M68MMPFB0508 [MOTOROLA]

Microcontrollers; 微控制器
M68MMPFB0508
型号: M68MMPFB0508
厂家: MOTOROLA    MOTOROLA
描述:

Microcontrollers
微控制器

微控制器
文件: 总408页 (文件大小:3097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
MC68HC908GR8  
MC68HC908GR4  
Technical Data  
M68HC08  
Microcontrollers  
MC68HC908GR8/D  
Rev. 4, 6/2002  
WWW.MOTOROLA.COM/SEMICONDUCTORS  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC68HC908GR8  
MC68HC908GR4  
Technical Data — Rev 4.0  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer’s technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and  
are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2002  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
3
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data  
4
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
List of Paragraphs  
List of Paragraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .25  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Section 3. Low Power Modes. . . . . . . . . . . . . . . . . . . . . .49  
Section 4. Resets and Interrupts . . . . . . . . . . . . . . . . . . .61  
Section 5. Analog-to-Digital Converter (ADC) . . . . . . . .79  
Section 6. Break Module (BRK) . . . . . . . . . . . . . . . . . . . .91  
Section 7. Clock Generator Module (CGMC) . . . . . . . . .99  
Section 8. Configuration Register (CONFIG) . . . . . . . .129  
Section 9. Computer Operating Properly (COP) . . . . .133  
Section 10. Central Processing Unit (CPU) . . . . . . . . .139  
Section 11. Flash Memory . . . . . . . . . . . . . . . . . . . . . . .157  
Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . .167  
Section 13. Keyboard Interrupt (KBI) . . . . . . . . . . . . . .175  
Section 14. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .183  
Section 15. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .189  
Section 16. Input/Output Ports (I/O) . . . . . . . . . . . . . . .205  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
List of Paragraphs  
5
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Paragraphs  
Section 17. RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
Section 18. Serial Communications Interface (SCI). . .231  
Section 19. System Integration Module (SIM) . . . . . . .271  
Section 20. Serial Peripheral Interface (SPI). . . . . . . . .297  
Section 21. Timebase Module (TBM). . . . . . . . . . . . . . .329  
Section 22. Timer Interface Module (TIM) . . . . . . . . . . .335  
Section 23. Electrical Specifications. . . . . . . . . . . . . . .361  
Section 24. Mechanical Specifications . . . . . . . . . . . . .387  
Section 25. Ordering Information . . . . . . . . . . . . . . . . .391  
Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Technical Data  
6
MC68HC908GR8 — Rev 4.0  
List of Paragraphs  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Table of Contents  
List of Paragraphs  
Table of Contents  
List of Tables  
List of Figures  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .35  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
7
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
Section 3. Low Power Modes  
3.1  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .50  
Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . .51  
Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . . . .52  
Computer Operating Properly Module (COP). . . . . . . . . . . . . .52  
External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .53  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . .53  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . .54  
3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . .54  
3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . .55  
3.13 Timer Interface Module (TIM1 and TIM2). . . . . . . . . . . . . . . . .55  
3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Section 4. Resets and Interrupts  
4.1  
4.2  
4.3  
4.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Section 5. Analog-to-Digital Converter (ADC)  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
5.1  
5.2  
Technical Data  
8
MC68HC908GR8 — Rev 4.0  
Table of Contents  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Section 6. Break Module (BRK)  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Section 7. Clock Generator Module (CGMC)  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .125  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
9
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
Section 8. Configuration Register (CONFIG)  
8.1  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
8.2  
8.3  
Section 9. Computer Operating Properly (COP)  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .137  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Section 10. Central Processing Unit (CPU)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.4 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.5 Arithmetic/logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
10.6 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
10.7 CPU during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .146  
10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
Technical Data  
10  
MC68HC908GR8 — Rev 4.0  
Table of Contents  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
Section 11. Flash Memory  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . .160  
11.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . .161  
11.7 FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . .162  
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
11.10 STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
Section 12. External Interrupt (IRQ)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .171  
12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .172  
Section 13. Keyboard Interrupt (KBI)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .180  
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
Section 15. Monitor ROM (MON)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
Section 16. Input/Output Ports (I/O)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
Technical Data  
12  
MC68HC908GR8 — Rev 4.0  
Table of Contents  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
Section 17. RAM  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
Section 18. Serial Communications Interface (SCI)  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
18.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .251  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
Section 19. System Integration Module (SIM)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .275  
19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .276  
19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
Section 20. Serial Peripheral Interface (SPI)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
20.4 Pin Name Conventions and I/O Register Addresses . . . . . . .298  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303  
20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .309  
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322  
Section 21. Timebase Module (TBM)  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .331  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
Section 22. Timer Interface Module (TIM)  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
Technical Data  
14  
MC68HC908GR8 — Rev 4.0  
Table of Contents  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
22.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .348  
