MMUN2233LT1 [MOTOROLA]

NPN SILICON BIAS RESISTOR TRANSISTOR; NPN硅偏置电阻晶体管
MMUN2233LT1
型号: MMUN2233LT1
厂家: MOTOROLA    MOTOROLA
描述:

NPN SILICON BIAS RESISTOR TRANSISTOR
NPN硅偏置电阻晶体管

晶体 小信号双极晶体管
文件: 总12页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMUN2211LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon Surface Mount Transistor with  
Monolithic Bias Resistor Network  
Motorola Preferred Devices  
This new series of digital transistors is designed to replace a single device and its  
external resistor bias network. The BRT (Bias Resistor Transistor) contains a single  
transistor with a monolithic bias network consisting of two resistors; a series base  
resistor and a base-emitter resistor. The BRT eliminates these individual components  
by integrating them into a single device. The use of a BRT can reduce both system  
cost and board space. The device is housed in the SOT-23 package which is  
designed for low power surface mount applications.  
NPN SILICON  
BIAS RESISTOR  
TRANSISTOR  
Simplifies Circuit Design  
Reduces Board Space  
PIN 3  
COLLECTOR  
(OUTPUT)  
Reduces Component Count  
3
The SOT-23 package can be soldered using wave or  
reflow. The modified gull-winged leads absorb thermal  
stress during soldering eliminating the possibility of  
damage to the die.  
R1  
R2  
1
PIN 1  
BASE  
(INPUT)  
2
Available in 8 mm embossed tape and reel. Use the  
Device Number to order the 7 inch/3000 unit reel.  
Replace “T1” with “T3” in the Device Number to order  
the13 inch/10,000 unit reel.  
PIN 2  
EMITTER  
(GROUND)  
CASE 318-08, STYLE 6  
SOT-23 (TO-236AB)  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Collector-Base Voltage  
Symbol  
Value  
50  
Unit  
Vdc  
V
CBO  
CEO  
Collector-Emitter Voltage  
Collector Current  
V
50  
Vdc  
I
C
100  
mAdc  
(1)  
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
*200  
1.6  
mW  
mW/°C  
A
P
D
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction-to-Ambient (surface mounted)  
Operating and Storage Temperature Range  
R
625  
°C/W  
°C  
θJA  
T , T  
J
65 to +150  
stg  
Maximum Temperature for Soldering Purposes,  
Time in Solder Bath  
260  
10  
°C  
Sec  
T
L
DEVICE MARKING AND RESISTOR VALUES  
Device  
Marking  
R1 (K)  
R2 (K)  
MMUN2211LT1  
MMUN2212LT1  
MMUN2213LT1  
MMUN2214LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2230LT1  
MMUN2231LT1  
MMUN2232LT1  
MMUN2233LT1  
MMUN2234LT1  
A8A  
A8B  
A8C  
A8D  
A8E  
A8F  
A8G  
A8H  
A8J  
A8K  
A8L  
10  
22  
47  
10  
10  
4.7  
1
2.2  
4.7  
4.7  
22  
10  
22  
47  
47  
1
2.2  
4.7  
47  
47  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
1. Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.  
