MP8712 [MPS]

High-Efficiency, 12A, 3V-18V, Synchronous Step-Down Converter with Power Good, External Soft Start and OVP;
MP8712
型号: MP8712
厂家: MONOLITHIC POWER SYSTEMS    MONOLITHIC POWER SYSTEMS
描述:

High-Efficiency, 12A, 3V-18V, Synchronous Step-Down Converter with Power Good, External Soft Start and OVP

文件: 总26页 (文件大小:1459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MP8712  
High-Efficiency, 12A, 3V-18V,  
Synchronous Step-Down Converter with  
Power Good, External Soft Start and OVP  
The Future of Analog IC Technology  
DESCRIPTION  
FEATURES  
The MP8712 is a high-frequency, synchronous,  
rectified, step-down, switch-mode converter.  
The MP8712 offers a fully integrated solution  
that achieves 12A of continuous and 15A of  
peak output current with excellent load and line  
regulation over a wide input supply range.  
Wide 3V to 18V Operating Input Range  
12A Continuous/15A Peak Output Current  
1% Internal Reference Accuracy  
Output Adjustable from 0.6V  
15mHigh-Side, 4.5mLow-Side RDS(ON)  
for Internal Power MOSFETs  
500kHz Switching Frequency  
External Soft Start (SS)  
Open-Drain Power Good (PG) Indication  
Output Over-Voltage Protection (OVP)  
Hiccup Over-Current Protection (OCP)  
Thermal Shutdown  
Constant-on-time (COT) control operation  
provides fast transient response. An open-drain  
power good pin (PG) indicates that the output  
voltage is in the nominal range. Full protection  
features include over-voltage protection (OVP),  
over-current protection (OCP), and thermal  
shutdown.  
Available in  
Package  
a
QFN-14 (3mmx4mm)  
The MP8712 is available in a QFN-14  
(3mmx4mm) package.  
APPLICATIONS  
Solid-State Drives (SSD)  
Flat-Panel Televisions and Monitors  
Set-Top Boxes  
Distributed Power Systems  
All MPS parts are lead-free, halogen-free, and adhere to the RoHS  
directive. For MPS green status, please visit the MPS website under Quality  
Assurance. “MPS” and “The Future of Analog IC Technology” are registered  
trademarks of Monolithic Power Systems, Inc.  
TYPICAL APPLICATION  
100  
96  
92  
88  
V
=4.5V  
IN  
84  
80  
76  
72  
68  
64  
60  
V
=12V  
IN  
V
=18V  
IN  
0.1  
1
10  
OUTPUT CURRENT (A)  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
1
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
ORDERING INFORMATION  
Part Number*  
Package  
Top Marking  
MP8712GL  
QFN-14 (3mmx4mm)  
See Below  
* For Tape & Reel, add suffix –Z (e.g. MP8712GL–Z)  
TOP MARKING  
MP: Product code of MP8712GL  
Y: Year code  
W: Week code  
8712: First four digits of the part number  
LLL: Lot number  
PACKAGE REFERENCE  
TOP VIEW  
QFN-14 (3mmx4mm)  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
2
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
ABSOLUTE MAXIMUM RATINGS (1)  
VIN..................................................-0.3V to 19V  
Thermal Resistance  
QFN-14 (3mmx4mm)  
θJA  
θJC  
V
SW................................-0.6V (-7V for <10ns) to  
EV8712-L-00A....................... 30........ 6.... °C/W  
(4)  
VIN + 0.7V (25V for <25ns)  
JESD51-7 .......................... 48....... 11... °C/W  
VBST ...................................................... VSW + 4V  
EN ............................................................... 18V  
V
NOTES:  
1) Exceeding these ratings may damage the device.  
2) The maximum allowable power dissipation is a function of the  
maximum junction temperature TJ (MAX), the junction-to-  
ambient thermal resistance θJA, and the ambient temperature  
TA. The maximum allowable continuous power dissipation at  
any ambient temperature is calculated by PD (MAX) = (TJ  
(MAX)-TA)/θJA. Exceeding the maximum allowable power  
dissipation produces an excessive die temperature, causing  
the regulator to go into thermal shutdown. Internal thermal  
shutdown circuitry protects the device from permanent  
damage.  
VOUT............................................................. 7V  
All other pins.....................................-0.3V to 4V  
(2)  
Continuous power dissipation (TA = +25°C)  
QFN-14 (3mmx4mm)................................. 2.5W  
Junction temperature................................150°C  
Lead temperature .....................................260°C  
Storage temperature.................. -65°C to 150°C  
Recommended Operating Conditions (3)  
Supply voltage (VIN).......................... 3V to 18V  
Output voltage (VOUT)...................0.6V to 5.5V  
Operating junction temp. (TJ)... -40°C to +125°C  
3) The device is not guaranteed to function outside of its  
operating conditions.  
4) Highly effective thermal conductivity test board for leaded  
surface-mount packages.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
3
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS  
VIN = 12V, TJ = -40°C to +125°C (5), typical value is tested at TJ = +25°C, unless otherwise noted.  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
Supply current (shutdown)  
IIN  
VEN = 0V  
2.1  
4
μA  
No switching,  
FB = 105% VREF  
Supply current (quiescent)  
IQ  
420  
600  
1
μA  
HS switch on resistance  
LS switch on resistance  
HSRDS-ON VBST-SW = 3.3V  
