TL431BIP [MOTOROLA]

PROGRAMMABLE PRECISION REFERENCES; 可编程精密基准
TL431BIP
型号: TL431BIP
厂家: MOTOROLA    MOTOROLA
描述:

PROGRAMMABLE PRECISION REFERENCES
可编程精密基准

电源电路 参考电压源 光电二极管
文件: 总16页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by TL431/D  
The TL431, A, B integrated circuits are three–terminal programmable  
shunt regulator diodes. These monolithic IC voltage references operate as a  
PROGRAMMABLE  
PRECISION REFERENCES  
low temperature coefficient zener which is programmable from V to 36 V  
ref  
with two external resistors. These devices exhibit a wide operating current  
range of 1.0 mA to 100 mA with a typical dynamic impedance of 0.22 . The  
characteristics of these references make them excellent replacements for  
zener diodes in many applications such as digital voltmeters, power  
supplies, and op amp circuitry. The 2.5 V reference makes it convenient to  
obtain a stable reference from 5.0 V logic supplies, and since the TL431, A,  
B operates as a shunt regulator, it can be used as either a positive or  
negative voltage reference.  
SEMICONDUCTOR  
TECHNICAL DATA  
LP SUFFIX  
PLASTIC PACKAGE  
CASE 29  
Programmable Output Voltage to 36 V  
Voltage Reference Tolerance: ±0.4%, Typ @ 25°C (TL431B)  
Low Dynamic Output Impedance, 0.22 Typical  
Sink Current Capability of 1.0 mA to 100 mA  
Pin 1. Reference  
2. Anode  
(TO–92)  
3. Cathode  
1
2
3
Equivalent Full–Range Temperature Coefficient of 50 ppm/°C Typical  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
Temperature Compensated for Operation over Full Rated Operating  
Temperature Range  
8
Low Output Noise Voltage  
1
DM SUFFIX  
PLASTIC PACKAGE  
CASE 846A  
8
1
(Micro–8)  
1
2
3
4
8
7
6
5
Cathode  
N/C  
Reference  
N/C  
N/C  
Anode  
N/C  
N/C  
(Top View)  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
8
1
(SOP–8)  
ORDERING INFORMATION  
Operating  
1
8
Temperature Range  
Device  
Package  
TO–92  
Plastic  
Cathode  
Reference  
Anode  
2
7
6
5
TL431CLP, ACLP, BCLP  
TL431CP, ACP, BCP  
TL431CDM, ACDM, BCDM  
TL431CD, ACD, BCD  
TL431ILP, AILP, BILP  
TL431IP, AIP, BIP  
Anode  
3
4
N/C  
N/C  
T
A
= 0° to +70°C  
Micro–8  
SOP–8  
TO–92  
Plastic  
(Top View)  
SOP–8 is an internally modified SO–8 package. Pins 2,  
3, 6 and 7 are electrically common to the die attach flag.  
This internal lead frame modification decreases power  
dissipationcapability when appropriately mounted on a  
printed circuit board. SOP–8 conforms to all external  
dimensions of the standard SO–8 package.  
T
A
= –40° to +85°C  
TL431IDM, AIDM, BIDM  
TL431ID, AID, BID  
Micro–8  
SOP–8  
Motorola, Inc. 1998  
Rev 6  
TL431, A, B Series  
Symbol  
Representative Schematic Diagram  
Component values are nominal  
Cathode  
(K)  
Cathode (K)  
Reference  
(R)  
800  
800  
Reference  
(R)  
Anode  
(A)  
20 pF  
Representative Block Diagram  
150  
3.28 k  
4.0 k  
1.0 k  
20 pF  
Reference  
(R)  
Cathode  
(K)  
10 k  
2.4 k  
7.2 k  
+
2.5 V  
ref  
800  
Anode (A)  
Anode (A)  
