MCM20027IBBN [MOTOROLA]

暂无描述;
MCM20027IBBN
型号: MCM20027IBBN
厂家: MOTOROLA    MOTOROLA
描述:

暂无描述

传感器 图像传感器 CD
文件: 总74页 (文件大小:975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Order this document by MCM20027/D  
MCM20027  
Advance Information  
Color SXGA Digital Image Sensor  
1.3 Megapixel  
1280 x 1024 pixel progressive scan solid state image sen-  
sor with integrated CDS/PGA/ADC, digital programming,  
control, timing, and pixel correction features  
Features:  
SXGA resolution, active CMOS image sensor with square  
pixel unit cells  
6.0mm pitch pixels with patented pinned photodiode  
architecture  
Bayer-RGB color filter array with optional micro lenses  
High sensitivity, quantum efficiency, and charge  
conversion efficiency  
Low fixed pattern noise / Wide dynamic range  
Antiblooming and continuous variable speed shutter  
Single master clock operation  
Part Number  
Description  
Package  
MCM20027IBBL  
Color RGB sensor  
with Lenslets  
48 Pin CLCC  
Digitally programmable via I2C interface  
Integrated on-chip timing/logic circuitry  
CDS sample and hold for suppression of low frequency  
and correlated reset noise  
MCM20027IBMN  
Monochrome  
sensor without  
Lenslets  
48 Pin CLCC  
20X programmable variable gain to optimize dynamic  
range and facilitate white balance and iris adjustment  
10-bit, pipelined algorithmic RSD ADC (DNL +0.5 LSB, INL  
+1.0 LSB)  
Automatic column offset correction for noise suppression  
Pixel addressability to support ‘Window of Interest’  
windowing, resolution, and subsampling  
Encoded data stream  
10 fps full SXGA at 13.5MHz Master Clock Rate  
Single 3.3V power supply  
48 pin CLCC package  
The MCM20027 is a fully integrated, high performance CMOS image sensor with features such as integrated timing,  
control, and analog signal processing for digital imaging applications. The part provides designers a complete im-  
aging solution with a monolithic image capture and processing engine thus making it a true “camera on a chip”. Sys-  
tem benefits enable design of smaller, portable, low cost and low power systems. Thereby making the product  
suitable for a variety of consumer applications including still/full motion imaging, security/surveillance, and automo-  
tive among others.  
The imaging pixels are based on active CMOS pixels using pinned photodiodes that are realized using Motorola’s  
sub-micron ImageMOSTM technology. A maximum frame rate of 10 FPS at full resolution can be achieved, further  
the frame rate is completely adjustable without adjusting the system clock. Each pixel on the sensor is individually  
addressable allowing the user to control “Window of Interest” (WOI) panning and zooming. Control of sub-sam-  
pling, resolution, exposure, gain, and other image processing features is accomplished via a two pin I2C interface.  
The sensor is run by supplying a single Master Clock. The sensor output is 10 digital bits providing wide dynamic  
range images.  
ELECTRO STATIC DISCHARGE WARNING:  
This device is sensitive to electrostatic discharge (ESD).ESD immunity meets Human Body Model (HBM) < 1500 V and Machine Model (MM) < 150  
V Additional ESD data upon request. When handling this part, proper ESD precautions should be followed to avoid exposing the device to dis-  
charges which may be detrimental to its immediate performance and/or reduce the parts expected lifetime..  
This document contains information on a new product.Specifications and information herein are subject to change with-  
out notice.  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
1
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Specifications  
Image Size: 7.7mm x 6.1mm (9.82mm Diagonal, 1/2” Optic)  
Resolution:1280 x 1024 pixels, available digital zoom and region of interest (ROI) windowing  
Pixel Size: 6mm x 6mm  
Monochrome Sensitivity: 1.8 V/Lux-sec  
Min. Detectable Light Level: 3 Lux at 10FPS/F2 lens  
Scan Modes: Progressive  
Shutter Modes: Continuous Frame and Single Frame Rolling Shutter modes available  
Readout Rate: 13.5MSPS  
Frame Rate: 0-10 Full frames (1280x1024) per second  
Max Master Clock Frequency: 13.5MHz  
System Dynamic Range: 50dB  
On Chip programmable gain: -9.5dB to 26dB  
On Chip Image Correction: Column Fixed Pattern Correction  
Analog to Digital Converter: 10-bit, RSD ADC (DNL +/-0.5 LSB, INL +/-1.0 LSB)  
Power Dissipation: 250mW RMS, operating @13.5Mhz  
Package: 48 pin ceramic LCC  
Temperature Operating Range: 0-40oC  
MCLK  
INIT  
Digital  
Control  
Sensor  
STROBE  
SYNC  
1280 x 1024 pixels  
(1296 x 1048 total including  
Interface  
SCLK  
I2C Serial  
Interface  
dark and isolation)  
SDATA  
C D S  
Post ADC  
ADC(9:0)  
HCLK  
VCLK  
10 Bit  
ADC  
Column  
FRC  
White  
Balance  
Global  
Gain  
Global  
Offset  
Offset  
Control Signal  
Encoding  
SOF  
Figure 1. MCM20027 Simplified Block Diagram  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
2
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
1296  
4Dark + 4Isolation  
48  
44  
SOF  
VCLK  
4Da  
rk  
+4Is  
45  
47  
HCLK  
olati  
on 104  
8
STROBE  
1024  
Image Sensor Pixel Array  
1280  
12Dark +4Isolation  
2
1
1
2
Column  
Sequencer  
& Drivers  
Column Decode, Sensing, and Muxing  
1
INIT  
I2C Serial  
Interface  
Color  
Sequencer  
30 SDATA  
29 SCLK  
Analog  
Switch  
6
6
6
6
43  
MCLK  
I2 C Register  
Decode  
Column  
Offset  
Calibration  
EXT_VINR  
EXT_VINS  
10  
11  
6
6
6
6
42  
ADC9  
ADC8  
ADC7  
ADC6  
ADC5  
ADC4  
41  
40  
39  
38  
35  
10 Bit  
Frame  
Rate  
Clamp  
WB  
PGA  
0.88x -2.84x  
Global  
PGA  
0.696x -7.48x  
Global  
Dova  
Column  
DOVA  
RSD  
Pipelined  
ADC  
1.5x  
2.0x  
10  
6
7
34 ADC3  
ADC2  
CLRCA  
CLRCB  
Post ADC  
Processing  
Test  
Monitor  
Logic  
32  
31  
ADC1  
ADC0  
CVREFM  
Bandgap  
Reference  
and Bias  
14  
Vrefp  
Vrefm  
10  
Analog Circuits  
Digital Logic  
CVREFP  
EXTRES  
15  
Generation  
Vcm  
Ibias  
20  
19  
EXTRESRTN  
17  
16  
18 21  
See “MCM20027 Pin Definitions” on page 67 for more information  
Figure 2. MCM20027 Detailed Block Diagram  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
3
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Table Of Contents  
MCM20027 Overview......................................................................  
MCM20027 Architecture.................................................................  
Pixel Architecture...........................................................................  
Color Separation and Fill Factor Enhancement ..........................  
Frame Capture Modes....................................................................  
Continuous Frame Rolling Shutter capture mode (Default)........  
Single Frame Rolling Shutter capture mode (SFRS)...................  
Active Window of Interest Control ................................................  
Active Window Sub-sampling Control..........................................  
Frame Rate and Integration Time Control....................................  
CFRS Frame Time/Rate:.................................................................  
Integration Time in CFRS mode:...................................................  
SFRS Frame Time/Rate:.................................................................  
Integration Time in SFRS mode....................................................  
1.0  
2.0  
7
7
2.1  
2.2  
7
9
3.0  
10  
10  
11  
12  
12  
13  
13  
13  
14  
14  
3.1  
3.2  
4.0  
5.0  
6.0  
6.1  
6.2  
6.3  
6.4  
6.5  
Example of Frame time/rate and Integration Time in CFRS and  
SFRS modes....................................................................................  
Analog Signal Processing Chain Overview ...............................  
Correlated Double Sampling (CDS)...............................................  
Frame Rate Clamp (FRC)................................................................  
Programmable Per-Column Offset ..............................................  
7.0  
15  
15  
15  
16  
7.1  
7.2  
7.3  
7.4  
Digitally Programmable Gain Amplifiers (DPGA) for White Bal-  
ance and Exposure Gain................................................................  
16  
16  
16  
17  
19  
19  
20  
20  
20  
White Balance Control PGA...........................................................  
Exposure Global Gain PGA............................................................  
Gain Modes.....................................................................................  
Global Digital Offset Voltage Adjust (DOVA)................................  
Analog to Digital Converter (ADC)................................................  
MCM20027 Sensor External Controls...........................................  
Initialization ....................................................................................  
Standby Mode...............................................................................  
7.4.1  
7.4.2  
7.4.3  
7.5  
7.6  
8.0  
8.1  
8.2  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
4
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Table Of Contents  
Tristate Mode..................................................................................  
References CVREFP, CVREFM......................................................  
Common Mode References: VAG, VAGREF and VAGRETURN.  
Internal Bias Current Control.........................................................  
Sensor Output/Input Signals.........................................................  
Start Of Data Capture (SYNC)........................................................  
Start Of Row Readout (SOF)..........................................................  
Horizontal Data SYNC (VCLK)........................................................  
Data Valid (HCLK)...........................................................................  
Strobe Signal...................................................................................  
8.3  
8.4  
8.5  
8.6  
20  
20  
20  
21  
22  
22  
22  
22  
22  
24  
26  
26  
9.0  
9.1  
9.2  
9.3  
9.4  
9.5  
I2C Serial Interface..........................................................................  
10.0  
MCM20027 I2C Bus Protocol ........................................................  
START Signal..................................................................................  
Slave Address Transmission.........................................................  
Acknowledgment ...........................................................................  
Data Transfer..................................................................................  
Stop Signal......................................................................................  
Repeated START Signal.................................................................  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
10.10  
26  
26  
26  
26  
27  
27  
27  
28  
28  
31  
32  
32  
35  
64  
67  
69  
72  
I2C Bus Clocking and Synchronization........................................  
Register Write.................................................................................  
Register Read..................................................................................  
Suggested Software Register Changes........................................  
MCM20027 Utility Programming Registers...................................  
Register Reference Map ................................................................  
Detailed Register Block Assignments..........................................  
Electrical Characteristics ..............................................................  
MCM20027 Pin Definitions.............................................................  
MCM20027 Packaging Information................................................  
MCM20027 Typical electrical connection.....................................  
11.0  
12.0  
12.1  
13.0  
14.0  
15.0  
16.0  
17.0  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
5
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Reference Documentation  
Release  
Date  
No  
1
Description  
Name of Document  
Contact/Location of Info  
Digital Camera Reference  
Design utilizing the MCM20027  
Roadrunner  
Application Note  
May 4 2001  
http://www.motorola.com/adc/imaging  
http://www.motorola.com/adc/imaging  
Information on MCM20027  
Optics  
Optic Application  
note  
2
Feb 7 2001  
Strobe Timing  
Application Note  
http://www.motorola.com/adc/imaging  
3
Information on Strobe Timing  
May 30 2001  
Table 1. Reference Documentation  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
6
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
1.0 MCM20027 Overview  
grammable Per-Column Offset” on page 16 and “Global  
Digital Offset Voltage Adjust (DOVA)” on page 19) can  
be done on a per column basis and globally. This per-  
column offset correction can be applied by using stored  
values in the on chip registers. A 10-bit Redundant  
Signed Digit (RSD) ADC converts the analog data to a  
10-bit digital word stream. The fully differential analog  
signal processing pipeline serves to improve noise im-  
munity, signal to noise ratio, and system dynamic  
range.  
The MCM20027 is a solid state CMOS Active CMOS  
Imager (ACITM) that integrates the functionality of a  
complete analog image acquisition, digitizer, and digital  
signal processing system on a single chip. The image  
sensor comprises a format pixel array with 1280x1024  
active elements. The image size is fully programmable  
to user defined windows of interest. The pixels are on a  
6.0mm pitch. High sensitivity and low noise are a char-  
acteristic of the pinned “shared diffusion” photodiode ar-  
chitecture utilized in the pixels. Standard microlenses  
further enhance the sensitivity. The sensor is available  
with Bayer patterned Color Filter Arrays (CFAs) for color  
output or as a monochrome imager.  
The sensor uses an industry standard two line I2C com-  
plaint serial interface. (see page 26). The MCM20027  
operates with a single 3.3V power supply ( see “Electri-  
cal Characteristics” on page 53) with no additional bias-  
es and requires only a single Master Clock for operation  
upto 13.5MHz. It is housed in a 48 pin ceramic LCC  
package (see “MCM20027 Packaging Information” on  
page 69).  
Integrated timing and programming controls allow video  
or still image capture modes.Frame rates are program-  
mable while keeping Master Clock frequency constant.  
User programmable row and column start/stop allow  
windowing to a minimum 1x1 pixel window (see “Active  
Window of Interest Control” on page 12). Windowing  
can also be performed by subsampling in multiple pixel  
increments to allow digital zoom (see “Active Window  
Sub-sampling Control” on page 12).  
The MCM20027 is designed taking into consideration  
interfacing requirements to standard video encoders. In  
addition to the 10 bit bayer encoded data stream, the  
sensor outputs the valid frame, line and pixel sync sig-  
nals needed for encoding. The sensor interfaces with a  
variety of commercially available video image proces-  
sors to allow encoding into various standard video for-  
mats.  
The analog video output of the pixel array is processed  
by an on chip analog signal processing pipeline. Corre-  
lated Double Sampling (see “Correlated Double Sam-  
pling (CDS)” on page 15) eliminates the sensor reset  
noise without the need to capture and subtract a reset  
frame per live video frame. The Frame Rate Clamp  
(FRC) enables real time optical black level calibration  
and offset correction (see “Frame Rate Clamp (FRC)”  
on page 15). The programmable analog gain consists of  
exposure or global gain to map the signal swing to the  
ADC input range, and white balance gain to perform col-  
or white balance in the analog domain. The ASP signal  
chain consists of :  
The MCM20027 is an elegant and extremely flexible  
single chip solution that simplifies a system designer’s  
tasks of image sensing, processing, digital conversion,  
and digital signal processing to a high performance, low  
cost, low power IC. One that supports among others a  
wide range of low power, portable consumer digital im-  
aging applications.  
2.0 MCM20027 Architecture  
2.1 Pixel Architecture  
The MCM20027 ImageMOSTM (1) sensor comprises of  
a 1280 x 1024 active pixel array and supports progres-  
sive scan mode.  
(1) Column op-amp(1.5X fixed gain)  
(2) Column DOVA (1.5X fixed gain)  
(3) White Balance PGA (0.88-2.82X)  
(4) Global PGA (0.67X - 5.92X)  
The MCM20027 utilizes the Kodak patented “Shared  
Floating Diffusion” pixel design 3. This design enables  
two adjacent Row pixels‘ photodiodes to share the  
same floating diffusion transistor. (see Figure 2, on  
page 8).  
(5) Global DOVA (2.0X fixed gain)  
These Digitally Programmable Amplifiers (DPGAs) al-  
low real time color gain correction for Auto White Bal-  
ance (see “White Balance Control PGA” on page 16) as  
well as global gain adjustment (see “Exposure Global  
Gain PGA” on page 16); offset calibration (see “Pro-  
1. ImageMOS is a Motorola trademark  
2. Patents held jointly by Motorola and Kodak  
3. Kodak Patent pending  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
7
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
The basic operation of the pixel relies on the photoelec-  
tric effect where due to its physical properties silicon is  
able to detect photons of light. The photons generate  
electron-hole pairs in direct proportion to the intensity  
and wavelength of the incident illumination. The appli-  
cation of an appropriate bias allows the user to collect  
the electrons and meter the charge in the form of a use-  
ful parameter such as voltage.  
sion and Row Select gate controls. In addition all pixels  
have common supply (VDD) and ground (VSS) connec-  
