MSU1HF2S [MSI]

High Frequency Resistor Programmable Universal Active Filter;
MSU1HF2S
型号: MSU1HF2S
厂家: Mixed Signal Integration    Mixed Signal Integration
描述:

High Frequency Resistor Programmable Universal Active Filter

文件: 总7页 (文件大小:80K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5/98  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
Fe a tu r e s _______________________  
De s cr ip tio n ____________________  
Low Power Consumption  
High Frequency Operation  
Low Cost  
Small Package Size  
Wide Q Range  
Wide Clock to Center/Corner Frequency  
Range  
Accurate Switched-Capacitor Technology  
The high frequency resistor programmable universal  
active filter is a CMOS chip that can be configured  
for Lowpass, Bandpass, Highpass, Elliptic, Notch or  
Allpass filters using external resistors. The filters  
come in one (8 pin) or two (16 pin) section ver-  
sions. The device is a switched-capacitor filter  
using a topology that requires fewer pins, less  
power consumption and provides higher frequency  
performance than other switched-capacitor universal  
8 or 16 pin DIP or SOIC  
0.5 to over 20  
6.25:1 to over 50:1  
active  
filters. The clock to corner ratio as well  
as the Q are set by external resistors.  
Ap p lica tio n s _______________________  
Depending on the filter type and response, from  
zero to nine external resistors are needed for each  
section. The sections may be cascaded to realize  
higher order filters.  
General Purpose Filtering  
Portable Equipment  
Instrumentation  
The devices have a selectable nominal sample to  
corner ratio of either 6.25 to 1 or 12.5 to 1 and  
come in either a low power version (fo<100 kHz)or  
a higher power version (fo<500kHz). The devices  
are double sampled to reduce the clock frequency  
by a factor of two.  
Ab s o lu te M a x im u m Ra tin g s ______  
Power Supply Voltage  
Storage Temperature  
Operating Temperature  
+6v  
-60 to +150°C  
0 to 70°C  
O r d e r in g In fo r m a tio n _____________  
Part Number  
Package  
Operating Temperature  
MSU1HF1P  
MSU1HF1S  
MSU1HF2P  
MSU1HF2S  
MSU1HF3P  
MSU1HF3S  
MSU1HF4P  
MSU1HF4S  
MSU2HF1P  
MSU2HF1S  
8 Pin Dip  
8 Pin SOIC  
8 Pin Dip  
8 Pin SOIC  
8 Pin Dip  
8 Pin SOIC  
8 Pin Dip  
8 Pin SOIC  
16 Pin Dip  
16 Pin SOIC  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
0 - 70°C  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
1
5/98  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
Electrical Characteristics  
___________  
SYMBOL  
PARAMETERS  
DC Specifications  
Operating Voltage  
Supply Current  
CONDITIONS  
MIN TYP MAX UNITS  
VDD  
IDD  
4.5  
5.0 5.5  
V
MSU2HF1 PWR = 1  
MSU2HF1 PWR = 0  
MSU1HF1/3  
8
25  
6
15  
700  
20  
mA  
mA  
mA  
mA  
ohm  
mV  
MSU1HF2/4  
Output Impedance  
Output Offset  
AC Specifications  
Output Swing  
4.0 4.5  
Vp-p  
Input Impedance  
