MOC3163S [MOTOROLA]

1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, PLASTIC, CASE 730C-04, 6 PIN;
MOC3163S
型号: MOC3163S
厂家: MOTOROLA    MOTOROLA
描述:

1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, PLASTIC, CASE 730C-04, 6 PIN

三端双向交流开关 输出元件 光电
文件: 总10页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MOC3162/D  
SEMICONDUCTOR TECHNICAL DATA  
[IFT = 10 mA Max]  
GlobalOptoisolator  
[IFT = 5 mA Max]  
*Motorola Preferred Device  
(600 Volts Peak)  
The MOC3162 and MOC3163 devices consist of gallium arsenide infrared  
emitting diodes optically coupled to monolithic silicon detectors performing the  
functions of Zero Voltage Crossing bilateral triac drivers.  
STYLE 6 PLASTIC  
They are designed for use with a triac in the interface of logic systems to  
equipment powered from 115/240 Vac lines, such as solid–state relays,  
industrial controls, motors, solenoids and consumer appliances, etc.  
6
1
Simplifies Logic Control of 115/240 Vac Power  
Zero Voltage Turn–On  
dv/dt of 1000 V/µs Guaranteed Minimum @ 600 V Peak  
STANDARD THRU HOLE  
CASE 730A–04  
I
Insensitive to Static dv/dt (Within Rated V )  
DRM  
FT  
To order devices that are tested and marked per VDE 0884 requirements, the  
suffix ”V” must be included at end of part number. VDE 0884 is a test option.  
COUPLER SCHEMATIC  
Recommended for 115/240 Vac(rms) Applications:  
Solenoid/Valve Controls  
Lighting Controls  
Temperature Controls  
E.M. Contactors  
AC Motor Starters  
Solid State Relays  
1
2
3
6
5
4
Static Power Switches  
AC Motor Drives  
Zero  
Crossing  
Circuit  
Static AC Power Switch  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
1. ANODE  
Rating  
Symbol  
Value  
Unit  
2. CATHODE  
3. NC  
4. MAIN TERMINAL  
5. SUBSTRATE  
DO NOT CONNECT  
6. MAIN TERMINAL  
INFRARED EMITTING DIODE  
Reverse Voltage  
V
R
6.0  
60  
Volts  
mA  
Forward Current — Continuous  
I
F
Total Power Dissipation @ T = 25°C  
P
D
120  
mW  
A
Negligible Power in Output Driver  
Derate above 25°C  
1.60  
mW/°C  
OUTPUT DRIVER  
Off–State Output Terminal Voltage  
V
600  
1.0  
Volts  
A
DRM  
Peak Repetitive Surge Current  
(PW = 100 µs, 120 pps)  
I
TSM  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
150  
2.0  
mW  
mW/°C  
A
TOTAL DEVICE  
Isolation Surge Voltage (1)  
(Peak ac Voltage, 60 Hz, 1 Second Duration)  
V
ISO  
7500  
Vac(pk)  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
250  
3.3  
mW  
mW/°C  
A
Junction Temperature Range  
Ambient Operating Temperature Range (2)  
T
40 to +100  
40 to +85  
40 to +150  
260  
°C  
°C  
°C  
°C  
J
T
A
(2)  
Storage Temperature Range  
T
stg  
Soldering Temperature (10 s)  
1. Isolation surge voltage, V  
T
L
, is an internal device dielectric breakdown rating.  
ISO  
1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.  
2. Refer to Quality and Reliability Section in Opto Data Book for information on test conditions.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
GlobalOptoisolator is a trademark of Motorola, Inc.  
Rev 1  
Motorola, Inc. 1997  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
INPUT LED  
Symbol  
Min  
Typ  
Max  
Unit  
Reverse Leakage Current  
(V = 6.0 V)  
R
I
0.05  
1.15  
100  
1.5  
µA  
R
Forward Voltage  
(I = 30 mA)  
F
V
Volts  
F
OUTPUT DETECTOR (I = 0)  
F
Leakage with LED Off, Either Direction  
I
10  
100  
nA  
DRM  
(Rated V  
, Note 1)  
DRM  
Critical Rate of Rise of Off–State Voltage (Note 3) @ 600 V Peak  
dv/dt  
1000  
V/µs  
COUPLED  
LED Trigger Current, Current Required to Latch Output  
(Main Terminal Voltage = 3.0 V, Note 2)  
I
mA  
FT  
MOC3162  
MOC3163  
10  
5.0  
Peak On–State Voltage, Either Direction  
V
TM  
1.7  
3.0  
Volts  
(I  
TM  
= 100 mA Peak, I = Rated I  
)
FT  
F
Holding Current, Either Direction  
I
200  
8.0  
µA  
H
Inhibit Voltage (MT1–MT2 Voltage Above Which Device Will Not Trigger)  
V
15  
Volts  
INH  
(I = Rated I  
)
F
FT  
Leakage in Inhibited State  
(I = 10 mA Maximum, at Rated V  
I
250  
500  
µA  
DRM2  
, Off State)  
DRM  
F
