MX23L12854 [Macronix]

128M-BIT Low Voltage, Serial Mask ROM Memory with 50MHz SPI Bus Interface; 128M位低电压,串行掩膜ROM的内存与50MHz的SPI总线接口
MX23L12854
型号: MX23L12854
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

128M-BIT Low Voltage, Serial Mask ROM Memory with 50MHz SPI Bus Interface
128M位低电压,串行掩膜ROM的内存与50MHz的SPI总线接口

文件: 总18页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX23L12854  
128M-BIT Low Voltage, Serial Mask ROM Memory with  
50MHz SPI Bus Interface  
FEATURES  
DESCRIPTION  
TheMX23L12854isa128Mbit(16Mx8)SerialMaskROM  
accessed by a high speed SPI-compatible bus.  
128Mbit of Mask ROM  
3.0 to 3.6V Single Supply Voltage  
SPI Bus Compatible Serial Interface  
50MHz Clock Rate (maximum)  
PIN DESCRIPTION  
PIN CONFIGURATIONS  
16-PIN SOP (300 mil)  
SYMBOL DESCRIPTION  
C
Serial Clock  
Serial Data Input  
Serial Data Output  
Chip Select  
Hold  
1
2
3
4
5
6
7
8
C
HOLD#  
VCC  
NC  
16  
15  
14  
13  
12  
11  
10  
9
D
D
Q
NC  
NC  
NC  
NC  
VSS  
NC  
S#  
NC  
HOLD#  
VCC  
VSS  
NC  
SupplyVoltage  
Ground  
NC  
S#  
Q
Note:  
1.NC=NoConnection  
2. See page 16 (onwards) for package dimensions, and  
how to identify pin-1.  
ORDER INFORMATION  
Part No.  
Speed  
Package  
Remark  
MX23L12854MC-20G  
20ns  
16-SOP  
Pb-free  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
1
MX23L12854  
MEMORY ORGANIZATION  
The memory is organized as:  
- 16M bytes (8 bits each)  
BLOCK DIAGRAM  
HOLD#  
Control Logic  
S#  
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
512 Byte  
Data Buffer  
Size of the  
read-only  
memory area  
X Decoder  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
2
MX23L12854  
SIGNAL DESCRIPTION  
Serial Data Output (Q). This output signal is used to  
transfer data serially out of the device. Data is shifted out  
on the falling edge of Serial Clock (C).  
device is deselected. Driving Chip Select (S#) Low ena-  
bles the device, placing it in the active power mode.  
After Power-up, a falling edge on Chip Select (S#) is  
required prior to the start of any instruction.  
SerialDataInput(D).Thisinputsignalisusedtotransfer  
data serially into the device. It receives instructions,  
addresses, and the data to be programmed. Values are  
latched on the rising edge of Serial Clock (C).  
Hold(HOLD#).TheHold(HOLD#)signalisusedtopause  
any serial communications with the device without  
deselecting the device.  
Serial Clock (C). This input signal provides the timing of  
the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising  
edge of Serial Clock (C). Data on Serial Data Output (Q)  
changes after the falling edge of Serial Clock (C).  
DuringtheHoldcondition,theSerialDataOutput(Q)ishigh  
impedance,andSerialDataInput(D)andSerialClock(C)  
areDon'tCare.  
To start the Hold condition, the device must be selected,  
with Chip Select (S#) driven Low.  
Chip Select (S#). When this input signal is High, the  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
3
MX23L12854  
SPI MODES  
These devices can be driven by a microcontroller with its  
SPIperipheralrunningineitherofthetwofollowingmodes:  
the falling edge of Serial Clock (C).  
Thedifferencebetweenthetwomodes,asshowninFigure  
2, is the clock polarity when the bus master is in Stand-by  
mode and not transferring data:  
- CPOL=0, CPHA=0  
- CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising  
edgeofSerialClock(C), andoutputdataisavailablefrom  
- C remains at 0 for (CPOL=0, CPHA=0)  
- C remains at 1 for (CPOL=1, CPHA=1)  
Figure 1. Bus Master and Memory Devices on the SPI Bus  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
C
Q
D
C
Q
D
C Q D  
Bus Master  
(ST6, ST7, ST9,  
ST10, Others)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
CS3 CS2 CS1  
S#  
S#  
S#  
HOLD#  
HOLD#  
HOLD#  
Note: 1. Hold (HOLD#) signals should be driven, High or Low as appropriate.  