22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
Section 23. Electrical Specifications  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
23.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .362  
23.3 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.5 5.0 V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .364  
23.6 3.0 V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .366  
23.7 5.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
23.8 3.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
23.9 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .370  
23.10 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . .373  
23.11 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
23.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.13 5.0 V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.14 3.0 V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .380  
23.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .383  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Table of Contents  
15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table of Contents  
23.16 Clock Generation Module Characteristics . . . . . . . . . . . . . . .383  
23.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
Section 24. Mechanical Specifications  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
24.3 32-Pin LQFP (Case #873A) . . . . . . . . . . . . . . . . . . . . . . . . . .388  
24.4 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . .389  
24.5 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .390  
Section 25. Ordering Information  
25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
25.4 Development Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
Glossary  
Revision History  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Changes from Rev 3.0 published in February 2002 to Rev 4.0  
published in June 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Changes from Rev 2.0 published in January 2002 to Rev 3.0 pub-  
lished in February 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406  
Changes from Rev 1.0 published in April 2001 to Rev 2.0 pub-  
lished in December 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . .406  
Technical Data  
16  
MC68HC908GR8 — Rev 4.0  
Table of Contents  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
List of Tables  
Table  
Title  
Page  
2-1  
4-1  
4-2  
5-1  
5-2  
7-1  
7-2  
7-3  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Interrupt Source Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
PRE 1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .117  
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .117  
10-1 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
10-2 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
11-1 Examples of protect start address: . . . . . . . . . . . . . . . . . . . . .166  
14-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
15-1 Monitor Mode Signal Requirements and Options. . . . . . . . . .193  
15-2 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15-3 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .197  
15-4 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .199  
15-5 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .199  
15-6 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .200  
15-7 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .200  
15-8 READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .201  
15-9 RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .201  
16-1 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .208  
16-2 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16-3 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
16-4 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
16-5 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
16-6 Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
18-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
18-2 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
List of Tables  
17  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Tables  
18-3 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
18-4 Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
18-5 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .255  
18-6 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
18-7 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
18-8 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .268  
19-1 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
19-2 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
19-3 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
19-4 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
20-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
20-2 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20-3 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
20-4 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . .327  
21-1 Timebase Rate Selection for OSC1 = 32.768 kHz . . . . . . . . .331  
22-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
22-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
22-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .358  
23-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .362  
23-2 Functional Operation Range. . . . . . . . . . . . . . . . . . . . . . . . . .363  
23-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23-4 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .364  
23-5 3.0 V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .366  
23-6 5.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
23-7 3.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
23-8 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .383  
23-9 CGM Component Specifications. . . . . . . . . . . . . . . . . . . . . . .383  
25-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
25-2 Development Tool Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
25-3 Development Tool Components . . . . . . . . . . . . . . . . . . . . . . .393  
Technical Data  
18  
MC68HC908GR8 — Rev 4.0  
List of Tables  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
2-1  
2-2  
4-1  
4-2  
4-3  
4-4  
4-5  
4-6  
4-7  
4-8  
4-9  
5-1  
5-2  
5-3  
5-4  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
7-1  
7-2  
7-3  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
QFP Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
DIP And SOIC Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . .31  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .39  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Power-On Reset Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . .65  
Interrupt Stacking Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . .68  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . .76  
Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . .76  
Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . .77  
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
ADC Status and Control Register (ADSCR). . . . . . . . . . . . . . .85  
ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . .88  
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .92  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Break Status and Control Register (BRKSCR). . . . . . . . . . . . .95  
Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . .96  
Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . .96  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . .96  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . .98  