1. Test voltage must be applied within dv/dt rating.  
2. All devices are guaranteed to trigger at an I value less than or equal to max I . Therefore, recommended operating I lies between max  
F
FT  
F
2. I (10 mA for MOC3162, 5.0 mA for MOC3163) and absolute max I (60 mA).  
FT  
F
3. This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load–driving thyristor(s) only.  
TYPICAL ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
1000  
800  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
600  
400  
200  
NORMALIZED TO  
T
= 25°C  
A
0
200  
400  
600  
800  
–1000  
–6  
–4  
–2  
0
2
4
6
40  
25  
0
25  
50  
75  
100  
V
, ON–STATE VOLTAGE (VOLTS)  
T , AMBIENT TEMPERATURE (°C)  
TM  
A
Figure 1. On–State Characteristics  
Figure 2. Inhibit Voltage versus Temperature  
2
Motorola Optoelectronics Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
= 25°C  
T
A
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1000  
100  
10  
NORMALIZED TO  
= 25  
T
°C  
V
= 600 V  
A
DRM  
= 10 mA  
I
F
V
= 600 V  
DRM  
1
40  
25  
0
25  
50  
75  
100  
40  
25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 3. Leakage with LED Off  
versus Temperature  
Figure 4. I  
, Leakage in Inhibit State  
DRM2  
versus Temperature  
1.6  
1.4  
I
versus Temperature (Normalized)  
FT  
This graph shows the increase of the trigger current  
when the device is expected to operate at an ambient  
NORMALIZED TO  
1.2  
1.0  
0.8  
T
= 25°C  
temperature below 25°C. Multiply the normalized I  
A
FT  
.
shown on this graph with the data sheet guaranteed I  
FT  
Example:  
T = – 40°C, I = 10 mA  
A
FT  
0.6  
0.4  
I
@ – 40°C = 10 mA x 1.4 = 14 mA  
FT  
0.2  
0.0  
40  
25  
0
25  
50  
75  
100  
T , AMBIENT TEMPERATURE (  
°C)  
A
Figure 5. Trigger Current versus Temperature  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
2.0  
PULSE ONLY  
PULSE OR DC  
1.5  
1.0  
0.5  
0
NORMALIZED TO  
= 25  
T
°C  
A
T
= 40°C  
A
25°C  
85°C  
40  
25  
0
25  
50  
75  
100  
1.0  
10  
100  
1000  
I , LED FORWARD CURRENT (mA)  
T , AMBIENT TEMPERATURE (  
°C)  
F
A
Figure 6. LED Forward Voltage versus  
Forward Current  
Figure 7. Holding Current, I versus Temperature  
H
Motorola Optoelectronics Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS  
= 25°C  
T
A
1.8  
I
versus dv/dt  
FT  
Triac drivers with good noise immunity (dv/dt stat.) have in-  
ternal noise rejection circuits which prevent false triggering of  
the device in the event of fast raising line voltage transients.  
Inductive loads generate a commutating dv/dt that may acti-  
vate the triac driver’s noise suppression circuits. This pre-  
vents the device from turning on at its specified trigger  
current. It will in this case go into the mode of “half–waving”  
of the load. Half–waving of the load may destroy the power  
triac and the load.  
1.6  
1.4  
1.2  
1.0  
MOC3163  
MOC3162  
100  
Figure 8 shows the dependency of the triac drivers I ver-  
FT  
0.8  
0.6  
sus the reapplied voltage rise with a V of 600 V. This dv/dt  
p
condition simulates a worst case commutating dv/dt ampli-  
tude.  
0.001  
0.01  
0.1  
1.0  
10  
s)  
1000  
It can be seen that the required trigger current I changes  
FT  
COMMUTATING dv/dt (V/  
µ
with increased dv/dt. Practical loads generate a commutating  
dv/dt of less than 50 V/µs. The rate of rise of the commutat-  
ing dv/dt is effectively slowed by the use of snubber networks  
across the main triac. This snubber is also needed to keep  
the commutating dv/dt generated by inductive loads within  
the commutating dv/dt ratings of the power triac.  
Figure 8. LED Trigger Current, I , versus dv/dt  
FT  
+ 600  
Vdc  
R
Test  
1. The mercury wetted relay provides a high speed repeated pulse  
to the D.U.T.  
R = 1 k  
2. 100x scope probes are used, to allow high speeds and voltages.  
3. The worst–case condition for static dv/dt is established by  
triggering the D.U.T. with a normal LED input current, then  
PULSE  
INPUT  
MERCURY  
WETTED  
RELAY  
C
Test  
X100  
SCOPE  
PROBE  