15  
mΩ  
mΩ  
LSRDS-ON  
VCC = 3.3V  
4.5  
VEN = 0V, VSW = 12V,  
TJ = +25°C  
Switch leakage  
SWLKG  
μA  
Low-side valley current limit  
Low-side negative current limit  
Low-side ZCD threshold  
ILIMIT L  
ILIMIT LN  
IZCD  
14  
-3  
A
A
OVP state  
TJ = +25°C  
200  
500  
500  
185  
50  
mA  
kHz  
kHz  
ns  
fSW1  
VIN = 12V, VOUT = 1V  
VIN = 12V, VOUT = 5V  
400  
400  
600  
600  
Switching frequency  
fSW2  
Minimum off time (6)  
Minimum on time (6)  
τOFF MIN  
tON MIN  
VOUT = 0.6V  
ns  
TJ = 25°C  
594  
591  
600  
600  
10  
606  
609  
50  
Reference voltage  
Vref  
mV  
-40°C < TJ < 125°C (5)  
FB current  
IFB  
VOUT = 620mV  
nA  
V
EN rising threshold  
EN threshold hysteresis  
EN to GND pull-down resistor  
VEN RISING  
VEN HYS  
REN  
1.1  
1.2  
110  
1.5  
1.3  
mV  
Mꢀ  
VIN under-voltage lockout  
threshold rising  
INUVVth  
2.7  
2.8  
2.92  
V
VIN under-voltage lockout  
threshold hysteresis  
INUVHYS  
300  
mV  
Power good UV threshold rising  
power good UV threshold falling  
Power good OV threshold rising  
Power good OV threshold falling  
Power good deglitch time  
PGVth-Hi Good  
PGVth-Lo Fault  
PGVth-Hi Fault  
PGVth-Lo Good  
PGTd  
0.86  
0.81  
1.11  
1.01  
0.9  
0.85  
1.15  
1.05  
30  
0.94  
0.89  
1.19  
1.09  
VOUT  
VOUT  
VOUT  
VOUT  
μs  
Power good sink current  
capability  
VPG  
Sink 4mA  
0.4  
V
OVP rising threshold  
OVP falling threshold  
OVP delay  
VOVP Rise  
FB  
121%  
106%  
125%  
110%  
3.7  
129%  
114%  
VREF  
VREF  
μs  
VOVP Falling FB  
τOVP  
Output pin absolute OV  
UVP threshold  
UVP delay (6)  
6.0  
6.5  
7.0  
V
VOVP2  
VFB UV th  
ΤUVP  
Hiccup entry  
55%  
60%  
10  
65%  
VREF  
μs  
Soft-start current  
5
7
9
μA  
ISS  
MP8712 Rev.1.01  
www.MonolithicPower.com  
4
3/28/2017  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
ELECTRICAL CHARACTERISTICS (continued)  
VIN = 12V, TJ = -40°C to +125°C (5), typical value is tested at TJ = +25°C, unless otherwise noted.  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
V
VCC voltage  
VCC  
3.5  
VCC load regulation  
Thermal shutdown (6)  
Thermal hysteresis (6)  
NOTES:  
VCC reg  
TTSD  
ICC = 20mA  
3
%
160  
20  
°C  
TTSD HYS  
°C  
5) Not tested in production, guaranteed by over-temperature correlation.  
6) Guaranteed by design and characterization tests.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
5
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS  
Performance waveforms are tested on the evaluation board.  
VIN = 12V, VOUT = 1V, L = 1.5µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
6
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 12V, VOUT = 1V, L = 1.5µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
VIN=12V  
VIN=5V  
VIN=12V  
VIN=4.5V  
VIN=4.5V  
VIN=12V  
VIN=18V  
VIN=18V  
VIN=18V  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Load Regulation vs.  
Load Regulation vs.  
Output Current  
Output Current  
VOUT=1V  
VOUT=1.2V  
100  
2
2
1.6  
1.2  
0.8  
0.4  
96 VIN=7V  
1.6  
1.2  
0.8  
0.4  
0
92  
88  
84  
80  
76  
72  
68  
64  
60  
VIN=12V  
VIN=18V  
VIN=18V  
VIN=4.5V  
VIN=18V  
VIN=4.5V  
VIN=12V  
VIN=12V  
0
-0.4  
-0.8  
-1.2  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-1.6  
-2  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
0.01  
0.1  
1
10  
100  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Load Regulation vs.  
Load Regulation vs.  
Load Regulation vs.  
Output Current  
Output Current  
Output Current  
VOUT=1.5V  
VOUT=1.8V  
VOUT=2.5V  
2
1.6  
1.2  
0.8  
0.4  
2
1.6  
1.2  
0.8  
0.4  
2
1.6  
1.2  
0.8  
0.4  
VIN=4.5V  
VIN=18V  
VIN=18V  
VIN=4.5V  
VIN=18V  
VIN=4.5V  
VIN=12V  
VIN=12V  
VIN=12V  
0
-0.4  
-0.8  
-1.2  
0
-0.4  
-0.8  
-1.2  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-1.6  
-2  
-1.6  
-2  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
0
2
4
6
8
10 12  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
7
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 12V, VOUT = 1V, L = 1.5µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
8
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 12V, VOUT = 1V, L = 1.5µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
Input/Output Ripple  
Input/Output Ripple  
Input/Output Ripple  
I
= 0A  
I
= 0A  
I
= 12A  
OUT  
OUT  
OUT  
V
/AC  
OUT  
10mV/div.  
V
/AC  
V
/AC  
OUT  
10mV/div.  
/AC  
OUT  
10mV/div.  
/AC  
V
/AC  
IN  
V
V
IN  
IN  
200mV/div.  
20mV/div.  
20mV/div.  
V
SW  
5V/div.  
V
V
SW  
SW  
10V/div.  
10V/div.  
I
I
L
L
2A/div.  
2A/div.  
I
L
10A/div.  
Start-Up through  
Input Voltage  
Start-Up through  
Input Voltage  
Shutdown through  
Input Voltage  
I
= 0A  
I
= 12A  
I
= 0A  
OUT  
OUT  
OUT  
V
V
V
OUT  
OUT  
OUT  
500mV/div.  
500mV/div.  
500mV/div.  
V
V
V
IN  
IN  
IN  
10V/div.  
10V/div.  
10V/div.  
V
V
V
PG  
PG  
PG  
5V/div.  
5V/div.  
5V/div.  
V
V
V
SW  
SW  
SW  
10V/div.  
10V/div.  
10V/div.  
I
I
L
L
5A/div.  
5A/div.  
I
L
10A/div.  
Shutdown through  
Input Voltage  
Start-Up through EN  
Start-Up through EN  
I
= 0A  
I
= 12A  
OUT  
OUT  
I
= 12A  
OUT  
V
OUT  
500mV/div.  
V
IN  
5V/div.  