CGMC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
CGMC External Connections . . . . . . . . . . . . . . . . . . . . . . . . .111  
CGMC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .114  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
List of Figures  
19  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Figures  
7-4  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . .115  
PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . . .118  
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . .119  
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . .120  
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . .121  
PLL Reference Divider Select Register (PMDS) . . . . . . . . . .122  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
8-1  
8-2  
9-1  
9-2  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .130  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .130  
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .136  
10-1 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10-2 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
10-3 Index register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
10-4 Stack pointer (SP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
10-5 Program counter (PC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
10-6 Condition code register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .143  
11-1 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . .159  
11-2 FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . .164  
11-3 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . .165  
11-4 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . .165  
12-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .169  
12-2 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .169  
12-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .172  
13-1 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . .177  
13-2 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
13-3 Keyboard Status and Control Register (INTKBSCR) . . . . . . .181  
13-4 Keyboard Interrupt Enable Register (INTKBIER) . . . . . . . . . .182  
14-1 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
14-2 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
14-3 LVI Status Register (LVISR). . . . . . . . . . . . . . . . . . . . . . . . . .187  
15-1 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
15-2 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .195  
15-3 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15-4 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
15-5 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
15-6 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
15-7 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .202  
Technical Data  
20  
MC68HC908GR8 — Rev 4.0  
List of Figures  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Figures  
15-8 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .203  
16-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .206  
16-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .210  
16-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
16-5 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . .212  
16-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .213  
16-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .214  
16-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
16-9 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16-10 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . .217  
16-11 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
16-12 Port C Input Pullup Enable Register (PTCPUE). . . . . . . . . . .219  
16-13 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .220  
16-14 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .222  
16-15 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
16-16 Port D Input Pullup Enable Register (PTDPUE). . . . . . . . . . .224  
16-17 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .225  
16-18 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . .226  
16-19 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
18-1 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .234  
18-2 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
18-3 SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
18-4 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
18-5 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .242  
18-6 Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
18-7 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
18-8 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
18-9 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . .253  
18-10 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . .256  
18-11 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . .258  
18-12 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . .260  
18-13 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
18-14 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . .264  
18-15 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
18-16 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . .265  
19-1 SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
19-2 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .274  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
List of Figures  
21  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Figures  
19-3 CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
19-4 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
19-5 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278  
19-6 Sources of Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . .278  
19-7 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
19-8 Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
19-9 Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
19-10 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284  
19-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . .285  
19-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .288  
19-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .288  
19-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .289  
19-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
19-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . .291  
19-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . .292  
19-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
19-19 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . .293  
19-20 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .294  
19-21 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . .295  
19-22 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .296  
20-1 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
20-2 SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .300  
20-3 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . .301  
20-4 Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . .305  
20-5 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
20-6 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . .306  
20-7 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . .308  
20-8 .SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . .309  
20-9 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . .311  
20-10 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . .312  
20-11 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . .315  
20-12 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
