XPC862PZP66 [MOTOROLA]

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357;
XPC862PZP66
型号: XPC862PZP66
厂家: MOTOROLA    MOTOROLA
描述:

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357

时钟 外围集成电路
文件: 总82页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Information  
MPC862 EC/D  
Rev. 0.2, 11/2001  
MPC862 Family  
Hardware Specications  
This document contains detailed information on power considerations, DC/AC electrical  
characteristics, and AC timing specifications for the MPC862 family (refer to Table 1 for a list  
of devices). The MPC862P is the superset device of the MPC862 family.  
This document contains the following topics:  
Topic  
Page  
Part I, “Overview”  
1
Part II, “Features”  
2
Part III, “Maximum Tolerated Ratings”  
Part IV, “Thermal Characteristics”  
Part V, “Power Dissipation”  
6
7
8
Part VI, “DC Characteristics”  
8
Part VII, “Thermal Calculation and Measurement”  
Part VIII, “Layout Practices”  
9
12  
12  
38  
40  
63  
64  
68  
81  
Part IX, “Bus Signal Timing”  
Part X, “IEEE 1149.1 Electrical Specifications”  
Part XI, “CPM Electrical Characteristics”  
Part XII, “UTOPIA AC Electrical Specifications”  
Part XIII, “FEC Electrical Characteristics”  
Part XIV, “Mechanical Data and Ordering Information”  
Part XV, “Document Revision History  
Part I Overview  
The MPC862 is a derivative of Motorola’s MC68360 Quad Integrated Communications  
Controller (QUICC™) and part of the PowerQUICC™ family of devices. It is a versatile  
single-chip integrated microprocessor and peripheral combination that can be used in a variety  
of controller applications and communications and networking systems. The MPC862  
provides enhanced ATM functionality over that of other ATM-enabled members of the  
MPC860 family.  
The CPU on the MPC862 is a 32-bit MPC8xx core that incorporates memory management  
units (MMUs) and instruction and data caches. The communications processor module (CPM)  
from the MC68360 QUICC has been enhanced by the addition of the inter-integrated  
Features  
2
controller (I C) channel. The memory controller has been enhanced, enabling the MPC862 to support any  
type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket  
controller supports up to two sockets. A real-time clock has also been integrated.  
Table 1 shows the functionality supported by the members of the MPC862 family.  
Table 1. MPC862 Family Functionality  
Cache  
Ethernet  
Part  
SCC  
Instruction  
Cache  
Data Cache  
10T  
10/100  
MPC862DT  
MPC862DP  
MPC862SR  
MPC862T  
4 Kbyte  
16 Kbyte  
4 Kbyte  
4 Kbyte  
16 Kbyte  
4 Kbyte  
8 Kbyte  
4 Kbyte  
4 Kbyte  
8 Kbyte  
Up to 2  
Up to 2  
Up to 4  
Up to 4  
Up to 4  
1
1
2
2
4
4
4
1
MPC862P  
1
Unless otherwise specified, the PowerQUICC unit is referred to as the MPC862 in this document.  
Part II Features  
The following list summarizes the key MPC862 features:  
Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC architecture) with  
thirty-two 32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch, without conditional execution  
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1).  
– 16-Kbyte instruction caches (MPC862P and MPC862DP) are four-way, set-associative  
with 256 sets; 4-Kbyte instruction caches (MPC862T, MPC862SR, and MPC862DT) are  
two-way, set-associative with 128 sets.  
– 8-Kbyte data caches (MPC862P and MPC862DP) are two-way, set-associative with 256  
sets; 4-Kbyte data caches (MPC862T, MPC862SR, and MPC862DT) are two-way,  
set-associative with 128 sets.  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)  
cache blocks.  
– Caches are physically addressed, implement a least recently used (LRU) replacement  
algorithm, and are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully associative instruction and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address  
spaces and 16 protection groups  
— Advanced on-chip-emulation debug mode  
The MPC862 provides enhanced ATM functionality over that of the MPC860SAR. The MPC862  
adds major new features available in “enhanced SAR” (ESAR) mode, including the following:  
— Multiple APC priority levels available to support a range of traffic pace requirements  
— Port-to-port switching capability without the need for RAM-based microcode  
2
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Features  
— Simultaneous MII (100Base-T) and UTOPIA (half-duplex) capability  
— Optional statistical cell counters per PHY  
2
— Parameter RAM for both SPI and I C can be relocated without RAM-based microcode.  
— Supports full-duplex UTOPIA master (ATM side) operation using a “split” bus  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
32 address lines  
Operates at up to 80 MHz  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank  
— Up to 30 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROMs, flash EPROMs, and other memory  
devices.  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
— Variable block sizes (32 Kbyte–256 Mbyte)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture  
Fast Ethernet controller (FEC)  
— Simultaneous MII (100Base-T) and UTOPIA operation when using the UTOPIA multiplexed  
bus.  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Low-power stop mode  
— Clock synthesizer  
— Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture  
— Reset controller  
— IEEE 1149.1 test access port (JTAG)  
Interrupts  
— Seven external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
3
Features  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
Communications processor module (CPM)  
— RISC controller  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT  
MODE, and RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— Up to 8-Kbytes of dual-port RAM  
— 16 serial DMA (SDMA) channels  
— Three parallel I/O registers with open-drain capability  
Four baud rate generators  
— Independent (can be connected to any SCC or SMC)  
— Allow changes during operation  
— Autobaud support option  
Four SCCs (serial communication controllers)  
— Serial ATM capability on all SCCs  
— Optional UTOPIA port on SCC4  
— Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation  
— HDLC/SDLC  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support PPP (point-to-point protocol)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC))  
Two SMCs (serial management channels)  
— UART  
— Transparent  
— General circuit interface (GCI) controller  
— Can be connected to the time-division multiplexed (TDM) channels  
One serial peripheral interface (SPI)  
— Supports master and slave modes  
— Supports multiple-master operation on the same bus  
2
One inter-integrated circuit (I C) port  
4
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Features  
— Supports master and slave modes  
— Multiple-master environment support  
Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, clocking  
— Allows dynamic changes  
— Can be internally connected to six serial channels (four SCCs and two SMCs)  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on MPC862 or MC68360  
PCMCIA interface  
— Master (socket) interface, release 2.1 compliant  
— Supports two independent PCMCIA sockets  
— 8 memory or I/O windows supported  
Low power support  
— Full on—All units fully powered  
— Doze—Core functional units disabled except time base decrementer, PLL, memory controller,  
RTC, and CPM in low-power standby  
— Sleep—All units disabled except RTC, PIT, time base, and decrementer with PLL active for  
fast wake up  
— Deep sleep—All units disabled including PLL except RTC, PIT, time base, and decrementer.  
— Power down mode— All units powered down except PLL, RTC, PIT, time base and  
decrementer  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two  
operate on data  
— Supports conditions: = ¹ < >  
— Each watchpoint can generate a break point internally  
3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK  
357-pin ball grid array (BGA) package  
The MPC862 is comprised of three modules that each use the 32-bit internal bus—the MPC8xx core, the  
system integration unit (SIU), and the communication processor module (CPM). The MPC862P block  
diagram is shown in Figure 1.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
5
Maximum Tolerated Ratings  
16-Kbyte  
Instruction Cache  
Instruction  
Bus  
System Interface Unit (SIU)  
Unified  
Bus  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Embedded  
MPC8xx  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
Processor  
8-Kbyte  
Data Cache  
Load/Store  
Bus  
Core  
System Functions  
Real-Time Clock  
Data MMU  
32-Entry DTLB  
PCMCIA/ATA Interface  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
16Virtual  
Serial  
Parallel I/O  
Timers Controllers Dual-Port RAM  
and  
2
Independent  
DMA  
Channels  
10/100  
Base-T  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
ROM  
Parallel Interface Port  
and UTOPIA  
Timers  
MII  
SCC1  
SCC2  
SCC3  
SCC4  
SMC1 SMC2  
SPI  
I2C  
TimeSlot Assigner  
Serial Interface  
Figure 1. MPC862P Block Diagram  
Part III Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC862. Table 2  
provides the maximum ratings.  
Table 2. Maximum Tolerated Ratings  
(GND = 0V)  
Rating  
Supply voltage 1  
Symbol  
VDDH  
Value  
Unit  
-0.3 to 4.0  
-0.3 to 4.0  
-0.3 to 4.0  
-0.3 to 4.0  
V
V
V
V
V
VDDL  
KAPWR  
VDDSYN  
Vin  
Input voltage 2  
GND-0.3 to VDDH  
6
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Thermal Characteristics  
Table 2. Maximum Tolerated Ratings (Continued)  
(GND = 0V)  
Rating  
Symbol  
TA(min)  
Value  
Unit  
Temperature 3 (standard)  
0
˚C  
˚C  
˚C  
˚C  
˚C  
Tj(max)  
TA(min)  
Tj(max)  
Tstg  
95  
-40  
105  
Temperature 3 (extended)  
Storage temperature range  
-55 to +150  
1
The power supply of the device must start its ramp from 0.0 V.  
2
Functional operating conditions are provided with the DC electrical specifications in Table 5.  
Absolute maximum ratings are stress ratings only; functional operation at the maxima is not  
guaranteed. Stress beyond those listed may affect device reliability or cause permanent  
damage to the device.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage.  