Nominal Sample to  
corner  
Zin  
Fo  
1
Mohm  
MSU2HF1 FO = 1  
FO = 0  
MSU1HF1/2  
MSU1HF3/4  
MSU2HF1 PWR = 1  
PWR = 0  
6.25  
12.5  
6.25  
12.5  
100  
500  
100  
500  
Center/Corner Range  
note(1)  
KHz  
KHz  
KHz  
KHz  
Vp-p  
MSU1HF1/3  
MSU1HF2/4  
0.1note(2)  
5
Clock Input Voltage  
CKin  
note(1): the clock to corner ratio is one-half the sample to corner ratio  
note(2): 100mV sine wave clock requires capacitive coupling  
Block Diagram  
_________________________  
CHP  
HP  
C
BP1  
BP  
o
o
R/2  
*R/2  
CF01  
CF02  
o
o
C
C
SCF  
R/4  
SCF  
LP  
OUT  
o
o
o
R
SCF  
R
*BPP input is noninverting  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
2
5/98  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
Pin Description_____________  
16 Pin  
8 Pin  
1
2
PWR  
VSS  
Power Select Pin 0 = High 1 = Low  
Negative Supply, Typically 0V for  
single supply, - 2.5 V for dual supply  
Section One Output  
Ground Reference, Typically 2.5V for  
single supply, 0V for dual supply  
Section One Lowpass Input  
Section One Negative Bandpass Input  
Section One Positive Bandpass Input  
Section One High Pass Input  
8
3
4
1
5
OUT1  
GND  
5
6
7
8
9
10  
11  
12  
13  
2
3
LP1  
BPN1  
BPP1  
HP1  
4
6
7
HP2  
Section Two High Pass Input  
BPP2  
BPN2  
LP2  
Section Two Positive Bandpass Input  
Section Two Negative Bandpass Input  
Section Two Lowpass Input  
Input Clock, Typically 200mV for AC coupled  
sine wave, 5V for CMOS input  
CLK  
14  
15  
OUT2  
FO  
Section Two Output  
Clock to Center/Corner, Select Pin, Low = 6.25 to 1  
High = 3.125 (sample rate is 2x)  
Positive Supply, Typically 5V for single  
supply, 2.5V for dual supply  
16  
VDD  
Pin Configuration  
16 PIN  
16  
15  
1
2
PWR  
VDDA  
8 PIN  
VSSA  
OUT1  
GND  
LP1  
FO  
8
1
14  
13  
12  
3
4
OUT  
VSS  
OUT2  
2
7
6
5
LP  
VDD  
CLK  
CLK  
LP2  
5
3
BP  
4
6
7
11  
HP  
BPN1  
BPP1  
GND  
BPN2  
BPP2  
HP2  
10  
9
8
HP1  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
3
5 / 9 8  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
Filter Types Available  
________________  
Block Diagram  
M SU2 HF1  
M SU1 HF1 / 4  
Lowpass  
Bandpass  
Highpass  
Lowpass elliptical  
Highpass elliptical  
Notch  
Oscillator  
Allpass  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
no  
LP  
Vout  
Σ
Σ
no  
no  
BP+  
BP-  
HP-  
Biquad  
Programming Non-Linearities__________________  
Transfer Functions  
_____________  
Lo w p a s s  
2
ω
20  
16  
H(s) = -  
0
S2  
2
+ (ω /Q)S + ω  
0
0
Ba n d p a s s  
fc/fo=3.125  
12  
8
/
−(ω Q)S  
Η(s) =  
0
fc/fo=6.25  
fc/fo=12.5  
S2  
2
+ (ω /Q)S + ω  
0
0
Hig h p a s s  
4
S2  
Η(s) =  
S2  
2
0
+ (ω /Q)S + ω  
0
0
Lo w p a s s Ellip tic  
2
2
2
/
(ω ω ) S + ω  
25  
5
Q
0.5  
Η(s) =  
0 z  
0
2
S2  
+ (ω /Q)S + ω  
0
0
Hig h p a s s Ellip tic  
20  
16  
12  
8
+ (ω /ω )2ω  
S2  
S2  
2
Η(s) =  