V
V
OUT  
OUT  
500mV/div.  
500mV/div.  
V
V
V
EN  
PG  
EN  
5V/div.  
5V/div.  
5V/div.  
V
V
PG  
SW  
V
PG  
5V/div.  
10V/div.  
5V/div.  
V
SW  
10V/div.  
V
SW  
I
L
10V/div.  
10A/div.  
I
L
I
L
5A/div.  
10A/div.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
9
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 12V, VOUT = 1V, L = 1.5µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
Shutdown through EN  
Shutdown through EN  
Load Transient  
I
= 0A  
I
= 12A  
I
= 6A-12A  
OUT  
OUT  
OUT  
V
/AC  
OUT  
50mV/div.  
V
V
OUT  
OUT  
500mV/div.  
500mV/div.  
V
V
EN  
EN  
5V/div.  
5V/div.  
V
V
PG  
PG  
5V/div.  
5V/div.  
V
V
SW  
SW  
10V/div.  
10V/div.  
I
OUT  
I
I
L
L
5A/div.  
2A/div.  
10A/div.  
Short-Circuit  
Short-Circuit  
Short-Circuit  
Protection Entry  
Protection Recovery  
Protection Steady State  
I
= 0A  
I
= 0A  
Short Output to GND  
OUT  
OUT  
V
OUT  
V
V
OUT  
OUT  
1V/div.  
1V/div.  
1V/div.  
V
V
V
PG  
PG  
PG  
5V/div.  
5V/div.  
5V/div.  
V
V
V
SW  
SW  
SW  
10V/div.  
10V/div.  
10V/div.  
I
L
I
I
L
L
10A/div.  
10A/div.  
10A/div.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
10  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 3V, VOUT = 0.9V, L = 0.47µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
V
/AC  
OUT  
V
/AC  
20mV/div.  
V
/AC  
OUT  
20mV/div.  
OUT  
20mV/div.  
V
/AC  
IN  
V
/AC  
IN  
V
/AC  
IN  
50mV/div.  
50mV/div.  
50mV/div.  
V
SW  
V
V
2V/div.  
SW  
SW  
2V/div.  
2V/div.  
I
I
I
L
L
L
10A/div.  
2A/div.  
2A/div.  
V
/AC  
OUT  
20mV/div.  
V
V
OUT  
OUT  
500mV/div.  
500mV/div.  
V
/AC  
IN  
100mV/div.  
V
V
IN  
IN  
2V/div.  
2V/div.  
V
V
PG  
PG  
2V/div.  
2V/div.  
V
SW  
2V/div.  
V
V
SW  
SW  
2V/div.  
2V/div.  
I
L
10A/div.  
I
I
L
L
10A/div.  
10A/div.  
2μ s/div.  
V
V
V
OUT  
OUT  
OUT  
500mV/div.  
500mV/div.  
500mV/div.  
V
IN  
2V/div.  
V
V
EN  
IN  
2V/div.  
V
2V/div.  
PG  
V
V
2V/div.  
PG  
PG  
2V/div.  
2V/div.  
V
V
V
SW  
SW  
SW  
2V/div.  
2V/div.  
2V/div.  
I
I
I
L
L
L
10A/div.  
10A/div.  
10A/div.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
11  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Performance waveforms are tested on the evaluation board.  
VIN = 3V, VOUT = 0.9V, L = 0.47µH, FS = 500kHz, TA = 25°C, unless otherwise noted.  
V
V
OUT  
V
OUT  
OUT  
500mV/div.  
500mV/div.  
500mV/div.  
V
V
EN  
EN  
2V/div.  
2V/div.  
V
EN  
V
V
PG  
2V/div.  
PG  
V
2V/div.  
2V/div.  
PG  
2V/div.  
V
V
V
SW  
SW  
SW  
2V/div.  
2V/div.  
2V/div.  
I
I
I
L
L
L
10A/div.  
10A/div.  
10A/div.  
V
/AC  
V
V
OUT  
OUT  
OUT  
20mV/div.  
500mV/div.  
500mV/div.  
V
V
PG  
PG  
2V/div.  
2V/div.  
V
V
SW  
SW  
2V/div.  
2V/div.  
I
I
I
L
OUT  
L
10A/div.  
5A/div.  
10A/div.  
V
V
OUT  
OUT  
500mV/div.  
500mV/div.  
V
V
PG  
PG  
2V/div.  
2V/div.  
V
V
SW  
SW  
2V/div.  
2V/div.  
I
I
L
L
10A/div.  
10A/div.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
12  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
PIN FUNCTIONS  
QFN-14  
Pin#  
Name  
Description  
Bootstrap. A capacitor is required between SW and BST to form a floating supply across  
the high-side switch driver.  
1
BST  
2
SW  
NC  
Switch output. Connect using a wide PCB trace.  
No connection. Leave NC floating.  
3, 4, 6  
Enable. Drive EN high to enable the MP8712. EN has a 1.5Minternal pull-down resistor  
to GND. EN is a high-voltage pin and can be connected to VIN directly for auto start-up.  
5
7
EN  
PG  
Power good indication. PG is an open-drain structure. PG is de-asserted if the output  
voltage is out of the regulation window.  
System power ground. PGND is the reference ground of the regulated output voltage.  
PGND requires special consideration during the PCB layout. Connect PGND to the  
ground plane with copper traces and vias.  
8
PGND  
Supply voltage. The MP8712 operates from a 3V to 18V input rail. VIN requires a  
ceramic capacitor to decouple the input rail. Connect VIN using a wide PCB trace.  
9
VIN  
VOUT  
FB  
10  
11  
Output voltage sense. Connect VOUT to the positive terminal of the load.  
Feedback. Connect FB to the tap of an external resistor divider from the output to GND to  
set the output voltage.  
12  
13  
SS  
Soft start set-up. Connect a capacitor from SS to ground to set the soft-start time.  
Internal LDO regulator output. Decouple VCC with a 0.47µF capacitor.  
VCC  
Signal ground. AGND is not connected to PGND internally. Ensure that AGND is  
connected to PGND in the PCB layout.  
14  
AGND  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
13  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
BLOCK DIAGRAM  
On Timer  
COT  
Control  
1.5MΩ  
Figure 1: Functional Block Diagram  
MP8712 Rev.1.01  
www.MonolithicPower.com  
14  
3/28/2017  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
is a fairly constant 500kHz over the input  
voltage range.  
OPERATION  
PWM Operation  
Light-Load Operation  
The MP8712 is a fully integrated, synchronous,  
rectified, step-down, switch-mode converter.  
The MP8712 uses constant-on-time (COT)  
control to provide fast transient response and  