Figure 2. SPI Modes Supported  
CPOL CPHA  
C
C
0
1
0
1
D
MSB  
Q
MSB  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
4
MX23L12854  
OPERATING FEATURES  
ActivePower, Stand-byPower  
The Hold condition starts on the falling edge of the Hold  
(HOLD) signal, provided that this coincides with Serial  
Clock (C) being Low (as shown in Figure 3).  
When Chip Select (S#) is Low, the device is enabled, and  
intheActivePowermode.WhenChipSelect(S#)isHigh,  
the device is disabled, but could remain in the Active  
Power mode until all internal cycles have completed. The  
device then goes in to the Stand-by Power mode. The  
device consumption drops to ICC1 .  
The Hold condition ends on the rising edge of the Hold  
(HOLD#) signal, provided that this coincides with Serial  
Clock (C) being Low.  
If the falling edge does not coincide with Serial Clock (C)  
being Low, the Hold condition starts after Serial Clock (C)  
next goes Low. Similarly, if the rising edge does not  
coincide with Serial Clock (C) being Low, the Hold condi-  
tion ends after Serial Clock (C) next goes Low. (This is  
shown in Figure 2).  
Protection Modes  
Theenvironmentswherenon-volatilememorydevicesare  
used can be very noisy. No SPI device can operate  
correctly in the presence of excessive noise. To help  
combat this, the MX23L12854 boasts the following data  
protectionmechanisms:  
During the Hold condition, the Serial Data Output (Q) is  
highimpedance,andSerialDataInput(D)andSerialClock  
(C)areDon'tCare.  
-Power-OnResetandaninternaltimer(tPUW)canprovide  
protection against inadvertant changes while the power  
supply is outside the operating specification.  
Normally, the device is kept selected, with Chip Select  
(S#) driven Low, for the whole duration of the Hold condi-  
tion. This is to ensure that the state of the internal logic  
remainsunchangedfromthemomentofenteringtheHold  
condition.  
Hold Condition  
The Hold (HOLD#) signal is used to pause any serial  
communications with the device without resetting the  
clocking sequence.  
IfChipSelect(S#)goesHighwhilethedeviceisintheHold  
condition, this has the effect of resetting the internal logic  
of the device. To restart communication with the device,  
it is necessary to drive Hold (HOLD#) High, and then to  
driveChipSelect(S#)Low. Thispreventsthedevicefrom  
going back to the Hold condition.  
To enter the Hold condition, the device must be selected,  
with Chip Select (S#) Low.  
Figure 3. Hold Condition Activation (for data output only)  
C
HOLD#  
Q2  
Q0  
Q5  
Q1  
Q2 Q3  
Q4  
Q
C
HOLD#  
Q
Q2  
Q0  
Q4 Q5  
Q1  
Q2  
Q3  
Q6  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
5
MX23L12854  
INSTRUCTIONS  
All instructions, addresses and data are shifted inand out  
of the device, most significant bit first.  
Everyinstructionsequencestartswithaone-byteinstruc-  
tion code. Depending on the instruction, this might be  
followed by address bytes, or by data bytes, or by both or  
none.  
Serial Data Input (D) is sampled on the first rising edge of  
SerialClock(C)afterChipSelect(S#)isdrivenLow.Then,  
the one-byte instruction code must be shifted in to the  
device, most significant bit first, on Serial Data Input (D),  
each bit being latched on the rising edges of Serial Clock  
(C).  
In the case of a Read Data Bytes (READ), Read Data  
BytesatHigherSpeed(Fast_Read), theshifted-ininstruc-  
tion sequence is followed by a data-out sequence. Chip  
Select(S#)canbedrivenHighafteranybitofthedata-out  
sequence is being shifted out.  
The instruction set is listed in Table 1.  
Table 1. Instruction Set  
Address Dummy  
Data  
Bytes  
Instruction  
Description  
Read Data Bytes  
One-byte Instruction Code  
Bytes  
Bytes  
READ  
0000 0011  
0000 1011  
03h  
0Bh  
3
3
0
1
1 to  
1 to ∞  