z
0
0
2
+ (ω /Q)S + ω  
0
0
Q =0.5  
Q = 5  
Q =25  
N o tch  
S2  
2
+ ω  
Η(s) =  
0
S2  
2
+ (ω /Q)S + ω  
4
0
0
Allp a s s  
0
H(s) = S2  
2
- (ω /Q)S + ω  
0
0
2
-4  
S2  
+ (ω /Q)S + ω  
0
0
12.5  
6.25  
fc/fo  
3.125  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
4
5/98  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
NOTE: f  
c >36  
fo  
R3  
R3  
R1  
R1  
IN  
R2  
For lowpass, lowpass elliptical,  
highpass elliptical, allpass and  
notch filters. This limitation due  
LP  
HP  
LP  
HP  
NON-INVERT  
LOWPASS  
BP+ BANDPASS  
BP-  
IN  
BP+  
BP-  
VOUT  
to the particular ratio of R and  
1
OUT  
VOUT  
R
and allows realizable values  
3.  
OUT  
2
of R  
Other minimum values of  
R4  
fc/fo can be obtained by using  
other values of R and R in the  
R4  
R6  
R6  
1
2
basic biquad equations.  
Gain (1)  
=
1
K
Assumption (1)  
R
1
=
R ; DC Gain = Unity  
2
2
f
=
4K . fc  
K
=
R
0
1
1
3
+
f
= 3K . fc  
K
=
R
3
0
1
1
α (2)  
R
2R  
1
3
α(2)  
R
+ R  
1 3  
Q
=
4K  
K
K
=
R
1
2
6
Q
=3K  
K
=
R
6
1
K
2
R
+
R
2
4
6
R
+ R  
6
2
4
(1) If  
a
gain other than unity is desired then  
(1) Gain may be adjusted independent of  
the resistor divider described by from the  
biquad equations. Use the  
place of for the gain equation only.  
Q using  
/
K
gain  
=
R
R
and  
K
from the biquad  
5
1
2
1
K
equations should be substituted for  
K
1
5
equation in  
K
(2) where α is 6.25 or 12.5.  
2
(2) where α is 6.25 or 12.5.  
e
R3  
R1  
R3  
R1  
LP  
HP  
INVERTING  
BANDPASS  
LP  
HP  
IN  
BP+  
BP-  
HIGHPASS  
VOUT  
BP+  
BP-  
OUT  
VOUT  
OUT  
IN  
R5  
R4  
R6  
R4  
R6  
Assumption(1)  
R
=
R
Gain  
R
=
Unity  
4
5;  
f
=
4K . fc  
K
=
R
0
1
1
3
α(2)  
+ R  
3
Gain  
= Unity  
1
f
=
4K . fc  
K
=
R
1
Q
=
4K  
K
=
R
4
0
1
1
3
1
2
6
K
R
+
2R  
α(1)  
R
R
+
R
6
2
6
3
(1) For gains not equal to unity, gain  
=
R /R and  
K
should be replaced with  
4
5
2
Q
=
4K  
K
=
1
2
6
K
from the biquad equations.  
2
K
R
+
R
2
4
(2) where α is 6.25 or 12.5.  
(1) where α is 6.25 or 12.5.  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
5
5 / 9 8  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
R3  
R2  
R9  
R1  
R3  
IN  
LP  
HP  
R1  
ELLIPTICAL  
LOWPASS  
R10  
BP+  
BP-  
LP  
VOUT  
HP  
OSCILLATOR  
OUT  
BP+  
BP-  
VOUT  
OUT  
R4  
R6  
R4  
R6  
DC Gain (1)  
=
Unity;  
R
= R2  
1
(1)  
(2)  
f
= 3K . fc  
K
=
R
3
0
1
1
f
=
f
R
.
fc  
R
4
20  
0
3
α
R
+
2R  
+
1
3
3R  
+
R
α
R
6
1
3
a
(1)  
is also  
function of the feedback coeffi-  
0
Q
=3K  
K
=
R
6
R
4
1
2
ent defined by  
siderably from the calculated value. For  
fixed feedback coefficient, will not vary by  
R
and and can vary con-  
R
4
6
K
2
R
6
a
f
0
more than plus or minus 1%.  
f
=
.
f
K
=
R
10  
z
1
0
3
(2) The distortion of the sine wave can be  
adjusted by varying this ratio.  
(3) where α is 6.25 or 12.5.  
3
K
R
+ R  
3
9
10  
= R /R and  
