MTP3N120E [MOTOROLA]

TMOS POWER FET 3.0 AMPERES 1200 VOLTS RDS(on) = 5.0 OHM; TMOS功率场效应晶体管3.0安培1200伏的RDS(on ) = 5.0 OHM
MTP3N120E
型号: MTP3N120E
厂家: MOTOROLA    MOTOROLA
描述:

TMOS POWER FET 3.0 AMPERES 1200 VOLTS RDS(on) = 5.0 OHM
TMOS功率场效应晶体管3.0安培1200伏的RDS(on ) = 5.0 OHM

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总8页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MTP3N120E/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Device  
N–Channel Enhancement–Mode Silicon Gate  
TMOS POWER FET  
3.0 AMPERES  
1200 VOLTS  
This advanced high–voltage TMOS E–FET is designed to  
withstand high energy in the avalanche mode and switch efficiently.  
This new high energy device also offers a drain–to–source diode  
with fast recovery time. Designed for high voltage, high speed  
switching applications such as power supplies, PWM motor  
controls, and other inductive loads, the avalanche energy capability  
is specified to eliminate the guesswork in designs where inductive  
loads are switched and offer additional safety margin against  
unexpected voltage transients.  
R
= 5.0 OHM  
DS(on)  
Avalanche Energy Capability Specified at Elevated  
Temperature  
Low Stored Gate Charge for Efficient Switching  
Internal Source–to–Drain Diode Designed to Replace External  
Zener Transient Suppressor Absorbs High Energy in the  
Avalanche Mode  
D
Source–to–Drain Diode Recovery Time Comparable to  
Discrete Fast Recovery Diode  
G
*
See App. Note AN1327 — Very Wide Input Voltage Range;  
Off–line Flyback Switching Power Supply  
CASE 221A–06, Style 5  
TO–220AB  
S
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Symbol  
Value  
Unit  
Drain–Source Voltage  
V
1200  
Vdc  
Vdc  
DSS  
Drain–Gate Voltage (R  
= 1.0 M)  
Gate–Source Voltage — Continuous  
V
DGR  
1200  
GS  
V
± 20  
± 40  
Vdc  
Vpk  
GS  
Gate–Source Voltage — Non–Repetitive (t 50 ms)  
V
GSM  
p
Drain Current — Continuous @ 25°C  
Drain Current — Continuous @ 100°C  
I
I
3.0  
2.2  
11  
Adc  
Apk  
D
D
Drain Current — Single Pulse (t 10 µs)  
I
p
DM  
Total Power Dissipation  
Derate above 25°C  
P
D
125  
1.0  
Watts  
W/°C  
Operating and Storage Temperature Range  
T , T  
stg  
– 55 to 150  
101  
°C  
J
UNCLAMPED DRAIN–TO–SOURCE AVALANCHE CHARACTERISTICS (T  
150°C)  
J
Single Pulse Drain–to–Source Avalanche Energy — Starting T = 25°C  
E
AS  
mJ  
J
(V  
DD  
= 100 Vdc, V = 10 Vdc, PEAK I = 4.5 Apk, L = 10 mH, R = 25 Ω)  
GS L G  
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
R
1.0  
62.5  
°C/W  
°C  
θJC  
θJA  
Maximum Lead Temperature for Soldering Purposes, 1/8from case for 10 seconds  
T
260  
L
E–FET and Designer’s are trademarks of Motorola, Inc.  
TMOS is a registered trademark of Motorola, Inc.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 1  
Motorola, Inc. 1995  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–Source Breakdown Voltage  
V
(BR)DSS  
(V  
GS  
= 0 Vdc, I = 250 µAdc)  
1200  
1.28  
Vdc  
mV/°C  
D
Temperature Coefficient (Positive)  
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
(V  
DS  
(V  
DS  
= 1200 Vdc, V  
= 1200 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 125°C)  
10  
100  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 20 Vdc, V  
DS  
= 0 Vdc)  
I
100  
nAdc  
GS  
GSS  
ON CHARACTERISTICS (1)  
Gate Threshold Voltage  
V
GS(th)  
(V  
DS  
= V , I = 250 µAdc)  
2.0  
3.0  
7.1  
4.0  
Vdc  
mV/°C  
GS  
D
Temperature Coefficient (Negative)  
Static Drain–Source On–Resistance (V  
= 10 Vdc, I = 1.5 Adc)  
R
V
4.0  
5.0  
Ohm  
Vdc  
GS  
D
DS(on)  
Drain–Source On–Voltage (V  
GS  
= 10 Vdc)  
DS(on)  
(I = 3.0 Adc)  
18.0  
15.8  
D
(I = 1.5 Adc, T = 125°C)  
D
J