2. New devices. Updated curves to follow in subsequent data sheets.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
(Replaces MMUN2211T1/D)  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V  
CB  
= 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
E
CBO  
Collector-Emitter Cutoff Current (V  
= 50 V, I = 0)  
B
CE  
CEO  
Emitter-Base Cutoff Current  
MMUN2211LT1  
MMUN2212LT1  
MMUN2213LT1  
MMUN2214LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2230LT1  
MMUN2231LT1  
MMUN2232LT1  
MMUN2233LT1  
MMUN2234LT1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
EBO  
(V  
EB  
= 6.0 V, I = 0)  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
(3)  
Collector-Emitter Breakdown Voltage (I = 2.0 mA, I = 0)  
C
B
(BR)CEO  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
MMUN2211LT1  
MMUN2212LT1  
MMUN2213LT1  
MMUN2214LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2230LT1  
MMUN2231LT1  
MMUN2232LT1  
MMUN2233LT1  
MMUN2234LT1  
h
FE  
35  
60  
80  
60  
100  
140  
140  
350  
350  
5.0  
15  
(V  
CE  
= 10 V, I = 5.0 mA)  
C
80  
160  
160  
3.0  
8.0  
15  
30  
200  
150  
80  
80  
Collector-Emitter Saturation Voltage (I = 10 mA, I = 0.3 mA)  
V
CE(sat)  
0.25  
Vdc  
Vdc  
C
B
(I = 10 mA, I = 5 mA) MMUN2230LT1/MMUN2231LT1  
C
B
(I = 10 mA, I = 1 mA) MMUN2215LT1/MMUN2216LT1  
C
B
MMUN2232LT1/MMUN2233LT1/MMUN2234LT1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k )  
V
OL  
MMUN2211LT1  
MMUN2212LT1  
MMUN2214LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2230LT1  
MMUN2231LT1  
MMUN2232LT1  
MMUN2233LT1  
MMUN2234LT1  
MMUN2213LT1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V  
CC  
= 5.0 V, V = 3.5 V, R = 1.0 k )  
B L  
Output Voltage (off) (V  
= 5.0 V, V = 0.5 V, R = 1.0 k )  
V
OH  
4.9  
Vdc  
CC  
B
L
(V  
(V  
= 5.0 V, V = 0.050 V, R = 1.0 k )  
MMUN2230LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2233LT1  
CC  
CC  
B
L
L
= 5.0 V, V = 0.25 V, R = 1.0 k )  
B
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
(3)  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS  
Input Resistor  
MMUN2211LT1  
MMUN2212LT1  
MMUN2213LT1  
MMUN2214LT1  
MMUN2215LT1  
MMUN2216LT1  
MMUN2230LT1  
MMUN2231LT1  
MMUN2232LT1  
MMUN2233LT1  
MMUN2234LT1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
13  
28.6  
61.1  
13  
k Ω  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
28.6  
15.4  
Resistor Ratio  
MMUN2211LT1/MMUN2212LT1/MMUN2213LT1  
MMUN2214LT1  
MMUN2215LT1/MMUN2216LT1  
MMUN2230LT1/MMUN2231LT1/MMUN2232LT1  
MMUN2233LT1  
R1/R2  
0.8  
0.17  
0.8  
0.055  
0.38  
1.0  
0.21  
1.0  
0.1  
1.2  
0.25  
1.2  
0.185  
0.56  
MMUN2234LT1  
0.47  
3. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2211LT1  
250  
200  
1
I /I = 10  
C B  
T = –25°C  
A
25°C  
75°C  
0.1  
150  
100  
50  
0.01  
R
θJA  
= 625°C/W  
0
0.001  
–50  
0
50  
100  
150  
0
20  
40  
60  
80  
50  
50  
T , AMBIENT TEMPERATURE (°C)  
A
I , COLLECTOR CURRENT (mA)  
C
Figure 1. Derating Curve  
Figure 2. V  
versus I  
C
CE(sat)  
4
3
1000  
100  
10  
V
CE  
= 10 V  
f = 1 MHz  
l = 0 V  
E
T =75°C  
A
T = 25°C  
A
25°C  
–25°C  
2
1
0
0
10  
20  
30  
40  
1
10  
100  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
I , COLLECTOR CURRENT (mA)  
C
Figure 4. Output Capacitance  
Figure 3. DC Current Gain  
100  
10  
10  
25°C  
T = –25°C  
A
V = 0.2 V  
75°C  
O
T = –25°C  
A
25°C  
75°C  
1
0.1  
1
0.01  
0.001  
V = 5 V  
O
0.1  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
V , INPUT VOLTAGE (VOLTS)  
in  
I , COLLECTOR CURRENT (mA)  
C
Figure 5. V  
versus I  
C
CE(sat)  
Figure 6. V  
CE(sat)  
versus I  
C
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2212LT1  
1000  
1
V
CE  
= 10 V  
I /I = 10  
C B  
T = –25°C  
A
T =75°C  
A
25°C  
75°C  
25°C  
0.1  
–25°C  
100  
10  
0.01  
0.001  
0
20  
40  
60  
80  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 7. V  
CE(sat)  
versus I  
C
Figure 8. DC Current Gain  
4
3
2
1
0
100  
10  
1
75°C  
25°C  
f = 1 MHz  
T = –25°C  
A
l = 0 V  
E
T = 25°C  
A
0.1  
0.01  
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T = –25°C  
A
10  
1
25°C  
75°C  
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2213LT1  
10  
1000  
I /I = 10  
C B  
T = –25°C  
A
V
CE  
= 10 V  
T =75°C  
A
25°C  
75°C  
25°C  
–25°C  
1
100  
0.1  
0.01  
10  
1
10  
100  
0
20  
40  
60  
80  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 12. V  
versus I  
Figure 13. DC Current Gain  