20-13 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . .322  
20-14 SPI Status and Control Register (SPSCR). . . . . . . . . . . . . . .325  
20-15 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
21-1 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
21-2 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . .331  
22-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
Technical Data  
22  
MC68HC908GR8 — Rev 4.0  
List of Figures  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Figures  
22-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .339  
22-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .343  
22-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .349  
22-5 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . .352  
22-6 TIM Counter Registers Low (TCNTL). . . . . . . . . . . . . . . . . . .352  
22-7 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .353  
22-8 TIM Counter Modulo Register Low (TMODL). . . . . . . . . . . . .353  
22-9 TIM Counter Register High (TCNTH) . . . . . . . . . . . . . . . . . . .354  
22-10 TIM Counter Register Low (TCNTL). . . . . . . . . . . . . . . . . . . .354  
22-11 TIM Channel 0 Status and Control Register (TSC0) . . . . . . .355  
22-12 TIM Channel 1 Status and Control Register (TSC1) . . . . . . .355  
22-13 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
22-14 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . .360  
22-15 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . .360  
22-16 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . .360  
22-17 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . .360  
23-1 Typical High-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . . . .370  
23-2 Typical High-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . . .370  
23-3 Typical High-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . . . .371  
23-4 Typical High-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . . .371  
23-5 Typical High-Side Driver Characteristics – Ports PTB5–PTB0,  
PTD6–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) . . . . . . . . . .372  
23-6 Typical High-Side Driver Characteristics – Ports PTB5–PTB0,  
PTD6–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) . . . . . . . . . .372  
23-7 Typical Low-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 5.5 Vdc) . . . . . . . . . . . . . . . . . . . . .373  
23-8 Typical Low-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . . .373  
23-9 Typical Low-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 4.5 Vdc) . . . . . . . . . . . . . . . . . . . . .374  
23-10 Typical Low-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 2.7 Vdc) . . . . . . . . . . . . . . . . . . . . .374  
23-11 Typical Low-Side Driver Characteristics – Ports PTB5–PTB0,  
PTD6–PTD0, and PTE1–PTE0 (VDD = 5.5 Vdc) . . . . . . . . . .375  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
List of Figures  
23  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
List of Figures  
23-12 Typical Low-Side Driver Characteristics – Ports PTB5–PTB0,  
PTD6–PTD0, and PTE1–PTE0 (VDD = 2.7 Vdc) . . . . . . . . . .375  
23-13 Typical Operating IDD, with All Modules Turned On  
(–40 °C to 125 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
23-14 Typical Wait Mode IDD, with all Modules Disabled  
(–40 °C to 125 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
23-15 Typical Stop Mode IDD, with all Modules Disabled  
(–40 °C to 125 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
23-16 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23-17 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382  
Technical Data  
24  
MC68HC908GR8 — Rev 4.0  
List of Figures  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
1.2 Introduction  
The MC68HC908GR8 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the  
family use the enhanced M68HC08 central processor unit (CPU08) and  
are available with a variety of modules, memory sizes and types, and  
package types.  
This document also describes the MC68HC908GR4. The  
MC68HC908GR4 is a device identical to the MC68HC908GR8 except  
that it has less Flash memory. Only when there are differences from the  
MC68HC908GR8 is the MC68HC908GR4 specifically mentioned in the  
text.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
General Description  
25  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
1.3 Features  
For convenience, features have been organized to reflect:  
Standard features of the MC68HC908GR8  
Features of the CPU08  
1.3.1 Standard Features of the MC68HC908GR8  
High-performance M68HC08 architecture optimized for C-  
compilers  
Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
8-MHz internal bus frequency  
FLASH program memory security(1)  
On-chip programming firmware for use with host personal  
computer which does not require high voltage for entry  
In-system programming  
System protection features:  
– Optional computer operating properly (COP) reset  
– Low-voltage detection with optional reset and selectable trip  
points for 3.0 V and 5.0 V operation  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
Low-power design; fully static with stop and wait modes  
Standard low-power modes of operation:  
– Wait mode  
– Stop mode  
Master reset pin and power-on reset (POR)  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
26  
MC68HC908GR8 — Rev 4.0  
General Description  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
Features  
7680 bytes of on-chip FLASH memory on the MC68HC908GR8  
and 4096 bytes of on-chip FLASH memory on the  
MC68HC908GR4 with in-circuit programming capabilities of  
FLASH program memory  
384 bytes of on-chip random-access memory (RAM)  
Serial peripheral interface module (SPI)  
Serial communications interface module (SCI)  
One 16-bit, 2-channel timer (TIM1) and one 16-bit, 1-channel  
timer (TIM2) interface modules with selectable input capture,  
output compare, and PWM capability on each channel  
6-channel, 8-bit successive approximation analog-to-digital  
converter (ADC)  
BREAK module (BRK) to allow single breakpoint setting during in-  
circuit debugging  
Internal pullups on IRQ and RST to reduce customer system cost  
Clock generator module with on-chip 32-kHz crystal compatible  
PLL (phase-lock loop)  
Up to 21 general-purpose input/output (I/O) pins, including:  
– 19 shared-function I/O pins  
– Up to two dedicated I/O pins, depending on package choice  
Selectable pullups on inputs only on ports A, C, and D. Selection  
is on an individual port bit basis. During output mode, pullups are  
disengaged.  
High current 10-mA sink/10-mA source capability on all port pins  
Higher current 15-mA sink/source capability on PTC0–PTC1  
Timebase module with clock prescaler circuitry for eight user  
selectable periodic real-time interrupts with optional active clock  
source during stop mode for periodic wakeup from stop using an  
external 32-kHz crystal  
Oscillator stop mode enable bit (OSCSTOPENB) in the CONFIG  
register to allow user selection of having the oscillator enabled or  
disabled during stop mode  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
General Description  
27  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
4-bit keyboard wakeup port  
32-pin quad flat pack (QFP) or 28-pin plastic dual-in-line package  
(DIP) or 28-pin small outline integrated circuit (SOIC)  
Specific features of the MC68HC908GR8 in 28-pin DIP and 28-pin  
SOIC are:  