ease loop stabilization. Figure 2 shows the  
simplified ramp compensation block. At the  
beginning of each cycle, the high-side MOSFET  
(HS-FET) turns on whenever the ramp voltage  
(VRAMP) is lower than the error amplifier output  
voltage (VEAO), which indicates an insufficient  
output voltage. The on period is determined by  
both the output voltage and input voltage to  
make the switching frequency fairly constant  
over the input voltage range.  
When the MP8712 works in light-load operation,  
the MP8712 reduces the switching frequency  
automatically to maintain high efficiency, and  
the inductor current drops almost to zero. When  
the inductor current reaches zero, the LS-FET  
driver goes into tri-state (Hi-Z) (see Figure 3).  
The output capacitors discharge slowly to GND  
through R1 and R2. This operation improves  
device efficiency greatly when the output  
current is low.  
After the on period elapses, the HS-FET enters  
the off state. By cycling HS-FET between the  
on and off states, the converter regulates the  
output voltage. The integrated low-side  
MOSFET (LS-FET) turns on when the HS-FET  
is in its off state to minimize conduction loss.  
Figure 3: Light-Load Operation  
Shoot-through occurs when both the HS-FET  
and LS-FET are turned on at the same time,  
causing a dead short between the input and  
Light-load operation is also called skip mode  
since the HS-FET does not turn on as  
frequently as it does during heavy-load  
condition. The HS-FET turn-on frequency is a  
function of the output current. As the output  
current increases, the current modulator  
regulation time period becomes shorter, and the  
HS-FET turns on more frequently. The switching  
frequency increases as well. The output current  
reaches critical levels when the current  
modulator time is zero and can be determined  
with Equation (1):  
GND.  
Shoot-through  
reduces  
efficiency  
dramatically, so the MP8712 prevents this by  
generating a dead time (DT) internally between  
the HS-FET off and LS-FET on time and the  
LS-FET off and HS-FET on time. The MP8712  
enters either heavy-load operation or light-load  
operation depending on the amplitude of the  
output current.  
(VIN VOUT)VOUT  
2LFSW VIN  
IOUT  
(1)  
The MP8712 enters pulse-width modulation  
(PWM) mode once the output current exceeds  
the critical level. Afterward, the switching  
frequency remains fairly constant over the  
output current range.  
Figure 2: Simplified Compensation Block  
Switching Frequency  
Operating without an External Ramp  
The MP8712 uses COT control. There is no  
dedicated oscillator in the IC. The input voltage  
is forward fed to the one-shot on-timer through  
the internal frequency resistor. The duty ratio is  
kept as VOUT/VIN, and the switching frequency  
The traditional COT control scheme is  
intrinsically unstable if the output capacitor’s  
ESR is not large enough to be an effective  
current-sense resistor. Ceramic capacitors  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
15  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
usually cannot be used as output capacitors.  
amplifier uses SS as the reference. When SS is  
higher than REF, the error amplifier uses REF  
as the reference.  
The MP8712 has built-in internal ramp  
compensation to ensure that the system is  
stable even without the help of the output  
capacitor’s ESR. A pure ceramic capacitor  
solution can reduce output ripple, total BOM  
cost, and board area significantly.  
The approximate typical soft-start time can be  
calculated with Equation (2):  
Vref (V )Css (nF)  
(2)  
tss (ms)   
7A  
VCC Regulator  
A 3.5V internal regulator powers most of the  
If the output of the MP8712 is pre-biased to a  
certain voltage during start-up, the IC disables  
the switching of the high-side and low-side until  
the voltage on the internal soft-start capacitor  
exceeds the sensed output voltage at FB.  
internal circuitries.  
A
470nF decoupling  
capacitor is needed to stabilize the regulator  
and reduce ripple. This regulator takes the VIN  
input and operates in the full VIN range. After  
EN is pulled high and VIN is greater than 3.5V,  
the output of the regulator is in full regulation.  
When VIN is lower than 3.5V, the output  
voltage decreases and follows the input voltage.  
A 0.47μF ceramic capacitor is required for  
decoupling purposes.  
Over-Current Protection (OCP)  
The MP8712 has hiccup, cycle-by-cycle, and  
over-current limiting control. The current-limit  
circuit employs both the high-side current limit  
and the low-side (valley) current-sensing  
algorithm. The MP8712 uses the RDS(ON) of the  
LS-FET as a current-sensing element for the  
valley current limit. If the magnitude of the high-  
side current-sense signal is above the current-  
limit threshold, the PWM on pulse is terminated,  
and the low side is turned on. Afterward, the  
inductor current is monitored by the voltage  
between GND and SW. GND is used as the  
positive current sensing node, so GND should  
be connected to the source terminal of the  
bottom MOSFET. PWM is not allowed to initiate  