This restriction applies to power-up and normal operation (that is, if the MPC862 is unpowered,  
voltage greater than 2.5 V must not be applied to its inputs).  
3
Minimum temperatures are guaranteed as ambient temperature, TA. Maximum temperatures  
are guaranteed as junction temperature, T.  
j
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for example, either GND or V ).  
CC  
Part IV Thermal Characteristics  
Table 3 shows the thermal characteristics for the MPC862.  
Table 3. MPC862 Thermal Resistance Data  
Rating  
Environment  
Single layer board (1s)  
Symbol  
Value  
Unit  
Junction to ambient 1  
Natural Convection  
Air flow (200 ft/min)  
RqJA  
40  
25  
32  
21  
15  
7
°C/W  
2
3
Four layer board (2s2p) RqJMA  
3
Single layer board (1s)  
Four layer board (2s2p)  
RqJMA  
RqJMA  
RqJB  
RqJC  
YJT  
3
Junction to board 4  
5
Junction to case  
Junction to package top 6 Natural Convection  
2
Air flow (200 ft/min)  
YJT  
3
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board,  
and board thermal resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
2
3
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
7
Power Dissipation  
5
Indicates the average thermal resistance between the die and the case top surface as measured by the  
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case  
temperature. For exposed pad packages where the pad would be expected to be soldered, junction to  
case thermal resistance is a simulated value from the junction to the exposed pad without contact  
resistance.  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2.  
6
Part V Power Dissipation  
Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal,  
and 2:1 mode, where CPU frequency is twice bus speed.  
Table 4. Power Dissipation (P )  
D
Die Revision  
Frequency  
Typical1  
Maximum 2  
Unit  
0
50 MHz  
66 MHz  
66 MHz  
80 MHz  
656  
TBD  
722  
851  
735  
TBD  
762  
909  
mW  
mW  
mW  
mW  
(1:1 Mode)  
0
(2:1 Mode)  
1
2
Typical power dissipation is measured at 3.3V.  
Maximum power dissipation is measured at 3.5V.  
NOTE  
Values in Table 4 represent VDDL based power dissipation and do not  
include I/O power dissipation over VDDH. I/O power dissipation varies  
widely by application due to buffer current, depending on external  
circuitry.  
Part VI DC Characteristics  
Table 5 provides the DC electrical characteristics for the MPC862.  
Table 5. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
3.6  
3.6  
Uni t  
Operating voltage at 40 MHz or less  
VDDH, VDDL, VDDSYN  
3.0  
V
V
V
KAPWR (power-down mode) 2.0  
KAPWR (all other operating VDDH - 0.4 VDDH  
modes)  
Operating voltage greater than 40 MHz  
VDDH, VDDL, KAPWR,  
VDDSYN  
3.135  
3.465  
V
KAPWR (power-down mode) 2.0  
3.6  
V
V
KAPWR (all other operating VDDH - 0.4 VDDH  
modes)  
Input High Voltage (all inputs except EXTAL and EXTCLK) VIH  
2.0  
5.5  
V
8
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Thermal Calculation and MeasurementEstimation with Junction-to-Ambient Thermal Resistance  
Table 5. DC Electrical Specifications (Continued)  
Characteristic  
Symbol  
Min  
GND  
Max  
0.8  
Uni t  
Input Low Voltage  
VIL  
VIHC  
Iin  
V
EXTAL, EXTCLK Input High Voltage  
0.7*(VCC) VCC+0.3 V  
Input Leakage Current, Vin = 5.5V (Except TMS, TRST,  
DSCK and DSDI pins)  
100  
µA  
µA  
µA  
Input Leakage Current, Vin = 3.6V (Except TMS, TRST,  
DSCK, and DSDI)  
IIn  
IIn  
10  
Input Leakage Current, Vin = 0V (Except TMS, TRST,  
DSCK and DSDI pins)  
10  
Input Capacitance 1  
Cin  
20  
pF  
V
Output High Voltage, IOH = -2.0 mA, VDDH = 3.0V  
Except XTAL, XFC, and Open drain pins  
VOH  
2.4  
Output Low Voltage  
VOL  
0.5  
V
IOL = 2.0 mA (CLKOUT)  
IOL = 3.2 mA 2  
IOL = 5.3 mA 3  
IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)  
IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)  
1
Input capacitance is periodically sampled.  
2
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1),  
IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3,  
RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8,  
TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5,  
TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1,  
L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28,  
BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23,  
SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19,  
L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14,  
L1ST1/RTS1/DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11,  
TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6,  
SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7,  
PD4, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3]  
3
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,  
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,  
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A,  
ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30)  
Part VII Thermal Calculation and Measurement  
For the following discussions, P = (VDD x IDD) + PI/O, where PI/O is the power dissipation of the I/O  
D
drivers.  
7.1 Estimation with Junction-to-Ambient Thermal  
Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation:  
T = T +( R  
x P )  
D
J
A
qJA  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
9
Thermal Calculation and MeasurementEstimation with Junction-to-Case Thermal Resistance  
where:  
T = ambient temperature ºC  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
qJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy  
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated  
that errors of a factor of two (in the quantity T -T ) are possible.  
J
A
7.2 Estimation with Junction-to-Case Thermal  
Resistance  
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
qJA  
qJC qCA  
where:  
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
qJA  
qJC  
qCA  
R
R
R
is device related and cannot be influenced by the user. The user adjusts the thermal environment to  
qJC  
affect the case-to-ambient thermal resistance, R  
. For instance, the user can change the air flow around  
qCA  
the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the  
thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful  
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink  
to the ambient environment. For most packages, a better model is required.  
7.3 Estimation with Junction-to-Board Thermal  
Resistance  
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two resistor  
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case  
covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the  
top of the package. The junction-to-board thermal resistance describes the thermal performance when most  
of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of  
most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see  
Figure 2.  
10  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Thermal Calculation and MeasurementEstimation Using Simulation  
1 0 0  
9 0  
8 0  
7 0  
6 0  
5 0  
4 0  
3 0  
2 0  
1 0  
0
0
2 0  
4 0  
6 0  
8 0  
Board Temperture Rise Above Ambient Divided by Package  
Power  
Figure 2. Effect of Board Temperature Rise on Thermal Behavior  
If the board temperature is known, an estimate of the junction temperature in the environment can be made  
using the following equation:  
T = T +( R  
x P )  
D
J
B
qJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
qJB  
T = board temperature ºC  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored,  
acceptable predictions of junction temperature can be made. For this method to work, the board and board  
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,  
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground  
plane.  
7.4 Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple  
two resistor model can be used with the thermal simulation of the application [2], or a more accurate and  
complex model of the package can be used in the thermal simulation.  
7.5 Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Y ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T +( Y x P )  
J
T
JT  
D
where:  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
11  
Layout PracticesReferences  
Y
= thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using  
a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be  
positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over  
the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
7.6 References  
Semiconductor Equipment and Materials International  
805 East Middlefield Rd  
(415) 964-5111  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive  
Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its  
Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
Part VIII Layout Practices  
Each VCC pin on the MPC862 should be provided with a low-impedance path to the board’s supply. Each  
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive  
distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1  
µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and  
associated printed circuit traces connecting to chip VCC and GND should be kept to less than half an inch  
per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND planes.  
All output pins on the MPC862 have fast rise and fall times. Printed circuit (PC) trace interconnection length  
should be minimized in order to minimize undershoot and reflections caused by these fast output switching  
times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths  
of six inches are recommended. Capacitance calculations should consider all device loads as well as  
parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes  
especially critical in systems with higher capacitive loads because these loads create higher transient  
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.  
Special care should be taken to minimize the noise levels on the PLL supply pins.  
Part IX Bus Signal Timing  
Table 6 provides the bus operation timing for the MPC862 at 33 MHz, 40 Mhz, 50 MHz and 66 Mhz.  
The maximum bus speed supported by the MPC862 is 66 MHz. Higher-speed parts must be operated in  