– Port B is only 4 bits: PTB0–PTB3; 4-channel ADC module  
– No Port C bits  
1.3.2 Features of the CPU08  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908GR8.  
Technical Data  
28  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
General Description  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
MCU Block Diagram  
B R T P O  
D R D B  
D T R P O  
R D D D  
A R T P O  
R A D D  
C R T P O  
R C D D  
E R T P O  
D R D E  
Figure 1-1. MCU Block Diagram  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
29  
General Description  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
1.5 Pin Assignments  
RST  
PTE0/TxD  
PTE1/RxD  
IRQ  
24  
23  
22  
21  
20  
19  
18  
17  
1
PTA2/KBD2  
PTA1/KBD1  
PTA0/KBD0  
VSSAD/VREFL  
VDDAD/VREFH  
PTB5/AD5  
2
3
4
5
6
7
8
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTB4/AD4  
PTB3/AD3  
NOTE: Ports PTB4, PTB5, PTC0, and PTC1 are available only with the QFP.  
Figure 1-2. QFP Pin Assignments  
Technical Data  
30  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
General Description  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
Pin Functions  
CGMXFC  
OSC2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
VSSA  
2
VDDA  
OSC1  
3
PTA3/KBD3  
PTA2/KBD2  
PTA1/KBD1  
PTA0/KBD0  
VSSAD/VREFL  
VDDAD/VREFH  
PTB3/AD3  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
PTD6/T2CH0  
PTD5/T1CH1  
RST  
4
PTE0/TxD  
PTE1/RxD  
IRQ  
5
6
7
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
VSS  
8
9
10  
11  
12  
13  
14  
VDD  
PTD4/T1CH0  
NOTE: Ports PTB4, PTB5, PTC0, and PTC1 are available only with the QFP.  
Figure 1-3. DIP And SOIC Pin Assignments  
1.6 Pin Functions  
Descriptions of the pin functions are provided here.  
1.6.1 Power Supply Pins (VDD and VSS)  
VDD and VSS are the power supply and ground pins. The MCU operates  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
General Description  
31  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
MCU  
V
V
SS  
DD  
C1  
0.1 µF  
+
C2  
V
DD  
NOTE: Component values shown represent typical applications.  
Figure 1-4. Power Supply Bypassing  
1.6.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. See Clock Generator Module (CGMC).  
1.6.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. This pin contains an internal pullup  
resistor that is always activated, even when the reset pin is pulled low.  
See Resets and Interrupts.  
1.6.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an  
internal pullup resistor that is always activated, even when the reset pin  
is pulled low. See External Interrupt (IRQ).  
1.6.5 CGM Power Supply Pins (VDDA and VSSA  
)
VDDA and VSSA are the power supply pins for the analog portion of the  
clock generator module (CGM). Decoupling of these pins should be as  
per the digital supply. See Clock Generator Module (CGMC).  
Technical Data  
32  
MC68HC908GR8 — Rev 4.0  
General Description  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
Pin Functions  
1.6.6 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See  
Clock Generator Module (CGMC).  
1.6.7 Analog Power Supply/Reference Pins (VDDAD/VREFH and VSSAD/VREFL  
)
VDDAD and VSSAD are the power supply pins for the analog-to-digital  
converter. Decoupling of these pins should be as per the digital supply.  
NOTE: VREFH is the high reference supply for the ADC. The VREFH signal is  
internally connected with VDDAD and have the same potential as VDDAD.  
VDDAD should be tied to the same potential as VDD via separate traces.  
VREFL is the low reference supply for the ADC. The VREFL pin is  
internally connected with VSSAD and has the same potential as VSSAD.  
VSSAD should be tied to the same potential as VSS via separate traces.  
See Analog-to-Digital Converter (ADC).  
1.6.8 Port A Input/Output (I/O) Pins (PTA3/KBD3–PTA0/KBD0)  
PTA3–PTA0 are special-function, bidirectional I/O port pins. Any or all of  
the port A pins can be programmed to serve as keyboard interrupt pins.  
See Input/Output Ports (I/O) and External Interrupt (IRQ).  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
When the port pins are configured for special-function mode (KBI),  
pullups will be automatically engaged. As long as the port pins are in  
special-function mode, the pullups will always be on.  