This device contains 12 active transistors.  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless  
otherwise noted.)  
Rating  
Symbol  
Value  
37  
Unit  
V
Cathode to Anode Voltage  
V
KA  
Cathode Current Range, Continuous  
Reference Input Current Range, Continuous  
Operating Junction Temperature  
I
–100 to +150  
–0.05 to +10  
150  
mA  
mA  
°C  
K
I
ref  
T
J
Operating Ambient Temperature Range  
TL431I, TL431AI, TL431BI  
TL431C, TL431AC, TL431BC  
T
A
°C  
–40 to +85  
0 to +70  
Storage Temperature Range  
T
stg  
–65 to +150  
°C  
Total Power Dissipation @ T = 25°C  
P
D
W
A
Derate above 25°C Ambient Temperature  
D, LP Suffix Plastic Package  
P Suffix Plastic Package  
0.70  
1.10  
0.52  
DM Suffix Plastic Package  
Total Power Dissipation @ T = 25°C  
P
D
W
C
Derate above 25°C Case Temperature  
D, LP Suffix Plastic Package  
P Suffix Plastic Package  
1.5  
3.0  
NOTE: ESD data available upon request.  
RECOMMENDED OPERATING CONDITIONS  
Condition  
Symbol  
Min  
Max  
Unit  
V
Cathode to Anode Voltage  
Cathode Current  
V
KA  
V
ref  
36  
I
K
1.0  
100  
mA  
THERMAL CHARACTERISTICS  
D, LP Suffix  
Package  
P Suffix  
Package  
DM Suffix  
Package  
Characteristic  
Symbol  
Unit  
°C/W  
°C/W  
Thermal Resistance, Junction–to–Ambient  
Thermal Resistance, Junction–to–Case  
R
R
178  
83  
114  
41  
240  
θJA  
θJC  
2
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
ELECTRICAL CHARACTERISTICS (T = 25°C, unless otherwise noted.)  
A
TL431I  
Typ  
TL431C  
Typ  
Characteristic  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Reference Input Voltage (Figure 1)  
V
ref  
V
V
KA  
= V , I = 10 mA  
ref  
K
T
T
A
= 25°C  
2.44  
2.41  
2.495  
2.55  
2.58  
2.44  
2.423  
2.495  
2.55  
2.567  
A
= T  
to T (Note 1)  
high  
low  
Reference Input Voltage Deviation Over  
Temperature Range (Figure 1, Notes 1, 2)  
V  
ref  
7.0  
3.0  
mV  
V = V I = 10 mA  
KA ref, K  
Ratio of Change in Reference Input Voltage  
to Change in Cathode to Anode Voltage  
mV/V  
V
V
ref  
KA  
I
K
= 10 mA (Figure 2),  
V  
V  
= 10 V to V  
= 36 V to 10 V  
–1.4  
–1.0  
–2.7  
–2.0  
–1.4  
–1.0  
–2.7  
–2.0  
KA  
KA  
ref  
Reference Input Current (Figure 2)  
= 10 mA, R1 = 10 k, R2 = ∞  
I
µA  
µA  
ref  
I
K
T
A
= 25°C  
1.8  
4.0  
6.5  
1.8  
4.0  
5.2  
T
A
= T  
to T  
(Note 1)  
high  
low  
Reference Input Current Deviation Over  
Temperature Range (Figure 2, Note 1, 4)  
I  
ref  
0.8  
2.5  
0.4  
1.2  
I
K
= 10 mA, R1 = 10 k, R2 = ∞  
Minimum Cathode Current For Regulation  
= V (Figure 1)  
I
0.5  
260  
0.22  
1.0  
1000  
0.5  
0.5  
2.6  
1.0  
1000  
0.5  
mA  
nA  
min  
V
KA  
ref  
Off–State Cathode Current (Figure 3)  
= 36 V, V = 0 V  
I
off  
V
KA  
ref  
Dynamic Impedance (Figure 1, Note 3)  
= V , I = 1.0 mA to 100 mA  
|Z  
|
0.22  
KA  
V
KA  
ref  
K
f 1.0 kHz  
NOTES: 1. T  
= –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM  
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,  
TL431ACDM, TL431BCDM  
low  
T
= +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM  
