MUN5233DW1T1 [MOTOROLA]

Dual Bias Resistor Trasnsistors; 双偏置电阻Trasnsistors
MUN5233DW1T1
型号: MUN5233DW1T1
厂家: MOTOROLA    MOTOROLA
描述:

Dual Bias Resistor Trasnsistors
双偏置电阻Trasnsistors

晶体 小信号双极晶体管
文件: 总10页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MUN5211DW1T1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon Surface Mount Transistors with  
Monolithic Bias Resistor Network  
Motorola Preferred Devices  
The BRT (Bias Resistor Transistor) contains a single transistor with a  
monolithic bias network consisting of two resistors; a series base resistor and a  
base–emitter resistor. These digital transistors are designed to replace a single  
device and its external resistor bias network. The BRT eliminates these  
individual components by integrating them into a single device. In the  
MUN5211DW1T1 series, two BRT devices are housed in the SOT–363  
package which is ideal for low power surface mount applications where board  
space is at a premium.  
6
5
4
1
2
3
CASE 419B–01, STYLE 1  
SOT–363  
Simplifies Circuit Design  
Reduces Board Space  
(3)  
(2)  
R
(1)  
Reduces Component Count  
Available in 8 mm, 7 inch/3000 Unit Tape and Reel.  
1
R
2
Q
1
Q
2
R
2
R
1
(4)  
(5)  
(6)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted, common for Q and Q )  
A
1
2
Rating  
Symbol  
Value  
Unit  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
V
V
50  
50  
Vdc  
Vdc  
CBO  
CEO  
I
C
100  
mAdc  
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction-to-Ambient (surface mounted)  
Operating and Storage Temperature Range  
R
833  
°C/W  
°C  
θJA  
T , T  
65 to +150  
*150  
J
stg  
(1)  
Total Package Dissipation @ T = 25°C  
P
mW  
A
D
DEVICE MARKING AND RESISTOR VALUES: MUN5211DW1T1 SERIES  
Device  
Marking  
R1 (K)  
R2 (K)  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
7A  
7B  
7C  
7D  
7E  
7F  
7G  
7H  
7J  
10  
22  
47  
10  
10  
10  
22  
47  
47  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
1.0  
2.2  
4.7  
47  
47  
47  
7K  
7L  
7M  
2.2  
1. Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.  
2. New resistor combinations. Updated curves to follow in subsequent data sheets.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted, common for Q and Q )  
A
1
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V  
= 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector-Emitter Cutoff Current (V  
= 50 V, I = 0)  
B
CE  
CEO  
Emitter-Base Cutoff Current  
MUN5211DW1T1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
0.2  
EBO  
(V  
EB  
= 6.0 V, I = 0)  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
(3)  
Collector-Emitter Breakdown Voltage (I = 2.0 mA, I = 0)  
C
B
(BR)CEO  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
h
FE  
35  
60  
80  
60  
(V  
CE  
= 10 V, I = 5.0 mA)  
100  
140  
140  
350  
350  
5.0  
15  
C
80  
160  
160  
3.0  
8.0  
15  
80  
80  
80  
30  
200  
150  
140  
Collector-Emitter Saturation Voltage (I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
Vdc  
Vdc  
C
B
(I = 10 mA, I = 5 mA) MUN5230DW1T1/MUN5231DW1T1  
C
B
(I = 10 mA, I = 1 mA) MUN5215DW1T1/MUN5216DW1T1  
C
B
MUN5232DW1T1/MUN5233DW1T1/MUN5234DW1T1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
MUN5211lDW1T1  
MUN5212DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5213DW1T1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V  
CC  
= 5.0 V, V = 3.5 V, R = 1.0 k)  
B L  
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted, common for Q and Q ) (Continued)  
A
1
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (off) (V  
= 5.0 V, V = 0.5 V, R = 1.0 k)  
V
OH  
4.9  
Vdc  
CC  
B
L
(V  
CC  
(V  
CC  
= 5.0 V, V = 0.050 V, R = 1.0 k)  
MUN5230DW1T1  
B
L
= 5.0 V, V = 0.25 V, R = 1.0 k)  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5233DW1T1  
B
L
Input Resistor  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
13  
28.6  
61.1  
13  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
k Ω  
15.4  
