MSK1903B-2 [MSK]

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER; 高速/高电压负输出视频放大器
MSK1903B-2
型号: MSK1903B-2
厂家: M.S. KENNEDY CORPORATION    M.S. KENNEDY CORPORATION
描述:

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
高速/高电压负输出视频放大器

视频放大器 输出元件 高压
文件: 总6页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO-9001 CERTIFIED BY DSCC  
HIGH SPEED/HIGH VOLTAGE  
NEGATIVE OUTPUT  
VIDEO AMPLIFIER  
1903  
SERIES  
M.S.KENNEDY CORP.  
4707 Dey Road Liverpool, N.Y. 13088  
(315) 701-6751  
MIL-PRF-38534 CERTIFIED  
FEATURES:  
100VPP Output Signal Into 10PF  
Ultra Fast Transition Times-2.9nS  
User Adjustable Contrast and Brightness  
TTL Compatible Blanking  
On Board DC Reference Output  
Customized Versions Available Upon Request  
Available to DSCC SMD 5962-9324301HX  
DESCRIPTION:  
The MSK 1903 Series of high speed, high voltage video amplifiers was designed to drive the grid of today's high  
performance CRT's. The MSK 1903 has user adjustable contrast and brightness levels and also comes with a blanking  
function. The MSK 1903 can be directly connected to many video sources including RS170, RS343 and high speed  
video D/A converters. The MSK 1903 is available in four versions for different applications. The MSK 1903-0 has no  
internal high voltage resistor or inductor allowing the user to dissipate much of the power externally. The MSK 1903-  
2, MSK 1903-4 and the MSK 1903-6 each have an internal resistor-inductor designed for optimum bandwidth. The  
MSK 1903-6 has slightly lower bandwidth but can be operated from down to -120V. Each version of the MSK 1903  
is packaged in a 30 pin power flatpack that can be directly connected to a heat sink using standard 4-40 screws.  
EQUIVALENT SCHEMATIC  
TYPICAL APPLICATIONS  
PIN-OUT INFORMATION  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
11  
GND  
-VHV  
NC  
1
2
VGAIN  
VOFF  
Helmet Mounted Displays  
High Resolution RGB Displays  
High Resolution Monochrome Displays  
Automatic Test Equipment  
Beam Index Applications  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
Blank  
VEE  
Output  
NC  
3
VREF  
4
GND  
GND  
VEE  
NC  
5
VEE  
NC  
6
-VHV RES  
-VHV RES  
GND  
Projection Displays  
-Input  
+Input  
GND  
GND  
VCC  
VCC  
GND  
GND  
7
8
9
10  
GND  
-VHV  
Rev. B 3/03  
1
ABSOLUTE MAXIMUM RATINGS  
-VHV  
VBLANK  
IREF  
High Voltage Supply (1903-0)  
(1903-2)  
(1903-4)  
-95V  
-95V  
-75V  
Blank Input Voltage  
-0.6 to +6V  
5mA  
Reference Output Current  
Storage Temperature Range  
Lead Temperature Range  
(10 Seconds)  
TST  
-65°C to +150°C  
300°C  
TLD  
(1903-6)  
-120V  
+22V  
+VCC  
-VEE  
VIN  
Positive Supply Voltage  
Negative Supply Voltage  
Differential Input Voltage  
Common Mode Input Voltage  
Gain Adjust Input Voltage  
Offset Adjust Input Voltage  
TJ  
IRP  
TC  
-12V  
2V  
Junction Temperature  
Current Through Rp  
175°C  
290mA  
VIC  
2V  
-0.6 to +6V  
-0.6 to +6V  
Case Operating Temperature Range  
(All Devices B/E Suffix)  
VGAIN  
VOFF  
-55°C to +125°C  
-40°C to +85°C  
(All Devices No Suffix)  
ELECTRICAL SPECIFICATIONS  
MSK1903-2  
Min.Typ. Max. Min.Typ. Max. Min. Typ. Max.  
MSK1903-0  
MSK1903-4  
MSK1903-6  
Units  
Group A  
1
Parameter  
Test Conditions  