Forward Transconductance (V  
DS  
= 15 Vdc, I = 1.5 Adc)  
g
2.5  
3.1  
mhos  
pF  
D
FS  
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
2130  
1710  
932  
2980  
2390  
1860  
iss  
(V  
DS  
= 25 Vdc, V = 0 Vdc,  
GS  
Output Capacitance  
C
oss  
f = 1.0 MHz)  
Reverse Transfer Capacitance  
C
rss  
SWITCHING CHARACTERISTICS (2)  
Turn–On Delay Time  
t
13.6  
12.6  
35.8  
20.7  
31  
30  
30  
70  
40  
40  
ns  
d(on)  
(V  
(V  
= 600 Vdc, I = 3.0 Adc,  
D
Rise Time  
DD  
t
r
V
= 10 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
d(off)  
R
= 9.1 )  
t
f
Gate Charge  
Q
T
Q
1
Q
2
Q
3
nC  
8.0  
= 600 Vdc, I = 3.0 Adc,  
DS  
D
V
GS  
= 10 Vdc)  
11  
14  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage  
V
Vdc  
ns  
SD  
(I = 3.0 Adc, V  
= 0 Vdc)  
= 0 Vdc, T = 125°C)  
S
GS  
0.80  
0.65  
1.0  
(I = 3.0 Adc, V  
S
GS  
J
Reverse Recovery Time  
t
394  
118  
276  
2.11  
rr  
t
a
(I = 3.0 Adc, V  
= 0 Vdc,  
dI /dt = 100 A/µs)  
S
GS  
S
t
b
Reverse Recovery Stored Charge  
Q
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
D
nH  
3.5  
4.5  
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
7.5  
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
(2) Switching characteristics are independent of operating junction temperature.  
2
Motorola TMOS Power MOSFET Transistor Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
6
5
4
3
2
1
0
6
V
= 10 V  
T
= 25  
°C  
V
10 V  
GS  
J
DS  
5
4
3
2
1
0
6 V  
100°C  
5 V  
4 V  
25°C  
T
= 55°C  
J
0
6
12  
18  
24  
30  
3.0  
3.4  
3.8  
4.2  
4.6  
5.0  
5.4  
5.8  
6.2  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
V , GATE–TO–SOURCE VOLTAGE (VOLTS)  
GS  
DS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
8
5.4  
5.0  
4.6  
V
= 10 V  
T = 100°C  
J
T
= 25°C  
GS  
J
6
4
V
= 10 V  
GS  
25°C  
15 V  
2
0
4.2  
3.8  
55  
°C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
I
, DRAIN CURRENT (AMPS)  
I , DRAIN CURRENT (AMPS)  
D
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10,000  
1,000  
100  
V
= 0 V  
GS  
V
I
= 10 V  
GS  
= 1.5 A  
T
= 125°C  
D
J
100°C  
25°C  
10  
1
50  
25  
0
25  
50  
75  
100  
C)  
125  
150  
0
200  
400  
600  
800  
1000  
1200  
T , JUNCTION TEMPERATURE (  
°
V
DS  
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
J
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
Motorola TMOS Power MOSFET Transistor Device Data  
3
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge controlled.  
The lengths of various switching intervals (t) are deter-  
mined by how fast the FET input capacitance can be charged  
by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off–state condition when cal-  
culating t  
and is read at a voltage corresponding to the  
d(on)  
on–state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements com-  
plicate the analysis. The inductance of the MOSFET source  
lead, inside the package and in the circuit wiring which is  
common to both the drain and gate current paths, produces a  
voltage at the source which reduces the gate drive current.  
The voltage is determined by Ldi/dt, but since di/dt is a func-  
tion of drain current, the mathematical solution is complex.  
The MOSFET output capacitance also complicates the  
mathematics. And finally, MOSFETs have finite internal gate  
resistance which effectively adds to the resistance of the  
driving source, but the internal resistance is difficult to mea-  
sure and, consequently, is not specified.  
The resistive switching time variation versus gate resis-  
tance (Figure 9) shows how typical switching performance is  
affected by the parasitic circuit elements. If the parasitics  