removing the current. The variable R  
allows the dv/dt to be  
TEST  
D.U.T.  
gradually increased until the D.U.T. continues to trigger in  
response to the applied voltage pulse, even after the LED current  
has been removed. The dv/dt is then decreased until the D.U.T.  
stops triggering. τ  
is measured at this point and recorded.  
RC  
V
= 600 V  
0.63 V  
max  
APPLIED VOLTAGE  
WAVEFORM  
378 V  
378 V  
max  
=
dv/dt =  
0 VOLTS  
τ
τ
RC  
RC  
τ
RC  
Figure 9. Static dv/dt Test Circuit  
4
Motorola Optoelectronics Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
= 25°C  
T
A
25  
20  
15  
10  
LED Trigger Current versus PW (Normalized)  
For resistive loads the triac drivers may be controlled by  
short pulse into the input LED. This input pulse must be syn-  
chronized with the AC line voltage zero–crossing points. LED  
trigger pulse currents shorter than 100 µs must have an in-  
creased amplitude as shown on Figure 10. This graph shows  
NORMALIZED TO  
PW 100  
µs  
in  
the dependency of the trigger current I  
versus the pulse  
FT  
width t(PW). I in the graph, I versus (PW), is normalized  
FT FT  
in respect to the minimum specified I  
FT  
for static condition,  
which is specified in the device characteristic. The normal-  
ized I has to be multiplied with the device’s guaranteed  
FT  
5
0
static trigger current.  
Example:  
Guaranteed I = 10 mA, Trigger pulse width PW = 3.0 µs  
1
2
5
10  
20  
50  
100  
FT  
I
(pulsed) = 10 mA x 5.0 = 50 mA  
FT  
PW , LED TRIGGER PULSE WIDTH (  
µs)  
in  
Figure 10. LED Current Required to Trigger  
versus LED Pulse Width  
Motorola Optoelectronics Device Data  
5
APPLICATIONS GUIDE  
BASIC APPLICATIONS  
Basic Triac Driver Circuit  
Zero–cross triac drivers are very immune to static dv/dt.  
This allows snubberless operations in all applications where  
the external generated noise amplitude and rate of rise in the  
AC line is not exceeding the devices’ guaranteed limits. For  
these applications a snubber circuit is not necessary when a  
noise insensitive power triac is used. Figure 11 shows the cir-  
cuit diagram. The triac driver is directly connected to the triac  
main terminal 2 and a series Resistor R which limits the cur-  
rent to the triac driver. Current limiting resistor R could be  
very small for normal operation since the triac driver can be  
only switched on within the zero–cross window. Worst case  
consideration, however, considers accidental turn on at the  
peak of the line voltage due to a line transient exceeding the  
devices’ maximum ratings. For this reason R should be cal-  
TRIAC DRIVER  
POWER TRIAC  
V
R
LED  
CC  
AC LINE  
R
CONTROL  
LOAD  
Q
RETURN  
R
= (V  
– V LED – V  
Q)/I  
sat FT  
LED  
CC  
F
R = V AC line/I  
p
TSM  
The load may be placed on either side of  
the AC line.  
Figure 11. Basic Driver Circuit  
culated to limit the current to I  
voltage.  
max at the peak of the line  
drm  
R = V AC/I  
max rep. = V AC/1A  
p
p
TM  
The power dissipation of this current limiting resistor and  
the triac driver is very small because the power triac carries  
the load current as soon as the current through driver and  
current limiting resistor reaches the trigger current of the  
power triac. The switching transition time for the driver is only  
one micro second and for power triacs typical four micro se-  
conds.  
TRIAC DRIVER  
POWER TRIAC  
V
R
LED  
CC  
R
S
R
Triac Driver Circuit for Noisy Environments  
AC LINE  
MOV  
When the transient rate of rise and amplitude are expected  
to exceed the power triacs and triac drivers maximum ratings  
a snubber circuit as shown in Figure 12 is recommended.  
Fast transients are slowed by the R–C snubber and exces-  
sive amplitudes are clipped by the Metal Oxide Varistor MOV.  
C
S
CONTROL  
Q
LOAD  
RETURN  
Traditional snubber configuration  
Typical Snubber values R = 33 , C = 0.01 µF  
MOV (Metal Oxide Varistor) protects triac and driver  
from transient overvoltages >V max  
S
S
DRM  
Figure 12. Triac Driver Circuit for Noisy Environments  