(1) For gain other than unity, gain  
1
2
K
from the bequad equation should be sub-  
1
stituted for K . The 31/K term should  
1
3
also be multiplied by the gain.  
(2) where α is 6.25 or 12.5.  
R3  
R2  
R1  
R3  
R2  
R1  
IN  
LP  
HP  
IN  
LP  
HP  
R8  
ELLIPTICAL  
HIGHPASS  
ALLPASS  
BP+  
BP-  
BP+  
BP-  
R7  
VOUT  
VOUT  
OUT  
OUT  
R4  
R4  
R6  
R6  
.
Gain  
=
Unity  
(1)  
f
= 3K . fc  
0
1
α
Q
=3K  
K
=
R R  
1
K
1
2 3  
+
R R  
1 2  
R R  
1 3  
+
R R  
2 3  
2
Gain  
= 3K  
=
Unity;  
R
=
R ;  
R
=
=
R ;  
R
= R  
8 6  
1
2
7
4
f
.
fc  
K
R
3
0
1
1
f
=
R1 .  
f
K
=
R
+
z
0
2
6
α
R
=
+
2R  
+
1
3
3
R
2
R
R
6
4
(1) For this case only, the resistor value  
R
and  
1
Q
=3K  
K
R
1
2
6
R
should be determined for before the  
f
z
2
K
R
R
6
2
4
resistor values for  
f
(R ) are calculated  
0 3  
(2) where α is 6.25 or 12.5.  
(1) where α is 6.25 or 12.5.  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
6
5/98  
Hig h Fr e q u e n cy Re s is to r P r o g r a m m a b le Un iv e r s a l Activ e Filte r  
Da ta Sh e e t  
R3  
R3  
R2  
R1  
R2  
R1  
IN  
R10  
R9  
LP  
HP  
LP  
HP  
R7  
NOTCH  
BIQUAD  
BP+  
BP-  
BP+  
BP-  
VOUT  
R8  
R5  
VOUT  
OUT  
OUT  
IN  
R4  
R4  
R6  
R6  
The biquad is the most general purpose filter type. By  
adjusting the values of K1 through K6, virtually any second  
order transfer function can be achieved. In some cases, it  
may be necessary to use an inverting op amp to achieve  
the correct polarity on these constants.  
Gain  
=
Unity;  
R
= R  
1 2  
f
= 3K . fc  
K
=
R
0
1
1
3
+
α
R
2R  
3
1
2
Q
=3K  
K
=
R
6
VOUT  
=
VIN  
[
-K S  
3 2  
-
K S fc  
4
+
K S fc  
5
-
K
fc  
]
1
K
2
6
R
+ R  
6
4
4
16  
2
4
2
S
K S fc  
2
+
K
Fc  
2
1
(1) where α is 6.25 or 12.5.  
4
16  
.
K
K
K
=
=
=
R R  
K
K
=
=
=
R R  
4 6  
1
2
3
2 3  
4
R R  
1 2  
+
R R  
1 3  
+
R R  
R R  
4 5  
R
8
+
R R  
4 6  
+
R R  
2 3  
5 6  
R R  
5 6  
R R  
5
R R  
4 5  
+
+
R R  
5 6  
R
+ R  
4 6  
7
8
R
K
R R  
1 3  
10  
R
6
R
+
R R  
1 2  
+
R R +  
1 3  
R R  
2 3  
9
10  
Web Site “www.mix-sig.com”  
© 1998 Mixed Signal Integration  
7

相关型号:

MSU1HF3P

High Frequency Resistor Programmable Universal Active Filter
MSI

MSU1HF3S

High Frequency Resistor Programmable Universal Active Filter
MSI

MSU1HF4P

High Frequency Resistor Programmable Universal Active Filter
MSI

MSU1HF4S

High Frequency Resistor Programmable Universal Active Filter
MSI

MSU2031

8 - Bit Microcontroller
MOSEL

MSU2031C16

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2031C25

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2031C40

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2031L16

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2031S16

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2032C16

low working voltage 16 MHz ROM less MCU
MOSEL

MSU2032C25

low working voltage 16 MHz ROM less MCU
MOSEL