1.54  
28.6  
2.86  
2.2  
Resistor Ratio MUN5211DW1T1/MUN5212DW1T1/MUN5213DW1T1  
MUN5214DW1T1  
R1/R2  
0.8  
0.17  
1.0  
0.21  
1.0  
0.1  
1.2  
0.25  
MUN5215DW1T1/MUN5216DW1T1  
MUN5230DW1T1/MUN5231DW1T1/MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
0.8  
1.2  
0.055  
0.38  
0.038  
0.185  
0.56  
0.056  
0.47  
0.047  
250  
200  
150  
100  
R
= 833°C/W  
θ
JA  
50  
0
50  
0
50  
100  
C)  
150  
T , AMBIENT TEMPERATURE (  
°
A
Figure 1. Derating Curve  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5211DW1T1  
1
1000  
I
/I = 10  
V
= 10 V  
C B  
T
= –25°C  
CE  
A
25°C  
T
= 75  
°C  
°C  
A
25  
0.1  
–25°C  
75°C  
100  
0.01  
0.001  
10  
0
20  
40  
, COLLECTOR CURRENT (mA)  
50  
1
10  
100  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 2. V  
versus I  
Figure 3. DC Current Gain  
CE(sat)  
C
4
3
100  
10  
25°C  
75°C  
f = 1 MHz  
= 0 V  
I
E
T
= –25°C  
A
T
= 25  
°
C
A
1
0.1  
2
1
0
0.01  
0.001  
V
= 5 V  
9
O
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 4. Output Capacitance  
Figure 5. Output Current versus Input Voltage  
10  
V
= 0.2 V  
T
= –25°C  
O
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 6. Input Voltage versus Output Current  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5212DW1T1  
1000  
1
V
= 10 V  
CE  
I
/I = 10  
C B  
T
= 75°C  
A
25°C  
25°C  
T
= –25°C  
A
0.1  
–25°C  
75°C  
100  
0.01  
10  
0.001  
1
10  
100  
0
20  
, COLLECTOR CURRENT (mA)  
40  
50  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 7. V  
versus I  
Figure 8. DC Current Gain  
CE(sat)  
C
4
3
2
1
0
100  
10  
1
75°C  
25°C  
f = 1 MHz  
= 0 V  
T
= –25°C  
A
I
E
T
= 25°C  
A
0.1  
0.01  
V
= 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V
= 0.2 V  
O
T
= –25°C  
A
10  
1
25°C  
75°C  
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5213DW1T1  
10  
1
1000  
V
= 10 V  
I
/I = 10  
CE  
C B  
T
= 75°C  
A
25°C  
–25°C  
25°C  
100  
T
= –25°C  
A
75°C  
0.1  
0.01  
10  
0
20  
, COLLECTOR CURRENT (mA)  
40  
50  
1
10  
100  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 12. V  
versus I  
Figure 13. DC Current Gain  
CE(sat)  
C
1
100  
10  
1
25°C  
f = 1 MHz  
= 0 V  
75°C  
I
E
T = –25  
°C  
0.8  
T
= 25  
°
C
A
A
0.6  
0.4  
0.1  
0.01  
0.2  
0
V
= 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
V , INPUT VOLTAGE (VOLTS)  
in  
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
R
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V
= 0.2 V  
O
T
= –25°C  
A
25°C  
10  
1
75°C  
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5214DW1T1  
1
0.1  
300  
T
= 75°C  
A
V
= 10  
I
/I = 10  
CE  
C B  
T
= –25°C  
250  
200  
150  
A
25°C  
25°C  
–25°C  
75°C  
0.01  
100  
50  
0
0.001  
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I
, COLLECTOR CURRENT (mA)  
C
Figure 17. V  
versus I  
Figure 18. DC Current Gain  
CE(sat)  
C
4
3.5  
3
100  
10  
1
f = 1 MHz  
= 0 V  
T
A
= 75°C  
25°C  
l
E
T
= 25°C  
A
–25°C  
2.5  
2
1.5  
1
0.5  
0
V
= 5 V  
O
0
2
4
6
8
10 15 20  
25 30  
35 40 45 50  
0
2
4
6
8
10  
V
, REVERSE BIAS VOLTAGE (VOLTS)  
V
, INPUT VOLTAGE (VOLTS)  
R
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
10  
V
= 0.2 V  
O
T
= –25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
INFORMATION FOR USING THE SOT–363 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
SOT–363  
0.5 mm (min)  
1.9 mm  
SOT–363 POWER DISSIPATION  
The power dissipation of the SOT–363 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to the pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
determinedby T  
ture of the die, R  
, themaximumratedjunctiontempera-  
, the thermal resistance from the device  
J(max)  
θJA  
junction to ambient; and the operating temperature, T .  
A
Using the values provided on the data sheet, P can be  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
calculated as follows:  
T
– T  
A
J(max)  
P
=
D