POWER TRIAC  
TRIAC DRIVER  
Triac Driver Circuit for Extremely Noisy Environments  
Noisy environments for this circuit are defined in the noise  
standards IEEE472, IEC255–4 and IEC801–4.  
V
R
CC  
R
LED  
R
S
Industrial control applications, for example, do specify a  
maximum expected transient noise dv/dt and peak voltage  
which is superimposed onto the AC line voltage. Figure 13  
shows a split snubber network which enhances the circuits  
noise immunity by protecting the triac driver with optimized  
efficiency.  
AC LINE  
MOV  
C
S
CONTROL  
Q
LOAD  
RETURN  
Recommended snubber values R = 10 W, C = 0.033 mF  
S
S
Figure 13. Triac Driver Circuit for Extremely  
Noisy Environments  
6
Motorola Optoelectronics Device Data  
APPLICATIONS GUIDE  
V
R
Hot–Line Switching Application Circuit  
CC  
360 Ω  
in  
1
2
3
6
5
4
HOT  
Typical circuit for use when hot–line switching is required.  
In this circuit the “hot” side of the line is switched and the load  
connected to the cold or neutral side. The load may be con-  
nected to either the neutral or hot–line.  
39  
MOC3162/  
MOC3163  
240 Vac  
R
is calculated so that I is equal to the rated I  
of the  
in  
F
FT  
0.01  
part, 10 mA for the MOC3162, and 5.0 mA for the MOC3163.  
The 39 ohm resistor and 0.01 µF capacitor are for snubbing  
of the triac and may or may not be necessary depending  
upon the particular triac and load used.  
NEUTRAL  
LOAD  
Figure 14. Hot–Line Switching Application Circuit  
Inverse Parallel SCR Driver Circuit  
TRIAC DRIVER  
Two inverse parallel SCR’s are controlled by one triac driv-  
er with a minimum component count as shown in Figure 15.  
A snubber network and a MOV across the main terminals of  
the SCR’s protects the semiconductors from transients on  
the AC line.  
V
R
CC  
R
LED  
R
S
SCR  
AC LINE  
MOV  
SCR  
C
S
CONTROL  
RETURN  
Q
LOAD  
Figure 15. Inverse Parallel SCR Driver Circuit  
Motorola Optoelectronics Device Data  
7
PACKAGE DIMENSIONS  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
6
4
3
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
–B–  
1
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
C
F 4 PL  
L
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
N
F
–T–  
SEATING  
PLANE  
K
G
J
K
L
M
N
0.100 BSC  
2.54 BSC  
0.008  
0.100  
0.012  
0.150  
0.21  
2.54  
0.30  
3.81  
J 6 PL  
G
0.300 BSC  
7.62 BSC  
M
M
M
0.13 (0.005)  
T
B
A
M
0
15  
0
15  
E 6 PL  
0.015  
0.100  
0.38  
2.54  
D 6 PL  
0.13 (0.005)  
M
M
M
T
A
B
STYLE 6:  
PIN 1. ANODE  
2. CATHODE  
3. NC  
4. MAIN TERMINAL  
5. SUBSTRATE  
6. MAIN TERMINAL  
CASE 730A–04  
ISSUE G  
–A–  
6
4
3
NOTES:  
–B–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
1
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
L
F 4 PL  
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
H
C
F
–T–  
SEATING  
PLANE  
G
H
J
K
L
0.100 BSC  
2.54 BSC  
G
J
0.020  
0.008  
0.006  
0.320 BSC  
0.332  
0.025  
0.012  
0.035  
0.51  
0.20  
0.16  
8.13 BSC  
8.43  
0.63  
0.30  
0.88  
K 6 PL  
0.13 (0.005)  
M
E 6 PL  
M
M
M
T
B
A
D 6 PL  
0.13 (0.005)  
S
0.390  
9.90  
M
M
T
A
B
*Consult factory for leadform  
option availability  
CASE 730C–04  
ISSUE D  
8
Motorola Optoelectronics Device Data  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
–A–  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
6
4
3
–B–  
INCHES  
MILLIMETERS  
1
DIM  
A
B
C
D
E
MIN  
MAX  
0.350  
0.260  
0.200  
0.020  
0.070  
0.014  
MIN  
8.13  
6.10  
2.93  
0.41  
1.02  
0.25  
MAX  
8.89  
6.60  
5.08  
0.50  
1.77  
0.36  
0.320  
0.240  
0.115  
0.016  
0.040  
0.010  
L
N
F 4 PL  
F
C
G
J
K
L
0.100 BSC  
2.54 BSC  
0.008  
0.100  
0.400  
0.015  
0.012  
0.150  
0.425  
0.040  
0.21  
2.54  
0.30  
3.81  
–T–  
SEATING  
PLANE  
10.16  
0.38  
10.80  
1.02  
N
G
J
K
D 6 PL  
0.13 (0.005)  
E 6 PL  
M
M
M
T
A
B
*Consult factory for leadform  
option availability  
CASE 730D–05  
ISSUE D  
Motorola Optoelectronics Device Data  
9
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MOC3162/D  