tions. An optimized cell architecture provides enhance-  
ments such as noise reduction, fill factor maximizations,  
and antiblooming. The use of pinned photodiodes (2)  
and proprietary transfer gate devices in the photoele-  
ments enables enhanced sensitivity in the entire visual  
spectral range and a lag free operation.  
The pixel architecture also requires all pixels in a row to  
have common Reset , Transfer 1 and 2, Floating diffu-  
SHARED  
RESET  
GATE  
ROW SELECT  
FLOATING  
GATE  
DIFFUSION  
GATE  
TRANSFER  
GATE 1  
TRANSFER  
GATE 2  
PHOTODIODE  
PHOTODIODE  
ROW2  
ROW 1  
Figure 2. Shared Floating Diffusion Pixel Architecture  
TRANSFER GATE 1  
TRANSFER GATE 2  
RESET GATE  
T
int  
T
int  
ROW SELECT GATE  
SHARED FLOATING  
DIFFUSION GATE  
T
row  
T
row  
T=0  
T=1  
T=2  
T=5 T=6  
T=3 T=4  
How it works?  
At this time Photodiode 2 is held at Reset level by hav-  
ing Transfer Gate 2 and the Reset Gate open (On). Af-  
ter 1 Row Period [Trow], @T=2 ,Transfer Gate 2 closes  
(Off). This action causes Photodiode 2 to start charging.  
When the integration (charging) of Photdiode 1 has  
In brief, initially during Integration @T=0, both Transfer  
Gates 1 and 2 and the Reset Gate is Open (On-Active  
High). Transfer Gate 1 then Closes (Off) @ T=1, there-  
by allowing Photodiode 1 to charge its well capacitance.  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
8
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
neared completion, @ T=3, the Reset Gate closes (Off).  
The charge off the well capacitance of Photodiode 1 is  
then transfered to the Shared Floating Diffusion Gate  
@ T=4 when Transfer Gate 1 opens (On). Also @T=4  
the Shared Diffusion gate and the Row Select gate  
opens (On). This action causes charge from the floating  
diffusion to be read out as a Voltage value for that pixel  
on Row 1. @T=5 the Row Select gate and the Floating  
diffusion close (Off) while the Reset gate opens (On).  
This is occurs in preparation of readout of Row 2.  
When the integration (charging) of Photodiode 2 has  
neared completion, the Reset Gate closes (Off) again.  
The charge off the Well Capacitance of Photodiode 2 is  
then transfered to the Shared Floating Diffusion Gate  
@ T=6 when Transfer Gate 2 opens (On) and then the  
same readout procedure as before occurs.  
The nominal photoresponse of the MCM20027 is shown  
in Figure 3  
R
G
B
S
R
F
,
4 0 0 t o 1 1 0 0 n m  
1
0 . 9  
0 . 8  
0 . 7  
0 . 6  
0 . 5  
0 . 4  
0 . 3  
0 . 2  
0 . 1  
0
4 0 0  
5 0 0  
6 0 0  
7 0 0  
8 0 0  
9 0 0  
1 0 0 0  
1 1 0 0  
- 0 . 1  
W
a v e l e  
ix e ls  
n g t h , n m  
R
E
D
P
ix e ls  
G
r e e n - B  
P
G
r e e n - B  
P
ix e ls  
B lu e P ix e ls  
Figure 3. MCM20027 Nominal spectral response  
In addition to the imaging pixels, there are additional  
pixels called dark and dummy pixels at the periphery of  
the imaging section (see Figure 2). The dark pixels are  
covered by a light blocking shield rendering the pixels  
underneath insensitive to photons. These pixels provide  
the sensor means to measure the dark level offset  
which is used downstream in the signal processing  
chain to perform auto black level calibration. The dum-  
my pixels are provided at the array’s periphery to elimi-  
nate inexact measurements due to light piping into the  
dark pixels adjacent to active pixels. The output of these  
pixels should be discarded.  
atary color filter technology result in CFAs with superior  
spectral and transmission properties. The standard op-  
tion is a primary (RGB) “Bayer” pattern (see Figure 4),  
however, facility to produce customized CFAs including  
complementary (CMYG) mosaics also exists.  
Applications requiring higher sensitivity can benefit from  
the optional micro-lens arrays shown in Figure 5. The  
lenslet arrays can improve the fill factor (aperture ratio)  
of the sensor by 1.5-2x depending on the F number of  
the main lens used in the camera system. Microlenses  
yield greatest benefits when the main lens has a high F  
number. As a caution, telecentric optical design is a re-  
quirement due to the limited optical acceptance angle of  
the lenslit. The optical acceptance angle is approxi-  
mately 15 degrees (see figure 5a). Due to the lenslits  
being placed in the same area/position over all the pho-  
todiodes on the sensor, hence, care should be taken  
when taking into consideration the telecentric design for  
especially the outermost pixels.The fill factor of the pix-  
els without microlenses is 32%. With Microlens the fill  
factor improves to approximately 45% to 50%.  
Electronic shuttering, also known as electronic expo-  
sure timing in photographic terms, is a standard feature.  
The pixel integration time can be widely varied from a  
small fraction of a given frame readout time to the entire  
frame time.  
2.2 Color Separation and Fill Factor Enhancement  
The MCM20027 family is offered with the option of  
monolithic polymer color filter arrays (CFAs). The com-  
bination of an extremely planarized process and propri-  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
9
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
3.1 Continuous Frame Rolling Shutter capture  
(CFRS) [Default]  
G1  
B
R
G2  
R
G1  
B
R
G2  
R
The default mode of image capture is the “Continuous  
Frame Rolling Shutter” capture mode (CFRS). This  
mode will yield frame rates up to 10fps at 13.5 MHz  
MCLK. In this mode the image integration and row read-  
out take place in parallel. While a row of pixels is being  
read out, another row(s) are being integrated. Readout  
of each row follows the Integration of that row. There-  
fore the Integration of the rows are staggered out due to  
the Readout of sequential rows occurring one after the  
other (see “Integration Time in CFRS mode:” on  
page 13).  
G1  
G1  
B
G2  
G2  
B
Figure 4. On-chip Bayer CFA  
In CFRS, after one frame has completed integrating,  
the first row of the second frame automatically begins  
integrating. The readout of the rows also follow the  
same routine. The waveforms depicting the CFRS out-  
put data stream refer to Figure 6, on page 11 and Figure  
7, on page 12.  
A
o
o
15  
15  
3.1.1 CFRS Video Encoded Data stream  
The Pixel Data Stream Signal Control Register, (Table  
53), on page 62 allows the user to select how the output  
pixel data stream in Continuous Frame Rolling Shutter  
mode is encoded/formatted. In default mode, internally  
generated signals SOF, VCLK, HCLK etc. drive the in-  
tegration and readout of the pixel data frames but only  
the valid pixel data is readout of the sensor. When a “1”  
is written to bit 5 of the Pixel Data Stream Signal Control  
Register, (Table 53), on page 62, it causes the output  
pixel data to be encoded with SOF, VCLK and End Of  
Frame signals. It accomplishes this by attaching the pix-  
el data with certain predefined signal data. The Video  
Encoded Signal Definitions, (Table 2), on page 10 de-  
fines the data that represents the SOF, VCLK and End  
of Frame signals.  
B
Iris  
microlenses  
Figure 5. a) 15 degrees acceptance angle  
b)Improvement in pixel sensitivity results from fo-  
cusing incident light on photo sensitive portions of  
the pixel by using microlenses  
Signal  
SOF  
Description  
Data  
Start of Row read-  
out (i.e.. Readout of  
Row 1)  
3FF3FF3FF3FF  
VCLK  
Start of Row read-  
out of Rows 2+  
3FF3FF000000  
000000000000  
3.0 Frame Capture Modes  
There exists two frame capture modes:  
End Of Readout of last Row  
Frame complete  
1) Continuous Frame Rolling Shutter mode (CFRS)  
2) Single Frame Rolling Shutter mode (SFRS)  
Table 2. Video Encoded Signal Definitions  
The sensor can be put into either one of the aforemen-  
tioned modes by writing either “1” or “0” to Bit 6 of Cap-  
ture Mode Control Register, (Table 29), on page 48.  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
10  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
3.2 Single Frame Rolling Shutter capture mode  
(SFRS)  
mode” on page 14). This process continues until all  
Rows have been integrated and readout. Once readout  
of the entire frame is complete, the sensor awaits a new  
SYNC signal before it starts integration and readout of  
another frame.  
This mode of capture refers to non-interlaced or se-  
quential row by row scanning of the entire sensor in a  
single pass for the purpose of capturing a single frame.  
The start of Integration in this mode is triggered by the  
SYNC signal. Similar to the CFRS capture mode, Read-  
out of each row follows the Integration of that row.  
Therefore the Integration of the rows are staggered out  
as well due to the Readout of the sequential rows occur-  
ring one after the other (see “Integration Time in SFRS  
The waveforms depicting the SFRS output data stream  
refer to Figure 8, on page 12  
NOTE!! The faster the clock speed , the closer the se-  
quential Integration start times are.  
Frame Time = 1064 row times  
Row Time = 1338 MCLKs  
WOI = 1280 Columns x 1024 Rows  
starting at row 16, column 8  
SOF  
VCLK  
HCLK  
BLANK  
Figure 6. CFRS Default Frame Waveform  
MCLK  
SOF  
Row Time = vcwd + 39  
VCLK  
HCLK  
row 16  
row 17  
Pixel Array Values  
ADC[9:0]  
Valid Pixel Data  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
11  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Figure 7. CFRS Default Line Waveform  
SYNC  
T = (cintd + 1) * Row Time  
SOF  
VCLK  
HCLK  
Standard Frame  
Timing (Figure 18)  
Figure 8. SFRS Waveform  
5.0 Active Window Sub-sampling Control  
4.0 Active Window of Interest Control  
The pixel data to be read out of the device is defined as  
a ‘Window of Interest’ (WOI). The window of interest  
can be defined anywhere on the pixel array at any size.  
The user provides the upper-left pixel location and the  
size in both row and column depth to define the WOI.  
The WOI is defined using the WOI Pointer, WOI Depth,  
and WOI Width registers, (Table 32 on page 51 through  
Table 39 on page 53). Please refer to Figure 9 for a pic-  
torial representation of the WOI within the active pixel  
array.  
The user can further control the size of the Active Win-  
dow that is read out by sub sampling the already de-  
fined Active Window Of Interest (See “Active Window of  
Interest Control” on page 12). Subsampling enables the  
pixel data to be readout in 1 pixel or 2 pixel increments  
depending if you are subsampling in either mono-  
chrome (1 pixel) or bayer pixel (2 pixel) space in four dif-  
ferent sampling rates in each direction: full, 1/2, 1/4, or  
1/8. The user controls the subsampling via the Sub-  
sample Control Register, (Table 30), on page 49.  
An example of Bayer space sub-sampling is shown in  
Figure 10.  
G R G R G R G R G R G R  
B G B G B G B G B G B G  
G R G R G R G R G R G R  
B G B G B G B G B G B G  
G R G R G R G R G R G R  
B G B G B G B G B G B G  
G R G R G R G R G R G R  
0
1295  
0
ACTIVE PIXEL ARRAY  
WOI Pointer (wcp,wrp)  
B G B G B G B G B G B G  
Sub-sample Control Register =  
G R G R G R G R G R G R  
B G B G B G B G B G B G  
x0010101b  
=
Progressive Scan  
Bayer Pattern  
G R G R G  
R G R G R G R  
Read 1 Pattern, Skip 1 Pattern  
in both directions  
Window of Interest (WOI)  
B G B G B G B G B G B G  
Figure 10. Bayer Space Sub-sampling Example  
WOI Column Width (wcw)  
1047  
Figure 9. WOI Definition  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
12  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
6.0 Frame Rate and Integration Time Control  
6.2 Integration Time in CFRS mode:  
In Continuous Frame Rolling Shutter capture mode, the  
Integration time is defined as:  
In addition to the minimum time required to readout the  
selected resolution and WOI, the user has the ability to  
control the frame rates while operating in either Contin-  
uous Frame Rolling Shutter capture mode (CFRS) and  
Single Frame Rolling Shutter (SFRS).  
Integration Time=Tint = (cintd + 1) * Trow  
where cintd is the number of virtual row times desired  
for integration time. Therefore, the integration time in  
CFRS mode can be adjusted in steps of virtual frame  
row times.The user controls cintd via the Integration  
Time MSB Register, (Table 40), on page 54 and Inte-  
gration Time LSB Register, (Table 41), on page 55.  
The frame rate can be defined as the time required to  
readout an entire frame of data plus the required bound-  
ary timing. This is done by varying the size of a number  
of parameters identified in later sections, the main one  
being the Virtual Frame surrounding the WOI.  
Row Time (Trow) is the length of time required to read  
one row of the virtual frame and can be defined as:  
Please refer to Figure 11 for a pictorial description of the  
Virtual Frame and its relationship to the WOI  
Trow = (vcwd + shsd + shrd + 19) * MCLKperiod  
where vcwd defines the number of columns in the virtu-  
al frame and shsd and shrd are internal timing control  
registers.  
.
0
vcw[13:0]  
0
The user controls vcwd via the CFRS Virtual Frame  
Column Width registers (Table 44 on page 56 and Table  
45 on page 56).  
WOI Pointer (wcp,wrp)  
The user controls the shsd and shrd values via the In-  
ternal Timing Control Register 1 (shs time definition);  
Table 50 and Table 51, “Internal Timing Control Regis-  
ter 2 (shr time definition),” on page 60.  
Window of Interest (WOI)  
WOI Column Width (wcw)  
Virtual Frame  
vrd[13:0]  
NOTE!! In Continuous Frame Rolling Shutter  
(CFRS) capture mode, the Integration time upper  
limit is bounded by the Frame time (see “CFRS  
Frame Time/Rate:” on page 13).  
Figure 11. Virtual Frame Definition  
6.1 CFRS Frame Time/Rate:  
i.e.. Tint < Tframe  
In Continuous Frame Rolling Shutter capture mode, the  
Frame time is completely defined by the size of the Vir-  
tual Frame and can be expressed as:  
Frame Time = Tframe = (vrdd + 1) * Trow  
where vrdd defines the number of rows in the virtual  
frame. The user controls vrdd via the Virtual Frame Row  
Depth registers (Table 42 on page 55 and Table 43 on  
page 55).  
Frame Rate = (Frame time)-1  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
13  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
6.3 SFRS Frame Time/Rate:  
In Single Frame Rolling Shutter capture mode the Frame  
time is defined as:  
NOTE!! vcwd and cintd are typically varied frame to  
frame  
Frame time = Tframe= Integration time+Readout time  
Calculations:  
Readout time is the amount of time to readout the data af-  
ter integration of the row has been completed. It is defined  
as follows:  
Row Time =Trow = (vcwd + shsd + shrd + 19)  
= (1290 + 10 + 10 + 19) / 13.5e6  
= 98.44ms  
Readout time = (vrdd + 1) * Trow  
where vrdd defines the number of rows in the virtual  
frame. The user controls vrdd via the CFRS Virtual Frame  
Row Depth registers (Table 42 on page 55 and Table 43  
on page 55).  
Integration Time = (cintd + 1) * Trow  
=(350+1)*98.44ms  
Trow = (vcwd + shsd + shrd + 19) * MCLKperiod  
=34.5ms  
For Integration time see “Integration Time in SFRS  
mode” on page 14  
Readout time = (vrdd + 1) * Trow  
= Frame time in CFRS mode  
Frame Time in CFRS mode = (vrdd + 1) * Trow  
Tframe =(1034 + 1)* 98.44  
= 101.34 ms  
6.3.1 Integration Time in SFRS mode  
The Integration time in Single Frame Rolling Shutter cap-  
ture mode is the same as in Rolling Shutter Capture  
Mode. For further information, see “Integration Time in  
CFRS mode:” on page 13. The only difference is that  
in this mode the Integration time is NOT bounded by  
the Frame time  
Frame Time in SFRS mode =  
Tframe = Integration time+Readout time  
= 34.5ms + 101.34ms  
= 135.84ms  
6.4 Example of Frame time/rate and Integration Time  
in CFRS and SFRS modes  
The following illustrates how to determine the Frame time/  
rate and Integration time in both capture modes:  
Results  
Assumptions:  
1) Active Window of Interest = 1280 x 1024  
i.e.. (wcwd)=1279  
Tint  
Tframe  
Capture Mode  
(wrdd)=1023  
CFRS  
SFRS  
34.5ms  
34.5ms  
101.34 ms  
135.84ms  
2) Virtual Column Width (vcwd)= 1290  
3) Virtual Row Depth (vrdd) = 1034  
4) Sample & hold time (shsd) = 10  
5) Sample & hold time (shrd) = 10  
6) Integration Time (cintd)= 350  
7) MCLK = 13.5 Mhz  
NOTE!! CFRS Integration time = 34.5ms because:  
Tint < Tframe = (vrdd + 1) * Trow  
(see “Integration Time in CFRS mode:” on page 13)  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
14  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
7.0 Analog Signal Processing Chain Overview  
begins a new frame. The MCM20027 uses optical black  
(dark) pixels to aid in establishing this reference.  
The MCM20027’s analog signal processing (ASP)  
chain incorporates Correlated Double Sampling (CDS),  
Frame Rate Clamp (FRC), two Digitally Programmable  
Gain Amplifiers (DPGA), Offset Correction (DOVA), and  
a 10-bit Analog to Digital Converter (ADC).  
Cap  
LRCA  
0.1mf  
CLRCA  
LRCLMP  
LRCLMP  
V
cm  
FRC  
-
1X  
To see a pictorial depiction of this chain refer to “Speci-  
fications” on page 2  
LRCLMP  
BUF  
+
Previous  
Stage  
+
V+  
V-  
Diff  
V
cm  
Amp  
7.1 Correlated Double Sampling (CDS)  
-
The uncertainty associated with the reset action of a ca-  
pacitive node results in a reset noise which is equal to  
kTC; C being the capacitance of the node, T the temper-  
ature and k the Boltzmann constant. A common way of  
eliminating this noise source in all image sensors is to  
use Correlated Double Sampling. The output signal is  
sampled twice, once for its reset (reference) level and  
once for the actual video signal. These values are sam-  
pled and held while a difference amplifier subtracts the  
reference level from the signal output. Double sampling  
of the signal eliminates correlated noise sources (see  
.“Conceptual block diagram of CDS implementation.”  
on page 15)  
+
BUF  
-
LRCLMP  
1X  
V
LRCLMP  
LRCLMP  