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference should be a maximum of 10°C.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
R
θJA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 150 milliwatts.  
150°C – 25°C  
P
=
= 150 milliwatts  
D
833°C/W  
The 833°C/W for the SOT–363 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 150 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–363 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
8
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of control  
settings that will give the desired heat pattern. The operator  
must set temperatures for several heating zones, and a  
figure for belt speed. Taken together, these control settings  
make up a heating “profile” for that particular circuit board.  
On machines controlled by a computer, the computer  
remembers these profiles from one operating session to the  
next. Figure 25 shows a typical heating profile for use when  
soldering a surface mount device to a printed circuit board.  
This profile will vary among soldering systems but it is a good  
starting point. Factors that can affect the profile include the  
type of soldering system in use, density and types of  
components on the board, type of solder used, and the type  
of board or substrate material being used. This profile shows  
temperature versus time. The line on the graph shows the  
actual temperature that might be experienced on the surface  
of a test board at or near a central solder joint. The two  
profiles are based on a high density and a low density board.  
The Vitronics SMD310 convection/infrared reflow soldering  
system was used to generate this profile. The type of solder  
used was 62/36/2 Tin Lead Silver with a melting point  
between 177189°C. When this type of furnace is used for  
solder reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
“SPIKE”  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
“RAMP”  
STEP 2  
VENT  
“SOAK” ZONES 2 & 5  
“RAMP”  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
“SOAK”  
205  
PEAK AT  
SOLDER JOINT  
° TO 219°C  
200  
°
C
C
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
150°  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100  
°
C
C
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
50°  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 22. Typical Solder Heating Profile  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
9
PACKAGE DIMENSIONS  
A
G
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
V
2. CONTROLLING DIMENSION: INCH.  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
0.087  
0.053  
0.043  
0.012  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
6
1
5
4
3
0.071  
0.045  
0.031  
0.004  
S
–B–  
2
G
H
J
0.026 BSC  
0.65 BSC  
–––  
0.004  
0.004  
0.004  
0.010  
0.012  
–––  
0.10  
0.10  
0.10  
0.25  
0.30  
K
M
M
N
S
V
0.008 REF  
0.20 REF  
0.2 (0.008)  
B
D6 PL  
0.079  
0.012  
0.087  
0.016  
2.00  
0.30  
2.20  
0.40  
N
STYLE 1:  
PIN 1. EMITTER 2  
2. BASE 2  
J
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
C
6. COLLECTOR 2  
K
H
CASE 419B–01  
ISSUE C  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MUN5211DW1T1/D  

相关型号:

MUN5233DW1T1G

Dual Bias Resistor Transistors
ONSEMI

MUN5233DW1T2

100mA, 50V, 2 CHANNEL, NPN, Si, SMALL SIGNAL TRANSISTOR
MOTOROLA

MUN5233DW1T3

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, NPN, Silicon, CASE 419B-01, 6 PIN
MOTOROLA

MUN5233T1

NPN SILICON BIAS RESISTOR TRANSISTORS
MOTOROLA

MUN5233T1

NPN SILICON BIAS RESISTOR TRANSISTORS
ONSEMI

MUN5233T1

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, CASE 419-04, SC-70, 3 PIN
ROCHESTER

MUN5233T1G

NPN SILICON BIAS RESISTOR TRANSISTORS
ONSEMI

MUN5233T3

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, SC-70, 3 PIN
ONSEMI

MUN5234

Dual Bias Resistor Transistors
ONSEMI

MUN5234

NPN Silicon Bias Resistor Transistor
WEITRON

MUN5234DW

Surface Mount Dual Bias Resistor Transistor NPN Silicon
WEITRON

MUN5234DW-G

Transistor
WEITRON