a new cycle before the inductor current falls to  
the valley threshold.  
Error Amplifier (EA)  
The error amplifier (EA) compares the FB  
voltage against the internal 0.6V reference  
(REF) and outputs a PWM signal. The  
optimized  
internal  
ramp  
compensation  
minimizes the external component count and  
simplifies the control loop design.  
Enable (EN)  
EN is a digital control pin that turns the  
regulator on and off. Drive EN high to turn on  
the regulator; drive EN low to turn off the  
regulator. An internal 1.5Mresistor is  
connected from EN to ground. EN can operate  
with an 18V input voltage, which allows EN to  
be connected to VIN directly for automatic start-  
up.  
After the cycle-by-cycle over-current limit  
occurs, the output voltage drops until VOUT is  
below the under-voltage (UV) threshold,  
typically 60% below the reference. Once UV is  
triggered, the MP8712 enters hiccup mode to  
restart the part periodically. This protection  
mode is especially useful when the output is  
dead-shorted to ground. The average short-  
circuit current is reduced greatly to alleviate  
thermal issues and protect the regulator. The  
MP8712 exits hiccup mode once the over-  
current condition is removed.  
Under-Voltage Lockout (UVLO)  
Under-voltage lockout (UVLO) protects the chip  
from operating at an insufficient supply voltage.  
The MP8712 UVLO comparator monitors both  
the input voltage (VIN) and the output voltage  
(VOUT) of the VCC regulator. The MP8712 is  
active when both voltages exceed the UVLO  
rising threshold.  
Soft Start (SS) and Pre-Bias Start-Up  
Soft start prevents the converter output voltage  
from overshooting during start-up. When the  
chip starts up, the internal circuitry generates a  
soft-start voltage (SS) that ramps up from 0V to  
VCC. When SS is lower than REF, the error  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
16  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
Power Good (PG)  
Dynamic regulation mode is defined as turning  
on the low side until the low-side negative  
current limit is triggered, and then the body  
diode of the HS-FET freewheels the current.  
The output power charges to the input, which  
may trigger a VIN OVP function. In VIN OVP,  
neither the HS-FET or LS-FET turn on and stop  
charging VIN to a higher voltage. If the output is  
still over-voltage and the input voltage has  
dropped below the VIN OVP threshold, repeat  
dynamic regulation mode. If the output voltage  
is lower than 110% of the internal reference  
voltage, then output OVP is exited.  
Power good (PG) indicates whether the output  
voltage is in the normal range compared to the  
internal reference voltage. PG is an open-drain  
structure. An external pull-up supply is needed.  
During power-up, the PG output is pulled low.  
This indicates to the system to remain off and  
keep the load on the output to a minimum. This  
helps reduce inrush current at start-up.  
When the output voltage is between 90% and  
115% of the nominal voltage and the soft start  
is finished, the PG signal is pulled high. When  
the output voltage is lower than 85% after the  
soft start finishes, the PG signal remains low.  
When the output voltage is higher than 115% of  
the nominal voltage, PG is switched low. The  
PG signal rises high again after the output  
voltage drops below 105% of the nominal  
voltage.  
Output Absolute Over-Voltage Protection  
(OVP_ABS)  
The MP8712 monitors VOUT to detect absolute  
over-voltage protection. When VOUT is larger  
than 6.5V, the controller enters dynamic  
regulation mode. Absolute OVP can work once  
both the input voltage and EN are higher than  
their rising thresholds. Therefore, this function  
can work even in a soft-start period.  
PG uses a deglitch time whenever VOUT  
crosses the UV/OV rising and falling threshold.  
The PG output is pulled low immediately when  
either EN UVLO, input UVLO, OCP, or OTP is  
triggered.  
Thermal Shutdown  
Thermal shutdown prevents the chip from  
operating at exceedingly high temperatures.  
When the silicon die temperature exceeds  
160°C, the entire chip shuts down. When the  
temperature is less than its lower threshold  
(typically 140°C), the chip is enabled again.  
Input Over-Voltage Protection (VIN OVP)  
The MP8712 monitors VIN to detect an input  
over-voltage (OV) event. This function is only  
active when the output is in OV. When the  
output is in an over-voltage protection (OVP)  
state, output discharge is enabled, charging the  
input voltage high. When the input voltage  
exceeds the input OVP threshold, both the HS-  
FET and LS-FET stop switching.  
Floating Driver and Bootstrap Charging  
An external bootstrap capacitor powers the  
floating power MOSFET driver. This floating  
driver has its own UVLO protection. This  
UVLO’s rising threshold is 2.4V with a  
hysteresis of 150mV. The bootstrap capacitor  
voltage is regulated internally by VIN through  
Output Over-Voltage Protection (OVP)  
The MP8712 monitors FB to detect an over-  
voltage event. When the FB voltage becomes  
higher than 125% of the internal reference  