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM  
high  
2. The deviation parameter V is defined as the difference between the maximum and minimum values obtained over the full operating ambient  
ref  
temperature range that applies.  
V
max  
min  
ref  
V
= V max  
ref  
ref  
–V min  
ref  
T = T – T  
A
2
1
V
ref  
T1  
T2  
Ambient Temperature  
The average temperature coefficient of the reference input voltage, αV is defined as:  
ref  
V
ref  
6
X 10  
V
@ 25 C  
6
V
x 10  
ref  
ppm  
C
ref  
(V  
V
ref  
T
A
T
@ 25 C)  
A
ref  
αV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature. (Refer to Figure 6.)  
ref  
ref  
ref  
Example :  
V
V
8.0 mV and slope is positive,  
ref  
ref  
6
0.008 x 10  
70 (2.495)  
@ 25 C  
2.495 V,  
T
70 C  
V
45.8 ppm  
C
A
ref  
V
KA  
3. The dynamic impedance Z  
is defined as |Z  
|
KA  
KA  
I
K
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:  
R1  
|Z  
|
|Z  
|
1
KA  
KA  
R2  
3
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
ELECTRICAL CHARACTERISTICS (T = 25°C, unless otherwise noted.)  
A
TL431AI  
TL431AC  
Typ  
TL431B  
Typ  
Characteristic  
Symbol Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
Reference Input Voltage (Figure 1)  
V
ref  
V
V
KA  
= V , I = 10 mA  
ref  
K
T
A
= 25°C  
2.47 2.495 2.52 2.47 2.495 2.52 2.483 2.495 2.507  
T
A
= T  
to T  
high  
2.44  
2.55 2.453  
2.537 2.475 2.495 2.515  
low  
Reference Input Voltage Deviation Over  
Temperature Range (Figure 1, Notes 1, 2)  
V  
ref  
7.0  
3.0  
3.0  
mV  
V = V I = 10 mA  
KA ref, K  
Ratio of Change in Reference Input Voltage  
to Change in Cathode to Anode Voltage  
mV/V  
V
ref  
V
KA  
I
K
= 10 mA (Figure 2),  
V  
V  
= 10 V to V  
= 36 V to 10 V  
–1.4 –2.7  
–1.0 –2.0  
–1.4  
–1.0  
–2.7  
–2.0  
–1.4  
–1.0  
–2.7  
–2.0  
KA  
KA  
ref  
Reference Input Current (Figure 2)  
= 10 mA, R1 = 10 k, R2 = ∞  
I  
µA  
µA  
ref  
I
K
T
A
= 25°C  
1.8  
4.0  
6.5  
1.8  
4.0  
5.2  
1.1  
2.0  
4.0  
T
A
= T  
to T  
(Note 1)  
high  
low  
Reference Input Current Deviation Over  
Temperature Range (Figure 2, Note 1)  
I  
ref  
0.8  
2.5  
0.4  
1.2  
0.4  
1.2  
I
K
= 10 mA, R1 = 10 k, R2 = ∞  
Minimum Cathode Current For Regulation  
= V (Figure 1)  
I
0.5  
260  
0.22  
1.0  
1000  
0.5  
0.5  
260  
0.22  
1.0  
1000  
0.5  
0.5  
230  
0.14  
1.0  
500  
0.3  
mA  
nA  
min  
V
KA  
ref  
Off–State Cathode Current (Figure 3)  
= 36 V, V = 0 V  
I
off  
V
KA  
ref  
Dynamic Impedance (Figure 1, Note 3)  
= V , I = 1.0 mA to 100 mA  
|Z  
|
KA  
V
KA  
ref  
K
f 1.0 kHz  
NOTES: 1. T  
= –40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM  
= 0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,  
TL431ACDM, TL431BCDM  
low  
T
= +85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM  
= +70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM, TL431BCDM  
high  
2. The deviation parameter V is defined as the difference between the maximum and minimum values obtained over the full operating ambient  
ref  