were not present, the slope of the curves would maintain a  
value of unity regardless of the switching speed. The circuit  
used to obtain the data is constructed to minimize common  
inductance in the drain and gate circuit loops and is believed  
readily achievable with board mounted components. Most  
power electronic loads are inductive; the data in the figure is  
taken with a resistive load, which approximates an optimally  
snubbed inductive load. Power MOSFETs may be safely op-  
erated into an inductive load; however, snubbing reduces  
switching losses.  
The published capacitance data is difficult to use for calculat-  
ing rise and fall because drain–gate capacitance varies  
greatly with applied voltage. Accordingly, gate charge data is  
used. In most cases, a satisfactory estimate of average input  
current (I  
the drive circuit so that  
) can be made from a rudimentary analysis of  
G(AV)  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a resis-  
tive load, V remains virtually constant at a level known as  
GS  
the plateau voltage, V  
. Therefore, rise and fall times may  
SGP  
be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
= the gate drive resistance  
GG  
GG  
R
G
and Q and V  
GSP  
are read from the gate charge curve.  
2
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate val-  
ues from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V  
/(V  
GG GG  
– V  
)]  
GSP  
d(on)  
G
iss  
In (V  
/V  
GG GSP  
)
d(off)  
G
iss  
2800  
10,000  
T
= 25°C  
V
= 0 V  
V
= 0 V  
J
DS  
V
= 0 V  
GS  
GS  
= 25°C  
2400  
2000  
1600  
T
J
C
C
iss  
C
iss  
1,000  
rss  
C
iss  
1200  
800  
400  
0
C
oss  
100  
10  
C
oss  
C
rss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
10  
100  
DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
1000  
V
V
DS  
GS  
GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
Figure 7b. High Voltage Capacitance  
Variation  
Figure 7a. Capacitance Variation  
4
Motorola TMOS Power MOSFET Transistor Device Data  
1000  
100  
10  
16  
14  
12  
10  
8
400  
350  
300  
250  
200  
150  
100  
V
= 600 V  
= 3 A  
= 10 V  
= 25°C  
DD  
I
V
T
D
GS  
J
QT  
t
t
d(off)  
V
I
t
GS  
f
Q2  
Q1  
6
4
d(on)  
t
= 3 A  
= 25  
r
D
T
°C  
J
2
0
50  
0
V
DS  
Q3  
1
0
4
8
12  
16  
20  
24  
28  
32  
1
10  
, GATE RESISTANCE (OHMS)  
G
100  
Q , TOTAL GATE CHARGE (nC)  
R
g
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
3.0  
V
T
= 0 V  
GS  
= 25  
°C  
2.4  
1.8  
1.2  
J
0.6  
0
0.55  
0.59  
0.63  
0.67  
0.71  
0.75  
0.79  
V
, SOURCE–TO–DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is for-  
ward biased. Curves are based upon maximum peak junc-  
able operation, the stored energy from circuit inductance dis-  
sipated in the transistor while in avalanche must be less than  
the rated limit and adjusted for operating conditions differing  
from those specified. Although industry practice is to rate in  
terms of energy, avalanche energy capability is not a con-  
stant. The energy rating decreases non–linearly with an in-  
crease of peak current in avalanche and peak junction  
temperature.  
tion temperature and a case temperature (T ) of 25°C. Peak  
C
repetitive pulsed power limits are determined by using the  
thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance–General  
Data and Its Use.”  
Although many E–FETs can withstand the stress of drain–  
to–source avalanche at currents up to rated pulsed current  
Switching between the off–state and the on–state may tra-  
verse any load line provided neither rated peak current (I  
)
DM  
) is exceeded and the transition time  
(I  
), the energy rating is specified at rated continuous cur-  
DM  