voltage, the controller enters dynamic  
regulation mode, and the input voltage may be  
charged up during this time. When input OVP is  
triggered, the IC stops switching. Once the  
input voltage drops below the VIN OVP  
recovery threshold, the IC begins switching.  
OVP auto-retry mode occurs only if the soft  
start finishes.  
D1, M1, C4, L1, and C2 (see Figure 4). If VBST  
-
VSW exceeds 3.3V, U1 regulates M1 to maintain  
a 3.3V BST voltage across C4.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
17  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
Figure 4: Internal Bootstrap Charging Circuit  
Start-Up and Shutdown  
If both VIN, VCC, and EN exceed their  
respective thresholds, the chip starts up. The  
reference block starts first, generating stable  
reference voltages and currents, and then the  
internal regulator is enabled. The regulator  
provides a stable supply for the remaining  
circuitries. Several events can shut down the  
chip: EN low, VIN low, VCC low, and thermal  
shutdown. In the shutdown procedure, the  
signaling path is first blocked to prevent any  
fault triggering. VEAO and the internal supply rail  
are then pulled down.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
18  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
VOUT (V VOUT  
)
APPLICATION INFORMATION  
Setting the Output Voltage  
IN  
L1   
V  IL fOSC  
IN  
(4)  
The MP8712 output voltage can be set by the  
external resistor dividers. The reference voltage  
is fixed at 0.6V.  
Where IL is the inductor ripple current.  
Choose the inductor ripple current to be  
approximately 30% of the maximum load  
current. The maximum inductor peak current  
can be calculated with Equation (5):  
The feedback network is shown in Figure 5.  
IL  
2
IL(MAX) ILOAD  
(5)  
Use a larger inductor for improved efficiency  
under light-load conditions below 100mA.  
Selecting the Input Capacitor  
The input current to the step-down converter is  
Figure 5: Feedback Network  
Choose R1 and R2 using Equation (3):  
R1  
discontinuous and therefore requires  
a
capacitor to supply AC current to the step-down  
converter while maintaining the DC input  
voltage. Use low ESR capacitors for the best  
performance. Ceramic capacitors with X5R or  
X7R dielectrics are recommended because of  
their low ESR and small temperature  
coefficients. For most applications, use two  
22µF capacitors. Since C1 absorbs the input  
switching current, it requires an adequate ripple  
current rating. The RMS current in the input  
capacitor can be estimated with Equation (6):  
R2   
(3)  
VOUT  
1  
0.6V  
Table 1 lists the recommended feedback  
resistor values for common output voltages.  
Table 1: Resistor Selection for Common Output  
Voltages (7)  
Rt (k) L (μH)  
VOUT (V) R1 (k) R2 (k)  
VOUT  
VIN  
VOUT  
VIN  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
80.6  
120  
80.6  
53.6  
40.2  
25.5  
17.8  
11  
10  
10  
10  
10  
10  
10  
10  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
IC1 ILOAD  
1  
(6)  
The worst-case condition occurs at VIN =  
2VOUT, shown in Equation (7):  
ILOAD  
IC1  
2
(7)  
For simplification, choose an input capacitor  
with an RMS current rating greater than half of  
the maximum load current. The input capacitor  
can be electrolytic, tantalum, or ceramic. When  
using electrolytic or tantalum capacitors, add a  
small, high-quality ceramic capacitor (e.g.:  
0.1μF) placed as close to the IC as possible.  
When using ceramic capacitors, ensure that  
they have enough capacitance to provide a  
sufficient charge to prevent excessive voltage  
ripple at the input.  
NOTE:  
7) The recommended parameters are based on a 12V input  
voltage and 22µFx4 output capacitor. Different input voltage  
and output capacitor values may affect the selection of R1  
and R2. For other component parameters, please refer to  
the Typical Application Circuits on page 22 to page 25.  
Selecting the Inductor  
For most applications, use a 0.47µH to 5µH  
inductor with a DC current rating at least 25%  
higher than the maximum load current. For the  
highest efficiency, use an inductor with a DC  
resistance less than 5m.  
For most designs, the inductance value can be  
derived from Equation (4):  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
19  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
The input voltage ripple caused by capacitance  
can be estimated with Equation (8):  
External Bootstrap Diode  
An external bootstrap diode can enhance the  
efficiency of the regulator given the following  
conditions:  
ILOAD VOUT  
V
V   
1  
OUT   
IN  
IN  
fS C1  
VIN  
V
(8)  
VOUT is 5V or 3.3V  
Selecting the Output Capacitor  
Duty cycle is high: D > 50%  
The output capacitor (C2) maintains the DC  
output voltage. Use ceramic, tantalum, or low-  
ESR electrolytic capacitors. For best results,  
use low ESR capacitors to keep the output  
voltage ripple low. The output voltage ripple can  
be estimated with Equation (9):  
In these cases, add an external BST diode from  
VCC to BST (see Figure 6).  
External BST Diode  
IN4148  
BST  
VCC  
CBST  
MP8712  
   