FAST_READ Read Data Bytes at Higher Speed  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
6
MX23L12854  
Figure 4. Read Data Bytes (READ) Instruction Sequence and Data-Out Sequence  
S#  
C
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
Instruction  
24-Bit Address  
23 22 21  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
ReadDataBytes(READ)  
ThedeviceisfirstselectedbydrivingChipSelect(S#)Low.  
The instruction code for the Read Data Bytes (READ)  
instructionisfollowedbya3-byteaddress(A23-A0),each  
bit being latched-in during the rising edge of Serial Clock  
(C). Then the memory contents, at that address, is shifted  
outonSerialDataOutput(Q),eachbitbeingshiftedout,at  
a maximum frequency fR, during the falling edge of Serial  
Clock (C).  
The instruction sequence is shown in Figure 4. The first  
byte addressed can be at any location. The address is  
automaticallyincrementedtothenexthigheraddressafter  
each byte of data is shifted out. The whole memory can,  
therefore, be read with a single Read Data Bytes (READ)  
instruction.When the highest address is reached, the  
address counter rolls over to 000000h, allowing the read  
sequence to be continued indefinitely.  
TheReadDataBytes(READ)instructionisterminatedby  
driving Chip Select (S#) High. Chip Select (S#) can be  
driven High at any time during data output.  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
7
MX23L12854  
Figure 5. Read Data Bytes at Higher Speed (FAST_READ) Instruction Sequence and Data-Out  
Sequence  
S#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
C
Instruction  
24 BIT ADDRESS  
D
Q
23 22 21  
3
2
1
0
High Impedance  
S#  
C
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
Dummy Byte  
7
6
5
4
3
2
0
1
D
Q
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
MSB  
MSB  
MSB  
automaticallyincrementedtothenexthigheraddressafter  
each byte of data is shifted out. The whole memory can,  
therefore,bereadwithasingleReadDataBytesatHigher  
Speed (FAST_READ) instruction. When the highest ad-  
dressisreached,theaddresscounterrollsoverto000000h,  
allowing the read sequence to be continued indefinitely.  
ReadDataBytesatHigherSpeed(FAST_READ)  
The device is first selected by driving Chip Select (S#)  
Low. The instruction code for the Read Data Bytes at  
HigherSpeed(FAST_READ)instructionisfollowedbya3-  
byte address (A23-A0) and a dummy byte, each bit being  
latched-in during the rising edge of Serial Clock (C). Then  
the memory contents, at that address, is shifted out on  
Serial Data Output (Q), each bit being shifted out, at a  
maximum frequency fC, during the falling edge of Serial  
Clock (C).  
The Read Data Bytes at Higher Speed (FAST_READ)  
instruction is terminated by driving Chip Select (S#) High.  
ChipSelect(S#)canbedrivenHighatanytimeduringdata  
output.  
The instruction sequence is shown in Figure 5. The first  
byte addressed can be at any location. The address is  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
8
MX23L12854  
POWER-UP AND POWER-DOWN  
If the delay, tVSL, has elapsed, after VCC has risen  
above VCC (min), the device can be selected for READ  
instructions even if the tPUW delay is not yet fully  
elapsed.  
At Power-up and Power-down, the device must not be  
selected (that is Chip Select (S#) must follow the voltage  
applied on VCC ) until VCC reaches the correct value:  
At Power-up, the device is in the following state:  
- The device is in the Standby mode.  
- VCC(min) at Power-up, and then for a further delay of  
tVSL  
- VSS at Power-down  
Normal precautions must be taken for supply rail  
decoupling, to stablise the VCC feed. Each device in a  
systemshouldhavetheVCCraildecoupledbyasuitable  
capacitor close to the package pins.  
Usually a simple pull-up resistor on Chip Select (S#) can  
be used to insure safe and proper Power-up and Power-  