half-speed bus mode (for example, an MPC862 used at 80MHz must be configured for a 40 MHz bus).  
12  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
The timing for the MPC862 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for  
minimum delays.  
Table 6. Bus Operation Timings  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B1 CLKOUT period  
30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30 ns  
B1a EXTCLK to CLKOUT phase skew  
(EXTCLK > 15 MHz and MF <= 2)  
-0.90  
-2.30  
-0.60  
0.90  
2.30  
0.60  
-0.90 0.90 -0.90 0.90 -0.90 0.90  
-2.30 2.30 -2.30 2.30 -2.30 2.30  
-0.60 0.60 -0.60 0.60 -0.60 0.60  
-2.00 2.00 -2.00 2.00 -2.00 2.00  
ns  
ns  
ns  
B1b EXTCLK to CLKOUT phase skew  
(EXTCLK > 10 MHz and MF < 10)  
B1c CLKOUT phase jitter (EXTCLK > 15  
1
MHz and MF <= 2)  
B1d CLKOUT phase jitter1  
-2.00  
2.00  
0.50  
2.00  
ns  
%
%
B1e CLKOUT frequency jitter (MF < 10) 1  
0.50  
2.00  
0.50  
2.00  
0.50  
2.00  
B1f CLKOUT frequency jitter (10 < MF <  
500) 1  
B1g CLKOUT frequency jitter (MF > 500) 1  
3.00  
0.50  
3.00  
0.50  
3.00  
0.50  
3.00  
0.50  
%
%
2
B1h Frequency jitter on EXTCLK  
B2 CLKOUT pulse width low  
B3 CLKOUT width high  
B4 CLKOUT rise time 3  
B533 CLKOUT fall time3  
12.12  
12.12  
10.00  
10.00  
8.00  
8.00  
6.06  
6.06  
ns  
ns  
ns  
ns  
ns  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
B7 CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), DP(0:3)  
invalid  
7.58  
6.25  
5.00  
3.80  
B7a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3), BDIP, PTR invalid  
7.58  
7.58  
6.25  
6.25  
5.00  
5.00  
3.80  
3.80  
ns  
ns  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1),  
VF(0:2) IWP(0:2), LWP(0:1), STS  
4
invalid  
B8 CLKOUT to A(0:31), BADDR(28:30)  
RD/WR, BURST, D(0:31), DP(0:3) valid  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
B8a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3) BDIP, PTR valid  
B8b CLKOUT to BR, BG, VFLS(0:1),  
VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS  
Valid 4  
B9 CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), DP(0:3),  
TSIZ(0:1), REG, RSV, AT(0:3), PTR  
High-Z  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29 ns  
B11 CLKOUT to TS, BB assertion  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
13  
Bus Signal TimingReferences  
Table 6. Bus Operation Timings (Continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
2.50  
Max  
Min  
2.50  
Max  
Min  
2.50  
Max  
Min  
2.50  
Max  
B11a CLKOUT to TA, BI assertion (when  
driven by the memory controller or  
PCMCIA interface)  
9.25  
9.25  
9.25  
9.75  
ns  
B12 CLKOUT to TS, BB negation  
7.58 14.33 6.25 13.00 5.00 11.75 3.80  
2.50 11.00 2.50 11.00 2.50 11.00 2.50  
8.54  
9.00  
ns  
ns  
B12a CLKOUT to TA, BI negation (when  
driven by the memory controller or  
PCMCIA interface)  
B13 CLKOUT to TS, BB High-Z  
7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04 ns  
B13a CLKOUT to TA, BI High-Z (when driven 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
by the memory controller or PCMCIA  
interface)  
B14 CLKOUT to TEA assertion  
B15 CLKOUT to TEA High-Z  
2.50 10.00 2.50 10.00 2.50 10.00 2.50  
9.00  
ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B16 TA, BI valid to CLKOUT (setup time)  
9.75  
9.75  
9.75  
6.00  
4.50  
ns  
ns  
B16a TEA, KR, RETRY, CR valid to CLKOUT 10.00  
(setup time)  
10.00  
10.00  
B16b BB, BG, BR, valid to CLKOUT (setup  
8.50  
8.50  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
8.50  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
time)  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR  
valid (hold time).  
1.00  
B17a CLKOUT to KR, RETRY, CR valid (hold 2.00  
time)  
B18 D(0:31), DP(0:3) valid to CLKOUT  
6.00  
1.00  
4.00  
2.00  
6
rising edge (setup time)  
B19 CLKOUT rising edge to D(0:31),  
DP(0:3) valid (hold time) 6  
B20 D(0:31), DP(0:3) valid to CLKOUT  
7
falling edge (setup time)  
B21 CLKOUT falling edge to D(0:31),  
DP(0:3) valid (hold Time) 7  
B22 CLKOUT rising edge to CS asserted  
GPCM ACS = 00  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
8.00 8.00 8.00 8.00 ns  
B22a CLKOUT falling edge to CS asserted  
GPCM ACS = 10, TRLX = 0  
B22b CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 0  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
B22c CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 1  
B23 CLKOUT rising edge to CS negated  
GPCM read access, GPCM write  
access ACS = 00, TRLX = 0 & CSNT =  
0
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
ns  
14  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Table 6. Bus Operation Timings (Continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B24 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 0.  
5.58  
13.15  
4.25  
3.00  
1.79  
ns  
ns  
ns  
B24a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11 TRLX = 0  
10.50  
8.00  
5.58  
B25 CLKOUT rising edge to OE, WE(0:3)  
asserted  
9.00  
9.00  
9.00  
9.00  
B26 CLKOUT rising edge to OE negated  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
ns  
ns  
B27 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 1  
35.88  
29.25  
23.00  
16.94  
B27a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 1  
43.45  
35.50  
28.00  
20.73  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3)  
negated GPCM write access CSNT = 0  
9.00  
9.00  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3)  
negated GPCM write access TRLX = 0,  
CSNT = 1, EBDF = 0  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B28b CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, CSNT =  
1 ACS = 10 or ACS = 11, EBDF = 0  
14.33  
13.00  
11.75  
10.54 ns  
B28c CLKOUT falling edge to WE(0:3)  
negated GPCM write access TRLX = 0,  
CSNT = 1 write access TRLX = 0,  
CSNT = 1, EBDF = 1  
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31 ns  
B28d CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0, CSNT =  
1, ACS = 10, or ACS = 11, EBDF = 1  
17.99  
16.00  
14.13  
12.31 ns  
B29 WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, CSNT = 0,  
EBDF = 0  
5.58  
13.15  
4.25  
10.5  
4.25  
10.5  
35.5  
35.5  
3.00  
8.00  
3.00  
8.00  
28.00  
28.00  
1.79  
5.58  
1.79  
5.58  
20.73  
29.73  
ns  
ns  
ns  
ns  
ns  
ns  
B29a WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, TRLX = 0,  
CSNT = 1, EBDF = 0  
B29b CS negated to D(0:31), DP(0:3), High Z 5.58  
GPCM write access, ACS = 00, TRLX =  
0 & CSNT = 0  
B29c CS negated to D(0:31), DP(0:3) High-Z 13.15  
GPCM write access, TRLX = 0, CSNT =  
1, ACS = 10, or ACS = 11 EBDF = 0  
B29d WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, TRLX = 1,  
CSNT = 1, EBDF = 0  
43.45  
B29e CS negated to D(0:31), DP(0:3) High-Z 43.45  
GPCM write access, TRLX = 1, CSNT =  
1, ACS = 10, or ACS = 11 EBDF = 0  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
15  
Bus Signal TimingReferences  
Table 6. Bus Operation Timings (Continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
8.86  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B29f WE(0:3) negated to D(0:31), DP(0:3)  
High Z GPCM write access, TRLX = 0,  
CSNT = 1, EBDF = 1  
6.88  
5.00  
3.18  
ns  
B29g CS negated to D(0:31), DP(0:3) High-Z 8.86  
GPCM write access, TRLX = 0, CSNT =  
1 ACS = 10 or ACS = 11, EBDF = 1  
6.88  
5.00  
3.18  
ns  
ns  
ns  
ns  
ns  
B29h WE(0:3) negated to D(0:31), DP(0:3)  
High Z GPCM write access, TRLX = 1,  
CSNT = 1, EBDF = 1  
38.67  
31.38  
31.38  
4.25  
24.50  
24.50  
3.00  
17.83  
17.83  
1.79  
B29i CS negated to D(0:31), DP(0:3) High-Z 38.67  
GPCM write access, TRLX = 1, CSNT =  
1, ACS = 10 or ACS = 11, EBDF = 1  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) Invalid GPCM write  
5.58  
8
access  
B30a WE(0:3) negated to A(0:31),  
BADDR(28:30) Invalid GPCM, write  
access, TRLX = 0, CSNT = 1, CS  
negated to A(0:31) invalid GPCM write  
access TRLX = 0, CSNT =1 ACS = 10,  
or ACS == 11, EBDF = 0  
13.15  
10.50  
8.00  
5.58  
B30b WE(0:3) negated to A(0:31) Invalid  
GPCM BADDR(28:30) invalid GPCM  
write access, TRLX = 1, CSNT = 1. CS  
negated to A(0:31) Invalid GPCM write  
access TRLX = 1, CSNT = 1, ACS = 10,  
or ACS == 11 EBDF = 0  
43.45  
8.36  
35.50  
6.38  
28.00  
4.50  
20.73  
2.68  
ns  
ns  
ns  
ns  
B30c WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 0, CSNT = 1. CS  
negated to A(0:31) invalid GPCM write  
access, TRLX = 0, CSNT = 1 ACS = 10,  
ACS == 11, EBDF = 1  
B30d WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access TRLX = 1, CSNT =1, CS  
negated to A(0:31) invalid GPCM write  
access TRLX = 1, CSNT = 1, ACS = 10  
or 11, EBDF = 1  
38.67  
1.50  
31.38  
1.50  
24.50  
1.50  
17.83  
1.50  
B31 CLKOUT falling edge to CS valid - as  
requested by control bit CST4 in the  
corresponding word in the UPM  
6.00  
6.00  
6.00  
6.00  
B31a CLKOUT falling edge to CS valid - as  
requested by control bit CST1 in the  
corresponding word in the UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
16  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Table 6. Bus Operation Timings (Continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
1.50  
Max  
Min  
1.50  
Max  
Min  
1.50  
Max  
Min  
1.50  
Max  
B31b CLKOUT rising edge to CS valid - as  
requested by control bit CST2 in the  
corresponding word in the UPM  
8.00  
8.00  
8.00  
8.00  
ns  
B31c CLKOUT rising edge to CS valid- as  
requested by control bit CST3 in the  
corresponding word in the UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04 ns  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
B31d CLKOUT falling edge to CS valid, as  
requested by control bit CST1 in the  
corresponding word in the UPM EBDF  
= 1  
B32 CLKOUT falling edge to BS valid- as  
requested by control bit BST4 in the  
corresponding word in the UPM  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B32a CLKOUT falling edge to BS valid - as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF  
= 0  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
B32b CLKOUT rising edge to BS valid - as  
requested by control bit BST2 in the  