Subgroup  
Typ.  
Min.  
Max.  
STATIC  
8
VCM=0V @ +20V  
VCM=0V @ -10.5V  
TC 125°C  
1,2,3  
mA  
mA  
-
-
75 100  
-75 -100  
-
-
75 100  
-75 -100  
-
-
75 100  
-75 -100  
75  
-75  
-100  
32  
-
100  
-100  
-120  
35  
Quiescent Current  
High Voltage Supply  
1,2,3  
-
-50  
-
2
-
-
V
3
-30 -90 -95  
-30 -90 -95  
-30 -70 -75  
Junction to Case  
Thermal Resistance to Case  
2
°C/W  
-
32  
35  
-
32  
35  
-
32  
35  
INPUT  
1
2,3  
1
1
1
1
-
µA  
µA  
µA  
µA  
µA  
µA  
nS  
dB  
KΩ  
pF  
-
1
50  
250  
-
1
50  
250  
-
1
50  
250  
1
5
-
50  
250  
600  
400  
10  
10  
-
VCM=0V  
Input Bias Current  
Blank Input Current  
-
5
-
5
-
5
-
VBLANK=0.4V  
VBLANK=2.4V  
VOFF=1V  
-
-
500 600  
300 400  
-
-
500 600  
300 400  
-
-
500 600  
300 400  
500  
300  
2
-
-
-
Offset Adjust Input Current  
Gain Adjust Input Current  
-
2
2
10  
-
2
2
10  
-
2
2
10  
VGAIN=5V  
-
10  
-
10  
-
10  
2
-
Normal Operation  
Blank Input Pulse Width  
2
30  
-
-
-
-
-
-
30  
-
-
-
-
-
-
30  
-
-
-
-
-
-
-
30  
-
VCM= 0.5V F=10Hꢀ  
Either Input F=DC  
Either Input  
Common Mode Rejection Ratio  
-
40  
40  
40  
40  
20  
2
-
Input Impedance  
Input Capacitance  
Blank Mode Input  
2
-
10 20  
10 20  
10 20  
10  
-
-
-
-
-
2
-
-
-
2
-
-
-
2
-
-
VBLANK=2.4V VIN=0.3V  
V=VHV-VOUT  
-
2xRp  
2xRp  
2xRp  
-
-
mV  
2xRp  
2
Rejection V  
3
2
VGAIN=5V  
10xRp  
10xRp  
-
10xRp  
-
mV  
dB  
Gain Adjust Rejection V  
3
2
-
-
-
-
-
-
-
-
-
-
10xRp  
-
-
+VCC and -VEE=Nom 5%  
Power Supply Rejection Ratio  
25 30  
-
-
25 30  
25 30  
30  
25  
2
3
Internal Rp  
-
0
380 400 420  
190 200 210  
5.2 5.5 5.8  
400  
380  
420  
OUTPUT  
IOUT<2mA  
Reference Output Voltage  
V Blank Mode  
1,2,3  
1,2,3  
V
5.2 5.5 5.8  
5.2 5.5 5.8  
5.5  
5.2  
5.8  
V=VHV-VOUT VOFF=1V  
VBLANK=2.4V VGAIN=5V  
Rp  
3xRp mV  
3xRp -3xRp Rp  
-3xRp Rp 3xRp -3xRp  
-3xRp  
0
Rp 3xRp  
V=VHV-VOUT VOFF=0V VGAIN=3V  
V Min Offset  
1,2,3  
V
3
10  
52  
56  
0
3
10  
52  
52  
0
3
6
26  
26  
68  
-
3
42  
42  
120  
-98  
-1  
0
32  
32  
72  
-95  
-
10  
1
2,3  
4
4
4
4
-
V
32 42  
28 42  
32 42  
32 42  
16 21  
16 21  
36 55  
-65 -68  
52  
V Max Offset  
V=VHV-VOUT VOFF=5V  
V
52  
VIN=0.6V F=10KHꢀ VGAIN=3V Both Inputs  
VGAIN=3V F=10KHꢀ  
Voltage Gain  
V/V  
145  
72 110 138  
72 110 138  
Output Voltage High  
Output Voltage Low  
Transition Times  
V
-
-85 -88  
-
-85 -88  
-
VGAIN=3V F=10KHꢀ  
V
-
-
-
-
-
-1  
-5  
-
-
-
-
-1  
-5  
-
-
-
-
-
-1  
-5  
-5  
VIN=0.6V VOUT=Max TR=TF<1nS  
VGAIN =4V VOFF=1V VCM=0.5V  
VOFF=1V VIN=0.2V VCM=0.5V  
nS  
10  
4.2 6.0  
3.8 5.5  
2.9 4.0  
6.5  
-
-
Linearity Error  
Gain Linearity  
%GS  
2
2
-
-
-
2
2
2
-
-
-
2
2
2
-
-
-
2
2
2
-
2
-
%
2
-
-
Thermal Distortion 2  
-
%GS  
2
-
NOTES:  
1
2
3
4
5
6
7
+VCC = +20V, -VEE = -10.5V, VBLANK =0.4V VGAIN = VOFF = VIN = 0V, CL=10pF, VHV=typical value and TC=25°C unless otherwise specified.  
Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.  
RP=Internal RP except MSK 1903-0. External value = 400unless otherwise specified for the MSK 1903-0.  
Industrial grade and "E" suffix devices shall be tested to subgroups 1 and 4 unless otherwise specified.  
Military grade devices ("B" suffix) shall be 100% tested to subgroups 1,2,3 and 4.  