down.  
Toavoiddatacorruptionandinadvertentwriteoperations  
during power up, a Power On Reset (POR) circuit is  
included. The logic inside the device is held reset while  
VCC is less than the POR threshold value, VWI -- all  
operationsaredisabled,andthedevicedoesnotrespond  
to any instruction.  
(Generally, this capacitor is of the order of 0.1uF).  
At Power-down, when VCC drops from the operating  
voltage, to below the POR threshold value, VWI , all  
operationsaredisabledandthedevicedoesnotrespond  
to any instruction.  
These values are specified in Table 2.  
Figure 6. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection Not Allowed  
V
(min)  
CC  
tVSL  
Read Access allowed  
Device fully  
accessible  
Reset State  
of the  
Device  
V
WI  
tPUW  
time  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
9
MX23L12854  
Table 2. Power-Up Timing  
Symbol  
Parameter  
Min.  
Max.  
Unit  
1
V
CC  
(min) to S# low  
30  
us  
tVSL  
Note: 1. These parameters are characterized only.  
MAXIMUM RATING  
Stressingthedeviceabovetheratinglistedinthe"Absolute  
MaximumRatings"tablemaycausepermanentdamageto  
the device. These are stress ratings only and operation of  
the device at these or any other conditions above those  
indicated in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device reliability.  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
T
Storage Temperature  
- 65  
150  
˚C  
˚C  
STG  
1
2
TLEAD  
VIO  
Lead Temperature during Soldering  
Input and Output Voltage (with respect to Ground)  
Supply Voltage  
260  
- 0.6  
- 0.6  
4.0  
4.0  
V
V
V
V
CC  
3
VESD  
- 2000  
2000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with the ECOPACK 7191395 specifiication for lead-free soldering processes  
2. Not exceeding 250˚C for more than 30 seconds, and peaking at 260˚C  
3. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
10  
MX23L12854  
DC AND AC PARAMETERS  
tables that follow are derived from tests performed under  
the Measurement Conditions summarized in the relevant  
tables. Designers should check that the operating condi-  
tions in their circuit match the measurement conditions  
when relying on the quoted parameters.  
Thissectionsummarizestheoperatingandmea-surement  
conditions, and the DC and AC characteristics of the  
device. The parameters in the DC and AC Characteristic  
Table 4. Operating Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
V
Supply Voltage  
Ambient Operating Temperature  
CC  
3.0  
3.6  
85  
V
TA  
- 40  
˚C  
Table 5. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
30  
L
Input Rise and Fall Times  
Input Pulse Voltages  
5
0.2V to 0.8V  
CC  
CC  
CC  
0.3V to 0.7V  
Input Timing Reference Voltages  
Output Timing Reference Voltages  
V
CC  
V
/ 2  
V
CC  
Note: 1. Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 7. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
0.2V  
CC  
CC  
0.7V  
CC  
CC  
0.3V  
CC  
0.5V  
Table 6. Capacitance  
Symbol  
Parameter  
Test Condition  
= 0V  
Min.  
Max.  
Unit  
pF  
COUT  
CIN  
Output Capacitance (Q)  
V
8
6
OUT  
Input Capacitance (other pins)  
V
IN  
= 0V  
pF  
Note: Sampled only, not 100% tested, at T =25˚C and a frequency of 20 MHz.  
A
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
11  
MX23L12854  
Table 7. DC Characteristics  
Test Condition  
(in addition to those in Table 8)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
ILI  
ILO  
Input Leakage Current  
Output Leakage Current  
Standby Current  
± 2  
± 2  
50  
uA  
uA  
uA  
ICC1  
S# = VCC, VIN = VSS or VCC  
C = 0.1VCC / 0.9.VCC at 50MHz,  
Q = open  
8
4
mA  
mA  
ICC2  
Operating Current (READ)  
C = 0.1VCC / 0.9.VCC at 20MHz,  
Q = open  
VIL  
VIH  
0.3VCC  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
- 0.5  
V
V
V
0.7VCC  
VCC+0.4  
I