cm  
CLRCB  
Cap  
0.1mf  
LRCB  
Figure 13. FRC Conceptual Block Diagram  
On the MCM20027, dark pixel input signals should be  
sampled for a minimum of 137ms to allow the two 0.1mF  
capacitors at the CLRCA and CLRCB pins sufficient  
time to charge for 10-bit accuracy. This guarantees that  
the FRC’s “droop” will be maintained at <750 mV, thus  
assuring the specified ADC 10-bit accuracy at +0.5  
LSB. Therefore, at maximum operational frequency  
(13.5 MHz), the imager would require a number of  
frames to establish the dark pixel reference for subse-  
quent active pixel processing. The dark pixel sample  
period is automatically controlled internally and it is set  
to skip the first 3 dark rows and then sample the next 2  
dark rows. When “dark clamping” is active, each dark  
pixel is processed and held to establish pixel reference  
level at the CLRCA and CLRCB pins. During this period,  
the FRC’s differential outputs (V+ and V- on the Diff  
Amp, Figure 13) are clamped to Vcm. Together, these  
actions help to eliminate the dark level offset, simulta-  
neously establishing the desired zero code at the ADC  
output.  
CDSP1  
S/H1  
V+  
AVIN  
AMP  
V-  
CDSP2  
S/H2  
Figure 12. Conceptual block diagram of CDS  
implementation.  
7.2 Frame Rate Clamp (FRC)  
The FRC (Figure 13) is designed to provide a feed for-  
ward dark level subtract reference level measurement.  
In the automatic FRC mode, the optical black level ref-  
erence is re-established each time the image sensor  
Care should be exercised in choosing the capacitors for  
the CLRCA, B pins to reflect different frame rates.  
The user can disable this function via the FRC Definition  
Register; Table 54 and the Power Configuration Regis-  
ter, (Table 19), on page 41 (Check this - should be re-  
ferring o FRC clamp ON/OFF) which will allow the ASP  
chain to drift in offset Per-Column Digital Offset Voltage  
Adjust (DOVA), and controls the number of rows to  
clamp on.  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
15  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
7.3 Programmable Per-Column Offset  
sten, and halogen to cover a wide gamut of illumination  
conditions.  
A programmable per-column offset adjustment is avail-  
able on the MCM20027. In order to reduce the risk and  
have the ability to cover any mode of repetitive column  
Fixed Pattern Noise (FPN), there exists 64 registers that  
can be programmed with a DC offset that is added to all  
columns. (Mod64 Column Offset registers; Table 27).  
Each register is 6 bits, (5 bits plus 1 sign bit), providing+/  
- 32 register values. The DC register values is added to  
each of the 64 columns registers to provide the total off-  
set value. This set of 64 values is then repeatedly ap-  
plied to each bank of 64 in the sensor via the column  
DOVA stage of the ASP chain.  
Both DPGA designs use switched capacitors to mini-  
mize accumulated offset and improve measurement ac-  
curacy and dynamic range. The white balance gain  
registers are 6-bits and can be programmed to allow  
gain of 0.696x to 2.74x in varying steps.  
The user programs the individual gain coefficients into  
the MCM20027 via the Color Gain Registers (Table 8  
through Table 11). For the default Bayer configuration  
of the color filter array; Figure 4, the Color Gain Register  
addresses are as follows: Reg (00h): green pixel of a  
green-red row; Reg (01h): red pixel; Reg (02h): blue pix-  
el; and Reg (03h): green pixel of a blue-green row.  
The Column DOVA DC Register; Table 26, is used to  
set the initial offset of the pixel output in a range that will  
facilitate per-column offset data generation for varying  
operational conditions. In most operational scenarios,  
this register can be left in its default state of 00h. This is  
a pre-image processing gain in comparison to the Glo-  
bal DOVA Register (see section )which is a post image  
processing chain gain (pre A2D gain)  
The MCM20027 is presently available with only a Bayer  
CFA, however, it is designed to support other novel col-  
or configurations. This is accomplished via the Color  
Tile Configuration Register, (Table 12), on page 37 and  
the Color Tile Row Definition registers (Table 13  
through Table 16).  
7.4 Digitally Programmable Gain Amplifiers (DPGA)  
for White Balance and Exposure Gain  
6
Two DPGAs are available in the analog signal process-  
ing chain. These are used to perform white balance and  
exposure gain functions.  
Green (0)  
6
Red (1)  
6
DPGA  
6
0.7x-27x  
Blue (2)  
7.4.1 White Balance Control PGA  
6
The sensor produces three primary color outputs, Red,  
Green and Blue. These are monochrome signals that  
represent luminance values in each of the primary col-  
ors. When added in equal amounts they mix to make  
neutral color. White balancing is a technique where the  
gain coefficients of the green(0), red, blue, and green(3)  
pixels comprising the Bayer pattern (see Figure 14.) are  
set so as to equalize their outputs for neutral color  
scenes. Since the sensitivity of the two green pixels in  
the Bayer pattern may not be equal, an individual color  
gain register is provided for each component of the Bay-  
er pattern.  
Green (3)  
R(1)  
G(0)  
B(2) G(3)  
Figure 14. Color Gain Register Selection  
7.4.2 Exposure Global Gain PGA  
The global gain DPGA provides a 0.67x to 7.5x (approx)  
programmable gain adjustment for dynamic range. The  
gain of the amplifier is linearly programmable using a six  
bit gain coefficients on 2 6-bit PGA gain registers in  
varying steps depending on which exposure gain mode  
Once all color gain registers are loaded with the desired  
gain coefficients ,according to which gain mode (see  
“Gain Modes” on page 17) has been set, white balance  
is then achieved in real time and in analog space. These  
gain coefficient values are then selected and applied to  
the pixel output via a high speed path, the delay of  
which is much shorter than the pixel clock rate. Real  
time updates can be performed to any of the gain regis-  
ters. However, latency associated with the I2C interface  
should be taken into consideration before changes oc-  
cur. In most applications, users will be able to assign  
predefined settings such as daylight, fluorescent, tung-  
it is set at i.e. RAW or LIN or LIN2  
(PGA Gain Mode,  
(Table 25), on page 45). The user programs the global  
gain via the Exposure PGA Global Gain Register A, (Ta-  
ble 23), on page 44.  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
16  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
7.4.3 Gain Modes  
There are two different Gain modes for White Balance  
and there are three different Gain modes for the Expo-  
sure gain refer to White Balance Gain modes and Gain  
Formulas; Table 3 and Exposure Gain modes and Gain  
Formulas; Table 4 for more info.  
There exists different gain modes that are available  
when the sensor is performing White Balance and Ex-  
posure gain. The Gain mode utilized for White balance  
and Exposure gain can be selected by the user writing  
different values to the register described in Table 25,  
“PGA Gain Mode,” on page 45.  
Register  
No  
Gain  
Modes  
Gain  
Steps  
Gain  
Range  
Register Name  
Variable  
Gain Formula  
00h  
01h  
02h  
03h  
DPGA Color 1 Gain  
Register; Table 8  
cg1  
RAW  
0-32  
33-63  
0-47  
0.6956 + (0.02174* cg1d)  
1.391+ (0.0434* (cg1d-32)  
0.6956 +(0.0434 x cg1d)  
0.6956 + (0.02174* cg2d)  
1.391+ (0.0434* (cg2d-32)  
0.6956 +(0.0434 x cg2d)  
0.6956 + (0.02174* cg3d)  
1.391+ (0.0434* (cg3d-32)  
0.6956 +(0.0434 x cg3d)  
0.6956 + (0.02174* cg4d)  
1.391+ (0.0434* (cg4d-32)  
0.6956 +(0.0434 x cg4d)  
0.69-1.39  
1.39-2.74  
0.69-2.74  
0.69-1.39  
1.39-2.74  
0.69-2.74  
0.69-1.39  
1.39-2.74  
0.69-2.74  
0.69-1.39  
1.39-2.74  
0.69-2.74  
LINEAR  
RAW  
DPGA Color 2 Gain  
Register; Table 9  
cg2  
cg3  
cg4  
0-32  
33-63  
0-47  
LINEAR  
RAW  
DPGA Color 3 Gain  
Register; Table 10  
0-32  
33-63  
0-47  
LINEAR  
RAW  
DPGA Color 4 Gain  
Register; Table 11  
0-32  
33-63  
0-47  
LINEAR  
Table 3. White Balance Gain modes and Gain Formulas  
Green-RedPixel  
Red Pixel Data  
Data  
DPGA Color 1 Gain  
DPGA Color 2 Gain  
Register  
Register  
Blue Pixel Data  
Green-Blue  
Pixel Data  
DPGA Color 3 Gain  
Register  
DPGA Color 4 Gain  
Register  
NOTE!! The Diagrams above illustrates how the Color Gain Registers apply the gain onto each individual  
color pixel data:  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
17  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Register  
Gain  
Modes  
Gain  
Steps  
Gain  
Register Name  
Variable  
Gain Formula  
No  
Range  
0.69-1.39  
1.39-2.74  
0.69-2.74  
0.69-3.60  
0.69-1.39  
1.39-2.74  
0.69-2.74  
0.69-3.60  
10h  
Exposure PGA Global  
Gain Register A; Table  
23  
gg1  
RAW  
0-32  
33-63  
0-47  
0-67  
0-32  
33-63  
0-47  
0-67  
0.6956 + (0.02174* gg1d)  
1.391+ (0.0434* (gg1d-32)  
0.6956 +(0.0434 x gg1d)  
0.6956 + (0.0434 * gg2d)  
0.6956 + (0.02174* cg2d)  
1.391+ (0.0434* (cg2d-32)  
0.6956 +(0.0434 x cg2d)  
0.6956 + (0.0434 * gg2d)  
LINEAR  
LINEAR 2  
RAW  
21h  
Exposure PGA Global  
Gain Register B; Table  
24  
gg2  
LINEAR  
LINEAR 2  
Table 4. Exposure Gain modes and Gain Formulas  
The Diagram below illustrates how the Exposure Gain Registers apply the gain onto the pixel data:  
Pixel Data  
Exposure PGA Gain  
Register A  
Exposure PGA Gain  
Register B  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
18  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
7.5 Global Digital Offset Voltage Adjust (DOVA)  
A programmable global offset adjustment is available  
on the MCM20027. A user defined offset value is loaded  
via a 6-bit signed magnitude programming code via the  
Global DOVA Register, (Table 28), on page 47.  
7.6 Analog to Digital Converter (ADC)  
The ADC is a fully differential, low power circuit. A pipe-  
lined, Redundant Signed Digit (RSD) algorithmic tech-  
nique is used to yield an ADC with superior  
characteristics for imaging applications.  
Offset correction allows fine-tuning of the signal to re-  
move any additional residual error which may have ac-  
cumulated in the analog signal path. This function is  
performed directly before analog to digital conversion  
and introduces a fixed gain of 2.0X. This feature is use-  
ful in applications that need to insert a desired offset to  
adjust for a known system noise floor relative to AVSS  
and offsets of amplifiers in the analog chain.  
Integral Noise Linearity (INL) and Differential Noise Lin-  
earity (DNL) performance is specified at +1.0 and +0.5,  
respectively, with no missing codes. The input voltage  
resolution is 2.44 mV with a full-scale 2.5 Vpp input (2.5  
Vpp/210). The input dynamic range of the ADC is pro-  
grammed via a Programmable Voltage Reference Gen-  
erator. The positive reference voltage (VREFP) and  
negative reference voltages (VREFM) can be pro-  
grammed from 2.5V to 1.25V and 0V to 1.25V respec-  
tively in steps of 5mV via the Reference Voltage  
Registers (Table 17 and Table 18). This feature is used  
independently or in conjunction with the DPGAs to max-  
imize the system dynamic range based on incident illu-  
mination. The default input range for the ADC is 1.9V for  
VREFP and 0.6V for VREFM hence allowing a 10 bit  
digitization of a 1.3V peak to peak signal.  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
19  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
8.0 Sensor External Controls (Additional  
Operational Conditions)  
8.3 Tristate Mode  
The sensors HCLK, SOF, VCLK, SYNC and STROBE  
output signals as well as the pixel output data can be  
tristated via the Tristate Control Register, (Table 21), on  
page 42.  
The MCM20027 includes initialization, standby modes,  
and external reference voltage outputs to afford the  
user additional applications flexibility.  
8.4 References CVREFP, CVREFM  
8.1 Initialization  
The MCM20027 contains all internally generated refer-  
ences and biases on-chip for system simplification. An  
internally generated differential bandgap regulator de-  
rives all the ADC and other analog signal processing re-  
quired references. The user should connect 0.1mF  
capacitors to the CVREFP and CVREFM pins (#15 and  
#14 respectively) to accurately hold the biases.  
The INIT input pin (#42) controls reinitialization of the  
MCM20027. This serves to assure controlled chip and  
system startup. Control is asserted via a logic high in-  
put. (i.e.. Asserting a Logic high “1” initializes all the  
Registers, while asserting a Logic low “0” returns the  
sensor to normal operation). This state must be held a  
minimum of 1 ms and a 1 ms “wait period” should be al-  
lowed before chip processing to ensure that the start-up  
routines within the MCM20027 have run to completion,  
and to guarantee that all holding and bypass capacitors,  
etc. have achieved their required steady state values.  
8.5 Common Mode References: VAG, VAGREF and  
VAGRETURN  
Tasks which are accomplished during startup include:  
reset of the utility programming registers and initializa-  
tion to their default values (please refer to previous sec-  
tion for settings), reset of all internal counters and  
latches, and setup of the analog signal processing  
chain.  
The MCM20027 holds the Common Mode Reference  
Voltages on the chip to a stable value. In order to  
achieve this stable value, the VAG (pin #16),  
VAGREF(pin #18 ) and VAGRETURN (pin #17) have to  
be connected to two 0.1mF capacitors in the manner de-  
scribed in the diagram below:  
Another method of saving power consumption is to ap-  
plying an active high signal to the INIT pin (#42) but  
Note - Doing this will also cause initialization of the chip  
.
VAG  
(pin #16)  
0.1mF  
8.2 Standby Mode  
The standby mode option is implemented to allow the  
user to reduce system power consumption during peri-  
ods which do not require operation of the MCM20027.  
This feature allows the user to extend battery life in low  
power applications.  
VAGRETURN  
(pin #17)  
0.1mF  
VAGREF  
(pin #18)  
By utilizing this mode, the user may reduce dynamic  
power consumption from 250mW RMS nominal  
@13.5MHz to <100 uW in the standby mode.  
The standby mode is activated by writing a “1” to bit 0 of  
“Power Configuration Register” on page 41. Writing a  
“0” restores normal operation.  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
20  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
8.6 Internal Bias Current Control  
The ASP chain has internally generated bias currents  
that result in an operating power consumption of nearly  
400mW approx. (Accurate value will be given upon sen-  
sor testing). By attaching a resistor between pin 20, EX-  
TRES; and Pin19, the user can reduce the power  
consumption of the device. This feature is enabled by  
writing a 1b to bit res of the Power Configuration Regis-  
ter. Additional power savings can be achieved at lower  
clock rates. Note - The External Bias resistor Input pin  
(EXTRESP - pin #20) should be connected to the  
ETRESRTN (pin#19) in the manner described in the di-  
agram below.  
EXTRESP  
(pin #20)  
Resistor  
EXTRESRTN  
(pin #19)  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
21  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
9.0 Sensor Output/Input Signals  
9.3 Horizontal Data SYNC (VCLK)  
This signal triggers the Readout of the sequential rows  
of the frame. This signal is an Output and can be read  
via Pin # 44 of the sensor (see Figure 20, on page 67).  
The VCLK signal delay in relation to SOF, as well as its  
length can be set by the user via VCLK Delay Register,  
(Table 47), on page 57 and SOF & VCLK Signal Length  
Control Register, (Table 48), on page 57. For timing di-  
agrams depicting the use of the VCLK signal refer toFig-  
ure 15, on page 22, Figure 6, on page 11, Figure 7, on  
page 12 ,Figure 8, on page 12 and Figure 16, on  
page 24.  
9.1 Start Of Data Capture (SYNC)  
This signal is utilized by the sensor to indicate the start  
of integration (data capture) in Single Frame Rolling  
Shutter capture mode (SFRS). For more info refer to  
Figure 15, on page 22, Figure 8, on page 12 and Figure  
16, on page 24. This signal can be generated internally  
by the sensor or be driven via Pin # 46 of the sensor  
(see Figure 20, on page 67). To set whether the signal  
is generated internally or externally, as well as other  
settings to this signal, refer to Sync and Strobe Control  
register, (Table 31), on page 50.  
9.4 Data Valid (HCLK)  
9.2 Start Of Row Readout (SOF)  
This signal triggers/indicates a single active pixel data  
has been readout (eg Column 5 of Row 10 data has  
been read out). This signal is an Output and can be  
read via Pin # 45 of the sensor (see Figure 20, on  
page 67). The HCLK signal delay can be set by the user  
via HCLK Delay Register, (Table 52), on page 60. For  
timing diagrams depicting the use of the HCLK signal  
refer to Figure 15, on page 22, Figure 6, on page 11,  
Figure 7, on page 12 ,and Figure 8, on page 12.  
This signal triggers/indicates the start of Row Readout  
of the frame. This signal is an Output and can be read  
via Pin # 48 of the sensor (see Figure 20, on page 67).  
The SOF signal delay as well as its length can be set by  
the user via SOF Delay Register, (Table 46), on page  
57 and SOF & VCLK Signal Length Control Register,  
(Table 48), on page 57. For timing diagrams depicting  
the use of the SOF signal refer to Figure 15, on  
page 22, Figure 6, on page 11, Figure 7, on page 12  
,Figure 8, on page 12 and Figure 16, on page 24.  
MCLK  
thsync  
tsusync  
SYNC  
tdsof  
SOF  
tdvclk  
VCLK  
tdfhclk  
tdrhclk  
HCLK  
tdadc  
ADC[9:0]  
Figure 15. Pixel Data Bus Iinterface Timing Specifications (see Table Below)  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