CE(sat)  
C
1
100  
10  
1
25°C  
75°C  
f = 1 MHz  
l = 0 V  
E
0.8  
T = –25°C  
A
T = 25°C  
A
0.6  
0.4  
0.1  
0.01  
0.2  
0
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T = –25°C  
A
25°C  
75°C  
10  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2214LT1  
1
0.1  
300  
T = –25°C  
I /I = 10  
C B  
T =75°C  
A
A
V
CE  
= 10  
250  
200  
150  
100  
25°C  
75°C  
25°C  
–25°C  
0.01  
50  
0
0.001  
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 17. V  
versus I  
Figure 18. DC Current Gain  
CE(sat)  
C
4
3.5  
3
100  
10  
1
75°C  
25°C  
f = 1 MHz  
l = 0 V  
T = 25°C  
A
E
2.5  
T = –25°C  
A
2
1.5  
1
0.5  
0
V = 5 V  
O
0
2
4
6
8
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
10  
T = –25°C  
A
V = 0.2 V  
O
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
TYPICAL APPLICATIONS FOR NPN BRTs  
+12 V  
ISOLATED  
LOAD  
FROM µP OR  
OTHER LOGIC  
Figure 22. Level Shifter: Connects 12 or 24 Volt Circuits to Logic  
+12 V  
V
CC  
OUT  
IN  
LOAD  
Figure 23. Open Collector Inverter: Inverts  
the Input Signal  
Figure 24. Inexpensive, Unregulated Current Source  
8
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT-23 POWER DISSIPATION  
The power dissipation of the SOT-23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to the pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient; and the operating temperature, T . Using the  
values provided on the data sheet, P can be calculated as  
follows.  
A
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference should be a maximum of 10°C.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 200 milliwatts.  
150°C – 25°C  
625°C/W  
P
=
= 200 milliwatts  
D
The 625°C/W assumes the use of the recommended  
footprint on a glass epoxy printed circuit board to achieve a  
power dissipation of 200 milliwatts. Another alternative would  
be to use a ceramic substrate or an aluminum core board  
such as Thermal Clad . Using a board material such as  
Thermal Clad, a power dissipation of 400 milliwatts can be  
achieved using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
9
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of control  
settings that will give the desired heat pattern. The operator  
must set temperatures for several heating zones, and a  
figure for belt speed. Taken together, these control settings  
make up a heating “profile” for that particular circuit board.  
On machines controlled by a computer, the computer  
remembers these profiles from one operating session to the  
next. Figure 25 shows a typical heating profile for use when  
soldering a surface mount device to a printed circuit board.  
This profile will vary among soldering systems but it is a good  
starting point. Factors that can affect the profile include the  
type of soldering system in use, density and types of  
components on the board, type of solder used, and the type  
of board or substrate material being used. This profile shows  
temperature versus time. The line on the graph shows the  
actual temperature that might be experienced on the surface  
of a test board at or near a central solder joint. The two  
profiles are based on a high density and a low density board.  
The Vitronics SMD310 convection/infrared reflow soldering  
system was used to generate this profile. The type of solder  
used was 62/36/2 Tin Lead Silver with a melting point  
between 177189°C. When this type of furnace is used for  
solder reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
SPIKE”  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
STEP 4  
HEATING  
ZONES 3 & 6  
SOAK”  
STEP 2  
VENT  
SOAK”  
STEP 3  
HEATING  
ZONES 2 & 5  
RAMP”  
205° TO  
219°C  
PEAK AT  
SOLDER  
JOINT  
RAMP”  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
200°C  
150°C  
100°C  
50°C  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
100°C  
140°C  
MASS OF ASSEMBLY)  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
T
MAX  
TIME (3 TO 7 MINUTES TOTAL)  
Figure 25. Typical Solder Heating Profile  
10  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
C
K
L
S
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
0.45  
0.89  
2.10  
0.45  
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
11  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecificallydisclaimsanyandallliability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMUN2211LT1/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY