MMBD330T1 [MOTOROLA]

Schottky Barrier Diodes; 肖特基势垒二极管
MMBD330T1
型号: MMBD330T1
厂家: MOTOROLA    MOTOROLA
描述:

Schottky Barrier Diodes
肖特基势垒二极管

二极管
文件: 总8页 (文件大小:156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
BY MMBD110T1/D  
SEMICONDUCTOR TECHNICAL DATA  
Schottky barrier diodes are designed primarily for high–efficiency UHF and  
VHF detector applications. Readily available to many other fast switching RF  
and digital applications. They are housed in the SOT–323/SC–70 package  
which is designed for low–power surface mount applications.  
3
Extremely Low Minority Carrier Lifetime  
Very Low Capacitance  
1
2
CASE 419A–02, STYLE 2  
SOT-323/SC–70  
Low Reverse Leakage  
Available in 8 mm Tape and Reel  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Reverse Voltage  
MMBD110T1  
MMBD330T1  
MMBD770T1  
V
R
7.0  
30  
70  
Vdc  
Forward Power Dissipation  
P
T
120  
mW  
F
T
A
= 25°C  
Junction Temperature  
55 to +125  
55 to +150  
°C  
°C  
J
Storage Temperature Range  
T
stg  
DEVICE MARKING  
MMBD110T1 = 4M  
MMBD330T1 = 4T  
MMBD770T1 = 5H  
Thermal Clad is a registered trademark of the Bergquist Company.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Reverse Breakdown Voltage  
V
Volts  
(BR)R  
(I = 10 µA)  
R
MMBD110T1  
MMBD330T1  
MMBD770T1  
7.0  
30  
70  
10  
Diode Capacitance  
C
pF  
T
(V = 0, f = 1.0 MHZ, Note 1)  
MMBD110T1  
MMBD330T1  
MMBD770T1  
0.88  
0.9  
0.5  
1.0  
1.5  
1.0  
R
(V = 15 Volts, f = 1.0 MHZ)  
R
(V = 20 Volts, f = 1.0 MHZ)  
R
Reverse Leakage  
I
R
nAdc  
(V = 3.0 V)  
MMBD110T1  
MMBD330T1  
MMBD770T1  
20  
13  
9.0  
250  
200  
200  
R
(V = 25 V)  
R
(V = 35 V)  
R
Noise Figure  
NF  
dB  
(f = 1.0 GHz, Note 2)  
MMBD110T1  
6.0  
Forward Voltage  
V
F
Vdc  
(I = 10 mA)  
MMBD110T1  
MMBD330T1  
0.5  
0.38  
0.52  
0.42  
0.7  
0.6  
0.45  
0.6  
0.5  
1.0  
F
(I = 1.0 mAdc)  
F
(I = 10 mA)  
F
(I = 1.0 mAdc)  
MMBD770T1  
F
(I = 10 mA)  
F
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL CHARACTERISTICS  
MMBD110T1  
1.0  
0.7  
0.5  
100  
V
= 3.0 Vdc  
R
10  
0.2  
T
= 85°C  
T
= 40°C  
A
A
0.1  
0.07  
0.05  
1.0  
0.1  
T
= 25°C  
A
0.02  
0.01  
MMBD110T1  
MMBD110T1  
0.7  
30  
40  
50  
60  
70  
80  
90  
100 110 120  
130  
0.3  
0.4  
0.5  
0.6  
0.8  
T , AMBIENT TEMPERATURE (°C)  
V , FORWARD VOLTAGE (VOLTS)  
A
F
Figure 1. Reverse Leakage  
Figure 2. Forward Voltage  
1.0  
0.9  
11  
10  
9
LOCAL OSCILLATOR FREQUENCY = 1.0 GHz  
(Test Circuit Figure 5)  
8
7
0.8  
6
5
4
0.7  
0.6  
3
2
1
MMBD110T1  
MMBD110T1  
0
1.0  
2.0  
3.0  
4.0  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
V
, REVERSE VOLTAGE (VOLTS)  
P
, LOCAL OSCILLATOR POWER (mW)  
R
LO  
Figure 3. Capacitance  
Figure 4. Noise Figure  
LOCAL  
OSCILLATOR  
NOTES ON TESTING AND SPECIFICATIONS  
Note1—C andC aremeasuredusingacapacitancebridge  
C
T
(Boonton Electronics Model 75A or equivalent).  
Note2—Noisefiguremeasuredwithdiodeundertestintuned  
diodemountusingUHFnoisesourceandlocaloscil-  
lator(LO)frequencyof1.0GHz.TheLOpowerisad-  
justed for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30  
MHz, see Figure 5.  
UHF  
NOISE SOURCE  
H.P. 349A  
DIODE IN  
TUNED  
MOUNT  
NOISE  
FIGURE METER  
H.P. 342A  
IF AMPLIFIER  
NF = 1.5 dB  
f = 30 MHz  
Figure 5. Noise Figure Test Circuit  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL CHARACTERISTICS  
MMBD330T1  
2.8  
2.4  
2.0  
1.6  
1.2  
500  
MMBD330T1  
MMBD330T1  
f = 1.0 MHz  
400  
KRAKAUER METHOD  
300  
200  
100  
0
0.8  