nor rated voltage (V  
DSS  
rent (I ), in accordance with industry custom. The energy rat-  
D
(t ,t ) do not exceed 10 µs. In addition the total power aver-  
r f  
ing must be derated for temperature as shown in the  
accompanying graph (Figure 12). Maximum energy at cur-  
aged over a complete switching cycle must not exceed  
(T  
– T )/(R ).  
J(MAX)  
C
θJC  
rents below rated continuous I can safely be assumed to  
A Power MOSFET designated E–FET can be safely used  
D
in switching circuits with unclamped inductive loads. For reli-  
Motorola TMOS Power MOSFET Transistor Device Data  
equal the values indicated.  
5
SAFE OPERATING AREA  
100  
120  
V
= 20 V  
GS  
SINGLE PULSE  
= 25  
I
= 3 A  
D
100  
T
°C  
C
10  
10  
µs  
80  
60  
40  
100  
µ
s
1.0  
1 ms  
10 ms  
dc  
0.1  
R
LIMIT  
DS(on)  
20  
0
THERMAL LIMIT  
PACKAGE LIMIT  
0.01  
0.1  
1.0  
10  
100  
1,000  
10,000  
25  
50  
75  
100  
125  
C)  
150  
V
, DRAIN–TO–SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (  
°
DS  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
0.1  
(pk)  
0.05  
0.02  
0.01  
R
(t) = r(t) R  
JC θJC  
θ
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
1
t
T
– T = P R (t)  
(pk) θJC  
2
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.01  
1.0E–05  
1.0E–04  
1.0E–03  
1.0E–02  
1.0E–01  
1.0E+00  
1.0E+01  
t, TIME (s)  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
t
a
b
TIME  
0.25 I  
t
S
p
I
S
Figure 14. Diode Reverse Recovery Waveform  
6
Motorola TMOS Power MOSFET Transistor Device Data  
D1D4  
1N4007s  
L1  
H1  
C1  
0.1  
1 kV  
C4  
0.1  
1 kV  
90VAC–  
600VAC  
+V  
in  
L1  
470 k  
1/2 W  
R4  
C6  
F
450 V  
+
+
H2  
100  
470 k  
1/2 W  
C3  
C2  
0.0047  
3 kV  
R3  
R2  
0.0047  
3 kV  
470 k  
1/2 W  
EARTH  
GND  
C5  
F
450 V  
100  
470 k  
1/2 W  
R1  
INPUT GND  
Figure 15. The AC Input/Filter Circuit Section  
D9  
MUR430  
100  
20 V  
F
T1  
+12 V  
+5 V  
+
+
C11  
C12  
D8  
MBR370  
100  
10 V  
F
+V  
in  
V
aux  
+
+
R16  
100 k  
1/2 W  
R20  
120  
R9  
R8  
82 k, 1/2 W  
1 nF  
3 kV  
C13  
MUR130  
D7  
C14  
C9  
D6  
R19  
32.4 k  
10  
25 V  
+
F
U2  
MOC8102  
R7  
R6  
R5  
C15  
1.5 nF  
D10  
V
aux  
C10  
R11  
1.8 k  
MUR1100  
LL  
C17  
2.2 nF  
1.3  
F
7.5 k  
7
MTP3N120E  
R12 10  
C16 R17  
UC3845BN  
R10  
27 k  
U3  
TL431  
D5  
3.3 V  
Q1  
R21  
2.49 k  
6
3
4
1
R13  
1 k  
R15  
680  
GND  
C7  
220 pF  
2
5
R14  
1.2  
1/2 W  
U2  
1/2  
C8  
1000 pF  
MOC8102  
INPUT GND  
Figure 16. The DC/DC Converter Circuit Section  
Motorola TMOS Power MOSFET Transistor Device Data  
7
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
B
F
T
S
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
STYLE 5:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
H
L
R
V
J
G
T
U
V
D
N
CASE 221A–06  
ISSUE Y  
Z
0.080  
2.04  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MTP3N120E/D  

相关型号:

MTP3N25E

TMOS POWER FET 3.0 AMPERES 250 VOLTS RDS(on) = 1.4 OHM
MOTOROLA

MTP3N35

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

MTP3N40

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

MTP3N40

TRANSISTOR,MOSFET,N-CHANNEL,400V V(BR)DSS,3A I(D),TO-220AB
NSC

MTP3N45

3A, 450V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP3N50

TMOS POWER FET 3.0 AMPERES 500 VOLTS RDS(on) = 3.0 OHMS
MOTOROLA

MTP3N50E

TMOS POWER FET 3.0 AMPERES 500 VOLTS RDS(on) = 3.0 OHMS
MOTOROLA

MTP3N50E16

3A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP3N50EA

3A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP3N50EA16A

3A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP3N50EAF

3A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP3N50EAJ

暂无描述
MOTOROLA