Subgroups 5 and 6 testing available upon request.  
Subgroup 1,4 TA=TC=+25°C  
2,5 TA=TC=+125°C  
3,6 TA=TC=-55°C  
8
Does not include output current referenced to +VCC.  
Rev. B 3/03  
2
APPLICATION NOTES  
POWER SUPPLIES  
VIDEO INPUTS  
The video input signals should be kept below 2VMAX total,  
including both common mode offset and signal levels. The in-  
put structure of the MSK 1903 was designed for 0.714Vpp  
RS343 signals. If either input is not used it should be con-  
nected directly to the analog ground or through a 25resistor  
to ground if input offset currents are to be minimized.  
The input stage of the MSK 1903 requires power supplies of  
+20V and -10.5V for optimum performance. The negative  
power supply can be increased to -12V if -10.5V is not avail-  
able, but additional power dissipation will cause the internal  
temperature to rise. Both low voltage power supplies should be  
effectively decoupled with tantalum capacitors (at least 4.7µF)  
connected as close to the amplifier's pins as possible. The MSK  
1903 has internal 0.01µF capacitors that also improve high  
frequency performance. In any case, it is also recommended to  
put 0.1µF decoupling capacitors on the +20V and -10.5V sup-  
plies as well.  
OUTPUT PROTECTION  
The output pin of the MSK 1903 should be protected from  
transients by connecting reverse biased ultra-low capacitance  
diodes from the output pin to both -VHV and ground. The out-  
put can also be protected from arc voltages by inserting a small  
value (50-100) resistor in series with the amplifier. This resis-  
tor will reduce system bandwidth along with the load capaci-  
tance, but a series inductor can reduce the problem substan-  
tially.  
The high voltage power supply (-VHV) is connected to the  
amplifier's output stage and must be kept as stable as possible.  
The internal or external Rp is connected to -VHV and as such,  
the amplifier's DC output is directly related to the high voltage  
value. The -VHV pins of the hybrid should be decoupled to ground  
with as large a capacitor as possible to improve output stabil-  
ity.  
VGAIN CONTROL INPUT  
The VGAIN control (contrast) input is designed to allow the  
user to vary the video gain. By simply applying a DC voltage  
from 0V to VREF, the video gain can be linearly adjusted from 0  
to 80V/V. The VGAIN input should be connected to the VREF pin  
through a 5Kpot to ground. For convenient stable gain adjust-  
ment, a 0.1µF bypass capacitor should be connected near the  
VGAIN input pin to prevent output instability due to noisy sources.  
Digital gain control can be accomplished by connecting a D/A  
converter to the VGAIN pin. However, some temperature track-  
ing performance may be lost when using an external DC voltage  
source other than VREF for gain adjustment.  
SUPPLY SEQUENCING  
The power supply sequence is -VHV, VCC, VEE followed by  
the other DC control inputs. If power supply sequencing is not  
possible, the time difference between each supply should be  
less than five milliseconds. If the DC control signals are being  
generated from a low impedance source other than the VREF  
output, reverse biased diodes should be connected from each  
input (VGAIN, VOFF) to the +VCC pin. This will protect the in-  