temperature range that applies.  
V
max  
min  
ref  
V
= V max  
ref  
ref  
–V min  
ref  
T = T – T  
A
2
1
V
ref  
T1  
T2  
Ambient Temperature  
The average temperature coefficient of the reference input voltage, αV is defined as:  
ref  
V
ref  
6
X 10  
V
@ 25 C  
6
V
x 10  
ref  
ppm  
C
ref  
(V  
V
ref  
T
A
T
@ 25 C)  
A
ref  
αV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature. (Refer to Figure 6.)  
ref  
ref  
ref  
Example :  
V
V
8.0 mV and slope is positive,  
ref  
ref  
6
0.008 x 10  
70 (2.495)  
@ 25 C  
2.495 V,  
T
70 C  
V
45.8 ppm  
C
A
ref  
V
KA  
3. The dynamic impedance Z  
is defined as |Z  
|
KA  
KA  
I
K
When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:  
R1  
|Z  
|
|Z  
|
1
KA  
KA  
R2  
4
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 1. Test Circuit for V  
= V  
ref  
Figure 2. Test Circuit for V  
> V  
Figure 3. Test Circuit for I  
off  
KA  
KA  
ref  
Input  
V
Input  
V
KA  
KA  
Input  
V
KA  
I
I
off  
K
I
K
I
R1  
ref  
V
ref  
R2  
R1  
R2  
V
V
1
I
R1  
KA  
ref  
ref  
V
ref  
Figure 4. Cathode Current versus  
Cathode Voltage  
Figure 5. Cathode Current versus  
Cathode Voltage  
150  
100  
50  
800  
600  
400  
200  
0
V
T
= V  
°
V
T
= V  
°
KA  
= 25  
ref  
KA  
= 25  
ref  
C
C
A
A
I
Input  
V
KA  
Min  
Input  
V
KA  
K
I
K
I
0
–50  
–100  
–200  
–1.0  
–2.0  
–1.0  
0
1.0  
2.0  
3.0  
0
1.0  
, CATHODE VOLTAGE (V)  
2.0  
3.0  
V
, CATHODE VOLTAGE (V)  
V
KA  
KA  
Figure 6. Reference Input Voltage versus  
Ambient Temperature  
Figure 7. Reference Input Current versus  
Ambient Temperature  
2600  
2580  
2560  
2540  
2520  
2500  
3.0  
V
Input  
KA  
I
V
= V  
ref  
K
KA  
= 10 mA  
V
Max = 2550 mV  
ref  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
V
K
ref  
V
Typ = 2495 mV  
ref  
I
= 10 mA  
I
2480  
2460  
K
V
Input  
10k  
KA  
I
K
ref  
2440  
V
Min = 2440 mV  
100  
ref  
2420  
2400  
–55  
–25  
0
25  
50  
75  
C)  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
5
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 8. Change in Reference Input  
Voltage versus Cathode Voltage  
Figure 9. Off–State Cathode Current  
versus Ambient Temperature  
0
–8.0  
–16  
–24  
–32  
1.0 k  
I
T
= 10 mA  
= 25°C  
K
A
100  
10  
V
= 36 V  
= 0 V  
KA  
Input  
R1  
V
KA  
V
ref  
1.0  
I
K
V
Input  
KA  
I
off  
R2  
V
0.1  
ref  
0.01  
–55  
–25  
0
25  
50  
75  
100  
125  
0
10  
20  
, CATHODE VOLTAGE (V)  
30  
40  
V
T , AMBIENT TEMPERATURE (5C)  
KA  
A
Figure 10. Dynamic Impedance  
versus Frequency  
Figure 11. Dynamic Impedance  
versus Ambient Temperature  
100  
0.320  
0.300  
T
= 25 C  
A
1.0 k  
50  
V
= V  
ref  
KA  
K
Output  
K
I = 1.0 mA to 100 mA  
K
f
I
= 1.0 mA to 100 mA  
I
1.0 kHz  
+
Output  
K
0.280  
0.260  
0.240  
0.220  
0.200  
Gnd  
10  
1.0  
0.1  
1.0 k  
I
50  
+
Gnd  
1.0 k  
10 k  
100 k  
f, FREQUENCY (MHz)  
1.0 M  
10 M  
–55  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE ( C)  
A
Figure 12. Open–Loop Voltage Gain  
versus Frequency  
Figure 13. Spectral Noise Density  