corresponding word in the UPM  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B32c CLKOUT rising edge to BS valid - as  
requested by control bit BST3 in the  
corresponding word in the UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31 ns  
B32d CLKOUT falling edge to BS valid- as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF  
= 1  
B33 CLKOUT falling edge to GPL valid - as 1.50  
requested by control bit GxT4 in the  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
corresponding word in the UPM  
B33a CLKOUT rising edge to GPL Valid - as 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54 ns  
requested by control bit GxT3 in the  
corresponding word in the UPM  
B34 A(0:31), BADDR(28:30), and D(0:31) to 5.58  
CS valid - as requested by control bit  
CST4 in the corresponding word in the  
UPM  
4.25  
10.50  
16.75  
3.00  
1.79  
5.58  
9.36  
ns  
ns  
ns  
B34a A(0:31), BADDR(28:30), and D(0:31) to 13.15  
CS valid - as requested by control bit  
CST1 in the corresponding word in the  
UPM  
8.00  
B34b A(0:31), BADDR(28:30), and D(0:31) to 20.73  
CS valid - as requested by CST2 in the  
corresponding word in UPM  
13.00  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
17  
Bus Signal TimingReferences  
Table 6. Bus Operation Timings (Continued)  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B35 A(0:31), BADDR(28:30) to CS valid - as 5.58  
requested by control bit BST4 in the  
4.25  
10.50  
16.75  
3.00  
1.79  
5.58  
9.36  
ns  
corresponding word in the UPM  
B35a A(0:31), BADDR(28:30), and D(0:31) to 13.15  
BS valid - As Requested by BST1 in the  
corresponding word in the UPM  
8.00  
ns  
ns  
B35b A(0:31), BADDR(28:30), and D(0:31) to 20.73  
BS valid - as requested by control bit  
BST2 in the corresponding word in the  
UPM  
13.00  
B36 A(0:31), BADDR(28:30), and D(0:31) to 5.58  
GPL valid as requested by control bit  
GxT4 in the corresponding word in the  
UPM  
4.25  
3.00  
1.79  
ns  
9
B37 UPWAIT valid to CLKOUT falling edge  
6.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
B38 CLKOUT falling edge to UPWAIT valid 9 1.00  
B39 AS valid to CLKOUT rising edge10  
7.00  
7.00  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST,  
valid to CLKOUT rising edge  
B41 TS valid to CLKOUT rising edge (setup 7.00  
time)  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
ns  
B42 CLKOUT rising edge to TS valid (hold  
time)  
2.00  
B43 AS negation to memory controller  
signals negation  
TBD  
TBD  
TBD  
TBD  
1
2
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.  
If the rate of change of the frequency of EXTAL is slow (I.e. it does not jump between the minimum and maximum  
values in one cycle) or the frequency of the jitter is fast (I.e., it does not stay at an extreme value for a long time) then  
the maximum allowed jitter on EXTAL can be up to 2%.  
3
4
The timings specified in B4 and B5 are based on full strength clock.  
The timing for BR output is relevant when the MPC862 is selected to work with external bus arbiter. The timing for  
BG output is relevant when the MPC862 is selected to work with internal bus arbiter.  
The timing required for BR input is relevant when the MPC862 is selected to work with internal bus arbiter. The  
timing for BG input is relevant when the MPC862 is selected to work with external bus arbiter.  
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input  
signal is asserted.  
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only  
for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where  
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
5
6
7
8
9
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified  
in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior  
specified in Figure 21.  
10  
18  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Figure 3 is the control timing diagram.  
2.0V  
2.0V  
CLKOUT  
0.8V  
0.8V  
A
B
2.0V  
0.8V  
2.0V  
0.8V  
Outputs  
Outputs  
Inputs  
A
B
2.0V  
0.8V  
2.0V  
0.8V  
D
C
2.0V  
0.8V  
2.0V  
0.8V  
D
C
2.0V  
0.8V  
2.0V  
0.8V  
Inputs  
A
B
C
D
Maximum output delay specification  
Minimum output hold time  
Minimum input setup time specification  
Minimum input hold time specification  
Figure 3. Control Timing  
Figure 4 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 4. External Clock Timing  
Figure 5 provides the timing for the synchronous output signals.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
19  
Bus Signal TimingReferences  
CLKOUT  
B8  
B7  
B9  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
Output  
Signals  
B7b  
Output  
Signals  
Figure 5. Synchronous Output Signals Timing  
Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
Figure 7 provides the timing for the synchronous input signals.  
20  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
TA, BI  
B16  
B16a  
B16b  
B17  
B17a  
B17  
TEA, KR,  
RETRY, CR  
BB, BG, BR  
Figure 7. Synchronous Input Signals Timing  
Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the control  
of the UPM in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31],  
DP[0:3]  
Figure 8. Input Data Timing in Normal Case  
Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the  
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
21  
Bus Signal TimingReferences  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)  
22  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B23  
B22a  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
CSx  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
23  
Bus Signal TimingReferences  
CLKOUT  
B11  
B12  
TS  
B8  
A[0:31]  
CSx  
B23  
B22a  
B27  
B26  
B19  
OE  
B27a  
B22b B22c  
B18  
D[0:31],  
DP[0:3]  
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)  
Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM  
factors.  
24  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
TS  
B11  
B8  
B12  
B30  
A[0:31]  
CSx  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B26  
B29b  
B29  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
25  
Bus Signal TimingReferences  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B30a B30c  
B23  
B22  
B28b B28d  
B25  
B29c B29g  
WE[0:3]  
OE  
B26  
B29a B29f  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
26  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
TS  
B11  
B12  
B8  
B30b B30d  
A[0:31]  
CSx  
B22  
B28b B28d  
B23  
B25  
B29e B29i  
WE[0:3]  
OE  
B26  
B29d B29h  
B29b  
B8  
B28a B28c  
B9  
D[0:31],  
DP[0:3]  
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
Figure 17 provides the timing for the external bus controlled by the UPM.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
27  
Bus Signal TimingReferences  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31  
B31b  
CSx  
B34  
B34a  
B34b  
B32a B32d  
B32c  
B33a  
B32  
B32b  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 17. External Bus Timing (UPM Controlled Signals)  
Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
28  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
UPWAIT  
CSx  
B37  
B38  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
29  
Bus Signal TimingReferences  
CLKOUT  
TS  
B41  
B40  
B42  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
Figure 21 provides the timing for the asynchronous external master memory access controlled by the  
GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 21. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 22 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 22. Asynchronous External Master—Control Signals Negation Timing  
30  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Table 7 provides interrupt timing for the MPC862.  
Table 7. Interrupt Timing  
All Frequencies  
Min Max  
Num  
Characteristic 1  
Unit  
I39 IRQx valid to CLKOUT rising edge (set 6.00  
up time)  
ns  
I40 IRQx hold time after CLKOUT  
I41 IRQx pulse width low  
2.00  
3.00  
3.00  
ns  
ns  
ns  
I42 IRQx pulse width high  
I43 IRQx edge-to-edge time  
4xTCLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ  
lines are tested when being defined as level sensitive. The IRQ lines are  
synchronized internally and do not have to be asserted or negated with  
reference to the CLKOUT.  
The timings I41, I42, and I43 are specified to allow the correct function of the  
IRQ lines detection circuitry, and has no direct relation with the total system  
interrupt latency that the MPC862 is able to support.  
Figure 23 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 23. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
31  
Bus Signal TimingReferences  
Table 8 shows the PCMCIA timing for the MPC862.  
Table 8. PCMCIA Timing  
33 MHz  
Min Max  
40 MHz  
Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
A(0:31), REGvalid to PCMCIA Strobe 20.73  
asserted. 1  
16.75  
13.00  
9.36  
ns  
ns  
P44  
P45 A(0:31), REG valid to ALE negation.1 28.30  
23.00  
18.00  
13.15  
P46 CLKOUT to REG valid  
7.58  
8.58  
7.58  
7.58  
15.58 6.25  
7.25  
14.25 5.00  
6.00  
13.00 3.79  
4.84  
11.84 ns  
— ns  
P47 CLKOUT to REG Invalid.  
P48 CLKOUT to CE1, CE2 asserted.  
P49 CLKOUT to CE1, CE2 negated.  
15.58 6.25  
15.58 6.25  
14.25 5.00  
14.25 5.00  
13.00 3.79  
13.00 3.79  
11.84 ns  
11.84 ns  
11.00 ns  
CLKOUT to PCOE, IORD, PCWE,  
IOWR assert time.  
11.00  
11.00  
11.00  
P50  
CLKOUT to PCOE, IORD, PCWE,  
IOWR negate time.  
2.00  
11.00 2.00  
11.00 2.00  
11.00 2.00  
11.00 ns  
P51  
P52 CLKOUT to ALE assert time  
P53 CLKOUT to ALE negate time  
7.58  
15.58 6.25  
14.25 5.00  
13.00 3.79  
10.04 ns  
11.84 ns  
15.58  
14.25  
13.00  
PCWE, IOWR negated to D(0:31)  
5.58  
4.25  
3.00  
1.79  
ns  
ns  
ns  
P54  
invalid.1  
WAITA and WAITB valid to CLKOUT 8.00  
rising edge.1  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
P55  
P56  
CLKOUT rising edge to WAITA and  
WAITB invalid.1  
2.00  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA  
current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See  
PCMCIA Interface in the MPC862 PowerQUICC User s Manual.  
Figure 25 provides the PCMCIA access cycle timing for the external bus read.  
32  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
CLKOUT  
TS  
P44  
P45  
A[0:31]  
P46  
P48  
P47  
P49  
P51  
P52  
B19  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
D[0:31]  
Figure 25. PCMCIA Access Cycles Timing External Bus Read  
Figure 26 provides the PCMCIA access cycle timing for the external bus write.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
33  
Bus Signal TimingReferences  
CLKOUT  
TS  
P44  
P45  
A[0:31]  
P46  
P48  
P47  
P49  
P51  
P52  
B19  
REG  
CE1/CE2  
PCOE, IOWR  
ALE  
P50  
P53  
B18  
P54  
P52  
D[0:31]  
Figure 26. PCMCIA Access Cycles Timing External Bus Write  
Figure 27 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 27. PCMCIA WAIT Signals Detection Timing  
Table 9 shows the PCMCIA port timing for the MPC862.  
34  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Table 9. PCMCIA Port Timing  
33 MHz  
Min Max  
40 MHz  
Min Max  
50 MHz  
Min Max  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
P57 CLKOUT to OPx Valid  
19.00  
19.00  
19.00  
19.00 ns  
P58 HRESET negated to OPx drive 1  
P59 IP_Xx valid to CLKOUT rising edge  
P60 CLKOUT rising edge to IP_Xx invalid  
25.73  
5.00  
1.00  
21.75  
5.00  
1.00  
18.00  
5.00  
1.00  
14.36  
5.00  
1.00  
ns  
ns  
ns  
1
OP2 and OP3 only.  
Figure 28 provides the PCMCIA output port timing for the MPC862.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 28. PCMCIA Output Port Timing  
Figure 29 provides the PCMCIA output port timing for the MPC862.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 29. PCMCIA Input Port Timing  
Table 10 shows the debug port timing for the MPC862.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
35  
Bus Signal TimingReferences  
Table 10. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
D61  
D62  
D63  
D64  
D65  
D66  
D67  
DSCK cycle time  
3xTCLOCKOUT  
-
-
DSCK clock pulse width  
DSCK rise and fall times  
DSDI input data setup time  
DSDI data hold time  
1.25xTCLOCKOUT  
0.00  
8.00  
5.00  
0.00  
0.00  
3.00  
ns  
ns  
ns  
DSCK low to DSDO data valid  
DSCK low to DSDO invalid  
15.00 ns  
2.00 ns  
Figure 30 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
D63  
Figure 30. Debug Port Clock Input Timing  
Figure 31 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 31. Debug Port Timings  
36  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Bus Signal TimingReferences  
Table 11 shows the reset timing for the MPC862.  
Table 11. Reset Timing  
33 MHz  
Min Max  
40 MHz  
Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
R69 CLKOUT to HRESET high impedance  
R70 CLKOUT to SRESET high impedance  
R71 RSTCONF pulse width  
20.00 —  
20.00 —  
20.00 —  
20.00 —  
20.00 —  
20.00 —  
20.00 ns  
20.00 ns  
515.15 —  
425.00 —  
340.00 —  
257.58 —  
ns  
ns  
R72  
R73  
Configuration data to HRESET rising edge 504.55 —  
set up time  
425.00 —  
350.00 —  
277.27 —  
Configuration data to RSTCONF rising  
edge set up time  
350.00 —  
350.00 —  
350.00 —  
350.00 —  
ns  
ns  
ns  
R74  
R75  
R76  
R77  
R78  
Configuration data hold time after  
RSTCONF negation  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
Configuration data hold time after HRESET 0.00  
negation  
HRESET and RSTCONF asserted to data  
out drive  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 ns  
25.00 ns  
25.00 ns  
RSTCONF negated to data out high  
impedance.  
CLKOUT of last rising edge before chip  
R79 three-states HRESET to data out high  
impedance.  
R80 DSDI, DSCK set up  
90.91  
0.00  
75.00  
0.00  
60.00  
0.00  
45.45  
0.00  
ns  
ns  
ns  
R81 DSDI, DSCK hold time  
SRESET negated to CLKOUT rising edge 242.42 —  
for DSDI and DSCK sample  
200.00 —  
160.00 —  
121.21 —  
R82  
Figure 32 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
R73  
R74  
R75  
D[0:31] (IN)  
Figure 32. Reset Timing—Configuration from Data Bus  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
37  
IEEE 1149.1 Electrical SpecificationsReferences  
Figure 33 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 33. Reset Timing—Data Bus Weak Drive during Configuration  
Figure 34 provides the reset timing for the debug port configuration.  
CLKOUT  
R70  
R82  
SRESET  
R80  
R80  
R81  
R81  
DSCK, DSDI  
Figure 34. Reset Timing—Debug Port Configuration  
Part X IEEE 1149.1 Electrical Specifications  
Table 12 provides the JTAG timings for the MPC862 shown in Figure 35 to Figure 38.  
Table 12. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
TCK cycle time  
100.00  
40.00  
0.00  
ns  
ns  
10.00 ns  
J83  
J84  
J85  
J86  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
TMS, TDI data setup time  
5.00  
ns  
ns  
TMS, TDI data hold time  
25.00  
38  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
IEEE 1149.1 Electrical SpecificationsReferences  
Table 12. JTAG Timing (Continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
27.00 ns  
ns  
20.00 ns  
J87  
TCK low to TDO data valid  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
100.00  
40.00  
ns  
ns  
TRST setup time to TCK low  
TCK falling edge to output valid  
50.00 ns  
50.00 ns  
50.00 ns  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
ns  
ns  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 35. JTAG Test Clock Input Timing  
TCK  
TMS,TDI  
TDO  
J85  
J86  
J87  
J88  
J89  
Figure 36. JTAG Test Access Port Timing Diagram  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
39  
CPM Electrical CharacteristicsPIP/PIO AC Electrical Specifications  
TCK  
J91  
J90  
TRST  
Figure 37. JTAG TRST Timing Diagram  
TCK  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 38. Boundary Scan (JTAG) Timing Diagram  
Part XI CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module  
(CPM) of the MPC862.  
11.1 PIP/PIO AC Electrical Specifications  
Table 13 provides the PIP/PIO AC timings as shown in Figure 39 to Figure 43.  
Table 13. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21 Data-in setup time to STBI low  
22 Data-In hold time to STBI high  
23 STBI pulse width  
0
ns  
2.5 – t3 1  
clk  
clk  
ns  
1.5  
24 STBO pulse width  
1 clk – 5ns  
25 Data-out setup time to STBO low  
26 Data-out hold time from STBO high  
2
5
clk  
clk  
40  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsPIP/PIO AC Electrical Specifications  
Table 13. PIP/PIO Timing (Continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
27 STBI low to STBO low (Rx interlock)  
28 STBI low to STBO high (Tx interlock)  
29 Data-in setup time to clock high  
2
2
clk  
25  
clk  
ns  
ns  
ns  
15  
7.5  
30 Data-in hold time from clock high  
31 Clock low to data-out valid (CPU writes data, control, or direction)  
t3 = Specification 23  
1
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 39. PIP Rx (Interlock Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 40. PIP Tx (Interlock Mode) Timing Diagram  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
41  
CPM Electrical CharacteristicsPIP/PIO AC Electrical Specifications  
DATA-IN  
21  
22  
23  
STBI  
(Input)  
24  
STBO  
(Output)  
Figure 41. PIP Rx (Pulse Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 42. PIP TX (Pulse Mode) Timing Diagram  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram  
42  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsPort C Interrupt AC Electrical Specifications  
11.2 Port C Interrupt AC Electrical Specifications  
Table 14 provides the timings for port C interrupts.  
Table 14. Port C Interrupt Timing  
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
Figure 44 shows the port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 44. Port C Interrupt Detection Timing  
11.3 IDMA Controller AC Electrical Specifications  
Table 15 provides the IDMA controller timings as shown in Figure 45 to Figure 48.  
Table 15. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
DREQ setup time to clock high  
7
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
41  
42  
43  
44  
45  
46  
DREQ hold time from clock high  
3
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
7
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to falling edge of the clock setup time (applies to external TA)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
43  
CPM Electrical CharacteristicsIDMA Controller AC Electrical Specifications  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 45. IDMA External Requests Timing Diagram  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
44  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsIDMA Controller AC Electrical Specifications  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
45  
CPM Electrical CharacteristicsBaud Rate Generator AC Electrical Specifications  
11.4 Baud Rate Generator AC Electrical Specifications  
Table 16 provides the baud rate generator timings as shown in Figure 49.  
Table 16. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
10  
50  
BRGO rise and fall time  
40  
40  
ns  
51  
52  
BRGO duty cycle  
BRGO cycle  
60  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 49. Baud Rate Generator Timing Diagram  
11.5 Timer AC Electrical Specifications  
Table 17 provides the general-purpose timer timings as shown in Figure 50.  
Table 17. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
ns  
clk  
clk  
clk  
ns  
62  
63  
64  
65  
25  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
46  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 50. CPM General-Purpose Timers Timing Diagram  
11.6 Serial Interface AC Electrical Specifications  
Table 18 provides the serial interface timings as shown in Figure 51 to Figure 55.  
Table 18. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
70  
L1RCLK, L1TCLK frequency (DSC = 0) 1, 2  
L1RCLK, L1TCLK width low (DSC = 0) 2  
SYNCCLK/2.5  
MHz  
71  
P + 10  
P + 10  
ns  
ns  
ns  
ns  
3
71a  
72  
L1RCLK, L1TCLK width high (DSC = 0)  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
15.00  
73  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC 20.00  
setup time)  
74  
L1CLK edge to L1RSYNC, L1TSYNC, invalid  
(SYNC hold time)  
35.00  
ns  
75  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
76  
L1RXD valid to L1CLK edge (L1RXD setup time)  
17.00  
77  
L1CLK edge to L1RXD invalid (L1RXD hold time) 13.00  
4
78  
L1CLK edge to L1ST(1–4) valid  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
45.00  
78A  
79  
L1SYNC valid to L1ST(1–4) valid  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
45.00  
45.00  
80  
55.00  
80A  
81  
L1TSYNC valid to L1TXD valid 4  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
L1RCLK, L1TCLK width low (DSC =1)  
L1RCLK, L1TCLK width high (DSC = 1)3  
55.00  
42.00  
82  
16.00 or SYNCCLK/2  
83  
P + 10  
P + 10  
83a  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
47  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
Table 18. SI Timing (Continued)  
All Frequencies  
Max  
Num  
Characteristic  
Unit  
Min  
84  
L1CLK edge to L1CLKO valid (DSC = 1)  
L1RQ valid before falling edge of L1TSYNC4  
L1GR setup time2  
30.00  
ns  
85  
86  
87  
88  
1.00  
42.00  
42.00  
L1TCLK  
ns  
ns  
ns  
L1GR hold time  
L1CLK edge to L1SYNC valid (FSD = 00) CNT =  
0000, BYT = 0, DSC = 0)  
0.00  
1
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.  
2
3
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 51. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
48  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
L1RCLK  
(FE=1, CE=1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=0, CE=0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
49  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 53. SI Transmit Timing Diagram (DSC = 0)  
50  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
L1RCLK  
(FE=0, CE=0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=1, CE=1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 54. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
51  
CPM Electrical CharacteristicsSerial Interface AC Electrical Specifications  
Figure 55. IDL Timing  
52  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSCC in NMSI Mode Electrical Specifications  
11.7 SCC in NMSI Mode Electrical Specifications  
Table 19 provides the NMSI external clock timing.  
Table 19. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
RCLK1 and TCLK1 width high 1  
Unit  
Min  
Max  
100  
101  
102  
103  
104  
105  
106  
107  
108  
1/SYNCCLK  
ns  
ns  
RCLK1 and TCLK1 width low  
1/SYNCCLK +5  
RCLK1 and TCLK1 rise/fall time  
15.00 ns  
50.00 ns  
50.00 ns  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
RXD1 hold time from RCLK1 rising edge 2  
CD1 setup Time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
ns  
ns  
ns  
ns  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as an external sync signal.  
Table 20 provides the NMSI internal clock timing.  
Table 20. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
100  
RCLK1 and TCLK1 frequency 1  
0.00  
SYNCCLK/3 MHz  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 rise/fall time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
RXD1 hold time from RCLK1 rising edge 2  
CD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
30.00  
30.00  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as an external sync signals.  
Figure 56 through Figure 58 show the NMSI timings.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
53  
CPM Electrical CharacteristicsSCC in NMSI Mode Electrical Specifications  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 56. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 57. SCC NMSI Transmit Timing Diagram  
54  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsEthernet Electrical Specifications  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 58. HDLC Bus Timing Diagram  
11.8 Ethernet Electrical Specifications  
Table 21 provides the Ethernet timings as shown in Figure 59 to Figure 63.  
Table 21. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120  
CLSN width high  
RCLK1 rise/fall time  
RCLK1 width low  
RCLK1 clock period 1  
RXD1 setup time  
RXD1 hold time  
40  
40  
80  
20  
5
15  
ns  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
120  
RENA active delay (from RCLK1 rising edge of the last data bit) 10  
RENA width low  
100  
TCLK1 rise/fall time  
40  
99  
10  
10  
10  
10  
10  
15  
TCLK1 width low  
TCLK1 clock period1  
101  
50  
50  
50  
50  
50  
TXD1 active delay (from TCLK1 rising edge)  
TXD1 inactive delay (from TCLK1 rising edge)  
TENA active delay (from TCLK1 rising edge)  
TENA inactive delay (from TCLK1 rising edge)  
RSTRT active delay (from TCLK1 falling edge)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
55  
CPM Electrical CharacteristicsEthernet Electrical Specifications  
Table 21. Ethernet Timing (Continued)  
All Frequencies  
Min Max  
Num  
Characteristic  
Unit  
136  
RSTRT inactive delay (from TCLK1 falling edge)  
REJECT width low  
10  
1
50  
20  
20  
ns  
137  
138  
139  
CLK  
ns  
CLKO1 low to SDACK asserted 2  
CLKO1 low to SDACK negated 2  
ns  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 59. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 60. Ethernet Receive Timing Diagram  
56  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSMC Transparent AC Electrical Specifications  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(NOTE 2)  
NOTES:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 61. Ethernet Transmit Timing Diagram  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame Delimiter  
RSTRT  
(Output)  
Figure 62. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 63. CAM Interface REJECT Timing Diagram  
11.9 SMC Transparent AC Electrical Specifications  
Table 22 provides the SMC transparent timings as shown in Figure 64.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
57  
CPM Electrical CharacteristicsSPI Master AC Electrical Specifications  
Table 22. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
SMCLK clock period 1  
Unit  
Min  
100  
Max  
150  
ns  
151  
151A  
152  
153  
154  
155  
SMCLK width low  
50  
50  
10  
20  
5
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
SMCLK width high  
SMCLK rise/fall time  
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
RXD1/SMSYNC hold time  
1
SyncCLK must be at least twice as fast as SMCLK.  
SMCLK  
152  
152  
151  
151A  
150  
SMTXD  
(Output)  
NOTE 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 64. SMC Transparent Timing Diagram  
11.10SPI Master AC Electrical Specifications  
Table 23 provides the SPI master timings as shown in Figure 65 and Figure 66.  
58  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSPI Master AC Electrical Specifications  
Table 23. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1024  
160  
MASTER cycle time  
4
tcyc  
161  
162  
163  
164  
165  
166  
167  
MASTER clock (SCK) high or low time  
MASTER data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
2
512  
tcyc  
ns  
ns  
ns  
ns  
ns  
ns  
50  
0
0
20  
15  
15  
Fall time output  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
166  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 65. SPI Master (CP = 0) Timing Diagram  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
59  
CPM Electrical CharacteristicsSPI Slave AC Electrical Specifications  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 66. SPI Master (CP = 1) Timing Diagram  
11.11SPI Slave AC Electrical Specifications  
Table 24 provides the SPI slave timings as shown in Figure 67 and Figure 68.  
Table 24. SPI Slave Timing  
All Frequencies  
Min Max  
Num  
Characteristic  
Unit  
170  
Slave cycle time  
2
tcyc  
171  
172  
173  
174  
175  
176  
177  
Slave enable lead time  
Slave enable lag time  
15  
15  
1
50  
ns  
ns  
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
tcyc  
tcyc  
ns  
1
20  
20  
Slave data hold time (inputs)  
ns  
Slave access time  
ns  
60  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
CPM Electrical CharacteristicsSPI Slave AC Electrical Specifications  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
181  
182  
180  
178  
Undef  
SPIMISO  
(Output)  
msb  
176  
Data  
lsb  
msb  
msb  
175  
179  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
Figure 67. SPI Slave (CP = 0) Timing Diagram  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
182  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 68. SPI Slave (CP = 1) Timing Diagram  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
61  
CPM Electrical CharacteristicsI2C AC Electrical Specifications  
2
11.12I C AC Electrical Specifications  
2
Table 25 provides the I C (SCL < 100 KHz) timings.  
2
Table 25. I C Timing (SCL < 100 KHZ)  
All Frequencies  
Num  
200  
Characteristic  
SCL clock frequency (slave)  
Unit  
KHz  
Min  
Max  
100  
0
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (master) 1  
Bus free time between transmissions  
Low period of SCL  
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
100  
1
KHz  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
ms  
ns  
ms  
High period of SCL  
Start condition setup time  
Start condition hold time  
Data hold time  
Data setup time  
250  
SDL/SCL rise time  
SDL/SCL fall time  
300  
Stop condition setup time  
4.7  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.  
2
Table 26 provides the I C (SCL > 100 KHz) timings.  
2
Table 26. . I C Timing (SCL > 100 KHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200  
SCL clock frequency (slave)  
SCL clock frequency (master) 1  
Bus free time between transmissions  
Low period of SCL  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
Hz  
s
s
High period of SCL  
s
Start condition setup time  
Start condition hold time  
Data hold time  
s
s
s
Data setup time  
1/(40 * fSCL)  
s
SDL/SCL rise time  
1/(10 * fSCL)  
1/(33 * fSCL)  
s
SDL/SCL fall time  
s
Stop condition setup time  
1/2(2.2 * fSCL)  
s
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.  
62  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
UTOPIA AC Electrical SpecificationsI2C AC Electrical Specifications  
2
Figure 69 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 69. I C Bus Timing Diagram  
Part XII UTOPIA AC Electrical Specifications  
Table 27 shows the AC electrical specifications for the UTOPIA interface.  
Table 27. UTOPIA AC Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Duty cycle  
Output  
4ns  
50  
ns  
%
50  
Frequency  
50  
Mhz  
ns  
U1a  
UtpClk rise/fall time (external clock option)  
Duty cycle  
Input  
4ns  
60  
40  
%
Frequency  
50  
Mhz  
ns  
U2  
U3  
U4  
U5  
RxEnb and TxEnb active delay  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
Output  
Input  
2ns  
4ns  
1ns  
2ns  
16ns  
ns  
Input  
ns  
UTPB, SOC active delay (and PHREQ and PHSEL active  
delay in MPHY mode)  
Output  
16ns  
ns  
Figure 70 shows signal timings during UTOPIA receive operations.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
63  
FEC Electrical CharacteristicsI2C AC Electrical Specifications  
U1  
U1  
UtpClk  
U5  
PHREQn  
U3  
U4  
RxClav  
RxEnb  
HighZ at MPHY  
HighZ at MPHY  
U2  
UTPB  
SOC  
U3  
U4  
Figure 70. UTOPIA Receive Timing  
Figure 71 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U5  
PHSELn  
TxClav  
U3  
U4  
HighZ at MPHY  
HighZ at MPHY  
U2  
TxEnb  
UTPB  
SOC  
U5  
Figure 71. UTOPIA Transmit Timing  
Part XIII FEC Electrical Characteristics  
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the  
timing specifications for the MII signals are independent of system clock frequency (part speed  
designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or  
3.3 V.  
64  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
FEC Electrical CharacteristicsMII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER,  
13.1 MII Receive Signal Timing (MII_RXD[3:0],  
MII_RX_DV, MII_RX_ER, MII_RX_CLK)  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_RX_CLK frequency - 1%.  
Table 28 provides information on the MII receive signal timing.  
Table 28. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
35%  
65%  
65%  
MII_RX_CLK period  
MII_RX_CLK period  
MII_RX_CLK pulse width low  
Figure 72 shows MII receive signal timing.  
M3  
MII_RX_CLK (input)  
M4  
MII_RXD[3:0] (inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 72. MII Receive Signal Timing Diagram  
13.2 MII Transmit Signal Timing (MII_TXD[3:0],  
MII_TX_EN, MII_TX_ER, MII_TX_CLK)  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_TX_CLK frequency - 1%.  
Table 29 provides information on the MII transmit signal timing,.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
65  
FEC Electrical CharacteristicsMII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 29. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid 5  
ns  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
MII_TX_CLK pulse width high  
25  
35%  
35%  
65%  
65%  
MII_TX_CLK period  
MII_TX_CLK period  
MII_TX_CLK pulse width low  
Figure 73 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (input)  
M5  
M8  
MII_TXD[3:0] (outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 73. MII Transmit Signal Timing Diagram  
13.3 MII Async Inputs Signal Timing (MII_CRS,  
MII_COL)  
Table 30 provides information on the MII async inputs signal timing.  
Table 30. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK period  
Figure 74 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 74. MII Async Inputs Timing Diagram  
MPC862FamilyHardwareSpecifications  
66  
MOTOROLA  
FEC Electrical CharacteristicsMII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
13.4 MII Serial Management Channel Timing  
(MII_MDIO, MII_MDC)  
Table 31 provides information on the MII serial management channel signal timing. The FEC functions  
correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under  
investigation.  
Table 31. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10  
MII_MDC falling edge to MII_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
M12  
M13  
M14  
M15  
MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
MII_MDIO (input) to MII_MDC rising edge setup  
MII_MDIO (input) to MII_MDC rising edge hold  
MII_MDC pulse width high  
25  
ns  
ns  
ns  
10  
0
40%  
40%  
60%  
60%  
MII_MDC period  
MII_MDC period  
MII_MDC pulse width low  
Figure 75 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (output)  
MII_MDIO (output)  
M10  
M11  
MII_MDIO (input)  
M12  
M13  
Figure 75. MII Serial Management Channel Timing Diagram  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
67  
Mechanical Data and Ordering InformationMII Serial Management Channel Timing (MII_MDIO,  
Part XIV Mechanical Data and Ordering  
Information  
Table 32 provides information on the MPC862 derivative devices.  
Table 32. MPC862 Derivatives  
Number  
of  
Cache Size  
Instruction  
Ethernet  
Support  
Multi-Channel  
HDLC Support  
Device  
ATM Support  
SCCs 1  
Data  
MPC862DT  
MPC862DP  
MPC862SR  
MPC862T  
Two  
10/100 Mbps  
10/100 Mbps  
10 Mbps  
Yes  
Yes  
4 Kbyte  
16 Kbyte  
4 Kbyte  
4 Kbyte  
16 Kbyte  
4 Kbyte  
8 Kbyte  
4 Kbyte  
4 Kbyte  
8 Kbyte  
Four  
10/100 Mbps  
10/100 Mbps  
MPC862P  
1
Serial communications controller (SCC)  
Table 33 identifies the packages and operating frequencies available for the MPC862 derivative devices.  
Table 33. MPC862 Package/Frequency Availability  
Package Type  
Ball grid array  
Temperature (Tj)  
Frequency (MHz)  
Order Number  
0°C to 95°C  
50  
XPC862DTZP50  
XPC862SRZP50  
XPC862TZP50  
(ZP suffix)  
66  
80  
50  
66  
XPC862DTZP66  
XPC862SRZP66  
XPC862TZP66  
XPC862DTZP80  
XPC862SRZP80  
XPC862TZP80  
Ball grid array  
(CZP suffix)  
-40°C to 95°C  
XPC862DTCZP50  
XPC862SRCZP50  
XPC862TCZP50  
XPC862DTCZP66  
XPC862SRCZP66  
XPC862TCZP66  
Table 34 identifies the packages and operating frequencies available for the MPC862P.  
Table 34. MPC862P Package/Frequency Availability  
Package Type  
Temperature (Tj)  
Frequency (MHz)  
Order Number  
68  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationPin Assignments  
Table 34. MPC862P Package/Frequency Availability (Continued)  
Ball grid array  
(ZP suffix)  
0°C to 95°C  
50  
66  
80  
50  
66  
XPC862DPZP50  
XPC862PZP50  
XPC862DPZP66  
XPC862PZP66  
XPC862DPZP80  
XPC862PZP80  
Ball grid array  
(CZP suffix)  
-40°C to 95°C  
XPC862DPCZP50  
XPC862PCZP50  
XPC862DPCZP66  
XPC862PCZP66  
14.1 Pin Assignments  
Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC862  
PowerQUICC User s Manual.  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
69  
Mechanical Data and Ordering InformationPin Assignments  
NOTE: This is the top view of the device.  
W
V
U
T
PD10 PD8  
PD14 PD13 PD9  
PA0 PB14 PD15  
PD3  
IRQ7 D0  
D4  
D1  
D2  
D10  
D11  
D9  
D3  
D5  
VDDL  
D20  
D6  
D7  
D29  
DP1  
DP2 CLKOUT IPA3  
VSSSYN1  
N/C  
PD6 M_Tx_EN IRQ0 D13  
D27  
D23  
D17  
D14  
D16  
D15  
D18  
D19  
D22  
D24  
D26  
D31  
D28  
D30  
DP3  
DP0  
PD4  
PD5 IRQ1  
D8  
D21  
IPA5 IPA4 IPA2  
N/C VSSSYN  
PA1  
PC6  
PC5 PC4 PD11  
PA2 PB15 PD12  
PD7 VDDH D12  
VDDH  
D25  
IPA6 IPA0 IPA1 IPA7 XFC VDDSYN  
R
VDDH  
WAIT_B WAIT_A  
VDDLRSTCONF  
KAPWR  
PORESET  
SRESET  
P
N
M
L
PA4 PB17 PA3 VDDL  
PB19 PA5 PB18 PB16  
GND  
GND  
XTAL  
TEXP  
HRESET  
EXTCLK EXTAL  
PA7  
PC8  
PA6  
PC7  
BADDR28  
AS  
MODCK2  
OP0  
BADDR29 VDDL  
OP1 MODCK1  
PB22 PC9  
PA8 PB20  
K
J
PC10 PA9 PB23 PB21  
PC11 PB24 PA10 PB25  
GND  
BADDR30 IPB6 ALEA IRQ4  
IPB5 IPB1 IPB2 ALEB  
M_COL IRQ2 IPB0 IPB7  
H
G
F
VDDL M_MDIO TDI  
TCK  
TRST TMS TDO PA11  
PB26 PC12 PA12 VDDL  
PB27 PC13 PA13 PB29  
PB28 PC14 PA14 PC15  
BR  
VDDL  
CS3  
IRQ6 IPB4 IPB3  
GND  
GND  
TS  
BI  
IRQ3 BURST  
VDDH  
VDDH  
CS6  
E
D
C
B
A
BG  
BB  
A8  
A9  
N/C  
A12  
A13  
N/C  
A16  
A17  
A15  
A20  
A21  
A19  
A24  
A23  
A25  
A18 BSA0 GPLA0 N/C  
CS2 GPLA5 BDIP TEA  
PB30 PA15 PB31  
A3  
A6  
A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7  
CS0  
TA GPLA4  
A0  
19  
A1  
A4  
A10  
A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4  
A2  
18  
A5  
17  
A7  
16  
A11  
15  
A14  
14  
A27  
13  
A29  
12  
A30  
11  
A28  
10  
A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1  
9
8
7
6
5
4
3
2
1
Figure 76. Pinout of the PBGA Package  
Table 35 contains a list of the MPC862 input and output signals and shows multiplexing and pin  
assignments.  
70  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments  
Name  
Pin Number  
Type  
A[0:31]  
B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15, C14, Bidirectional  
B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, D10, Three-state  
C10, A13, A10, A12, A11, A9  
TSIZ0  
REG  
B9  
C9  
B2  
F1  
D2  
F3  
C2  
Bidirectional  
Three-state  
TSIZ1  
RD/WR  
BURST  
BDIP  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
Output  
GPL_B5  
TS  
Bidirectional  
Active Pull-up  
TA  
Bidirectional  
Active Pull-up  
TEA  
BI  
D1  
E3  
Open-drain  
Bidirectional  
Active Pull-up  
IRQ2  
RSV  
H3  
K1  
Bidirectional  
Three-state  
IRQ4  
KR  
Bidirectional  
Three-state  
RETRY  
SPKROUT  
CR  
F2  
Input  
IRQ3  
D[0:31]  
W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11, T13, Bidirectional  
V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8, U7, V12, Three-state  
V6, W5, U6, T7  
DP0  
IRQ3  
V3  
V5  
W4  
V4  
Bidirectional  
Three-state  
DP1  
IRQ4  
Bidirectional  
Three-state  
DP2  
IRQ5  
Bidirectional  
Three-state  
DP3  
IRQ6  
Bidirectional  
Three-state  
BR  
BG  
BB  
G4  
E2  
E1  
Bidirectional  
Bidirectional  
Bidirectional  
Active Pull-up  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
71  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
FRZ  
IRQ6  
G3  
IRQ0  
IRQ1  
V14  
U14  
W15  
Input  
Input  
Input  
M_TX_CLK  
IRQ7  
CS[0:5]  
C3, A2, D4, E4, A4, B4  
D5  
Output  
Output  
CS6  
CE1_B  
CS7  
CE2_B  
C4  
C7  
Output  
Output  
WE0  
BS_B0  
IORD  
WE1  
BS_B1  
IOWR  
A6  
B6  
A5  
Output  
Output  
Output  
WE2  
BS_B2  
PCOE  
WE3  
BS_B3  
PCWE  
BS_A[0:3]  
D8, C8, A7, B8  
D7  
Output  
Output  
GPL_A0  
GPL_B0  
OE  
GPL_A1  
GPL_B1  
C6  
Output  
Output  
GPL_A[2:3]  
GPL_B[2:3]  
CS[2–3]  
B5, C5  
UPWAITA  
GPL_A4  
C1  
B1  
Bidirectional  
Bidirectional  
UPWAITB  
GPL_B4  
GPL_A5  
PORESET  
RSTCONF  
HRESET  
SRESET  
XTAL  
D3  
R2  
P3  
N4  
P2  
P1  
Output  
Input  
Input  
Open-drain  
Open-drain  
Analog Output  
72  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
EXTAL  
XFC  
N1  
T2  