puts until +VCC is turned on.  
The overall video output of the MSK 1903 can be character-  
ized using the following expression:  
VIDEO OUTPUT  
Vpp=VHV-VOUT  
When power is first applied and VIN=VGAIN=VOFF=0V, the  
output will be practically at the -VHV rail voltage. The output  
voltage is a function of the value of Rp and also the VGAIN and  
VOFF DC inputs. The maximum output voltage swing for any of  
the MSK 1903 variants is determined by Vpp = (250mA) x  
(Rp). The bandwidth of the amplifier largely depends on both  
Rp and Lp.  
VHV-VOUT=(VIN) (VGAIN) (0.1) (Rp) (0.9)  
Here is a sample calculation for the MSK 1903-2:  
Given information:  
VIN=0.7V  
VGAIN=1VDC  
Hybrid pins 16 and 17 are directly connected to Rp. Addi-  
tional external resistance can be added to reduce power dissi-  
pation, but slower transition times will result. If an additional  
resistor is used, it must be low capacitive and the layout should  
minimize capacitive coupling to ground (ie: no ground plane  
under Rp).  
Rp=400(internal)  
VHV=100VDC  
VHV-VOUT=(0.7V) (1V) (0.1) (400) (0.9)  
VHV-VOUT=25.2V Nominal  
The expected video output would swing from approximately  
-80V to -54.8V assuming that VOFF=0V. This calculation should  
be used as a nominal result because the overall gain may vary as  
much as 20% due to internal high speed device variations.  
Changing ambient conditions can also effect the video gain of  
the amplifier by as much as 150 PPM/°C. It is wise to connect  
all video amplifiers to a common heat sink to maximize thermal  
tracking when multiple amplifiers are used in applications such  
as RGB systems. Additionally, only one of the VREF outputs should  
be shared by all three amplifiers. This voltage should be buffered  
with a suitable low drift op-amp for best tracking performance.  
The MSK 1903 Series is conservatively specified with low  
values for Lp which yield about 5% overshoot. Additional peak-  
ing can be obtained by using a high self-resonant frequency  
inductor in series with the Rp pins. Since this value of induc-  
tance can be very dependent on circuit layout, it is best to  
determine its value by experimentation. A good starting point  
is typically 0.47µH for the MSK 1903-0 and 0.0047µH for the  
remaining devices.  
If external resistors or inductors are not used, be sure to  
connect high frequency bypass capacitors directly from pins  
16 and 17 to ground.  
Rev. B 3/03  
3
APPLICATION NOTES CON'T  
BLANK INPUT  
VOFF CONTROL INPUT  
The video input can be electrically disconnected from the  
amplifier by applying a TTL high input to the blank pin. When  
this occurs, the output will be set to approximately -VHV. The  
VGAIN and VOFF control pins have little or no effect on the out-  
put when it is in blank mode.  
The brightness (output offset) can be linearly adjusted by  
applying a 0 to VREF DC voltage to the VOFF input pin. The  
output quiescent voltage range is from approximately (5µA)  
(Rp) to (100mA) (Rp) from -VHV. This control voltage is nor-  
mally generated by connecting the VOFF control pin to a 5K  
potentiometer between VREF and ground. The VOFF input pin  
should be bypassed with a 0.1µF capacitor to ground placed as  