80  
60  
40  
20  
0
60  
Output  
I
K
50  
40  
30  
20  
10  
15 k  
9.0 µF  
230  
8.25 k  
Gnd  
V
= V  
ref  
KA  
I
T
= 10 mA  
K
= 25°C  
A
Input  
Output  
I
T
= 10 mA  
= 25 C  
K
A
I
K
0
–10  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
f, FREQUENCY (MHz)  
6
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 14. Pulse Response  
Figure 15. Stability Boundary Conditions  
140  
T
= 25 C  
A) V  
= V  
ref  
Stable  
A
KA  
KA  
KA  
KA  
Input  
Monitor  
3.0  
2.0  
1.0  
B) V  
C) V  
D) V  
= 5.0 V @ I = 10 mA  
K
120  
Output  
Gnd  
= 10 V @ I = 10 mA  
K
220  
50  
A
A
= 15 V @ I = 10 mA  
K
Output  
Pulse  
100  
80  
D) T = 25  
°C  
A
B
B
Generator  
f = 100 kHz  
Stable  
C
60  
40  
D
0
5.0  
0
Input  
20  
0
0
4.0  
8.0  
12  
16  
20  
100 pF  
1000 pF  
0.01  
µF  
0.1  
µ
F
1.0  
µF  
10 µF  
t, TIME (µs)  
C , LOAD CAPACITANCE  
L
Figure 16. Test Circuit For Curve A  
of Stability Boundary Conditions  
Figure 17. Test Circuit For Curves B, C, And D  
of Stability Boundary Conditions  
150  
150  
I
I
K
K
10 k  
V+  
V+  
C
C
L
L
TYPICAL APPLICATIONS  
Figure 18. Shunt Regulator  
Figure 19. High Current Shunt Regulator  
V+  
V
out  
V+  
V
out  
R1  
R1  
R2  
R2  
R1  
V
1
V
out  
ref  
R2  
R1  
R2  
V
1
V
out  
ref  
7
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 20. Output Control for a  
Three–Terminal Fixed Regulator  
Figure 21. Series Pass Regulator  
V+  
V
out  
MC7805  
Out  
Common  
R1  
R2  
V+  
V
out  
In  
R1  
R2  
R1  
R2  
V
V
1
V
out  
out  
ref  
R1  
R2  
V
V
1
V
out  
out  
ref  
5.0V  
min  
V
V
ref  
be  
min  
V
ref  
Figure 22. Constant Current Source  
Figure 23. Constant Current Sink  
R
CL  
I
V+  
sink  
V+  
I
out  
V
ref  
I
Sink  
R
S
V
R
ref  
CL  
I
out  
R
S
Figure 24. TRIAC Crowbar  
Figure 25. SRC Crowbar  
V+  
V+  
V
out  
V
out  
R1  
R1  
R2  
V
R2  
R1  
R2  
V
1
out(trip)  
ref  
R1  
R2  
V
1
V
out(trip)  
ref  
8
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 26. Voltage Monitor  
Figure 27. Single–Supply Comparator with  
Temperature–Compensated Threshold  
V+  
V
out  
V+  
l
R1  
R2  
R3  
V
out  
V
in  
R4  
V
V
out  
V+  
in  
V
= V  
L.E.D. indicator is ‘on’ when V+ is between the  
upper and lower limits.  
th ref  
< V  
> V  
ref  
ref  
2.0 V  
R1  
Lower Limit  
Upper Limit  
1
1
V
V
ref  
ref  
R2  
R3  
R4  
Figure 28. Linear Ohmmeter  
Figure 29. Simple 400 mW Phono Amplifier  
25 V  
1N5305  
38 V  
2.0 mA  
330  
T = 330 to 8.0  
l
T
5.0 k  
1%  
50 k  
1%  
10 k  
500 k  
1%  
5.0 M  
1%  
10 k  
Calibrate  
I
+
470 µF  
8.0  
360 k  
56 k  
100 k  
V
25 V  
1.0 M  
V
1.0 µF  
1.0 k  
V
*
V
LM11  
+
V
Range  
out  
Volume  
47 k  
0.05 µF  
Tone  
*Thermalloy  
*THM 6024  
*Heatsink on  
*LP Package  
–5.0 V  
Range  
R
X
10 k  
25 k  
R
x
V
out  
V
9
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 30. High Efficiency Step–Down Switching Converter  
150 H @ 2.0 A  
V
= 10 V to 20 V  
in  
TIP115  
V
= 5.0 V  
= 1.0 A  
out  
I
out  
1.0 k  
1N5823  
4.7 k  
