  
Tvios  
20  
500  
500  
us  
Notes:  
1. VI/O<VCC+200mV.  
2. Not test 100%.  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
64  
MX68GL1G0F  
21. ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Limits  
Units  
Min.  
Typ. (1)  
Max. (2)  
Chip Erase Time  
400  
1000  
sec  
sec  
sec  
us  
Sector Erase Time  
Chip Programming Time  
Word Program Time  
Total Write Buffer Time  
ACC Total Write Buffer Time  
Erase/Program Cycles  
Notes:  
0.5  
320  
10  
3.5  
1400  
180  
70  
140  
us  
70  
us  
100,000  
Cycles  
1. Typical program and erase times assume the following conditions: 25°C, 3.0V VCC. Programming specifica-  
tions assume checkboard data pattern.  
2. Maximum values are measured at VCC = 3.0 V, worst case temperature. Maximum values are valid up to and  
including 100,000 program/erase cycles.  
3. Erase/Program cycles comply with JEDEC JESD-47 & JESD 22-A117 standard.  
4. Exclude 00h program before erase operation.  
22. DATA RETENTION  
Parameter  
Condition  
Min.  
Max.  
Unit  
Data retention  
55˚C  
20  
years  
23. LATCH-UP CHARACTERISTICS  
Min.  
-1.0V  
Max.  
10.5V  
Input Voltage voltage difference with GND on WP#/ACC and A9 pins  
Input Voltage voltage difference with GND on all normal pins input  
Vcc Current  
-1.0V  
1.5Vcc  
+100mA  
-100mA  
All pins included except Vcc. Test conditions: Vcc = 3.0V, one pin per testing  
24. PIN CAPACITANCE  
Parameter Symbol  
Parameter Description  
Control Pin Capacitance  
Output Capacitance  
Input Capacitance  
Test Set  
VIN=0  
Typ.  
15  
Max.  
Unit  
pF  
CIN2  
COUT  
CIN  
70  
24  
30  
VOUT=0  
VIN=0  
17  
pF  
20  
pF  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
65  
MX68GL1G0F  
25. ORDERING INFORMATION  
PART NO.  
ACCESS TIME (ns)  
PACKAGE  
64 LFBGA  
Remark  
MX68GL1G0FHXFI-11G  
MX68GL1G0FLXFI-11G  
MX68GL1G0FHT2I-11G  
MX68GL1G0FLT2I-11G  
MX68GL1G0FUXFI-12G *  
MX68GL1G0FDXFI-12G *  
MX68GL1G0FUT2I-12G *  
MX68GL1G0FDT2I-12G *  
110  
110  
110  
110  
120  
120  
120  
120  
64 LFBGA  
56 Pin TSOP  
56 Pin TSOP  
64 LFBGA  
64 LFBGA  
56 Pin TSOP  
56 Pin TSOP  
* Advance Information  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
66  
MX68GL1G0F  
26. PART NAME DESCRIPTION  
68  
F
T2  
11  
G
GL 1G0  
MX  
H
I
OPTION:  
G: RoHS Compliant & Halogen-free  
SPEED:  
11: 110ns  
12: 120ns  
TEMPERATURE RANGE:  
I: Industrial (-40° C to 85° C)  
PACKAGE:  
T2: 56-TSOP  
XF: LFBGA (11mm x 13mm)  
PRODUCT TYPE (Protection when WP#=VIL):  
H: VI/O=VCC=2.7 to 3.6V, Highest Address Sector Protected, uniform sector  
L: VI/O=VCC=2.7 to 3.6V, Lowest Address Sector Protected, uniform sector  
U: VI/O=1.65 to VCC, VCC=2.7 to 3.6V, Highest Address Sector Protected, uniform sector  
D: VI/O=1.65 to VCC, VCC=2.7 to 3.6V, Lowest Address Sector Protected, uniform sector  
REVISION:  
F
DENSITY & MODE:  
1G0: 1Gb x8/x16 Architecture  
TYPE:  
GL: 3V Page Mode  
DEVICE:  
68: Stack Die Flash  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
67  
MX68GL1G0F  
27. PACKAGE INFORMATION  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
68  
MX68GL1G0F  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
69  
MX68GL1G0F  
28. REVISION HISTORY  
Revision No. Description  
Page  
Date  
0.01  
1. Changed title from Advanced Information to Preliminary  
P5  
MAY/09/2012  
2. Added MX68GL1G0F U/D function  
3. Added MX68GL1G0F U/D ORDERING INFORMATION  
and PART NAME DESCRIPTION  
P5,7,38~41  
P65,66  
4. Modified Figure 18. CE# Controlled Write Timing Waveform  
5. Added VI/O Setup Time  
P52  
P63  
1.0  
Removed "Preliminary" from Feature page.  
P5  
JUL/27/2012  
1.1  
1. Added Word/Byte Configuration (BYTE#) & Figure 26  
2. Modified "Figure 27. PAGE READ TIMING WAVEFORM"  
3. Modified Icr2  
P60  
P61  
P39  
FEB/01/2013  
4. Modified Chip Programming Time (typ.) from 400sec to 800sec P65  
5. Added Total Write Buffer Time (max.) 360us  
6. Added ACC Total Write Buffer Time (max.) 360us  
P65  
P65  
1.2  
1.3  
1. Advanced Sector Protection/Un-protection description updated P25~30  
AUG/12/2013  
2. Modified Word/Byte Configuration (BYTE#) table  
P60  
3. Modified Erase And Programming Performance table  
P65  
1. Updated parameters for DC Characteristics.  
2. Updated Erase and Programming Performance.  
3. Content correction  
P5,39  
P5,42,65  
P25~30  
OCT/30/2013  
P/N:PM1727  
REV. 1.3, OCT. 30, 2013  
70  
MX68GL1G0F  
Except for customized products which have been expressly identified in the applicable agreement, Macronix's  
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or  
household applications only, and not for use in any applications which may, directly or indirectly, cause death,  
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their  
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its  
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or  
distributors shall be released from any and all liability arisen therefrom.  
Copyright© Macronix International Co., Ltd. 2011~2013. All rights reserved, including the trademarks and  
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,  
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,  
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names  
and brands of third party referred thereto (if any) are for identification purposes only.  
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
71  

相关型号:

Macronix

MX68GL1G0FDT2I12G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix
Macronix

MX68GL1G0FDXFI12G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix
Macronix

MX68GL1G0FHT2I11G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix
Macronix

MX68GL1G0FHXFI11G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix
Macronix

MX68GL1G0FLT2I11G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix
Macronix

MX68GL1G0FLXFI11G

SINGLE VOLTAGE 3V ONLY FLASH MEMORY
Macronix