close as possible to the hybrid. This DC voltage can be any  
stable system source.  
When the TTL compatible blank input is not used, the pin  
must be connected to ground to enable the amplifier. The blank  
input will float high when left disconnected which will disable  
the video.  
VREF OUTPUT  
Keep hybrid power dissipation in mind when adjusting the  
output quiescent voltage. Practically all of the voltage is seen  
across Rp. This power must be taken into account when high  
Rp currents are used. If the quiescent level is set too close to  
-VHV, the power dissipation will be minimal but the rise time  
will suffer slightly. If the quiescent level is set too far from  
-VHV, the power dissipation will increase dramatically and the  
output fall time will be limited. The output black level is obvi-  
ously dependent on system requirements but a little experi-  
mentation will strike the optimum balance between power dis-  
sipation and bandwidth. Total current through Rp should be  
limited to less than 290mA when operating from power sup-  
plies greater than 90V. The gain adjust alone can set the AC  
current to 250mA (ie: 250mApp=100Vpp/400). This would  
leave about 40mA left for black level output current.  
The MSK 1903 has an on board buffered DC zener reference  
output. The VREF output is nominally 5.5V DC and has full tem-  
perature test limits of 5.2V to 5.8V DC. This output is provided  
for gain and offset adjustment and can source up to 4mA of  
current.  
THERMAL MANAGEMENT  
The MSK 1903 package has mounting holes that allow the  
user to connect the amplifier to a heat sink or chassis. Since  
the package is electrically isolated from the internal circuitry,  
mounting insulators are not required or desired for best thermal  
performance. Use 4 to 6 inch/pounds for mounting the device  
to the heat sink.  
The power dissipation of the amplifier depends mainly on the  
load requirements, bandwidth, pixel size, black level and the  
value of Rp. The following table illustrates a few examples:  
PERCENT OF SIGNAL  
WHITE  
LEVEL  
TOTAL  
AVE. Pd  
BLACK  
LEVEL  
OUTPUT  
VOLTAGE  
OUTPUT  
AVE. Pd  
DEVICE  
TYPE  
-VHV  
BLACK  
0%  
WHITE  
0%  
BLANK  
100%  
20%  
0V  
-90V  
0V  
0W  
13.3W  
0W  
1903-6  
1903-6  
1903-4  
1903-4  
-120V  
-120V  
-70V  
-110V  
-110V  
-65V  
-20V  
-20V  
-15V  
-15V  
2.5W  
15.7W  
2.5W  
40%  
0%  
40%  
0%  
100%  
20%  
40%  
40%  
-50V  
8.4W  
-70V  
-65V  
10.6W  
This table does not include power dissipation due to output switching since this is dependent on individual load requirements. The input stage power  
dissipation is typically 2.5 watts and is essentially independent of output levels.  
RESOLUTION TABLE FOR A TYPICAL CRT  
Maximun  
Pixel  
Minimum Pixel  
Clock  
Required System  
Bandwidth  
(F-3dB)  
Required Rise Time  
at CRT  
Display  
Resolution  
Time  
Frequency  
320 x 200  
640 x 350  
182nS  
52nS  
5MHz  
19MHz  
26MHz  
38MHz  
80MHz  
90MHz  
112MHz  
170MHz  
360MHz  
1.2GHz  
60nS  
17nS  
6MHz  
20MHz  
28MHz  
41MHz  
84MHz  
95MHz  
120MHz  
180MHz  
380MHz  
1.23GHz  
640 x 480  
38nS  
12.5nS  
8.6nS  
4.2nS  
3.7nS  
2.9nS  
1.9nS  
1nS  
800 x 560  
26nS  
1024 x 900  
1024 x 1024  