4.7 k  
100 k  
470  
MPSA20  
4.7 k  
0.01µF  
+
2200 µF  
+
µF  
0.1 µF  
2.2 k  
10  
51 k  
Test  
Conditions  
= 10 V to 20 V, I = 1.0 A  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
V
in  
53 mV (1.1%)  
25 mV (0.5%)  
o
= 15 V, I = 0 A to 1.0 A  
o
= 10 V, I = 1.0 A  
50 mVpp P.A.R.D.  
o
= 20 V, I = 1.0 A  
100 mVpp P.A.R.D.  
82%  
o
= 15 V, I = 1.0 A  
o
10  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
APPLICATIONS INFORMATION  
The TL431 is a programmable precision reference which  
1
1
P2  
Z1  
60 kHz  
2
R
C
2 * 10 M * 0.265 pF  
is used in a variety of ways. It serves as a reference voltage  
in circuits where a non–standard reference voltage is  
needed. Other uses include feedback control for driving an  
optocoupler in power supplies, voltage monitor, constant  
current source, constant current sink and series pass  
regulator. In each of these applications, it is critical to  
maintain stability of the device at various operating currents  
and load capacitances. In some cases the circuit designer  
can estimate the stabilization capacitance from the stability  
boundary conditions curve provided in Figure 15. However,  
these typical curves only provide stability information at  
specific cathode voltages and at a specific load condition.  
Additional information is needed to determine the  
capacitance needed to optimize phase margin or allow for  
process variation.  
A simplified model of the TL431 is shown in Figure 31.  
When tested for stability boundaries, the load resistance is  
150 . The model reference input consists of an input  
transistor and a dc emitter resistance connected to the  
device anode. A dependent current source, Gm, develops a  
current whose amplidute is determined by the difference  
between the 1.78 V internal reference voltage source and the  
input transistor emitter voltage. A portion of Gm flows through  
P2 P2  
1
1
500 kHz  
2
R
C
2 * 15.9 k * 20 pF  
Z1 P1  
In addition, there is an external circuit pole defined by the  
load:  
1
P
L
2
R C  
L L  
Also, the transfer dc voltage gain of the TL431 is:  
G R GoR  
G
M GM  
L
Example 1:  
10 mA, R  
I
230 , C  
0. Define the transfer gain.  
C
L
L
The DC gain is:  
G
G R  
M GM  
GoR  
L
(2.138)(1.0 M)(1.25 )(230)  
615  
218  
56 dB  
47 dB  
8.25 k  
Loop gain  
G
8.25 k 15 k  
The resulting transfer function Bode plot is shown in  
Figure 32. The asymptotic plot may be expressed as the  
following equation:  
compensation capacitance, C . The voltage across C  
drives the output dependent current source, Go, which is  
connected across the device cathode and anode.  
P2  
P2  
1
jf  
500 kHz  
jf  
8.0 kHz 60 kHz  
Model component values are:  
V
= 1.78 V  
ref  
Gm = 0.3 + 2.7 exp (–I /26 mA)  
Av  
615  
1
1
jf  
C
where I is the device cathode current and Gm is in mhos  
C
The Bode plot shows a unity gain crossover frequency of  
approximately 600 kHz. The phase margin, calculated from  
the equation, would be 55.9 degrees. This model matches  