22  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
PIXEL DATA BUS INTERFACE TIMING SPECIFICATIONS (see Figure 15)  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
f
MCLK maximum frequency  
SYNC hold time w.r.t MCLK  
1
11.5  
13.5  
MHz  
max  
t
3.5  
3.0  
8
-
-
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
hsync  
t
SYNC setup time w.r.t MCLK  
8.5  
susync  
t
MCLK to SOF delay time  
13  
13.5  
13  
5
21.5  
22  
dsof  
t
MCLK to VCLK delay time  
8.5  
7.5  
3
dvclk  
t
Rising edge of MCLK to rising edge of HCLK delay time  
Falling edge of MCLK to falling edge of HCLK delay time  
MCLK to ADC[9:0] delay time  
22  
drhclk  
t
10.5  
21.5  
21.5  
dfhclk  
t
8
13  
13  
dadc  
t
MCLK to STROBE delay time  
8
strobe  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
23  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
9.5 Strobe Signal  
last Row begins to Integrate. (see 3“Frame Rate and In-  
tegration Time Control” on page 13). The start of the  
strobe signal can also be set by the user. In default  
mode, when the strobe is activated, the signal fires 2  
Row Periods (Trow) before the first Row begins to Read-  
out and last for a length of 1 Trow .A sample timing dia-  
gram for the Strobe signal can be seen in Figure 16, on  
page 24:  
The Strobe signal is a output pin on the MCM20027  
sensor that can be used to activate ‘Flash/Strobe illumi-  
nation modules”. It can be activated by writing a “1” to  
bit 3 of “Sync and Strobe Control register” on page 50  
while in SFRS mode. When activated, the Strobe signal  
goes high (Active) when all Rows are Integrating simul-  
taneously, and ends one Row period (Trow) before the  
T
frame  
SYNC  
1st ROW OF  
INTEGRATION  
T
int  
2nd ROW OF  
INTEGRATION  
T
int  
3rd ROW OF  
INTEGRATION  
T
int  
LAST ROW OF  
INTEGRATION  
T
int  
SOF  
VCLK  
STROBE  
Trow Trow  
Trow TrowTrow Trow Trow  
Trow  
T
strobe2  
Tstrobe1  
Figure 16. Strobe Timing Diagram in SFRS capture mode  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
24  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
To ensure that Strobe signal fires, the integration time  
must be large enough to ensure that all rows are inte-  
Variables:  
Integration Time (cintmin) is the main variable used to control  
the time of the Strobe signals.  
grating simulanteously for at least 2 Row periods (Trow  
)
(see “Frame Rate and Integration Time Control” on  
page 13)  
Tintmin=(cintmin+1)*Trow  
where Trow = (vcwd + shsd + shrd + 19)  
Calculations:  
To accomplish this - ensure that the Integration time  
(cintd) greater than 2 Row periods (Trow) larger than  
the active Window of Interest Row depth.  
Row Time =Trow = (vcwd + shsd + shrd + 19)  
= (1290 + 10 + 10 + 19) / 13.5e6  
= 98.44ms  
Min. Integration time =Tintmin=(cintmin+1)*Trow  
cintmin=wrdd+x where x > 2  
Tintmin=(cintmin+1)*Trow  
cintmin=wrdd+x where x > 2  
where wrdd is the Window Of Interest Row depth.  
Tstrobe1= Trow  
Tstrobe2= Tintmin- (wrdd+1)*Trow  
Let cintmin= wrdd+x where x > 2  
= 1023 + 4 = 1029  
Therefore,  
where x=4  
Tintmin= 101.39  
Tstrobe1= 98.44ms  
Tstrobe2= Tintmin- (wrdd+2)*Trow  
= 3 * Trow  
EXAMPLE: Below you will find an example of how to  
ensure that the strobe signal will fire and to determine  
the length of the STROBE signal in default mode:  
(Refer to Figure 16, on page 24 for timing analysis)  
= 295us  
Goal (For example purpose):  
Strobe Signal that lasts for at least 250us, which is the  
length of a typical strobe/flash event.  
Results:  
Signal  
Trow  
Value  
98us  
Assumptions:  
1) Active Window of Interest = 1280 x 1024  
ie. (wcwd)=1279  
Tint  
101ms  
98us  
Tstrobe1  
Tstrobe2  
Tframe  
(wrdd)=1023  
295us  
202ms  
2) Virtual Column Width (vcwd)= 1290  
3) Virtual Row Depth (vrdd) = 1034  
4) Sample & hold time (shsd) = 10  
5) Sample & hold time (shrd) = 10  
6) MCLK = 13 Mhz  
NOTE!! Refer to Figure 16, on page 24 for timing  
analysis  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
25  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
10.0 I2C Serial Interface  
The first byte of a data transfer, immediately after the  
START signal, is the slave address transmitted by the  
master. This is a 7-bit calling address followed by a R/  
W bit. The seven-bit address for the MCM20027, start-  
ing with the MSB (AD7) is 0110011b. The transmitted  
calling address on the SDATA line may only be  
changed while SCLK is low as shown in Figure 17. The  
data on the SDATA line is valid on the High to Low sig-  
nal transition on the SCLK line. The R/W bit following  
the 7-bit tells the slave the desired direction of data  
transfer:  
The I2C is an industry standard which is also compatible  
with the Motorola bus (called M-Bus) that is available on  
many microprocessor products. The I2C contains a se-  
rial two-wire half-duplex interface that features bidirec-  
tional operation, master or slave modes, and multi-  
master environment support. The clock frequency on  
the system is governed by the slowest device on the  
board. The SDATA and SCLK are the bidirectional data  
and clock pins, respectively. These pins are open drain  
and will require a pull-up resistor to VDD of 1.5 kW to 10  
kW (see page 66).  
1 = Read transfer, the slave transitions to a slave  
transmitter and sends the data to the master  
0 = Write transfer, the master transmits data to the  
slave  
The I2C is used to write the required user system data  
into the Program Control Registers in the MCM20027.  
The I2C bus can also read the data in the Program Con-  
trol Register for verification or test considerations. The  
MCM20027 is a slave only device that supports a max-  
imum clock rate (SCLK) of 100 kHz while reading or  
10.4 Acknowledgment  
Only the slave with a calling address that matches the  
one transmitted by the master will respond by sending  
back an acknowledge bit. This is done by pulling the  
SDATA line low at the 9th clock (see Figure 17). If a  
transmitted slave address is acknowledged, successful  
slave addressing is said to have been achieved. No two  
slaves in the system may have the same address. The  
MCM20027 is configured to be a slave only.  
2
writing only one register address per I C start/stop cy-  
cle. The following sections will be limited to the methods  
for writing and reading data into the MCM20027 regis-  
ter.  
For a complete reference to I2C, see “The I2C Bus from  
Theory to Practice” by Dominique Paret and Carll-  
Fenger, published by John Wiley & Sons, ISBN  
0471962686.  
10.5 Data Transfer  
Once successful slave addressing is achieved, data  
transfer can proceed between the master and the se-  
lected slave in a direction specified by the R/W bit sent  
by the calling master. Note that for the first byte after a  
start signal (in Figure 17 and Figure 18), the R/W bit is  
always a “0” designating a write transfer. This is re-  
quired since the next data transfer will contain the reg-  
ister address to be read or written.  
2
10.1 MCM20027 I C Bus Protocol  
2
The MCM20027 uses the I C bus to write or read one  
2
register byte per start/stop I C cycle as shown in Figure  
17 and Figure 18. These figures will be used to describe  
2
the various parts of the I C protocol communications as  
it applies to the MCM20027.  
2
MCM20027 I C bus communication is basically com-  
All transfers that come after a calling address cycle are  
referred to as data transfers, even if they carry sub-ad-  
dress information for the slave device.  
posed of following parts: START signal, MCM20027  
slave address (0110011b) transmission followed by a R/  
W bit, an acknowledgment signal from the slave, 8 bit  
data transfer followed by another acknowledgment sig-  
nal, STOP signal, Repeated START signal, and clock  
synchronization.  
Each data byte is 8 bits long. Data may be changed only  
while SCLK is low and must be held stable while SCLK  
is high as shown in Figure 17. There is one clock pulse  
on SCLK for each data bit, the MSB being transferred  
first.  
10.2 START Signal  
When the bus is free, i.e. no master device is engaging  
the bus (both SCLK and SDATA lines are at logical “1”),  
a master may initiate communication by sending a  
START signal. As shown in Figure 17, a START signal  
is defined as a high-to-low transition of SDATA while  
SCLK is high. This signal denotes the beginning of a  
new data transfer and wakes up all the slaves on the  
bus.  
Each data byte has to be followed by an acknowledge  
bit, which is signalled from the receiving device by pull-  
ing the SDATA low at the ninth clock. So one complete  
data byte transfer needs nine clock pulses. If the slave  
receiver does not acknowledge the master, the SDATA  
line must be left high by the slave. The master can then  
generate a stop signal to abort the data transfer or a  
start signal (repeated start) to commence a new calling.  
10.3 Slave Address Transmission  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
26  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
If the master receiver does not acknowledge the slave  
transmitter after a byte transmission, it means 'end of  
data' to the slave, so the slave releases the SDATA line  
for the master to generate STOP or START signal.  
10.7 Repeated START Signal  
A Repeated START signal is a START signal generated  
without first generating a STOP signal to terminate the  
communication. This is used by the master to commu-  
nicate with another slave or with the same slave in a dif-  
ferent mode (transmit/receive mode) without releasing  
the bus.  
10.6 Stop Signal  
The master can terminate the communication by gener-  
ating a STOP signal to free the bus. However, the mas-  
ter may generate a START signal followed by a calling  
command without generating a STOP signal first. This  
is called a Repeated START. A STOP signal is defined  
as a low-to-high transition of SDATA while SCLK is at  
logical “1” (see Figure 17).  
As shown in Figure 18, a Repeated START signal is be-  
ing used during the read cycle and to redirect the data  
transfer from a write cycle (master transmits the register  
address to the slave) to a read cycle (slave transmits  
the data from the designated register to the slave).  
The master can generate a STOP even if the slave has  
generated an acknowledge bit at which point the slave  
must release the bus.  
MSB  
1
LSB  
7
MSB  
LSB  
8
SCLK  
2
3
4
5
6
8
9
1
2
3
4
5
6
7
9
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
“0” “1” “1” “0” “0” “1” “1”  
D7 D6 D5 D4 D3 D2 D1 D0  
MCM20027 Register Address  
SDATA  
2
MCM20027 I C Bus Address  
Ack  
Bit  
from  
Start  
Signal  
Ack  
Bit  
from  
Write  
MCM20027  
MCM20027  
MSB  
LSB  
1
2
3
4
5
6
7
8
9
SCLK  
SDATA  
D7 D6 D5 D4 D3 D2 D1 D0  
Data to write MCM20027 Register  
Ack  
Bit  
Stop  
Signal  
from  
MCM20027  
2
Figure 17. WRITE Cycle using I C Bus  
2
10.8 I C Bus Clocking and Synchronization  
Open drain outputs are used on the SCLK outputs of all  
master and slave devices so that the clock can be syn-  
chronized and stretched using wire-AND logic. This  
means that the slowest device will keep the bus from  
going faster than it is capable of receiving or transmit-  
ting data.  
signal Low period is stretched. Therefore, synchronized  
clocking occurs since the SCLK is held low by the de-  
vice with the longest Low period. Also, this method can  
be used by the slaves to slow down the bit rate of a  
transfer. The master controls the length of time that the  
SCLK line is in the High state. The data on the SDATline  
is valid when the master switches the SCLK line from a  
High to a Low.  
After the master has driven SCLK from High to Low, all  
the slaves drive SCLK Low for the required period that  
is needed by each slave device and then releases the  
SCLK bus. If the slave SCLK Low period is greater than  
the master SCLK Low period, the resulting SCLK bus  
Slave devices may hold the SCLK low after completion  
of one byte transfer (9 bits). In such case, it halts the bus  
clock and forces the master clock into wait states until  
the slave releases the SCLK line.  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
27  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
10.9 Register Write  
ously received from the master; MCM20027 transi-  
tions to slave-receiver  
Master does not send an acknowledgment (NAK)  
Master transmits STOP to end the read cycle  
Writing the MCM20027 registers is accomplished with  
2
the following I C transactions (see Figure 17):  
Master transmits a START  
Master transmits the MCM20027 Slave Calling Ad-  
dress with “WRITE” indicated (BYTE=66h, 102d,  
01100110b)  
MCM20027 slave sends acknowledgment by forc-  
ing the SDATA Low during the 9th clock, if the Call-  
ing Address was received  
Master transmits the MCM20027 Register Address  
MCM20027 slave sends acknowledgment by forc-  
ing the SDATA Low during the 9th clock after re-  
ceiving the Register Address  
Master transmits the data to be written into the reg-  
ister at the previously received Register Address  
MCM20027 slave sends acknowledgment by forc-  
ing the SDATA Low during the 9th clock after re-  
ceiving the data to be written into the Register  
Address  
Master transmits STOP to end the write cycle  
10.10 Register Read  
Reading the MCM20027 registers is accomplished with  
2
the following I C transactions (see Figure 18):  
Master transmits a START  
Master transmits the MCM20027 Slave Calling Ad-  
dress with “WRITE” indicated (BYTE=66h, 102d,  
01100110b)  
MCM20027 slave sends acknowledgment by forc-  
ing the SData Low during the 9th clock, if the Calling  
Address was received  
Master transmits the MCM20027 Register Address  
MCM20027 slave sends acknowledgment by forc-  
ing the SData Low during the 9th clock after receiv-  
ing the Register Address  
Master transmits a Repeated START  
Master transmits the MCM20027 Slave Calling Ad-  
dress with “READ” indicated (BYTE = 67h, 103d,  
01100111b)  
MCM20027 slave sends acknowledgment by forc-  
ing the SDATA Low during the 9th clock, if the Call-  
ing Address was received  
At this point, the MCM20027 transitions from a  
“Slave-Receiver” to a “Slave-Transmitter”  
MCM20027 sends the SCLK and the Register Data  
contained in the Register Address that was previ-  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
28  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
SCLK  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
MSB  
LSB  
MSB  
LSB  
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
“0” “1” “1” “0” “0” “1” “1”  
XX  
D7 D6 D5 D4 D3 D2 D1 D0  
MCM20027 Register Address  
SDATA  
2
MCM20027 I C Bus Address  
Ack  
Start  
Signal  
Ack  
Bit  
from  
Write  
Repeated  
Start  
Signal  
Bit  
from  
MCM20027  
MCM20014  
SCLK  
At this point the MCM20027  
transitions from a “SLAVE-receiver”  
to a “SLAVE- transmitter”  
1
2
3
4
5
6
7
8
9
MSB  
LSB  
AD7 AD6 AD5 AD4 AD3 AD2 AD1  
“0” “1” “1” “0” “0” “1” “1”  
SDATA  
2
MCM20027 I C Bus Address  
Read Ack Bit fromMCM20027  
SCLK  
1
2
3
4
5
6
7
8
9
The MCM20027  
transitions from a “SLAVE-transmitter”  
LSB  
MSB  
to a “SLAVE-receiver” after the  
register data is sent  
SDATA D7 D6 D5 D4 D3 D2 D1 D0  
Data from MCM20027 Register  
No Ack. Bit from MASTER terminates the transfer  
Stop  
Signal from MASTER  
Single Byte Transfer to Master  
2
Figure 18. READ Cycle using I C Bus  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
29  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
I2C SERIAL INTERFACE6 TIMING SPECIFICATIONS (see Figure 19)  
Symbol  
Characteristic  
Min  
Max  
Unit  
f
SCLK maximum frequency  
50  
400  
KHz  
max  
7
M1  
M2  
M3  
M4  
Start condition SCLK hold time  
4
8
-
-
-
T
T
T
MCLK  
T
SCLK low period  
MCLK  
8
SCLK/SDATA rise time [from V = (0.2)*VDD to V = (.8)*VDD]  
.3  
-
IL  
IH  
ms  
7
SDATA hold time  
4
MCLK  
8
M5  
M6  
M7  
M8  
M9  
SCLK/SDATA fall time (from Vh = 2.4V to Vl = 0.5V)  
SCLK high period  
-
.3  
-
ms  
T
4
4
MCLK  
7
SDATA setup time  
-
MCLK  
T
Start / Repeated Start condition SCLK setup time  
Stop condition SCLK setup time  
4
4
-
-
MCLK  
T
MCLK  
C
Capacitive for each I/O pin  
-
10  
200  
10  
pF  
I
Cbus  
Rp  
Capacitive bus load for SCLK and SDATA  
Pull-up Resistor on SCLK and SDATA  
-
pF  
9
1.5  
kW  
6
7
8
9
2
I C is a proprietary Phillips interface bus  
The unit T is the period of the input master clock; The frequency of MCLK is assumed 13.5 MHz  
MCLK  
The capacitive load is 200 pF  
A pull-up resistor to VDD is required on each of the SCLK and SDATA lines; for a maximum bus capacitive load of 200 pf, the minimum  
value of Rp should be selected in order to meet specifications  
M2  
M6  
M5  
M3  
VIH  
VIL  
SCLK  
M1  
M4  
M7  
M8  
M9  
M8  
SDATA  
Figure 19. I2C SERIAL INTERFACE6 TIMING SPECIFICATIONS  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
30  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
11.0 Suggested Software Register Programming  
Reference  
NOTE!! These are only suggested value changes. De-  
pending on the application, there might exist more or  
less registers whose default values require modifica-  
tions.  
There are number of registers whose default values we  
have been changed to make the sensor operational with  
a Digital Still Camera. The registers, there suggested  
new values (changes) and reason for there change are  
detailed in Suggested Register Default Value Changes,  
(Table 5), on page 31  
Register  
No  
Default  
Values  
New  
Register Name  
Comment  
Values  
Power Configuration  
Register; Table 19  
Switching External Resistor On for Lower  
active power consumption  
0Ch  
00h  
08h  
White Balance switched from Raw to Linear  
gain mode .  
Exposure Gain switched from Raw to Linear  
2 gain mode  
22h  
00h  
06h  