VOUT  
SW  
VOUT  
1
L
VOUT  
1  
R  
   
ESR  
COUT  
fS L1  
V
8fS C2  
IN    
(9)  
Where L1 is the inductor value, and RESR is the  
equivalent series resistance (ESR) value of the  
output capacitor.  
Figure 6: Optional External Bootstrap Diode to  
Enhance Efficiency  
The recommended external BST diode is  
1N4148, and the recommended BST capacitor  
value is 0.1μF to 1μF.  
For ceramic capacitors, the capacitance  
dominates the impedance at the switching  
frequency, and the capacitance causes the  
majority of the output voltage ripple. For  
simplification, the output voltage ripple can be  
estimated with Equation (10):  
Connecting VCC to VIN at a Low Input  
Voltage  
VCC can be connected to VIN directly when  
VIN is lower than 3.5V. This helps improve the  
MP8712’s low input voltage efficiency  
performance. To use this application set-up, the  
VIN spike voltage must be limited below 4V;  
otherwise, VCC could be damaged.  
VOUT  
8fS2 L1 C2  
VOUT  
VOUT  
1  
V
IN  
(10)  
For tantalum or electrolytic capacitors, the ESR  
dominates the impedance at the switching  
frequency. For simplification, the output ripple  
can be approximated with Equation (11):  
VOUT  
VOUT  
VOUT  
1  
RESR  
fS L1  
V
IN  
(11)  
The characteristics of the output capacitor also  
affect the stability of the regulation system. The  
MP8712 can be optimized for a wide range of  
capacitance and ESR values.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
20  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
PCB Layout Guidelines (8)  
4. Add several vias close to the VIN and  
PGND pads to help with thermal dissipation.  
Efficient PCB layout is critical for stable  
operation. A four-layer layout is strongly  
recommended to achieve better thermal  
performance. For best results, refer to Figure 7  
and follow the guidelines below.  
5. Place the input capacitors as close to VIN  
and PGND as possible.  
6. Place the decoupling capacitor as close to  
VCC and PGND as possible.  
1. Place the high current paths (PGND, VIN,  
and SW) very close to the device with short,  
direct, and wide traces.  
7. Place the external feedback resistors next  
to FB.  
8. Ensure that there is no via on the FB trace.  
2. Keep the VIN and PGND pads connected  
with large coppers.  
9. Keep the switching node (SW) short and  
away from the feedback network.  
3. Use at least two layers for the VIN and  
PGND trace to achieve better thermal  
performance.  
10. Keep the BST voltage path (BST, C3, and  
SW) as short as possible.  
NOTE:  
8) The recommended layout is based on the Typical  
Application Circuits on page 22 to page 25.  
Figure 7: Recommended Layout  
Design Example  
Table 2 is a design example following the  
application guidelines for the specifications.  
performance and circuit waveforms are shown  
in the Typical Performance Characteristics  
section. For more device applications, please  
refer to the related evaluation board datasheets.  
Table 2: Design Example  
VIN  
VOUT  
IOUT  
12V, 3V  
1V  
12A  
The detailed application schematics are shown  
in Figure 8 through Figure 17. The typical  
MP8712 Rev.1.0  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
21  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS  
R3  
C3  
0Ω  
0.1µF  
1
L1  
12V  
9
1.5µH  
VIN  
1V/12A  
2
R5  
499kΩ  
VOUT  
VOUT  
VOUT  
C1  
C1A  
C1B  
0.1µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
120kΩ  
14  
8
C6  
22nF  
Figure 8: VIN = 12V, VOUT = 1V, IOUT = 12A  
R3  
0Ω  
C3  
0.1µF  
1
L1  
1.5µH  
12V  
9
VIN  
1.2V/12A  
2
R5  
C1  
C1A  
C1B  
0.1µF  
499kΩ  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
80.6kΩ  
14  
8
C6  
22nF  
Figure 9: VIN = 12V, VOUT = 1.2V, IOUT = 12A  
R3  
0Ω  
C3  
0.1µF  
1
L1  
1.5µH  
12V  
9
VIN  
1.5V/12A  
2
R5  
C1  
C1A  
C1B  
0.1µF  
499kΩ  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
53.6kΩ  
14  
8
C6  
22nF  
Figure 10: VIN = 12V, VOUT = 1.5V, IOUT = 12A  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
22  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS (continued)  
R3  
C3  
0Ω  
0.1µF  
1
L1  
12V  
9
1.5µH  
VIN  
1.8V/12A  
2
R5  
499kΩ  
VOUT  
VOUT  
VOUT  
C1  
C1A  
C1B  
0.1µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
40.2kΩ  
14  
8
C6  
22nF  
Figure 11: VIN = 12V, VOUT = 1.8V, IOUT = 12A  
R3  
0Ω  
C3  
0.1µF  
1
L1  
2.2µH  
12V  
9
VIN  
2.5V/12A  
2
R5  
C1  
C1A  
C1B  
0.1µF  
499kΩ  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
25.5kΩ  
14  
8
C6  
22nF  
Figure 12: VIN = 12V, VOUT = 2.5V, IOUT = 12A  
R3  
0Ω  
C3  
0.1µF  
1
L1  
2.2µH  
12V  
9
VIN  
3.3V/12A  
2
R5  
C1  
C1A  
C1B  
0.1µF  
499kΩ  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
17.8kΩ  
14  
8
C6  
22nF  
Figure 13: VIN = 12V, VOUT = 3.3V, IOUT = 12A  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
23  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS (continued)  
R3  
0Ω  
C3  
0.1µF  
1
L1  
12V  
9
3.3µH  
VIN  
5V/12A  
2
R5  
499kΩ  
VOUT  
C1  
C1A  
C1B  
0.1µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
22µF 22µF  
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
22pF  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
11kΩ  
14  
8
C6  
22nF  
Figure 14: VIN = 12V, VOUT = 5V, IOUT = 12A (9)  
NOTE:  
9) Based on the evaluation board test result at 25°C ambient temperature. A lower input voltage will trigger over-temperature protection with  
full load.  
R3  
C3  
0Ω  
0.1µF  
1
L1  
3V  
9
0.47µH  
VIN  
0.9V/12A  
2
R5  
499kΩ  
VOUT  
C1A  
22µF 22µF  
C1B  
C1C  
0.1µF  
C1  
220µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
NS  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
162kΩ  
14  
8
C6  
22nF  
Figure 15: VIN = 3V, VOUT = 0.9V, IOUT = 12A  
R3  
C3  
0Ω  
0.1µF  
1
L1  
3V  
9
0.47µH  
VIN  
1.2V/12A  
2
R5  
499kΩ  
VOUT  
C1A  
22µF 22µF  
C1B  
C1C  
0.1µF  
C1  
220µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
NS  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
80.6kΩ  
14  
8
C6  
22nF  
Figure 16: VIN = 3V, VOUT = 1.2V, IOUT = 12A  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
24  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
TYPICAL APPLICATION CIRCUITS (continued)  
R3  
C3  
0Ω  
0.1µF  
1
L1  
3V  
9
0.47µH  
VIN  
1.8V/12A  
2
R5  
499kΩ  
VOUT  
C1A  
22µF 22µF  
C1B  
C1C  
0.1µF  
C1  
220µF  
C2  
22µF  
C2C  
22µF  
C2A  
22µF  
C2B  
22µF  
5
13  
10  
C5  
0.47μF  
RPG  
100kΩ  
EN  
PG  
C4  
NS  
R1  
80.6kΩ  
R4  
10kΩ  
7
11  
12  
3, 4, 6  
R2  
40.2kΩ  
14  
8
C6  
22nF  
Figure 17: VIN = 3V, VOUT = 1.8V, IOUT = 12A  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
25  
MP8712 – 18V, 12A, SYNCHRONOUS STEP-DOWN CONVERTER  
QFN-14 (3mmx4mm)  
PACKAGE INFORMATION  
NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications.  
Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS  
products into any application. MPS will not assume any legal responsibility for any said applications.  
MP8712 Rev.1.01  
3/28/2017  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2017 MPS. All Rights Reserved.  
26  