0.4  
0
0
3.0  
6.0  
9.0  
12  
15  
18  
21  
24  
27  
30  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
V
, REVERSE VOLTAGE (VOLTS)  
I , FORWARD CURRENT (mA)  
R
F
Figure 6. Total Capacitance  
Figure 7. Minority Carrier Lifetime  
10  
100  
10  
MMBD330T1  
= 100°C  
MMBD330T1  
T
A
1.0  
T
= 40°C  
A
T
= 85°C  
A
T
= 75°C  
A
0.1  
1.0  
0.1  
T
= 25  
°C  
A
T
= 25  
°C  
A
0.01  
0.001  
0
6.0  
12  
18  
24  
30  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, REVERSE VOLTAGE (VOLTS)  
V , FORWARD VOLTAGE (VOLTS)  
F
R
Figure 8. Reverse Leakage  
Figure 9. Forward Voltage  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL CHARACTERISTICS  
MMBD770T1  
2.0  
1.6  
500  
MMBD770T1  
MMBD770T1  
f = 1.0 MHz  
400  
KRAKAUER METHOD  
300  
200  
100  
0
1.2  
0.8  
0.4  
0
0
5.0  
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
V
, REVERSE VOLTAGE (VOLTS)  
I , FORWARD CURRENT (mA)  
R
F
Figure 10. Total Capacitance  
Figure 11. Minority Carrier Lifetime  
10  
100  
10  
MMBD770T1  
= 100°C  
MMBD770T1  
T
A
1.0  
T
= 85°C  
T
= 40°C  
A
A
T
= 75°C  
A
0.1  
1.0  
0.1  
T
= 25°C  
0.01  
A
T
= 25  
°C  
A
0.001  
0
10  
20  
30  
40  
50  
0.2  
0.4  
0.8  
1.2  
1.6  
2.0  
V
, REVERSE VOLTAGE (VOLTS)  
V , FORWARD VOLTAGE (VOLTS)  
R
F
Figure 12. Reverse Leakage  
Figure 13. Forward Voltage  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
INFORMATION FOR USING THE SOT–323/SC–70 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SOT–323/SC–70  
SOT–323/SC–70 POWER DISSIPATION  
The power dissipation of the SOT–323/SC–70 is a function  
SOLDERING PRECAUTIONS  
of the pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–323/SC–70  
package, P can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 150 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
833°C/W  
P
=
= 150 milliwatts  
D
The 833°C/W for the SOT–323/SC–70 package assumes  
the use of the recommended footprint on a glass epoxy  
printed circuit board to achieve a power dissipation of  
150 milliwatts. There are other alternatives to achieving  
higher power dissipation from the SOT–323/SC–70 package.  
Another alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a board  
material such as Thermal Clad, an aluminum core board, the  
power dissipation can be doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
A
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3
INCHES  
MILLIMETERS  
B
S
DIM  
A
B
C
D
G
H
J
MIN  
MAX  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
1
2
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
J
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
N
C
V
0.05 (0.002)  
K
H
STYLE 2:  
PIN 1. ANODE  
2. N.C.  
3. CATHODE  
CASE 419–02  
ISSUE G  
SOT–323/SC–70  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBD110T1/D  

相关型号:

MMBD330T1G

Schottky Barrier Diodes
ONSEMI

MMBD330W

SURFACE MOUNT SCHOTTKY DIODE
PANJIT

MMBD330WS

SURFACE MOUNT SCHOTTKY DIODE
PANJIT

MMBD330WS_09

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD330WS_15

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD330WS_16

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD330WS_R1_00001

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD330WS_R2_00001

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD330W_09

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT

MMBD352

Dual Hot Carrier Mixer Diodes
ONSEMI

MMBD352

Dual Hot Carrier Mixer Diodes
LRC

MMBD352

SURFACE MOUNT HIGH FREQUENCY SCHOTTKY DIODE
PANJIT