the Open–Loop Bode Plot of Figure 12. The total loop would  
have a unity gain frequency of about 300 kHz with a phase  
margin of about 44 degrees.  
Go = 1.25 (V 2) µmhos.  
cp  
Resistor and capacitor typical values are shown on the  
model. Process tolerances are ±20% for resistors, ±10% for  
capacitors, and ±40% for transconductances.  
An examination of the device model reveals the location of  
circuit poles and zeroes:  
1
1
P1  
7.96 kHz  
2
R
C
2 * 1.0 M * 20 pF  
GM P1  
11  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Figure 31. Simplified TL431 Device Model  
V
CC  
R
L
C
L
Input  
3
15 k  
Cathode  
9.0  
F
Go  
1.0 mho  
R
10 M  
P2  
Ref  
V
ref  
1
1.78 V  
C
G
P1  
20 pF  
M
C
+
P2  
R
R
1.0 M  
ref  
16  
GM  
0.265 pF  
R
15.9 k  
Z1  
500 k  
8.25 k  
Anode  
2
Figure 32. Example 1  
Circuit Open Loop Gain Plot  
Note that the transfer function now has an extra pole  
formed by the load capacitance and load resistance.  
Note that the crossover frequency in this case is about  
250 kHz, having a phase margin of about –46 degrees.  
Therefore, instability of this circuit is likely.  
TL431 OPEN–LOOP VOLTAGE GAIN VERSUS FREQUENCY  
60  
50  
40  
30  
Figure 33. Example 2  
Circuit Open Loop Gain Plot  
TL431 OPEN–LOOP BODE PLOT WITH LOAD CAP  
80  
20  
10  
0
60  
40  
20  
–10  
–20  
1
2
3
4
5
6
7
10  
10  
10  
10  
10  
10  
10  
f, FREQUENCY (Hz)  
Example 2.  
= 7.5 mA, R = 2.2 k , C = 0.01 F. Cathode tied to  
0
I
C
L
L
reference input pin. An examination of the data sheet stability  
boundary curve (Figure 15) shows that this value of load  
capacitance and cathode current is on the boundary. Define  
the transfer gain.  
–20  
1
2
3
4
5
6
10  
10  
10  
10  
10  
10  
f, FREQUENCY (Hz)  
With three poles, this system is unstable. The only hope  
for stabilizing this circuit is to add a zero. However, that can  
only be done by adding a series resistance to the output  
capacitance, which will reduce its effectiveness as a noise  
filter. Therefore, practically, in reference voltage applications,  
the best solution appears to be to use a smaller value of  
capacitance in low noise applications or a very large value to  
provide noise filtering and a dominant pole rolloff of the  
system.  
The DC gain is:  
G
G R  
GoR  
M GM  
L
(2.323)(1.0 M)(1.25 )(2200)  
6389  
76 dB  
The resulting open loop Bode plot is shown in Figure 33.  
The asymptotic plot may be expressed as the following  
equation:  
1
jf  
500 kHz  
jf  
8.0 kHz 60 kHz 7.2 kHz  
Av  
615  
1
jf  
1
1
jf  
12  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
OUTLINE DIMENSIONS  
LP SUFFIX  
PLASTIC PACKAGE  
CASE 29–04  
(TO–92)  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B
ISSUE AE  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
R
4. DIMENSION F APPLIES BETWEEN P AND L.  
DIMENSION D AND J APPLY BETWEEN L AND K  
MINIMUM. LEAD DIMENSION IS UNCONTROLLED  
IN P AND BEYOND DIMENSION K MINIMUM.  
P
L
F
SEATING  
PLANE  
K
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
P
MAX  
0.205  