PGA Gain Mode; Table 25  
23h  
42h  
56h  
Global DOVA Register;  
Table 28  
00h  
02h  
0Eh  
27h  
00h  
09h  
Negative Offset for Analog Signal Process-  
ing chain  
Sync and Strobe Control  
register; Table 31  
Necessary for switch to SFRS capture mode  
in addition to Capture Mode Control Register  
SOF & VCLK Signal  
Length Control Register;  
Table 48  
new SOF = 64 MCLKs  
new VCLK = 8 MCLKs  
5Fh  
60h  
Internal Timing Control  
Register 1 (shs time defi-  
nition); Table 50  
0Ah  
0Ah  
00h  
00h  
new shs=64 MCLKs  
increase sample time to sweep all available  
charge from pixel  
Internal Timing Control  
Register 2 (shr time defini-  
tion); Table 51  
new shr=64 MCLKs  
increased reset timesweep all available  
charge from pixel  
Table 5. Suggested Register Default Value Changes  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
31  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
12.0 MCM20027 Utility Programming Registers  
Address Range  
00h - 2Fh  
Block Name  
Analog Register Interface  
Sensor Interface  
12.1 Register Reference Map  
The I2C addressing is broken up into groups of 16 and  
assigned to a specific digital block. The designated  
block is responsible for driving the internal control bus,  
when the assigned range of addresses are present on  
the internal address bus. The grouping designation and  
assigned range are listed in Table 6. Each block con-  
tains registers which are loaded and read by the digital  
and analog blocks to provide configuration control via  
the I2C serial interface.  
40h - 7Fh  
80h - BFh  
Column Offset coeff.  
Table 6. I2C Address Range Assignments  
face. If the register is shadowed, the sensor interface  
will only be updated upon frame boundaries, thereby  
eliminating intraframe artifacts resulting from register  
changes.  
Table 7 contains all the I2C address assignments. The  
table includes a column indicating whether the register  
values are shadowed with respect to the sensor inter-  
Hex  
Defa  
ult  
Ref.  
Table  
Shadow  
ed?  
Register Function  
Address  
00h  
DPGA Color 1 Gain Register (Green of Green-Red  
Row)  
0Eh  
Table 8, page 35  
Yes  
01h  
02h  
03h  
DPGA Color 2 Gain Register (Red)  
DPGA Color 3 Gain Register (Blue)  
0Eh  
0Eh  
0Eh  
Table 9, page 35  
Table 10, page 36  
Table 11, page 36  
Yes  
Yes  
Yes  
DPGA Color 4 Gain Register (Green of Blue-Green  
Row)  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Unused  
Color Tile Configuration Register  
Color Tile Row 1 Definition Register  
Color Tile Row 2 Definition Register  
Color Tile Row 3 Definition Register  
Color Tile Row 4 Definition Register  
Negative Voltage Reference Code Register  
Positive Voltage Reference Code Register  
Power Configuration Register  
05h  
44h  
EEh  
00h  
00h  
76h  
80h  
00h  
FUO  
00h  
50h  
Table 12, page 37  
Table 13, page 38  
Table 14, page 38  
Table 15, page 39  
Table 16, page 39  
Table 17, page 40  
Table 18, page 40  
Table 19, page 41  
FUO  
No  
No  
No  
No  
No  
No  
No  
No  
FUO  
No  
No  
Factory Use Only  
Reset Control Register  
Table 20, page 42  
Device Identification (read only)  
Table 7. I2C Address Assignments  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
32  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Hex  
Defa  
ult  
Ref.  
Table  
Shadow  
ed?  
Register Function  
Address  
10h  
11h  
12h  
13h  
Exposure PGA Global Gain Register A  
Unused  
0Eh  
Table 23, page 44  
Yes  
Tristate Control Register; Table 21  
Programable Bias Generator Control register  
03h  
00h  
Table 21, page 42  
Table 22, page 43  
14-1F  
Unused  
20h  
Column DOVA DC Register  
00h  
0Eh  
00h  
00h  
Table 26, page 46  
Table 24, page 45  
Table 25, page 45  
Table 28, page 47  
No  
Yes  
No  
21h  
22h  
Exposure PGA Global Gain Register B  
PGA Gain Mode  
23h  
Global DOVA Register  
No  
24 - 3Fh  
40h  
Unused  
Capture Mode Control Register  
Sub-sample Control Register  
Sync and Strobe Control register  
Unused  
2Ah  
10h  
02h  
Table 29, page 48  
Table 30, page 49  
Table 31, page 50  
Yes  
Yes  
Yes  
41h  
42h  
43h - 44h  
45h  
WOI Row Pointer MSB Register  
WOI Row Pointer LSB Register  
WOI Row Depth MSB Register  
WOI Row Depth LSB Register  
WOI Column Pointer MSB Register  
WOI Column Pointer LSB Register  
WOI Column Width MSB Register  
WOI Column Width LSB Register  
Factory Use Only  
00h  
10h  
03h  
FFh  
00h  
08h  
04h  
FFh  
Table 32, page 51  
Table 33, page 51  
Table 34, page 51  
Table 35, page 52  
Table 36, page 52  
Table 37, page 53  
Table 38, page 53  
Table 39, page 53  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
Integration Time MSB Register  
Integration Time LSB Register  
Virtual Frame Row Depth MSB Register  
Virtual Frame Row Depth LSB Register  
04h  
FFh  
04h  
27h  
Table 40, page 54  
Table 41, page 55  
Table 42, page 55  
Table 43, page 55  
Yes  
Yes  
Yes  
Yes  
4Fh  
50h  
51h  
Table 7. I2C Address Assignments (Continued)  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
33  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Hex  
Defa  
ult  
Ref.  
Table  
Shadow  
ed?  
Register Function  
Address  
52h  
53h  
Virtual Frame Column Width MSB Register  
Virtual Frame Column Width LSB Register  
SOF Delay Register  
05h  
13h  
4Ch  
02h  
0Eh  
04h  
Table 44, page 56  
Table 45, page 56  
Table 46, page 57  
Table 47, page 57  
Table 47, page 57  
Table 49, page 58  
Yes  
Yes  
No  
54h  
55h  
VCLK Delay Register  
No  
56h  
SOF & VCLK Signal Length Control Register  
Greycode and Readout Control Register  
Unused  
No  
57h  
No  
58h - 5Eh  
5Fh  
Internal Timing Control Register 1 (shs time definition)  
Internal Timing Control Register 2 (shr time definition)  
Factory Use Only  
0Ah  
0Ah  
Table 50, page 59  
Table 51, page 60  
Yes  
Yes  
60h  
61h-63h  
64h  
HCLK Delay Register  
5Ch  
00h  
Table 52, page 60  
Table 53, page 62  
Yes  
65h  
Pixel Data Stream Signal Control Register  
Factory Use Only  
66h  
67h  
FRC Definition Register  
24h  
00h  
Table 54, page 63  
Table 27, page 47  
68h  
Factory Use Only  
69h - 7Fh  
80-BF  
C0h -FF h  
Unused  
Mod64 Column Offset registers  
Unused  
Table 7. I2C Address Assignments (Continued)  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
34  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
13.0 Detailed Register Block Assignments  
The four Color Gain Registers, Color Tile Configuration  
Register, and four Color Tile Row definitions define how  
white balance is achieved on the device. Six-bit gain  
codes can be selected for four separate colors: Table 8,  
Table 9, Table 10, and Table 11. Gain for each individ-  
ual color register is programmable given the gain func-  
tion defined in the table. The gain function used  
depends on what Gain mode (White balance gain  
mode) the sensor is set (PGA Gain Mode; Table  
25).The user programs these registers to account for  
changing light conditions to assure a white balanced  
output. The default value in each register is provides for  
a unity gain. In addition, the default CFA pattern color is  
listed in the title of each register.  
This section describes in further detail the functional op-  
eration of the various MCM20027 programmable regis-  
ters. The registers are subdivided into various blocks for  
ease of addressability and use (see Table 6).  
In each table where a suffix code is used; h = hex, b =  
binary, and d = decimal.  
13.1 Analog Register Interface Block  
The address range for this block is 00h to BFh.  
13.1.1 Analog Color Configuration  
Address  
00h  
Default  
0Eh  
DPGA Color 1 Gain Code  
Green of Green-Red Row  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
cg1[5]  
cg1[4]  
cg1[3]  
cg1[2]  
cg1[1]  
cg1[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Gain  
Unused  
xx  
PGA Gain Mode  
001110b  
Raw Gain Mode [cg1d= 0-32d] ---> Gain = 0.6956 + (0.02174* cg1d)  
Raw Gain Mode [cg1d= 33-63d] --> Gain = 1.391+ (0.0434* (cg1d-32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 +(0.0434 x cg1d)  
(Range 0.696 - 2.736)  
Table 8. DPGA Color 1 Gain Register  
Address  
01h  
Default  
0Eh  
DPGA Color 2 Gain Code  
Red  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
cg2[5]  
cg2[4]  
cg2[3]  
cg2[2]  
cg2[1]  
cg2[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
Unused  
Unused  
xx  
Table 9. DPGA Color 2 Gain Register  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
35  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
01h  
Default  
0Eh  
DPGA Color 2 Gain Code  
Red  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
cg2[0]  
001110b  
cg2[5]  
cg2[4]  
cg2[3]  
cg2[2]  
cg2[1]  
5 - 0  
Gain  
PGA Gain Mode  
Raw Gain Mode [cg2d= 0-32d] ---> Gain = 0.6956 + (0.02174* cg2d)  
Raw Gain Mode [cg2d= 33-63d] --> Gain = 1.391+ (0.0434* (cg2d-32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 +(0.0434 x cg2d)  
(Range 0.696 - 2.736)  
Table 9. DPGA Color 2 Gain Register  
Address  
02h  
Default  
0Eh  
DPGA Color 3 Gain Code  
Blue  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
cg3[5]  
cg3[4]  
cg3[3]  
cg3[2]  
cg3[1]  
cg3[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Gain  
Unused  
xx  
PGA Gain Mode  
001110b  
Raw Gain Mode [cg3d= 0-32d] ---> Gain = 0.6956 + (0.02174* cg3d)  
Raw Gain Mode [cg3d= 33-63d] --> Gain = 1.391+ (0.0434* (cg3d-32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 +(0.0434 x cg3d)  
(Range 0.696 - 2.736)  
Table 10. DPGA Color 3 Gain Register  
Address  
03h  
Default  
0Eh  
DPGA Color 4 Gain Code  
Green of Blue-Green Row  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
cg4[5]  
cg4[4]  
cg4[3]  
cg4[2]  
cg4[1]  
cg4[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
Unused  
Unused  
xx  
Table 11. DPGA Color 4 Gain Register  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
36  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
03h  
Default  
0Eh  
DPGA Color 4 Gain Code  
Green of Blue-Green Row  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
cg4[0]  
001110b  
cg4[5]  
cg4[4]  
cg4[3]  
cg4[2]  
cg4[1]  
5 - 0  
Gain  
PGA Gain Mode  
Raw Gain Mode [cg4d= 0-32d] ---> Gain = 0.6956 + (0.02174* cg4d)  
Raw Gain Mode [cg4d= 33-63d] --> Gain = 1.391+ (0.0434* (cg4d-32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 +(0.0434 x cg4d)  
(Range 0.696 - 2.736)  
Table 11. DPGA Color 4 Gain Register  
The Color Tile Configuration Register; Table 12, defines  
the maximum number of lines and the maximum num-  
ber of colors per line. A maximum of four row and four  
column definitions are permitted. The Color Tile Config-  
uration Register defaults to two lines and two colors per  
line. The user should leave this register in default unless  
a unique CFA option has been ordered.  
This register can be configured to any pattern combina-  
tion of 1, 2, or 4 rows and 1, 2, or 4 columns.  
Address  
05h  
Default  
Color Tile Configuration  
05h  
lsb (0)  
nr[0]  
msb (7)  
6
x
5
4
3
2
1
x
x
x
nc[1]  
nc[0]  
nr[1]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 4  
3 - 2  
Unused  
Unused  
xxxx  
01b  
Columns  
00b = 1 Column in tile.  
01b = 2 Columns in tile.  
1xb = 4 Columns in tile.  
1 - 0  
Rows  
00b = 1 Row in tile.  
01b = 2 Rows in tile.  
1xb = 4 Rows in tile.  
01b  
Table 12. Color Tile Configuration Register  
The Color Tile Row Definition registers; Table 13, Table  
14, Table 15, and Table 16 define the sequence of col-  
ors for each respective line. Each byte wide line defini-  
tion allows a maximum of four unique color definitions  
using 2 bits per color in a given line. Gain programming  
for each color was described earlier in this section. The  
default line definitions are colors 00b, 01b, 00b, 01b for  
row 1 and 10b, 11b, 10b, 11b for row 2 which supports a  
Bayer pattern as defined in section 2.2. The user should  
leave these registers in default unless a unique CFA op-  
tion has been ordered.  
For the default Bayer configuration of the color filter ar-  
ray; Figure 4, the Color Gain Register addresses are as  
follows: Reg (01h): green pixel of a green-red row; Reg  
(00h): red pixel; Reg (03h): blue pixel; and Reg  
(02h):green pixel of a blue-green row. The predefined  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
37  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
gain values programmed in the respective registers are  
applied to pixel outputs as they are being read.  
Address  
06h  
Default  
44h  
Color Tile Row 1 Definition  
Green - Red Row  
msb (7)  
6
5
4
3
2
1
lsb (0)  
r1c4[1]  
r1c4[0]  
Function  
r1c3[1]  
r1c3[0]  
r1c2[1]  
r1c2[0]  
r1c1[1]  
r1c1[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 6  
5 - 4  
3 - 2  
1 - 0  
Color 4  
Color 3  
Color 2  
Color 1  
Fourth Color in Row 1(Green)  
Third Color in Row 1 (Red)  
Second Color in Row 1 (Green)  
First Color in Row 1 (Red)  
01b  
00b  
01b  
00b  
Table 13. Color Tile Row 1 Definition Register  
Address  
07h  
Default  
EEh  
Color Tile Row 2 Definition  
Blue - Green Row  
msb (7)  
6
5
4
3
2
1
lsb (0)  
r2c4[1]  
r2c4[0]  
Function  
r2c3[1]  
r2c3[0]  
r2c2[1]  
r2c2[0]  
r2c1[1]  
r2c1[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 6  
5 - 4  
3 - 2  
1 - 0  
Color 4  
Color 3  
Color 2  
Color 1  
Fourth Color in Row 2 (Blue)  
11b  
10b  
11b  
10b  
Third Color in Row 2 (Green)  
Second Color in Row 2 (Blue)  
First Color in Row 2 (Green)  
Table 14. Color Tile Row 2 Definition Register  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
38  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
08h  
Default  
00h  
Color Tile Row 3 Definition  
Unused  
msb (7)  
6
5
4
3
2
1
lsb (0)  
r3c4[1]  
r3c4[0]  
Function  
r3c3[1]  
r3c3[0]  
r3c2[1]  
r3c2[0]  
r3c1[1]  
r3c1[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 6  
5 - 4  
3 - 2  
1 - 0  
Color 4  
Color 3  
Color 2  
Color 1  
Fourth Color in Row 3  
Third Color in Row 3  
Second Color in Row 3  
First Color in Row 3  
00b  
00b  
00b  
00b  
Table 15. Color Tile Row 3 Definition Register  
Address  
09h  
Default  
00h  
Color Tile Row 4 Definition  
Unused  
msb (7)  
6
5
4
3
2
1
lsb (0)  
r4c4[1]  
r4c4[0]  
Function  
r4c3[1]  
r4c3[0]  
r4c2[1]  
r4c2[0]  
r4c1[1]  
r4c1[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 6  
5 - 4  
3 - 2  
1 - 0  
Color 4  
Color 3  
Color 2  
Color 1  
Fourth Color in Row 4  
Third Color in Row 4  
Second Color in Row 4  
First Color in Row 4  
00b  
00b  
00b  
00b  
Table 16. Color Tile Row 4 Definition Register  
13.1.2 Reference Voltage Adjust Registers  
The analog register block allows programming the input  
voltage range of the analog to digital converter to match  
the saturation voltage of the pixel array. The voltage ref-  
erence generator can be programmed via two registers;  
nrv (0 to 1.25V) Table 17, prv (2.5V to 1.25V) Table 18,  
in 5mV steps. A 00h value in the prv register represents  
a reference output voltage of 2.5V. A 00h value in the  
nrv register represents output voltage of 0V. The de-  
fault settings for the two registers produce a 1.9V refer-  
ence on prv and 0.6V on nrv outputs. When adjusting  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
39  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
these values, the user should keep the voltage range  
centered around 1.25V.  
Address  
Default  
76h  
Voltage Reference “Negative” Code  
0Ah  
msb (7)  
nrv[7]  
6
5
4
3
2
1
lsb (0)  
nrv[6]  
nrv[5]  
nrv[4]  
nrv[3]  
nrv[2]  
nrv[1]  
nrv[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 0  
Reference Voltage = 0.0 + (5mV * nrcd)  
01110110b  
(0.6V)  
Table 17. Negative Voltage Reference Code Register  
Address  
0Bh  
Default  
80h  
Voltage Reference “Positive” Code  
msb (7)  
6
5
4
3
2
1
lsb (0)  
prv[7]  
prv[6]  
prv[5]  
prv[4]  
prv[3]  
prv[2]  
prv[1]  
prv[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 0  
Reference Voltage = 2.5 - (5mV * prvd)  
10000000b  
(1.9V)  
Table 18. Positive Voltage Reference Code Register  
13.1.3 Analog Control Registers  
sistor at a specific clock rate. Power is further reduced  
at lower clock rates.  
The Analog Register Block also contains a Power Con-  
figuration Register; Table 19, and a Reset Control Reg-  
ister; Table 20.  
The pbg bit of the Power Configuration Register; Table  
19, is used to enable/disable the “Programmable Bias  
Generator”. When this bit is enabled, the user can vary  
the power consumption of the White Balance PGA  
(PGAWB), Exposure gain PGA A (PGAEXPa), Expo-  
sure gain PGA B (PGEXPb), Frame Rate Clamp (FRC),  
Column Offset DOVA (COL_DOVA), Global offset  
DOVA (DOVE) and/or the Analog to Digital converter  
(A2D) between half an full current (power) consumption.  
in the Programable Bias Generator Control register; Ta-  
ble 22.  
The Power Configuration Register controls the internal  
analog functionality that directly effect power consump-  
tion of the device. An external precision resistor pin is  
available on the MCM20027 that may be used to more  
accurately regulate the internal current sources. This  
serves to minimize variations in power consumption that  
are caused by variations in internal resistor values as  
well as offer a method to reduce the power consumption  
of the device. The default for this control uses the inter-  
nally provided resistor which is nominally 12.5kW. This  
feature is enabled by setting the res bit of the Power  
Configuration Register and placing a resistor between  
the pin; EXTRES, and ground. Figure 11 depicts the  
power savings that can be achieved with an external re-  
When this bit is disabled, it will use the power config-  
ured by the internal or external resistor (bit 3).  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
40  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
The MCM20027 is put into a standby mode via the I2C  