1.6.9 Port B I/O Pins (PTB5/AD5–PTB0/AD0)  
PTB5–PTB0 are special-function, bidirectional I/O port pins that can also  
be used for analog-to-digital converter (ADC) inputs. See Input/Output  
Ports (I/O) and Analog-to-Digital Converter (ADC).  
There are no pullups associated with this port.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
33  
General Description  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
General Description  
1.6.10 Port C I/O Pins (PTC1–PTC0)  
PTC1–PTC0 are general-purpose, bidirectional I/O port pins. See  
Input/Output Ports (I/O). PTC0 and PTC1 are only available on 32-pin  
QFP packages.  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
1.6.11 Port D I/O Pins (PTD6/T2CH0–PTD0/SS)  
PTD6–PTD0 are special-function, bidirectional I/O port pins.  
PTD3–PTD0 can be programmed to be serial peripheral interface (SPI)  
pins, while PTD6–PTD4 can be individually programmed to be timer  
interface module (TIM1 and TIM2) pins. See Timer Interface Module  
(TIM), Serial Peripheral Interface (SPI), and Input/Output Ports (I/O).  
These port pins also have selectable pullups when configured for input  
mode. The pullups are disengaged when configured for output mode.  
The pullups are selectable on an individual port bit basis.  
When the port pins are configured for special-function mode (SPI, TIM1,  
TIM2), pullups can be selectable on an individual port pin basis.  
1.6.12 Port E I/O Pins (PTE1/RxD–PTE0/TxD)  
PTE1–PTE0 are special-function, bidirectional I/O port pins. These pins  
can also be programmed to be serial communications interface (SCI)  
pins. See Serial Communications Interface (SCI) and Input/Output Ports  
(I/O).  
NOTE: Any unused inputs and I/O ports should be tied to an appropriate logic  
level (either VDD or VSS). Although the I/O ports of the MC68HC908GR8  
do not require termination, termination is recommended to reduce the  
possibility of electro-static discharge damage.  
Technical Data  
34  
MC68HC908GR8 — Rev 4.0  
General Description  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .35  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
2.2 Introduction  
The CPU08 can address 64K bytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
8K bytes of FLASH memory, 7680 bytes of user space on the  
MC68HC908GR8 or  
4K bytes of FLASH memory, 4096 bytes of user space on the  
MC68HC908GR4  
384 bytes of random-access memory (RAM)  
36 bytes of user-defined vectors  
310 bytes of monitor routines in read-only memory (ROM)  
544 bytes of integrated FLASH burn-in routines in ROM  
2.3 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address  
reset if illegal address resets are enabled. In the memory map (Figure 2-  
1) and in register figures in this document, unimplemented locations are  
shaded.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Memory Map  
35  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In the Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the letter  
R.  
2.5 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area  
of $0000–$003F. Additional I/O registers have these addresses:  
$FE00; SIM break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE03; SIM break flag control register, SBFCR  
$FE09; interrupt status register 1, INT1  
$FE0A; interrupt status register 2, INT2  
$FE0B; interrupt status register 3, INT3  
$FE07; reserved FLASH test control register, FLTCR  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
Data registers are shown in Figure 2-2, and Table 2-1 is a list of vector  
locations.  