相关型号:

MOC3163S-M

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, SURFACE MOUNT, DIP-6
FAIRCHILD

MOC3163SM

6-PIN DIP ZERO-CROSS PHOTOTRIAC DRIVER OPTOCOUPLER (600V PEAK)
FAIRCHILD

MOC3163SM

三路驱动器输出光耦合器,6 引脚 DIP 600V 零交叉
ONSEMI

MOC3163SR2

Triac Output Optocoupler With Zero CRSVR, 1-Element, 7500V Isolation
MOTOROLA

MOC3163SR2-M

Optocoupler - Trigger Device Output, 1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, SURFACE MOUNT, DIP-6
FAIRCHILD

MOC3163SR2M

6-PIN DIP ZERO-CROSS PHOTOTRIAC DRIVER OPTOCOUPLER (600V PEAK)
FAIRCHILD

MOC3163SR2M

三路驱动器输出光耦合器,6 引脚 DIP 600V 零交叉
ONSEMI

MOC3163SR2V

1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, PLASTIC, DIP-6
MOTOROLA

MOC3163SR2V-M

1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, SURFACE MOUNT, DIP-6
FAIRCHILD

MOC3163SR2VM

6-PIN DIP ZERO-CROSS PHOTOTRIAC DRIVER OPTOCOUPLER (600V PEAK)
FAIRCHILD

MOC3163SR2VM

三路驱动器输出光耦合器,6 引脚 DIP 600V 零交叉
ONSEMI

MOC3163SV

1 CHANNEL TRIAC OUTPUT WITH ZERO CRSVR OPTOCOUPLER, PLASTIC, CASE 730C-04, 6 PIN
MOTOROLA