Analog Input (3.3V only)  
Analog Input  
Output  
CLKOUT  
EXTCLK  
TEXP  
W3  
N2  
N3  
K2  
Input (3.3V only)  
Output  
ALE_A  
Output  
MII-TXD1  
CE1_A  
MII-TXD2  
B3  
A3  
R3  
Output  
Output  
Input  
CE2_A  
MII-TXD3  
WAIT_A  
SOC_Split2  
WAIT_B  
R4  
T5  
Input  
Input  
IP_A0  
UTPB_Split02  
MII-RXD3  
IP_A1  
T4  
U3  
Input  
Input  
UTPB_Split12  
MII-RXD2  
IP_A2  
IOIS16_A  
UTPB_Split22  
MII-RXD1  
IP_A3  
W2  
U4  
U5  
T6  
T3  
Input  
Input  
Input  
Input  
Input  
UTPB_Split32  
MII-RXD0  
IP_A4  
UTPB_Split42  
MII-RXCLK  
IP_A5  
UTPB_Split52  
MII-RXERR  
IP_A6  
UTPB_Split62  
MII-TXERR  
IP_A7  
UTPB_Split72  
MII-RXDV  
ALE_B  
DSCK/AT1  
J1  
Bidirectional  
Three-state  
IP_B[0:1]  
IWP[0:1]  
VFLS[0:1]  
H2, J3  
Bidirectional  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
73  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
IP_B2  
J2  
IOIS16_B  
AT2  
Three-state  
IP_B3  
IWP2  
VF2  
G1  
G2  
J4  
Bidirectional  
IP_B4  
LWP0  
VF0  
Bidirectional  
Bidirectional  
IP_B5  
LWP1  
VF1  
IP_B6  
DSDI  
AT0  
K3  
H1  
L4  
Bidirectional  
Three-state  
IP_B7  
PTR  
AT3  
Bidirectional  
Three-state  
OP0  
Bidirectional  
MII-TXD0  
UtpClk_Split2  
OP1  
L2  
L1  
Output  
OP2  
Bidirectional  
MODCK1  
STS  
OP3  
MODCK2  
DSDO  
M4  
K4  
Bidirectional  
Output  
BADDR30  
REG  
BADDR[28:29]  
AS  
M3, M2  
L3  
Output  
Input  
PA15  
RXD1  
RXD4  
C18  
Bidirectional  
PA14  
TXD1  
TXD4  
D17  
Bidirectional  
(Optional: Open-drain)  
PA13  
RXD2  
E17  
F17  
G16  
Bidirectional  
PA12  
TXD2  
Bidirectional  
(Optional: Open-drain)  
PA11  
Bidirectional  
L1TXDB  
RXD3  
(Optional: Open-drain)  
74  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
PA10  
J17  
L1RXDB  
TXD3  
(Optional: Open-drain)  
PA9  
K18  
Bidirectional  
L1TXDA  
(Optional: Open-drain)  
RXD4  
PA8  
L17  
Bidirectional  
L1RXDA  
TXD4  
(Optional: Open-drain)  
PA7  
M19  
Bidirectional  
CLK1  
L1RCLKA  
BRGO1  
TIN1  
PA6  
CLK2  
TOUT1  
M17  
N18  
Bidirectional  
Bidirectional  
PA5  
CLK3  
L1TCLKA  
BRGO2  
TIN2  
PA4  
CLK4  
TOUT2  
P19  
P17  
Bidirectional  
Bidirectional  
PA3  
CLK5  
BRGO3  
TIN3  
PA2  
CLK6  
TOUT3  
L1RCLKB  
R18  
T19  
U19  
Bidirectional  
Bidirectional  
Bidirectional  
PA1  
CLK7  
BRGO4  
TIN4  
PA0  
CLK8  
TOUT4  
L1TCLKB  
PB31  
SPISEL  
REJECT1  
C17  
C19  
Bidirectional  
(Optional: Open-drain)  
PB30  
Bidirectional  
SPICLK  
RSTRT2  
(Optional: Open-drain)  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
75  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
PB29  
E16  
D19  
SPIMOSI  
(Optional: Open-drain)  
PB28  
Bidirectional  
SPIMISO  
BRGO4  
(Optional: Open-drain)  
PB27  
I2CSDA  
BRGO1  
E19  
F19  
J16  
J18  
K17  
Bidirectional  
(Optional: Open-drain)  
PB26  
I2CSCL  
BRGO2  
Bidirectional  
(Optional: Open-drain)  
PB25  
Bidirectional  
(Optional: Open-drain)  
RXADDR32  
SMTXD1  
PB24  
Bidirectional  
(Optional: Open-drain)  
TXADDR32  
SMRXD1  
PB23  
Bidirectional  
(Optional: Open-drain)  
TXADDR22  
SDACK1  
SMSYN1  
PB22  
L19  
K16  
Bidirectional  
(Optional: Open-drain)  
TXADDR42  
SDACK2  
SMSYN2  
PB21  
Bidirectional  
SMTXD2  
L1CLKOB  
PHSEL1 1  
TXADDR1 2  
(Optional: Open-drain)  
PB20  
L16  
Bidirectional  
SMRXD2  
L1CLKOA  
PHSEL01  
TXADDR02  
(Optional: Open-drain)  
PB19  
RTS1  
L1ST1  
N19  
N17  
Bidirectional  
(Optional: Open-drain)  
PB18  
Bidirectional  
(Optional: Open-drain)  
RXADDR42  
RTS2  
L1ST2  
PB17  
P18  
Bidirectional  
L1RQb  
L1ST3  
(Optional: Open-drain)  
RTS3  
PHREQ11  
RXADDR12  
76  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
PB16  
N16  
L1RQa  
L1ST4  
RTS4  
(Optional: Open-drain)  
PHREQ01  
RXADDR02  
PB15  
BRGO3  
TxClav  
R17  
U18  
D16  
Bidirectional  
Bidirectional  
Bidirectional  
PB14  
RXADDR22  
RSTRT1  
PC15  
DREQ0  
RTS1  
L1ST1  
RxClav  
PC14  
DREQ1  
RTS2  
D18  
E18  
F18  
Bidirectional  
Bidirectional  
Bidirectional  
L1ST2  
PC13  
L1RQb  
L1ST3  
RTS3  
PC12  
L1RQa  
L1ST4  
RTS4  
PC11  
CTS1  
J19  
Bidirectional  
Bidirectional  
PC10  
K19  
CD1  
TGATE1  
PC9  
CTS2  
L18  
Bidirectional  
Bidirectional  
PC8  
M18  
CD2  
TGATE2  
PC7  
CTS3  
L1TSYNCB  
SDACK2  
M16  
R19  
Bidirectional  
Bidirectional  
PC6  
CD3  
L1RSYNCB  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
77  
Mechanical Data and Ordering InformationPin Assignments  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
PC5  
CTS4  
L1TSYNCA  
SDACK1  
T18  
PC4  
CD4  
L1RSYNCA  
T17  
U17  
Bidirectional  
Bidirectional  
PD15  
L1TSYNCA  
MII-RXD3  
UTPB0  
PD14  
V19  
V18  
R16  
T16  
W18  
V17  
W17  
T15  
V16  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
L1RSYNCA  
MII-RXD2  
UTPB1  
PD13  
L1TSYNCB  
MII-RXD1  
UTPB2  
PD12  
L1RSYNCB  
MII-MDC  
UTPB3  
PD11  
RXD3  
MII-TXERR  
RXENB  
PD10  
TXD3  
MII-RXD0  
TXENB  
PD9  
RXD4  
MII-TXD0  
UTPCLK  
PD8  
TXD4  
MII-MDC  
MII-RXCLK  
PD7  
RTS3  
MII-RXERR  
UTPB4  
PD6  
RTS4  
MII-RXDV  
UTPB5  
78  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Mechanical Data and Ordering InformationMechanical Dimensions of the PBGA Package  
Table 35. Pin Assignments (Continued)  
Name  
Pin Number  
Type  
Bidirectional  
PD5  
U15  
U16  
W16  
REJECT2  
MII-TXD3  
UTPB6  
PD4  
Bidirectional  
Bidirectional  
REJECT3  
MII-TXD2  
UTPB7  
PD3  
REJECT4  
MII-TXD1  
SOC  
TMS  
G18  
H17  
Input  
Input  
TDI  
DSDI  
TCK  
H16  
Input  
DSCK  
TRST  
G19  
G17  
Input  
TDO  
Output  
DSDO  
M_CRS  
M_MDIO  
M_TXEN  
M_COL  
KAPWR  
GND  
B7  
Input  
H18  
V15  
H4  
Bidirectional  
Output  
Input  
R1  
Power  
Power  
F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10,  
G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14,  
J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11,  
K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7, M8,  
M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11, N12,  
N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14  
VDDL  
VDDH  
A8, M1, W8, H19, F4, F16, P4, P16  
Power  
Power  
E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5,  
G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5,  
P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14  
N/C  
D6, D13, D14, U2, V2  
No-connect  
1
2
Classic SAR mode only  
ESAR mode only  
14.2 Mechanical Dimensions of the PBGA Package  
For more information on the printed circuit board layout of the PBGA package, including thermal via design  
and suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number:  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
79  
Mechanical Data and Ordering InformationMechanical Dimensions of the PBGA Package  
AN1231/D) available from your local Motorola sales office. Figure 77 shows the mechanical dimensions of  
the PBGA package.  
C
0.2  
4X  
0.2 C  
0.25 C  
0.35 C  
D
A
E2  
E
D2  
B
TOP VIEW  
A2  
A3  
A1  
A
D1  
SIDE VIEW  
18X e  
NOTES:  
W
V
U
T
1. Dimensions and tolerancing per ASME Y14.5M,  
1994.  
2. Dimensions in millimeters.  
R
P
N
M
L
3. Dimensionbisthemaximumsolderballdiameter  
measured parallel to datum C.  
K
J
E1  
H
G
F
MILLIMETERS  
E
D
C
B
A
DIM MIN  
MAX  
2.05  
0.70  
1.35  
0.90  
0.90  
A
A1  
A2  
A3  
b
---  
0.50  
0.95  
0.70  
0.60  
1
3
5
7
9
11 13 15 17 19  
2
4 6 8 10 12 14 16 18  
357X  
b
BOTTOM VIEW  
M
0.3  
C A B  
C
D
D1  
25.00 BSC  
22.86 BSC  
M
0.15  
D2 22.40  
22.60  
1.27 BSC  
25.00 BSC  
22.86 BSC  
22.60  
e
E
E1  
E2 22.40  
Case No. 1103-01  
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
80  
MPC862FamilyHardwareSpecifications  
MOTOROLA  
Document Revision HistoryMechanical Dimensions of the PBGA Package  
Part XV Document Revision History  
Table 36 lists significant changes between revisions of this document.  
Table 36. Document Revision History  
Revision  
Date  
Substantive Changes  
0
2001  
Initial revision  
0.1  
0.2  
9/2001  
Change extended temperature from 95 to 105  
11/2001  
Revised for new template, changed Table 6 B23 max value @ 66Mhz from 2ns to 8ns  
MOTOROLA  
MPC862FamilyHardwareSpecifications  
81  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.; Silicon Harbour  
Centre, 2 Dai King Street, Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
852-26668334  
Motorola reserves the right to make changes without further notice to any products herein. Motorola  
makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Motorola assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data  
sheets and/or specifications can and do vary in different applications and actual performance may vary  
over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. Motorola does not convey any license under its patent  
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola  
products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,  
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://www.motorola.com/semiconductors  
DOCUMENT COMMENTS:  
FAX (512) 933-2625,  
Attn: RISC Applications Engineering  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna  
is a trademark of Motorola, Inc. All other product or service names are the property of their respective  
owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2001  
MPC862EC/D  

相关型号:

XPC862PZP66B

32-BIT, 66 MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862PZP66B

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
NXP

XPC862PZP80

32-BIT, 80 MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862PZP80B

32-BIT, 80MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862PZP80B

32-BIT, 80MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
NXP

XPC862SRCZP50

32-BIT, 50MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862SRZP66

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862TCZP66

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862TZP100B

32-BIT, 100 MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862TZP50

32-BIT, 50MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862TZP50B

RISC Microprocessor, 32-Bit, 50MHz, CMOS, PBGA357, PLASTIC, BGA-357
MOTOROLA

XPC862TZP66B

32-BIT, 66MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
NXP