1280 x 1024  
1664 x 1200  
2048 x 2048  
4096 x 3300  
12.6nS  
11nS  
8.9nS  
5.8nS  
2.8nS  
860pS  
280pS  
All data assumes retrace time equal to 30% of frame time and a 60Hz refresh rate.  
Rev. B 3/03  
4
TYPICAL CONNECTION CIRCUIT  
The connection circuit shown above is for the MSK 1903-0 evaluation board. The Rp and Lp are external compo-  
nents and must not be located near ground planes if possible. A high quality resistor such as Bradford Electronics  
P/N FP10-400 is required for optimum response times. Use an inductor with a high self-resonant frequency that can  
withstand the currents required for the application.  
When using the other variants of the MSK 1903, place an additional bypass capacitor on pins 16 and 17 if series  
(Rp and Lp) components are not utilized. The pin should connect to -VHV with a short low impedance path.  
For additional applications information, please contact MSK. Evaluation amplifiers with test boards are available  
upon request.  
NOTES:  
5
Rev. B 3/03  
MECHANICAL SPECIFICATIONS  
ESD TRIANGLE INDICATES PIN 1.  
ALL DIMENSIONS ARE 0.010 INCHES UNLESS OTHERWISE LABELED.  
ORDERING INFORMATION  
INTERNAL  
RP  
+VHV  
MAX  
TYPICAL  
RISE TIME  
4.2nS  
SCREENING  
LEVEL  
PART  
NUMBER  
MSK 1903-0  
NONE  
Industrial  
110V  
110V  
110V  
110V  
110V  
110V  
110V  
110V  
75V  
MSK 1903B-0  
MSK 1903E-0  
5962-9324301HX  
MSK 1903-2  
NONE  
NONE  
NONE  
400  
400Ω  
400Ω  
400Ω  
200Ω  
200Ω  
200Ω  
400Ω  
400Ω  
400Ω  
4.2nS  
4.2nS  
4.2nS  
3.8nS  
3.8nS  
3.8nS  
3.8nS  
2.9nS  
2.9nS  
2.9nS  
6.5nS  
6.5nS  
6.5nS  
Mil-PRF-38534 Class H  
Extended Reliability  
DSCC-SMD  
Industrial  
MSK 1903B-2  
MSK1903E-2  
5962-9324302HX  
MSK 1903-4  
Mil-PRF-38534 Class H  
Extended Reliability  
DSCC-SMD  
Industrial  
MSK 1903B-4  
MSK1903E-4  
MSK 1903-6  
Mil-PRF-38534 Class H  
Extended Reliability  
Industrial  
75V  
75V  
130V  
130V  
130V  
MSK 1903B-6  
MSK1903E-6  
Mil-PRF-38534 Class H  
Extended Reliability  
M.S. Kennedy Corp.  
4707 Dey Road, Liverpool, New York 13088  
Phone (315) 701-6751  
FAX (315) 701-6752  
www.mskennedy.com  
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make  
changes to its products or specifications without notice, however, and assumes no liability for the use of its products.  
Please visit our website for the most recent revision of this datasheet.  
Rev. B 3/03  
6

相关型号:

MSK1903B-4

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1903B-6

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1903E-0

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1903E-2

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1903E-4

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1903E-6

HIGH SPEED/HIGH VOLTAGE NEGATIVE OUTPUT VIDEO AMPLIFIER
MSK

MSK1911

HIGH PERFORMANCE, HIGH VOLTAGE VIDEO DISPLAY DRIVER
MSK

MSK1912-2

Video Amplifier, 1 Channel(s), 1 Func, MSFM13, METAL PACKAGE-13
MSK

MSK1912-4

Video Amplifier, 1 Channel(s), 1 Func, MSFM13, METAL PACKAGE-13
MSK

MSK1912-6

Video Amplifier, 1 Channel(s), 1 Func, MSFM13, METAL PACKAGE-13
MSK

MSK1913-0

Video Amplifier, 1 Channel(s), 1 Func, MSFM13, METAL PACKAGE-13
MSK

MSK1913-6

Video Amplifier, 1 Channel(s), 1 Func, MSFM13, METAL PACKAGE-13
MSK