OL = 1.6mA  
0.4  
VOL  
VOH  
I
OH = -100 uA  
VCC- 0.2  
Output High Voltage  
V
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
12  
MX23L12854  
Table 8. AC Characteristics  
Test conditions specified in Table 4 and Table 5  
Symbol  
Alt.  
Parameter  
Min.  
Typ.  
Max.  
50  
Unit  
Clock Frequency for the following instructions:  
FAST_READ  
f
f
C
D.C.  
MHz  
C
f
Clock Frequency for READ instructions  
Clock High Time  
D.C.  
9
20  
MHz  
ns  
R
1
t
t
CLH  
CH  
1
t
Clock Low Time  
9
ns  
t
CLL  
CL  
2
2
3
0.1  
0.1  
V/ns  
V/ns  
t
t
Clock Rise Time (peak to peak)  
CLCH  
3
Clock Fall Time (peak to peak)  
CHCL  
t
t
t
S# Active Setup Time (relative to C)  
S# Not Active Hold Time (relative to C)  
Data In Setup Time  
5
5
2
5
ns  
ns  
ns  
ns  
SLCH  
CHSL  
CSS  
t
t
DVCH  
CHDX  
CHSH  
SHCH  
DSU  
t
t
t
t
Data In Hold Time  
DH  
S# Active Hold Time (relative to C)  
S# Not Active Setup Time (relative to C)  
S# Deselect Time  
5
ns  
5
ns  
ns  
t
t
CSH  
100  
SHSL  
2
t
Output Disable Time  
8
8
ns  
t
DIS  
SHQZ  
t
t
V
Clock Low to Output Valid  
Output Hold Time  
ns  
ns  
ns  
CLQV  
CLQX  
HLCH  
t
t
t
t
HO  
0
5
HOLD# Setup Time (relative to C)  
HOLD# Hold Time (relative to C)  
HOLD Setup Time (relative to C)  
HOLD Hold Time (relative to C)  
HOLD to Output Low-Z  
CHHH  
HHCH  
5
5
5
ns  
ns  
ns  
t
t
CHHL  
2
2
t
8
8
ns  
ns  
t
LZ  
HHQX  
t
HOLD# to Output High-Z  
t
HZ  
HLQZ  
Note: 1. t + t must be greater than or equal to 1/ f  
C
CH  
CL  
2. Value guaranteed by characterization, not 100% tested in production.  
3. Expressed as a slew-rate.  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
13  
MX23L12854  
Figure 8. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
S#  
tCHSL  
tSLCH  
tCHSH  
C
tDVCH  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
Figure 9. Hold Timing  
S#  
tHLCH  
tCHHL  
tHHCH  
C
Q
tCHHH  
tHLQZ  
tHHQX  
D
HOLD#  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
14  
MX23L12854  
Figure 10. Output Timing  
S#  
tCH  
C
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
tCLQX  
LSB OUT  
D
Q
tQLQH  
tQHQL  
ADDR.LSB IN  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
15  
MX23L12854  
PACKAGE INFORMATION  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
16  
MX23L12854  
REVISION HISTORY  
Revision Description  
Page  
P1  
P1,11  
Date  
APR/06/2005  
MAY/04/2005  
1.0  
1.1  
1. Added "Order Information"  
1. Changed VCC from "2.7V to 3.6V" to "3.0V to 3.6V"  
P/N:PM1141  
REV. 1.1, MAY. 04, 2005  
17  
MX23L12854  
MACRONIX INTERNATIONALCO., LTD.  
HEADQUARTERS:  
TEL:+886-3-578-6688  
FAX:+886-3-563-2888  
EUROPE OFFICE:  
TEL:+32-2-456-8020  
FAX:+32-2-456-8021  
JAPAN OFFICE:  
TEL:+81-44-246-9100  
FAX:+81-44-246-9105  
SINGAPORE OFFICE:  
TEL:+65-348-8385  
FAX:+65-348-8096  
TAIPEI OFFICE:  
TEL:+886-2-2509-3300  
FAX:+886-2-2509-2200  
MACRONIX AMERICA, INC.  
TEL:+1-408-453-8088  
FAX:+1-408-453-8488  
CHICAGO OFFICE:  
TEL:+1-847-963-1900  
FAX:+1-847-963-1909  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  

相关型号:

MX23L12854MC-20G

128M-BIT Low Voltage, Serial Mask ROM Memory with 50MHz SPI Bus Interface
Macronix

MX23L1610

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-10

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-10G

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-11

x8 or x16 ROM (Mask Programmable)
ETC

MX23L1610MC-12

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-12G

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-15

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-20

x8 or x16 ROM (Mask Programmable)
ETC

MX23L1610MC-70

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MC-90

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix

MX23L1610MI-12G

3.3 Volt 16-Mbit (2M x 8 / 1M x 16) Mask ROM
Macronix