相关型号:

MP8712GL

High-Efficiency, 12A, 3V-18V, Synchronous Step-Down Converter with Power Good, External Soft Start and OVP
MPS

MP8714

High-Efficiency, 10A, 17V, Synchronous, Step-Down Converter With External Soft Start and Power Good
MPS

MP8714GLE

High-Efficiency, 10A, 17V, Synchronous, Step-Down Converter With External Soft Start and Power Good
MPS

MP8715

100% Duty Cycle Synchronous 4A, 21V, 500kHz Step-Down Converter
MPS

MP8715DL

100% Duty Cycle Synchronous 4A, 21V, 500kHz Step-Down Converter
MPS

MP8715DN

100% Duty Cycle Synchronous 4A, 21V, 500kHz Step-Down Converter
MPS

MP8715DN-LF

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012BA, SOIC-8
MPS

MP8715DN-LF-Z

Switching Regulator, Current-mode, 500kHz Switching Freq-Max, PDSO8, ROHS COMPLIANT, MS-012BA, SOIC-8
MPS

MP8716

High Efficiency 3A, 21V, 500kHz Synchronous Step-down Converter
MPS

MP8716EN

High Efficiency 3A, 21V, 500kHz Synchronous Step-down Converter
MPS

MP8718

High Efficiency 4A, 21V, 500kHz Synchronous Step-down Converter
MPS

MP8718EN

High Efficiency 4A, 21V, 500kHz Synchronous Step-down Converter
MPS