interface by setting the sby bit of the Power Configura-  
tion Register.  
Address  
Default  
Power Configuration  
0Ch  
msb (7)  
x
00h  
lsb (0)  
sby  
6
x
5
4
3
2
1
x
pbg  
res  
ssc  
sc  
Bit  
Number  
Function  
Description  
Reset  
State  
7-5  
4
Unused  
Unused  
x
Prog Bias  
Gen  
0b = Prog Bias Gen Disabled  
1b = Prog Bias Gen Enabled  
0
3
2
Int/Ext  
Resistor  
0b = Internal Resistor  
1b = External Resistor  
0b  
0b  
Select  
Software  
Clamp  
0b = Select internal Clamp  
1b = Select software Clamp  
1
0
Software  
Clamp  
0b = Clamp Off  
0b  
0b  
1b = Clamp On (if ssc = 1)  
Software  
Standby  
0b = Soft Standby inactive  
1b = Soft Standby active  
Table 19. Power Configuration Register  
Additional control of the MCM20027 can be had using  
the Reset Control Register; Reset Control Register; Ta-  
ble 20.  
Setting the sit bit allows the user to completely reset the  
MCM20027 to the default state via the serial control In-  
terface. For both reset bits, ssr and sit, the user must  
return those bits to 0 to enable continued operation  
Setting the sir bit of this register will reset all the non  
programmable Sensor interface registers to a known re-  
set state.  
Setting the par bit of this register will reset all the Sen-  
sors non programmable Post ADC registers to a known  
reset state.  
Setting the asp bit of this register will reset all the sen-  
sors registers in the ASP processing chain to a known  
reset state.  
Setting the ssr bit of this register will reset all the non-  
user programmable registers to a known reset state.  
This is useful in situations when control of the  
MCM20027 has been lost due to system interrupts and  
the device needs only to be restarted using the earlier  
user programmed values.  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
41  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
.
Address  
0Eh  
Default  
Reset Control  
00h  
lsb (0)  
sit  
msb (7)  
6
x
5
4
3
2
1
x
x
asr  
par  
sir  
ssr  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 5  
4
Unused  
Unused  
xxx  
0b  
ASP (A2D) 0b = Normal Mode  
Reset  
1b = Reset registers in the A2D to 0  
3
2
Post ADC  
Reset  
0b = Normal Mode  
1b = Reset non-programmable Post ADC Registers to Reset state.  
0b  
0b  
Sensor  
Interface  
Reset  
0b = Normal Mode  
1b = Reset non-programmable Sensor Interface resgisters to Reset  
state.  
1
0
State  
Reset  
0b = Normal Mode  
1b = Reset all non-programmable registers to the Reset state  
0b  
0b  
Soft Reset 0b = Normal Mode  
1b = Reset all registers. (Same functions as setting the INIT pin)  
Table 20. Reset Control Register  
The Tristate Control Register; Table 21 is used to set  
signals into Tristate mode. When the tsctl bit is reset  
(i.e.. “0”) the HCLK, SOF, VCLK, SYNC and STROBE  
output signals are set to Tristate mode. When the tspix  
bit is reset (i.e. “0”) the pixel output data is set to Tristate  
mode.  
Address  
Default  
03h  
Tristate Control B  
12h  
msb (7)  
FUO  
6
5
4
3
2
1
lsb (0)  
FUO  
FUO  
FUO  
FUO  
FUO  
tsctl  
tspix  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 3  
1
FUO  
tsctl  
Factory Use Only  
000000b  
1b  
0 - Outputs in Tristate  
1 - Outputs driving  
Table 21. Tristate Control Register  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
42  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
12h  
Default  
03h  
Tristate Control B  
msb (7)  
FUO  
0
6
5
4
3
2
1
lsb (0)  
tspix  
1b  
FUO  
tspix  
FUO  
FUO  
FUO  
FUO  
tsctl  
0 - Outputs in Tristate  
1 - Outputs driving  
Table 21. Tristate Control Register  
The Programable Bias Generator Control register; Ta-  
ble 22 can be used by the user to vary the power con-  
sumption of the White Balance PGA (PGAWB),  
Exposure gain PGA A (PGAEXPa), Exposure gain PGA  
B (PGEXPb), Frame Rate Clamp (FRC), Column Offset  
DOVA (COL_DOVA), Global offset DOVA (DOVE) and/  
or the Analog to Digital converter (A2D) between half an  
full current (power) consumption.  
In order for this Register to be used, the pbg bit of the  
Power Configuration Register; Table 19 has to be en-  
abled.  
Address  
Default  
00h  
Programable Bias Generator Control  
13h  
msb (7)  
x
6
5
4
3
2
1
lsb (0)  
adp  
gdp  
egb  
ega  
wbp  
cdp  
fcp  
Bit  
Number  
Function  
Description  
Reset  
State  
7
6
Unused  
Unused  
xb  
0b  
A to D  
Converter  
(A2D)  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
5
4
3
2
1
Global  
Dova  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
0b  
0b  
0b  
0b  
0b  
PGA Exp.  
Gain B  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
PGA Exp.  
Gain A  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
PGA White 1b = Full Current (Power) consumption [80/100]  
Balance  
0b = Half Current (Power) consumption [40/50]  
Col_Dova  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
Table 22. Programable Bias Generator Control register  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
43  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
00h  
Programable Bias Generator Control  
13h  
msb (7)  
6
5
4
3
2
1
lsb (0)  
fcp  
0b  
x
adp  
gdp  
egb  
ega  
wbp  
cdp  
0
Frame  
Rate  
Clamp  
1b = Full Current (Power) consumption [80/100]  
0b = Half Current (Power) consumption [40/50]  
Table 22. Programable Bias Generator Control register  
13.2 Gain Calibration Block  
The Exposure gain mode is set at either Raw or Linear,  
then Exposure PGA Global Gain Register A; Table 23  
and Exposure PGA Global Gain Register B; Table 24  
are both utilized. But if it is set at Linear 2 gain mode,  
then only Exposure PGA Global Gain Register A; Table  
23 is used.  
The Exposure PGA Global Gain Register A; Table 23  
and the Exposure PGA Global Gain Register B; Table  
24, allows the user to set a global gain via two 6 bit reg-  
ister which are applied universally to all the pixel out-  
puts. This enables the user to account for varying light  
conditions.The Gain range depends on what the Expo-  
sure Gain Mode (PGA Gain Mode; Table 25)is set. If  
(
Address  
Default  
0Eh  
Exposure PGA Global Gain A  
10h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
gg1[5]  
gg1[4]  
gg1[3]  
gg1[2]  
gg1[1]  
gg1[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Gain  
Unused  
xx  
PGA Gain Mode  
001110  
Raw Gain Mode [gg1d= 0-32d] ---> Gain = 0.6956 + (0.02174* gg1d)  
Raw Gain Mode [gg1d= 33-63d] --> Gain = 1.391+ (0.0434* (gg1d-  
32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 + (0.0434 * gg1d)  
(Range 0.696 - 2.736)  
Linear 2 Gain Mode ----> Gain = 0.484 +(0.12 x gg1d)  
(Range 0.484 - 7.488)  
Table 23. Exposure PGA Global Gain Register A  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
44  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
0Eh  
Exposure PGA Global Gain B  
21h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
gg2[5]  
gg2[4]  
gg2[3]  
gg2[2]  
gg2[1]  
gg2[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Gain  
Unused  
xxb  
PGA Gain Mode  
001110  
Raw Gain Mode [gg2d= 0-32d] ---> Gain = 0.6956 + (0.02174* gg2d)  
Raw Gain Mode [gg2d= 33-63d] --> Gain = 1.391+ (0.0434* (gg2d-  
32)  
(Range 0.696 - 2.736)  
Linear Gain Mode -----> Gain = 0.6956 + (0.0434 * gg2d)  
(Range 0.696 - 2.736)  
Table 24. Exposure PGA Global Gain Register B  
The PGA Gain Mode; Table 25, is the register where the  
PGA Gain modes for the White Balance and Exposure  
gains can be selected. There are two different Gain  
modes for White Balance and there are three different  
Gain modes for the Exposure gain.  
i.e. PGA Global Gain A Register= Raw gain mode  
PGA Global Gain B Register= Raw gain mode  
2) Linear gain mode - 48 steps @ 0.04340/step  
i.e. PGA Global Gain A Register= Linear gain mode  
PGAGlobal Gain B Register= Linear gain mode  
3) Linear 2 gain mode - 64 steps @ ~ 0.12/step  
i.e. PGA Global Gain A Register= Linear 2 gain mode  
PGA Global Gain B Register= Not used  
White Balance Gain modes:  
1) Raw gain mode - 32 steps @ 0.02174/step  
- 32 steps @ 0.04340/step  
2) Linear gain mode - 48 steps @ 0.04340/step  
Exposure Gain Modes:  
The wbm bit sets the White Balance mode. While the  
egm[d] bit sets the Exposure gain mode  
1) Raw gain mode - 32 steps @ 0.02174/step  
- 32 steps @ 0.04340/step  
Address  
22h  
Default  
00h  
PGA Gain Mode  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
x
wbm  
egm[1]  
egm[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
Table 25. PGA Gain Mode  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
45  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
22h  
Default  
00h  
PGA Gain Mode  
msb (7)  
6
x
5
x
4
3
2
1
lsb (0)  
x
x
x
wbm  
egm[1]  
egm[0]  
7 - 3  
2
Unused  
Unused  
xxxx  
0b  
White Bal- 0b = Raw gain mode  
ance Gain  
Mode  
1b = Linear gain mode  
1 - 0  
Exposure  
Gain Mode  
00b = Raw gain mode  
01b = Linear gain mode  
1xb = Linear 2 gain mode  
00b  
Table 25. PGA Gain Mode  
13.3 Offset Calibration Block  
this register can be left in its default state of 00h. This is  
a pre-image processing gain in comparison to the Glo-  
bal DOVA Register which is a post image processing  
chain gain (pre A2D gain).  
Offset adjustments for the MCM20027 are done in sep-  
arate sections of the ASP to facilitate FPN removal and  
final image black level set.  
The Column DOVA DC Register; Table 26, is used to  
set the initial offset of the pixel output in a range that will  
facilitate per-column offset data generation for varying  
operational conditions. In most operational scenarios,  
This register can also be used to apply a global offset  
adjust. In this case, the user must take into account the  
Color Gain and Global Gain registers to determine the  
resulting offset at the output.  
Address  
Default  
00h  
Column DOVA DC  
20h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
cdd[5]  
cdd[4]  
cdd[3]  
cdd[2]  
cdd[1]  
cdd[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5
Unused  
Sign  
Unused  
xx  
0b  
0b = Positive Offset  
1b = Negative Offset  
4 - 0  
Column  
Offset = 2.6 * cddd (64 steps @ 2.6mV /Step)  
00000b  
DC Offset  
Table 26. Column DOVA DC Register  
The Mod64 Column Offset registers; Table 27 are used  
in conjunction with the Column DOVA DC Register; Ta-  
ble 26 to reduce/eliminate fixed pattern noise (FPN).  
There are 64 registers that can be programmed with in-  
dividual offset values. They will be applied to all the col-  
umns on a single image frame on a Modular 64  
basis.i.e. Register 80h Column offset will be applied to  
Column 0 , Register 81h Column offset will be applied to  
Column 1, Register BFh Column offset will be applied to  
Column 63, Register 80h Column offset will be applied  
to Column 0..etc..  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
46  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
00h  
Mod64 Column Offset  
80-BFh  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
mdd[5]  
mdd[4]  
mdd[3]  
mdd[2]  
mdd[1]  
mdd[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5
Unused  
Sign  
Unused  
xx  
0b  
0b = Positive Offset  
1b = Negative Offset  
4 - 0  
Mod 64  
Column  
Offset = 2.6 * mddd (64 steps @ 2.6mV /Step)  
00000b  
DC Offset  
Table 27. Mod64 Column Offset registers  
The Global DOVA Register; Table 28 performs a final  
offset adjustment in analog space prior to the ADC. The  
6-bit register uses its MSB to indicate positive or nega-  
tive offset. Each bit value changes the offset value by 4  
LSB code levels hence giving an offset range of +/-124  
LSB. As an example, to program an offset of +92 LSB,  
the binary representation of +23d i.e. 010111b should  
be loaded.  
Address  
Default  
00h  
Global DOVA  
23h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
gd[5]  
gd[4]  
gd[3]  
gd[2]  
gd[1]  
gd[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5
Unused  
Sign  
Unused  
xx  
0b  
0b = Positive Offset  
1b = Negative Offset  
4 - 0  
Offset  
Offset = 12 * gdd (64 steps @ 12mV /Step)  
00000b  
Table 28. Global DOVA Register  
13.4 Sensor Interface Block  
13.4.1 Sensor Output Control  
The sensor output control registers define how the win-  
dow of interest is captured and what data is output from  
the MCM20027.  
Setting the cms bit will stop the current output data  
stream at the end of the current frame. Unsetting this bit  
(cms = 0b) will resume the output of the frame stream.  
The MCM20027 is in CFRS in default. The user may  
use this bit to capture data in the CFRS mode and/or  
SFRS while using the SYNC pin. The SYNC pin triggers  
a single frame of data to be output from the device in the  
The Capture Mode Control Register; Table 29, defines  
how the data is captured and how the data is to be pro-  
vided at the output..  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
47  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
SFRS mode. Please refer to Figure 14, on page 20 for  
a timing diagram of this mode.  
The he bit is used to determine whether HCLK is output  
continuously or for the WOI pixels only. The default is  
WOI only.  
The sp bit is used to define whether SOF is active high  
or low. SOF is active high in default.  
The hp bit is used to define whether HCLK is active high  
or low. HCLK is active high in default.  
The ve bit is used to determine whether VCLK is output  
at the beginning of all the rows including virtual frame  
rows or for the WOI rows only. The default is WOI only.  
The hm bit is used to define HCLK is toggled or wheth-  
erwhether it is continuously output.  
The vp bit is used to define whether VCLK is active high  
or low. VCLK is active high in default.  
Address  
Default  
2Ah  
Capture Mode Control  
40h  
msb (7)  
FUO  
6
5
4
3
vp  
2
1
lsb (0)  
cms  
sp  
ve  
he  
hp  
hm  
Bit  
Number  
Function  
Description  
Reset  
State  
7
6
FUO  
Factory Use Only  
0b  
0b  
Capture  
Mode  
0b = Continuos Frame Rolling Shutter  
1b = Single Frame Rolling Shutter  
5
4
3
2
1
0
SOF  
Phase  
1b = SOF active high  
0b = SOF active low  
1b  
0b  
1b  
0b  
1b  
0b  
VCLK  
Enable  
1b = All virtual frame rows  
0b = Window of Interest rows only  
VCLK  
Phase  
1b = Active high  
0b = Active low  
HCLK  
Enable  
1b = Continuous  
0b = Window of Interest Pixels only  
HCLK  
Phase  
1b = Active high  
0b = Active low  
HCLK  
Mode  
1b = Continuous - envelope  
0b = Toggles - like MCLK  
Table 29. Capture Mode Control Register  
The Sub-sample Control Register; Table 30, is used to  
define what pixels of the WOI are read and the method  
they are read.  
(monochrome) or in color tiles of pixels (Bayer pattern).  
The pixels will be read in monochrome mode in default.  
The row sub sampling rate is defined by rf[1:0] while the  
column sub sampling rate is defined by cf[1:0]. The pix-  
el array is fully sampled in default.  
Using the cm bit, the user can sample the pixel array in  
either monochrome or Bayer pattern color space. This  
means that when sampling the rows or columns, the set  
of pixels read will be gathered as individual pixels  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
48  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
Sub-sample Control  
41h  
msb (7)  
x
10h  
lsb (0)  
cf[0]  
6
5
4
3
2
1
FUO  
FUO  
cm  
rf[1]  
rf[0]  
cf[1]  
Bit  
Number  
Function  
Description  
Reset  
State  
7
6-5  
4
Unused  
FUO  
Unused  
x
Factory Use Only  
FUO  
1b  
Color  
Mode  
1b = Bayer Pattern Sampling  
0b = Monochrome Pattern Sampling  
3 - 2  
Row Fre-  
quency  
11b = read one row pattern, skip 7 (1/8 sampled)  
10b = read one row pattern, skip 3 (1/4 sampled)  
01b = read one row pattern, skip one (1/2 sampled)  
00b = full sampling  
00b  
1 - 0  
Column  
Frequency  
11b = read one column pattern, skip 7 (1/8 sampled)  
10b = read one column pattern, skip 3 (1/4 sampled)  
01b = read one column pattern, skip one (1/2 sampled)  
00b = full sampling  
00b  
Table 30. Sub-sample Control Register  
The Sync and Strobe Control register; Table 31 is used  
to control the sync and strobe signals.  
the bit is set to 0 (Setting 0), causes the STROBE signal  
to on for a duration of 1 Row time (TROW) from the time  
all Rows are integrating  
The sr bit when enabled causes the SYNC signal to go  
high for exactly one clock cycle, and then returns to a  
low. It remains low until the sr bit is enabled again.  
The sso bit ,when enabled, forces the STROBE signal  
and thereby the STROBE Pin high until it is reset back  
to 0. When this bit is set high - the sae and saw bit set-  
tings become negligible.  
The sa bit when enabled causes the SYNC signal high  
until this bit is disabled. This causes continuous frame  
processing.  
The se bit when enabled will allow for an external signal  
to drive the SYNC signal via the SYNC pin on the chip.  
NOTE! Please refer to Figure 15, on page 14 for Strobe  
Signal timing diagram.  
The sae bit when enabled will enable the STROBE sig-  
nal to be generated automatically by the sensor.This will  
only work in SFRS (Single Frame Rolling Shutter). The  
STROBE signal is goes high when all the Rows in the  
Frame are integrating together.  
The saw bit allows the user to select how long the  
STROBE signal is going to be on. If the bit is set to 1  
(Setting 1), causes the STROBE Signal to be on from  
the time all the Rows are integrating to 1 Row time  
(TROW) before Read-Out of the first Row commences. If  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
49  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
SYNC and STROBE Control  
42h  
msb (7)  
x
02h  
lsb (0)  
sr  
6
x
5
4
3
2
1
sso  
saw  
sae  
se  
sa  
Bit  
Number  
Function  
Description  
Reset  
State  
7-6  
5
Unused  
Unused  
xx  
0b  
Strobe  
Enable  
1b = Strobe On  
0b = Disabled  
4
Strobe  
Auto Width  
Definition  
1b = Maximum time (Entire time during which all active rows are inte  
grating)  
0b = 1 line  
0b  
3
2
Strobe  
Auto  