0.210  
0.165  
0.022  
0.019  
0.055  
0.105  
0.020  
–––  
MIN  
4.45  
4.32  
3.18  
0.41  
0.41  
1.15  
2.42  
0.39  
12.70  
6.35  
2.04  
–––  
MAX  
5.20  
5.33  
4.19  
0.55  
0.48  
1.39  
2.66  
0.50  
–––  
0.175  
0.170  
0.125  
0.016  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
–––  
D
X X  
G
J
H
V
C
–––  
–––  
SECTION X–X  
0.105  
0.100  
–––  
2.66  
2.54  
–––  
1
N
R
V
0.115  
0.135  
2.93  
3.43  
N
–––  
–––  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
–B–  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
MILLIMETERS  
INCHES  
F
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
–A–  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
C
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
N
M
N
–––  
0.76  
10  
1.01  
–––  
0.030  
10  
0.040  
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
13  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
OUTLINE DIMENSIONS  
DM SUFFIX  
PLASTIC PACKAGE  
CASE 846A–02  
(Micro–8)  
NOTES:  
6. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
ISSUE D  
7. CONTROLLING DIMENSION: MILLIMETER.  
8. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
9. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
–B–  
K
MILLIMETERS  
INCHES  
PIN 1 ID  
G
DIM  
A
B
C
D
MIN  
2.90  
2.90  
–––  
MAX  
3.10  
3.10  
1.10  
0.40  
MIN  
MAX  
0.122  
0.122  
0.043  
0.016  
D 8 PL  
0.08 (0.003)  
0.114  
0.114  
–––  
M
S
S
T
B
A
0.25  
0.010  
G
H
J
K
L
0.65 BSC  
0.026 BSC  
0.05  
0.13  
4.75  
0.40  
0.15  
0.23  
5.05  
0.70  
0.002  
0.005  
0.187  
0.016  
0.006  
0.009  
0.199  
0.028  
SEATING  
PLANE  
–T–  
C
0.038 (0.0015)  
L
J
H
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–06  
(SOP–8)  
ISSUE T  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETER.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
M
M
0.25  
B
H
E
4
h X 45  
MILLIMETERS  
B
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
C
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
14  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
15  
MOTOROLA ANALOG IC DEVICE DATA  
TL431, A, B Series  
Mfax is a trademark of Motorola, Inc.  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
TL431/D  

相关型号:

TL431BIPE4

ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TL431BIPG

Programmable Precision References
ONSEMI

TL431BIPK

ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TL431BIPK

Three Terminal Voltage Reference, 1 Output, 2.495V, Trim/Adjustable, BIPolar, PSSO3, GREEN, PLASTIC, SOT-89, 3 PIN
ROCHESTER

TL431BIPKG3

ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TL431BLP

Programmable Precision Regulator
MCC

TL431BM3

Adjustable Precision Shunt Regulators
CYSTEKEC

TL431BMFDT

Adjustable precision shunt regulator
NXP

TL431BMFDT

Adjustable precision shunt regulatorProduction
NEXPERIA

TL431BMFDT,215

TL431 family - Adjustable precision shunt regulator TO-236 3-Pin
NXP

TL431BMFDT-Q

Voltage regulator diodesProduction
NEXPERIA

TL431BMSDT

Adjustable precision shunt regulator
NXP