Enabled  
1b = Enabled during integration  
0b = Disabled  
0b  
0b  
Exernal  
SYNC  
Enabled  
1b = Enabled  
0b = Disabled  
1
0
SYNC  
Always  
1b = Enabled  
0b = Disabled  
1b  
0b  
SYNC  
Request  
1b = Enabled (Self clearing - will always read “0”)  
0b = Disabled  
Table 31. Sync and Strobe Control register  
13.4.2 Programmable “Window of Interest”  
The WOI Row Depth; wrd[10:0] (Table 32 and Table  
33), and the WOI Column Depth; wcd[10:0] (Table 36  
and Table 37), indicate the size of the WOI.  
The WOI is defined by a set of registers that indicate the  
upper-left starting point for the window and another set  
of registers that define the size of the window. Please  
refer to Figure 9, on page 12 for a pictorial representa-  
tion of the WOI within the active pixel array.  
The WOI Row Depth; wrd[10:0], has a range of 0d to  
1047d whereas the WOI Column Depth; wcd[10:0], has  
a range of 0d to 1295d.  
The WOI Row Pointer; wrp[10:0] (Table 32 and Table  
33), and the WOI Column Pointer; wcp[10:0] (Table 36  
and Table 37), mark the upper-left starting point for the  
WOI.  
The user should be careful to create a WOI that con-  
tains active pixels only. There is no logic in the sensor  
The WOI Row Pointer; wrp[10:0], has a range of 0d to  
1047d whereas the WOI Column Pointer; wcp[10:0] has  
a usable range of 0d to 1295d. The pointer can be  
placed anywhere within the active pixel array.  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
50  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
interface to prevent the user from defining an WOI that  
addresses non-existent pixels.  
Address  
Default  
00h  
WOI Row Pointer MSB  
45h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
x
x
x
wrp[10]  
wrp[9]  
wrp[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 3  
2 - 0  
Unused  
Unused  
xxxxx  
000b  
WOI Row  
Pointer  
In conjunction with the WOI Row Pointer LSB Register (Table 33),  
forms the 11-bit WOI Row Pointer wrp[10:0]  
Table 32. WOI Row Pointer MSB Register  
WOI Row Pointer LSB  
Address  
46h  
Default  
10h  
msb (7)  
6
5
4
3
2
1
lsb (0)  
wrp[7]  
wrp[6]  
Function  
wrp[5]  
wrp[4]  
wrp[3]  
wrp[2]  
wrp[1]  
wrp[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
WOI Row  
Pointer  
In conjunction with the WOI Row Pointer MSB Register (Table 32),  
forms the 11-bit WOI Row Pointer wrp[10:0]  
00010000b  
(row 16)  
Table 33. WOI Row Pointer LSB Register  
Address  
47h  
Default  
03h  
WOI Row Depth MSB  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
x
wrd[10]  
wrd[9]  
wrd[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 3  
Unused  
Unused  
xxxxx  
Table 34. WOI Row Depth MSB Register  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
51  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
03h  
WOI Row Depth MSB  
47h  
msb (7)  
x
6
5
4
3
2
1
lsb (0)  
wrd[8]  
011b  
x
x
x
x
wrd[10]  
wrd[9]  
2-0  
WOI Row  
Depth  
In conjunction with the WOI Row Depth LSB Register (Table 35),  
forms the 11-bit WOI Row Depth wrd[10:0].  
Table 34. WOI Row Depth MSB Register  
WOI Row Depth LSB  
Address  
48h  
Default  
FFh  
msb (7)  
6
5
4
3
2
1
lsb (0)  
wrd[7]  
wrd[6]  
Function  
wrd[5]  
wrd[4]  
wrd[3]  
wrd[2]  
wrd[1]  
wrd[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
WOI Row  
Pointer  
In conjunction with the WOI Row Depth MSB Register (Table 34),  
forms the 11-bit WOI Row Depth wrd[10:0].  
Desired = wrdd + 1.  
11111111b  
(1024  
rows)  
Table 35. WOI Row Depth LSB Register  
Address  
49h  
Default  
00h  
WOI Column Pointer MSB  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
x
wcp[10]  
wcp[9]  
wcp[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 3  
2 - 0  
Unused  
Unused  
xxxxx  
000b  
WOI Col.  
Pointer  
In conjunction with the WOI Column Pointer LSB Register (Table  
37), forms the 11-bit WOI Column Pointer wcp[10:0]  
Table 36. WOI Column Pointer MSB Register  
MOTOROLA  
Revision 8.0 - 28 November 2001 :  
MCM20027  
52  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
08h  
WOI Column Pointer LSB  
4Ah  
msb (7)  
wcp[7]  
6
5
4
3
2
1
lsb (0)  
wcp[6]  
Function  
wcp5]  
wcp[4]  
wcp[3]  
wcp[2]  
wcp[1]  
wcp[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
WOI Col.  
Pointer  
In conjunction with the WOI Column Pointer MSB Register (Table  
36), forms the 11-bit WOI Column Pointer wcp[10:0]  
00001000b  
(col. 8)  
Table 37. WOI Column Pointer LSB Register  
Address  
4Bh  
Default  
04h  
WOI Column Width MSB  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
x
wcw[10]  
wcw[9]  
wcw[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 3  
2 - 0  
Unused  
Unused  
xxxxx  
100b  
WOI Col.  
Width  
In conjunction with the WOI Column Width LSB Register (Table 39),  
forms the 11-bit WOI Column Width wcw[10:0].  
Table 38. WOI Column Width MSB Register  
WOI Column Width LSB  
Address  
4Ch  
Default  
FFh  
msb (7)  
6
5
4
3
2
1
lsb (0)  
wcw[7]  
wcw[6]  
Function  
wcw[5]  
wcw[4]  
wcw[3]  
wcw[2]  
wcw[1]  
wcw[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
WOI Row  
Pointer  
In conjunction with the WOI Column Width MSB Register (Table 38),  
forms the 11-bit WOI Column Width wcw[10:0].  
Desired = wcwd + 1.  
11111111b  
(1280 col.)  
Table 39. WOI Column Width LSB Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
53  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
13.4.3 Integration Time Control  
data stream. By adding additional rows or columns as  
‘blanking’ to the WOI to form the Virtual Frame, the user  
can control the amount of blanking in both horizontal  
and vertical space.(Table 42, “Virtual Frame Row Depth  
MSB Register,” on page 55 Table 43, “Virtual Frame  
Row Depth LSB Register,” on page 55Table 44, “Virtual  
Frame Column Width MSB Register,” on  
The Integration Time registers; Table 41, Table 40, and  
Table 41, control the integration time for the pixel array.  
Integration time for CFRS and SFRS; cint[13:0], is  
measured in Virtual Row times. Please refer to Figure  
11 for a pictorial description of the Virtual Frame and its  
relationship to the WOI.  
page 56Table 45, “Virtual Frame Column Width LSB  
Register,” on page 56)  
NOTE!! The upd bit of the Integration Time MSB Reg-  
ister; Table 40 is used to indicate a change to cint[13:0].  
Since multiple I2C writes may be needed to complete  
desired frame to frame integration time changes, the  
upd bit signals that all desired programming has been  
completed, and to apply these changes to the next  
frame captured. This prevents undesirable changes in  
integration time that may result from I2C writes that  
span the “End of Frame” boundary. This upd bit has to  
be toggled from its previous state in order for the new  
value of cint[13:0] to be accepted/updated by the sen-  
sor and take effect. i.e. If its previous state is “0”, when  
writing a new cint value, first write cint[7:0] to the Inte-  
gration Time LSB Register; Table 41, then write both  
cint [13:8] and “1” to the upd bit to the Integration Time  
MSB Register; Table 40.  
The user should be careful to create a Virtual Frame  
that is larger than the WOI. There is no logic in the sen-  
sor interface to prevent the user from defining a Virtual  
Frame smaller than the WOI. Therefore, pixel data may  
be lost.  
The Virtual Frame must be at least 1 row and 6 columns  
larger than the WOI.  
The Virtual Frame completely defines the integration  
time in CFRS. Any changes to the WOI or how the WOI  
is sampled has no effect on integration time.  
A virtual frame is the mechanism by which the user con-  
trols the integration time and frame time for the output  
Address  
Default  
04h  
Integration Time MSB  
4Eh  
msb (7)  
FUO  
6
5
4
3
2
1
lsb (0)  
upd  
cint[13]  
cint[12]  
cint[11]  
cint[10]  
cint[9]  
cint[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7
6
FUO  
Factory Use Only  
Integration This bit has to change from its previous state everytime a new value  
0
Time  
Update  
Switch  
is written to Integration Time ISB and the Integration Time LSB.  
5 - 0  
Integration In conjunction with the Integration Time LSB (Table 41) Register,  
000100b  
Time  
forms the 14-bit Integration Time cint[13:0].  
Table 40. Integration Time MSB Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
54  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
FFh  
Integration Time LSB  
4Fh  
msb (7)  
cint[7]  
6
5
4
3
2
1
lsb (0)  
cint[6]  
Function  
cint[5]  
cint[4]  
cint[3]  
cint[2]  
cint[1]  
cint[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
Integration In conjunction with the Integration Time ISB (Table 40) Register,  
11111111b  
Time  
forms the 14-bit Integration Time cint[13:0].  
Integration Time = (cintd + 1) * Trow  
CFRS and  
SFRS:  
1280  
Rows)  
Table 41. Integration Time LSB Register  
Virtual Frame Row Depth MSB  
Address  
50h  
Default  
04h  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
vrd[13]  
vrd[12]  
vrd[11]  
vrd[10]  
vrd[9]  
vrd[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Unused  
xx  
VirtualRow In conjunction with the CFRS and SFRS Virtual Frame Row Depth  
000100b  
Depth  
LSB (Table 43) Register, forms the 14-bit Virtual Frame Row Depth  
vrd[13:0].  
Table 42. Virtual Frame Row Depth MSB Register  
Address  
51h  
Default  
27h  
Virtual Frame Row Depth LSB  
msb (7)  
6
5
4
3
2
1
lsb (0)  
vrd[7]  
vrd[6]  
vrd[5]  
vrd[4]  
vrd[3]  
vrd[2]  
vrd[1]  
vrd[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
Table 43. Virtual Frame Row Depth LSB Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
55  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
27h  
Virtual Frame Row Depth LSB  
51h  
msb (7)  
vrd[7]  
7 - 0  
6
5
4
3
2
1
lsb (0)  
vrd[0]  
vrd[6]  
vrd[5]  
vrd[4]  
vrd[3]  
vrd[2]  
vrd[1]  
VirtualRow In conjunction with the CFRS and SFRS Virtual Frame Row Depth  
00100111b  
Depth  
MSB (Table 42) Register, forms the 14-bit Virtual Frame Row Depth  
vrd[13:0].  
(1064  
rows)  
WOI is always top-left justified in Virtual Frame.  
vrdd minimum = wrdd + 1  
Table 43. Virtual Frame Row Depth LSB Register  
Address  
52h  
Default  
05h  
Virtual Frame Column Width MSB  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
vcw[13]  
vcw[12]  
vcw[11]  
vcw[10]  
vcw[9]  
vcw[8]  
Bit  
Number  
Function  
Description  
Reset  
State  
7 - 6  
5 - 0  
Unused  
Unused  
xx  
Virtual Col- In conjunction with the CFRS and SFRS Virtual Frame Column  
umn Width Width LSB (Table 45) Register, forms the 14-bit Virtual Frame Col-  
umn Width vcw[13:0].  
000101b  
Table 44. Virtual Frame Column Width MSB Register  
Address  
53h  
Default  
13h  
Virtual Frame Column Width LSB  
msb (7)  
6
5
4
3
2
1
lsb (0)  
vcw[7]  
vcw[6]  
Function  
vcw[5]  
vcw[4]  
vcw[3]  
vcw[2]  
vcw[1]  
vcw[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
Virtual Col- In conjunction with the CFRS and SFRS Virtual Frame Column  
umn Width Width MSB (Table 44) Register, forms the 14-bit Virtual Frame Col-  
umn Width vcw[13:0]. WOI is always top-left justified in Virtual  
Frame.  
00010011b  
(1300 col.)  
vcwd minimum = wcwd + 11  
Table 45. Virtual Frame Column Width LSB Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
56  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
is a parameter that cannot be easily identified by the  
common user). The VCLK Delay is defined as the time  
after the SOF signal is first initialized. The SOF & VCLK  
Signal Length Control Register, Table 48 , is used to de-  
fine the size of the SOF and VCLK signals. In default,  
SOF is one row wide while VLCK is 64 MCLKs wide  
The SOF Delay Register; Table 46 and VCLK Delay  
Register; Table 47 are used to determine the time  
(clock) delay for the start of the two signals respectively.  
The SOF Delay is measured as the time after the start  
of the change of row address (Change of row address  
Address  
Default  
4Ch  
SOF Delay  
54h  
msb (7)  
6
5
4
3
2
1
lsb (0)  
sofd[7]  
sofd[6]  
Function  
sof[d5]  
sofd[4]  
sofd[3]  
sofd[2]  
sofd[1]  
sofd[0]  
Bit  
Number  
Description  
Reset  
State  
1001100b  
7 - 0  
SOF Delay Delay= sofd[d] x 0.5 MCLKs  
(Note - Delay is relative to Internal Pixel Transfer Control)  
Table 46. SOF Delay Register  
Address  
55h  
Default  
02h  
VCLK Delay  
msb (7)  
6
5
4
3
2
1
lsb (0)  
vckd[7]  
vckd[6]  
Function  
vckd[5]  
vckd[4]  
vckd[3]  
vckd[2]  
vckd[1]  
vckd[0]  
Bit  
Number  
Description  
Reset  
State  
7 - 0  
VCLK  
Delay  
Delay = vckd[d] x 0.5 MCLKs  
(Note - Delay is relative to Start Of Frame {SOF} signal)  
00000010b  
Table 47. VCLK Delay Register  
Address  
56h  
Default  
Eh  
SOF and VCLK Signal Length Control  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
sofc[3]  
sofc[2]  
vckc[1]  
vckc[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
3 - 2  
SOF Con-  
trol  
sof[3:2] = 00b = 1 MCLK Wide  
sof[3:2] = 01b = 8 MCLKs Wide  
sof[3:2] = 10b = 64 MCLKs Wide  
sof[3:2] = 11b = Full Row Wide  
11b  
Table 48. SOF & VCLK Signal Length Control Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
57  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
SOF and VCLK Signal Length Control  
56h  
Eh  
msb (7)  
x
6
5
4
3
2
1
lsb (0)  
vckc[0]  
10b  
x
x
x
sofc[3]  
sofc[2]  
vckc[1]  
1 - 0  
VCLK Con- vck[1:0] = 00b = 1 MCLK Wide  
trol  
vck[1:0] = 01b = 8 MCLKs Wide  
vck[1:0] = 10b = 64 MCLKs Wide  
vck[1:0] = 11b = Full Row Wide  
Table 48. SOF & VCLK Signal Length Control Register  
The Greycode and Readout Control Register; Table 49 allows the user to choose if the column and row addresses  
are to utilize Greycode address format or not. It also allows the user to select the user to select the direction of the  
row and column readout.  
The rrc when enabled causes the column data to be readout in the reverse direction as compared to the normal  
readout direction.  
The rrr when enabled causes the row data to be readout in the reverse direction as compared to the normal readout  
direction.  
The gcc bit when enabled causes the column addresses to be Greycoded.  
The gcr bit when enabled causes the column addresses to be Greycoded.  
Address  
57h  
Default  
04h  
Greycode and Readout Control  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
x
x
gcr  
gcc  
rrr  
rrc  
Bit  
Number  
Function  
Description  
Reset  
State  
7-4  
3
Unused  
Unused  
Row Grey- 1b = Greycode addressing Enabled  
code  
Address  
0b  
1b  
0b = Binary Addressing  
2
Column  
Greycode  
Address  
Enable  
1b = Greycode addressing Enabled  
0b = Binary Addressing  
Table 49. Greycode and Readout Control Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
58  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
04h  
Greycode and Readout Control  
57h  
msb (7)  
6
5
4
3
2
1
lsb (0)  
rrc  
0b  
x
x
x
x
gcr  
gcc  
rrr  
1
Row Read- 1b = Reverse Readout (Top to Bottom)  
out  
0b = Normal Readout (Bottom to Top)  
0
Column  
Readout  
1b = Reverse Readout (Right to Left)  
0b = Normal Readout (Left to Right  
0b  
Table 49. Greycode and Readout Control Register  
The Internal Timing Control Register 1 (shs time definition); Table 50 and ,Internal Timing Control Register 2 (shr  
time definition); Table 51 are used to define the size of internal timing pulse widths. In default, both shs and shr are  
6 MCLK’s wide. A maximum of 64 MCLK‘s can be programmed for the shs delay and another 64 MCLK‘s for the shr  
delay, for a total 0f 128 MCLK‘s. Note! writing 00h to either of these Registers will write a maximum timing delay of  
64 MCLK‘s. i.e. 00 = 64 MCLK  
Address  
5Fh  
Default  
0Ah  
Internal Timing Control  
msb (7)  
6
x
5
4
3
2
1
lsb (0)  
x
shs[5]  
shs[4]  
shs[3]  
shs[2]  
shs[1]  
shs[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
xx  
7-6  
Unused  
shs  
Unused  
001010b  
5 - 0  
shs[5:0] = 000000b = 64 MCLKs Wide  
shs[5:0] = 000001b = 1d MCLKs Wide  
shs[5:0] = 000010b = 2d MCLKs Wide  
shs[5:0] = 000011b = 3d MCLKs Wide  
|
|
shs[5:0] = 111111b = 63d MCLKs Wide  
Table 50. Internal Timing Control Register 1 (shs time definition)  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
59  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
Default  
0Ah  
Internal Timing Control  
60h  
msb (7)  
x
6
x
5
4
3
2
1
lsb (0)  
shr[5]  
shr[4]  
shr[3]  
shr[2]  
shr[1]  
shr[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
xx  
7-6  
Unused  
shr  
Unused  
001010b  
5 - 0  
shr[5:0] = 000000b = 64 MCLKs Wide  
shr[5:0] = 000001b = 1d MCLKs Wide  
shr[5:0] = 000010b = 2d MCLKs Wide  
shr[5:0] = 000011b = 3d MCLKs Wide  
|
|
shr[5:0] = 111111b = 63d MCLKs Wide  
Table 51. Internal Timing Control Register 2 (shr time definition)  
The HCLK Delay Register; Table 52 allows the user to program the delay for the start of the HCLK signal. The delay  
is calculated in accordance to the result of inserting the value of the register into the following formula:  
Delay = ((hckd[d]-4)x 0.5) - 16 MCLKs  
Address  
64h  
Default  
5Ch  
HCLK Control  
msb (7)  
6
5
4
3
2
1
lsb (0)  
x
FUO  
FUO  
FUO  
FUO  
hckd[2]  
hckd[1]  
hckd[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7
Unused  
FUO  
Unused  
x
6 - 3  
Factory Use Only  
Table 52. HCLK Delay Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
60  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
64h  
Default  
5Ch  
HCLK Control  
msb (7)  
x
6
5
4
3
2
1
lsb (0)  
hckd[0]  
100b  
FUO  
FUO  
FUO  
FUO  
hckd[2]  
hckd[1]  
2 - 0  
HCLK  
Delay  
Delay = ((hckd[d]-4)x 0.5) - 16 MCLKs  
Table 52. HCLK Delay Register  
The Pixel Data Stream Control Register allows the user to select how the output pixel data stream is encoded/for-  
matted.  
The vcb bit allows the user to force all the Blanking data coming out of the A2D to be 0.  
The vcg bit allows the user to choose between encoded pixel data output stream or non-encoded pixel data output  
stream.  
The vcc bit allows the user to clip the output active pixel data to lie between 001 and 3FE  
The default mode (Normal Mode) has the SOF, HCLK, VCLK etc. signals being utilised to indicate the start of data  
and the end of data. (Figure 2, on page 7 and Figure 14, on page 20)  
Register Value = 00h  
Another mode, Video Mode is a mode where the SOF and Row start/end signals are encoded (contained) in the  
Active Pixel data stream. In addition, all data that is not a SOF, Row start/end, or Active pixel data are forced to 0.  
i.e. all Blanking data from the A2D are forced to 0. The following sequence identifies the signals below: (see Figure  
, on page 30)  
a) SOF (1st Row of Pixel Data) - “3FF x 4)  
b) Start of all other Rows - “3FF x 2” then “000 x 2”  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
61  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Register Value = 70  
Address  
Default  
Pixel Data Stream Signal Control Register  
65h  
msb (7)  
x
00h  
lsb (0)  
FUO  
6
5
4
3
2
1
vcb  
vsg  
vcc  
FUO  
FUO  
FUO  
Bit  
Number  
Function  
Description  
Reset  
State  
x
7
6
Unused  
Unused  
Vcode  
Blanking  
1b = All blanking data will be forced to 0  
0b = Blanking of Data  
0b  
5
Vcode  
Sync Gen-  
eration  
1b = Prefixes 3FF x 4 to beginning of active pixel data to indicate  
0b  
start of Row 1(SOF signal). Prefixes 3FF x 2 and then 000 x 2 to  
indicate start of all following Rows of data (VCLK) [Encoded data  
stream]  
0b = Use of SOF, HCLK etc. signals for sync generation (No  
coded data stream)  
4
Vcode  
Clipping  
1b = Will clip output data stream to values 001b to 3FEb  
0b = No clipping of output data stream  
0b  
3 - 0  
FUO  
Factory Use Only  
0000b  
Table 53. Pixel Data Stream Signal Control Register  
The FRC Definition Register; Table 54 allows the user to define the size of the dark rows to use as Clamping rows.  
The frcs bit identifies the starting position of the Clamping rows. i.e. If 4d is written to this register, the first clamped  
dark row would be the 4th row.  
The frcd bit identifies the FRC row depth. Allows the user to select the number of dark rows to clamp on.  
NOTE! Since there exists ONLY 11 dark rows the addition of FRC Row Depth + FRC Row Start should not be great-  
er than 11, otherwise light rows would be clamped in the process.  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
62  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Address  
67h  
Default  
24h  
FRC Definition  
msb (7)  
6
5
4
3
2
1
lsb (0)  
x
FUO  
frcd[1]  
frcd[0]  
frcs[3]  
frcs[2]  
frcs[1]  
frcs[0]  
Bit  
Number  
Function  
Description  
Reset  
State  
7
6
Unused  
FUO  
Unused  
x
Factory Use Only  
5 - 4  
FRC Row  
Depth  
Defines the number of Clamping Rows.  
NOTE!! The addition of FRC Row Depth + FRC Row Start should  
10b  
not be greater than 11d.  
3 - 0  
FRC Row  
Start  
Defines the first Clamping row. Defines the FRC starting point.  
0100  
Table 54. FRC Definition Register  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
63  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
14.0 Electrical Characteristics  
ABSOLUTE MAXIMUM RATINGS1 (Voltages Referenced to VSS)  
Symbol  
Parameter  
Value  
Unit  
V
DC Supply Voltage  
DC Input Voltage  
-0.5 to 3.8  
V
V
DD  
V
0.5 to V + 0.5  
in  
DD  
V
-0.5 to V + 0.5  
DC Output Voltage  
V
out  
DD  
I
I
DC Current Drain per Pin, Any Single Input or Output  
DC Current Drain, V and V Pins  
±50  
±100  
mA  
mA  
°C  
°C  
DD  
SS  
T
Storage Temperature Range  
-65 to +150  
300  
STG  
T
Lead Temperature (10 second soldering)  
L
1
Maximum Ratings are those values beyond which damage to the device may occur.  
V
V
= AV = DV = V  
(DV = V of Digital circuit, AV = V of Analog Circuit)  
SS  
DD  
SS  
SS  
SSO SS SS SS SS  
= AV = DV = V  
(DV = V of Digital circuit, AV = V of Analog Circuit)  
DD DD DD DD  
DD  
DD  
DDO  
RECOMMENDED OPERATING CONDITIONS (to guarantee functionality; voltage referenced to VSS)  
Symbol  
Parameter  
Min.  
3.0  
0
Max  
3.6  
40  
Unit  
V
V
DC Supply Voltage, V = 3.3V (Nominal)  
DD  
DD  
T
Commercial Operating Temperature  
Junction Temperature  
°C  
°C  
A
T
0
55  
J
Notes:  
- All parameters are characterized for DC conditions after thermal equilibrium has been established.  
- Unused inputs must always be tied to an appropriate logic level, e.g., either V or V  
.
DD  
SS  
- This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that  
normal precautions be taken to avoid application of any voltage higher than the maximum rated voltages to this high impedance circuit.  
- For proper operation it is recommended that V and V be constrained to the range V < (V or V ) < V .  
DD  
in  
out  
SS  
in  
out  
DC ELECTRICAL CHARACTERISTICS (VDD = 3.3V ± 0.3V; VDD referenced to VSS; Ta = 0°C to 40°C)  
T
= 0°C to 40°C  
A
Symbol  
Characteristic  
Input High Voltage  
Condition  
Min.  
2.0  
-0.3  
-5  
Max  
V +0.3  
DD  
Unit  
V
V
IH  
V
Input Low Voltage  
0.8  
V
IL  
I
V
= V or V  
SS  
Input Leakage Current, No Pull-up Resistor  
5
mA  
in  
in  
DD  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
64  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
I
V
= Min., V Min. = 0.8 * V  
DD OH DD  
Output High Current  
Output Low Current  
-3  
mA  
mA  
V
OH  
I
V
= Min., V Max = 0.4 V  
3
OL  
DD  
OL  
V
V
= Min., I = -100mA  
V - 0.2  
DD  
Output High Voltage  
OH  
DD  
OH  
V
I
V
= Min., I = 100mA  
Output Low Voltage  
0.2  
10  
V
OL  
DD  
OL  
Output = High Impedance, V = V or V  
SS  
3-State Output Leakage Current  
Maximum Standby Supply Current  
-10  
0
mA  
mA  
OZ  
DD  
out  
DD  
I
I
= 0mA, V = V or V  
SS  
15.0  
out  
in  
DD  
POWER DISSIPATION (VDD = 3.0V, VDD referenced to VSS; At = 25°C)  
Symbol  
Parameter  
Condition  
Typ  
100  
250  
Unit  
P
Standby Power  
Average Power  
INIT Pin Logic High  
13.5 MHz Operation  
uW  
STDBY  
P
mW  
AVG  
MCM20027 MONOCHROME CMOS IMAGE SENSOR ELECTRO-OPTICAL CHARACTERISTICS  
Symbol  
Parameter  
Typ  
Unit  
Notes  
1
2
E
Saturation Exposure  
0.14  
mJ/cm  
sat  
QE  
Peak Quantum Efficiency (@550nm)  
Photoresponse Non-uniformity  
18  
12  
%
2
3
PRNU  
% pk-pk  
Notes:  
1.For l = 550 nm wavelength.  
2.Refer to typical values from Figure 3, MCM20027 nominal spectral response.  
3.For a 100 x 100 pixel region under uniform illumination with output signal equal to 80% of saturation signal.  
MCM20027 COLOR CMOS IMAGE SENSOR ELECTRO-OPTICAL CHARACTERISTICS  
Symbol  
Parameter  
Typ  
0.3  
12  
11  
8
Unit  
Notes  
2
E
Saturation Exposure  
1
2
2
2
mJ/cm  
%
sat  
QE  
Red Peak Quantum Efficiency @ l = 650 nm  
Green Peak Quantum Efficiency @ l = 550 nm  
Blue Peak Quantum Efficiency @ l = 450 nm  
r
QE  
%
g
QE  
%
b
Notes:  
1.For l = 550 nm wavelength.  
2.Refer to typical values from Figure 3, MCM20027 nominal spectral response.  
CMOS IMAGE SENSOR CHARACTERISTICS  
Symbol  
Parameter  
Typ  
1.8  
Unit  
Notes  
Sensitivity  
V/lux-sec  
2
I
Photodiode Dark Current  
0.2  
nA/cm  
d
DSNU  
CTE  
Dark Signal Non-Uniformity (Entire Field)  
Pixel Charge Transfer Efficiency  
Horizontal Imager Frequency  
0.4  
% rms  
%
0.9995  
11.5  
1
4
f
MHz  
H
X
Blooming Margin - shuttered light  
200  
2,3  
ab  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
65  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Notes:  
1. Transfer efficiency of photosite  
2. X represents the increase above the saturation-irradiance level (H ) that the device can be exposed to before blooming of the pixel will  
ab  
sat  
occur.  
3. No column streaking  
4. At 30fps VGA  
GENERAL  
Symbol  
Parameter  
Typ  
70  
Unit  
Notes  
1
-
n -  
Total System (equivalent) Noise Floor  
System Dynamic Range  
e rms  
e
total  
DR  
Notes:  
50  
dB  
1.Includes amplifier noise, dark pattern noise and dark current shot noise at 13.5 MHz data rates.  
ANALOG SIGNAL PROCESSOR CHARACTERISTICS  
Analog to Digital Converter (ADC)  
Symbol  
Parameter  
Resolution  
Min  
Typ  
10  
Max  
Units  
bits  
8
V
2.5  
Vpp  
LSB  
LSB  
MHz  
IN  
Input Dynamic Range  
INL  
Integral Non-Linearity  
Differential Non-Linearity  
ADC Clock Rate  
+1.0  
+0.5  
DNL  
f
13.5  
max  
Notes:  
8
Effective differential signal dynamic range  
9. INL & DNL test limits are adjusted to compensate for the effects of the LRC, DOVA and DPGA stages between teh EXT_VINS input and the  
input of the ADC.  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
66  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
15.0 MCM20027 Pin Definitions  
note: pins 1 & 46 should  
be pulled down when not in use  
MCLK  
VCLK  
SDATA  
SCLK  
Legend:  
P = V  
HCLK  
SYNC  
DVDD  
DVSS  
DD  
G = V  
SS  
VSS_PIX  
VDD_PIX  
BIAS_IN  
STROBE  
SOF  
Connect to VDD  
I = Input  
Top-View  
O = Output  
D = Digital  
A = Analog  
INIT  
DVDD  
AVDD  
AVSS  
CVBG  
See Section 8.6 for more  
information  
DVSS  
AVSS  
EXTRESP  
AVDD  
EXTRESR  
TN  
CLRCA  
See Section 8.4 for  
more information  
See Section 8.5 for  
more information  
Figure 20. MCM20027 Pin Definitions  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
67  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Pin Pin  
No. Name  
Pin  
Type  
Pin Pin  
No. Name  
Pin  
Type  
Description  
Sensor Initialize  
Power  
Description  
Power  
1
2
3
4
5
6
7
8
9
INIT  
I
25 VDD_PIX Pixel power  
26 VSS_PIX Pixel ground  
DVDD  
DVSS  
Digital Power  
P
G
G
P
O
O
O
O
I
D
D
A
A
Digital Ground  
27 DVSS  
28 DVDD  
29 SCLK  
30 SDATA  
Digital Ground  
Digital Power  
G
P
D
D
AVSS  
Analog Ground  
AVDD  
CLRCA  
CLRCB  
TST_VR  
TST_VS  
Analog Power  
I2C Serial Clock  
I2C Serial Data  
I/O  
I/O  
O
O
O
O
O
P
Line Rate Clamp Output  
Line Rate Clamp Output  
Analog test reference Output  
Analog test signal Output  
31 PIX_OUT0 Output bit 0 = 1 Weight  
32 PIX_OUT1 Output bit 1 = 2 Weight  
33 PIX_OUT2 Output bit 2 = 4 Weight  
34 PIX_OUT3 Output bit 3 = 8 Weight  
35 PIX_OUT4 Output bit 4 = 16 Weight  
10 EXT_VINR Analog test reference Input  
11 EXT_VINS Analog test signal Input  
I
12 AVSS  
13 AVDD  
Analog Ground  
Analog Power  
G
P
O
O
I
A
A
36 DVDD  
37 DVSS  
Digital Power  
Digital Ground  
D
D
G
O
O
O
O
O
14 CVREFM Bias Reference Bottom Output  
15 CVREFP Bias Reference Top Output  
38 PIX_OUT5 Output bit 5 = 32 Weight  
39 PIX_OUT6 Output bit 6 = 64 Weight  
40 PIX_OUT7 Output bit 7 = 128 Weight  
41 PIX_OUT8 Output bit 8 = 256 Weight  
42 PIX_OUT9 Output bit 9 = 512 Weight  
16 VAG  
Common Mode Cap Input  
17 VAGRETN Common Mode Cap Return  
18 VAGREF Common Mode Caps Input  
EXTRESR  
A
A
I
I
19  
EXTRES Return  
43 MCLK  
Master Clock  
I
TN  
20 EXTRES External Bias Resistor Input  
44 VCLK  
45 HCLK  
46 SYNC  
Line Sync  
O
O
I
21 CVBG  
22 AVSS  
23 AVDD  
24 BIAS_IN  
Bandgap Voltage Testpoint  
Analog Ground  
Pixel Sync  
G
P
I
A
A
Sensor Sync Signal  
Analog Power  
47 STROBE Strobe signal  
48 SOF Start Of Frame  
O
O
Pixel row 1046/7 inj Bias in  
Table 55. MCM20027 Pin Definitions  
I
P
INPUT  
POWER  
G
O
D
GROUND  
OUTPUT  
DIGITAL  
A
ANALOG  
I/O  
BIDIRECTIONAL  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
68  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
16.0 MCM20027 Packaging Information  
Figure 21. 48 Terminal ceramic leadless chip carrier (bottom view)  
Dim  
A
Min(Inches)  
0.555  
Max(Inches)  
0.572  
B
0.525  
---  
0.545  
0.09362  
0.024  
C
D
0.016  
0.054  
0.075  
E
0.068  
F
0.095  
G
H
0.040 BSC  
0.033  
0.555  
0.525  
0.047  
0.572  
0.545  
J
K
R
0.0075 (Radius)  
0.0075 (Radius)  
R1  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
69  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
PIX_OUT7  
PIX_OUT3  
VDD PIX_OUT4  
PIX_OUT5  
PIX_OUT6  
PIX_OUT1  
PIX_OUT9  
PIX_OUT8  
VSS  
PIX_OUT2  
PIX_OUT0  
42  
41  
40 39 38 37  
36 35 34  
33  
32  
31  
MOT  
M
1
SDATA  
INC.  
30  
3
4
5
6
7
8 9  
10  
11  
12  
13 14  
2
MCLK  
43  
60  
15  
16  
SCLK  
VDD  
29  
28  
VCLK  
HCLK  
44  
45  
46  
59  
58  
17  
18  
57  
56  
19  
20  
VSS  
27  
26  
25  
SYNC  
X-Offset:  
+52µm (~2mil)  
VSS_PIX  
STROBE  
SOF  
47  
48  
21  
22  
23  
55  
54  
VDD_PIX  
Y-Offset:  
+400µm (~16mil)  
INIT  
BIAS_IN  
VDDA  
24  
23  
22  
Pin  
1
2
Die Placement  
positional tolerance  
200um (+/- 4 mil)  
53  
52  
24  
25  
VDD  
51  
50  
VSS  
3
4
VSSA  
26  
27  
49  
48  
VSSA  
CVBG  
21  
20  
28  
29  
VDDA  
5
6
EXTRESP  
47  
46  
30  
45  
44  
43 42  
41  
40  
39 38  
37 36  
35  
34  
33  
32  
31  
VSSA  
CLRCA  
19  
K06K  
7
8
9
10  
11 12  
13 14 15 16  
VDDA CVREFM CVREFP VAG  
17  
VSSA  
18  
VAGREF  
CLRCB TST_VR TST_VS EXT_VINR EXT_VINS VSSA  
Figure 23. Center of the focal plane array with respect to the die cavity (top view)  
Notes:  
1. Dimensions are in inches.  
2. Interpret dimensions and tolerances per  
ASME Y14.5-1994  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
A
F - Lid Seal thickness  
G
H
B
J
D
C - Die  
E - Die Attach thickness  
Metric (mm)  
min  
English (inches)  
Dimension  
Description  
Glass (Thickness)  
Cavity (Depth)  
Die - Si (Thickness)  
Bottom Layer (Thickness)  
Die Attach - bondline (Thickness)  
Glass Attach - bondline (Thickness)  
Imager to Lid - outer surface (d)  
Imager to Lid - inner surface (d)  
Imager to seating plane - of pkg  
Pkg (Th - total)  
Nominal  
max  
Nominal  
min  
max  
A
B
C
D
E
F
G
H
J
0.55000  
1.11760  
0.72500  
0.43180  
0.02540  
0.02540  
0.94260  
0.39260  
1.18220  
2.12480  
1.54940  
0.50000  
0.99060  
0.70500  
0.38100  
0.01270  
0.00635  
0.67575  
0.17575  
1.09870  
1.87795  
1.70180  
0.60000  
1.24460  
0.74500  
0.48260  
0.07620  
0.05080  
1.17770  
0.57770  
1.30380  
2.37800  
1.39700  
0.02165  
0.04400  
0.02854  
0.01700  
0.00100  
0.00100  
0.03711  
0.01546  
0.04654  
0.08365  
0.06100  
0.01969  
0.03900  
0.02776  
0.01500  
0.00050  
0.00025  
0.02660  
0.00692  
0.04326  
0.07393  
0.06700  
0.02362  
0.04900  
0.02933  
0.01900  
0.00300  
0.00200  
0.04637  
0.02274  
0.05133  
0.09362  
0.05500  
Base (Th)  
Note: The package sketch is representative and does not necessarily reflect exact scale and relative feature sizes.  
Reference Notes:  
1mil = 25.4um  
1mm = 39.37mil  
Figure 22. 48 Terminal ceramic leadless chip carrier (z-direction view)  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
71  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
17.0 MCM20027 Typical Connection  
Below you will find a schematic illustrating a typical connection of an MCM20027 CMOS sensor. One can use this  
as a reference when connecting the sensor with another external device such as an image processor, SDRAM  
etc.This schematic also illustrates the connection of the required passives on the sensor.  
43  
47  
1
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
MASTER CLOCK  
STROBE  
INITIALIZE  
PIXEL DATA 0  
PIXEL DATA 1  
PIXEL DATA 2  
PIXEL DATA 3  
PIXEL DATA 4  
PIXEL DATA 5  
PIXEL DATA 6  
PIXEL DATA 7  
PIXEL DATA 8  
PIXEL DATA 9  
MCLK  
STROBE  
INIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
46  
START DATA CAPTURE  
SYNC  
30  
29  
I2C_DATA  
I2C_CLK  
SDATA  
SCLK  
21  
10  
11  
CVBG  
EXT_VINR  
EXT_VINS  
.1uf  
.1uf  
45  
44  
48  
6
DATA VALID  
HORIZONTAL SYNC  
START OF FRAME  
HCLK  
VCLK  
SOF  
CLRCA  
CLRCB  
18  
17  
16  
VAGREF  
VAGRETN  
VAG  
7
9
8
14  
15  
20  
19  
TST_VS  
TST_VR  
CVREFM  
CVREFP  
EXTRES  
EXTRESGND  
27K  
25  
23  
5
VDD_PIX  
AVDD  
AVDD  
DVDD  
2
28  
36  
24  
13  
+3.3V  
BEAD  
DVDD  
DVDD  
DVDD  
BIAS_IN  
AVDD  
4.7/25  
.01uf .01uf .01uf .01uf  
26  
22  
12  
4
VSS_PIX  
AVSS  
AVSS  
3
37  
27  
DVSS  
DVSS  
DVSS  
AVSS  
M20027IB  
AGND  
GND  
GND  
.1uf  
.1uf  
GND  
GND  
.1uf  
.1uf  
AVDD  
+3.3V  
BEAD  
.01uf  
.01uf  
.01uf .01uf  
4.7/25  
GND  
AGND  
AGND  
AGND AGND AGND  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
72  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
ImageMOS  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges tha  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equa  
MFax is a trademark of Motorola, I  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447 or 303-675-2140  
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488  
TM  
MFax : RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Pa  
HOME PAGE:http://motorola.com/sps/  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298  
ELECTRO STATIC DISCHARGE WARNING:  
This device is sensitive to electrostatic discharge (ESD).ESD immunity meets Human Body Model (HBM) < 1500 V and Machine Model (MM) < 150  
V Additional ESD data upon request. When handling this part, proper ESD precautions should be followed to avoid exposing the device to dis-  
charges which may be detrimental to its immediate performance and/or reduce the parts expected lifetime..  
Ó MOTOROLA, INC. 2001  
Revision 8.0 - 28 November 2001 :  
MCM20027  
73  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MCM20027IBMN

Color SXGA Digital Image Sensor 1280 x 1024 pixel progressive scan solid state image sensor with integrated CDS/PGA/ADC, digital programming, control
MOTOROLA

MCM2012

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B

Powerful components with composite co-fired material to solve EMI problem for high speed differential signal transmission line as USB, and LVDS, without distortion to high speed signal transmission
UNSEMI

MCM2012B121GBE

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B161GBE

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B181GBE

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B221FBP

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B670GBE

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2012B900GBE

(Chip Common Mode Filter) Engineering Specification
UNSEMI

MCM2016HL45

Standard SRAM, 2KX8, 45ns, MOS, CDIP24
MOTOROLA

MCM2016HL55

Standard SRAM, 2KX8, 55ns, MOS, CDIP24
MOTOROLA

MCM2016HL70

Standard SRAM, 2KX8, 70ns, MOS, CDIP24
MOTOROLA