Technical Data  
36  
MC68HC908GR8 — Rev 4.0  
Memory Map  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
$0000  
I/O Registers  
64 Bytes  
$003F  
$0040  
RAM  
384 Bytes  
$01BF  
$01C0  
Unimplemented  
6720 Bytes  
$1BFF  
$1C00  
Reserved for Integrated FLASH Burn-in Routines  
544 Bytes  
$1E1F  
$1E20  
Unimplemented  
49,632 Bytes  
$DFFF  
$E000  
MC68HC908GR4  
Unimplemented  
3584 Bytes  
MC68HC908GR8  
FLASH Memory  
$EDFF  
$EE00  
7680 Bytes  
MC68HC908GR4  
FLASH Memory  
4096 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
$FE07  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved for FLASH Test Control Register (FLTCR)  
Figure 2-1. Memory Map  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
37  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Reserved  
3 Bytes  
$FE0F  
$FE10  
Unimplemented  
16 Bytes  
Reserved for Compatibility with Monitor Code  
for A-Family Parts  
$FE1F  
$FE20  
Monitor ROM  
310 Bytes  
$FF55  
$FF56  
Unimplemented  
40 Bytes  
$FF7D  
$FF7E  
$FF7F  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
93 Bytes  
$FFDB  
$FFDC  
Note: $FFF6$FFFD  
contains  
8 security bytes  
FLASH Vectors  
(36 Bytes inluding $FFFF)  
$FFFE  
Low byte of reset vector when read  
COP Control Register (COPCTL)  
$FFFF  
Figure 2-1. Memory Map (Continued)  
Technical Data  
38  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
0
0
0
0
0
0
PTB5  
0
PTB2  
0
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
0
0
Port C Data Register  
(PTC)  
Unaffected by reset  
PTD4 PTD3  
PTD6  
0
PTD5  
PTD2  
Port D Data Register  
(PTD)  
Unaffected by reset  
0
0
0
DDRA3 DDRA2 DDRA1 DDRA0  
Data Direction Register A  
(DDRA)  
0
0
0
0
0
0
0
0
0
DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
Data Direction Register B  
(DDRB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DDRC1 DDRC0  
Data Direction Register C  
(DDRC)  
0
0
0
0
0
0
0
0
0
DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0  
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
39  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
0
0
Bit 0  
Read:  
Unimplemented Write:  
Reset:  
$000A  
0
0
0
0
0
0
0
0
Read:  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
Unimplemented Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
DDRE1 DDRE0  
Data Direction Register E  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(DDRE)  
0
0
0
0
0
0
0
0
0
0
0
0
PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Port A Input Pullup Enable  
Register (PTAPUE)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTCPUE1 PTCPUE0  
Port C Input Pullup Enable  
Register (PTCPUE)  
0
0
0
0
0
0
0
0
0
PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Port D Input Pullup Enable  
Register (PTDPUE)  
0
SPRIE  
0
0
0
0
0
0
0
SPE  
0
0
DMAS  
SPMSTR CPOL  
CPHA SPWOM  
SPTIE  
0
SPI Control Register  
(SPCR)  
0
1
0
1
0
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN SPR1  
SPR0  
SPI Status and Control  
Register (SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
LOOPS  
0
ENSCI  
0
TXINV  
0
M
WAKE  
ILTY  
0
PEN  
0
PTY  
0
SCI Control Register 1  
(SCC1)  
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)  
Technical Data  
40  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
2
RE  
0
1
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCTIE  
RWU  
0
SCI Control Register 2  
(SCC2)  
$0014  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register Write:  
IMASKK MODEK  
(INTKBSCR)  
Reset:  
0
0
0
0
0
0
KBIE1  
0
0
Read:  
KBIE3  
KBIE2  
0
KBIE0  
Keyboard Interrupt Enable  
Write:  
Register (INTKBIER)  
Reset:  
0
0
0
R
0
Read: TBIF  
Write:  
TBR2  
TBR1  
TBR0  
TBIE  
TBON  
0
Time Base Module Control  
Register (TBCR)  
TACK  
0
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
IRQF1  
IMASK1 MODE1  
IRQ Status and Control  
Register (INTSCR)  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
41  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Addr.  
Register Name  
Configuration Register 2  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
OSC-  
STOPENB SRC  
SCIBD-  
$001E  
(CONFIG2)Write:  
Reset:  
0
0
0
0
0
0
0
STOP  
0
0
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3SSREC  
Configuration Register 1  
$001F  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(CONFIG1)†  
0
TOF  
0
0
0
0
0
0
0
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Timer 1 Status and Control  
Register (T1SC)  
TRST  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter Register  
High (T1CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 1 Counter Register  
Low (T1CNTL)  
0
Bit 15  
1
0
0
13  
1
0
12  
1
0
0
0
0
Bit 8  
1
14  
11  
10  
9
Timer 1 Counter Modulo  
Register High (T1MODH)  
1
1
1
1
Bit 7  
6
1
5
4
3
2
1
Bit 0  
1
Timer 1 Counter Modulo  
Register Low (T1MODL)  
1
1
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 0  
Register High (T1CH0H)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 1 Channel 0  
Register Low (T1CH0L)  
Write:  
Reset:  
Indeterminate after reset  
One-time writeable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).  
= Unimplemented R = Reserved U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)  
Technical Data  
42  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
CH1IE  
0
5
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
0
Timer 1 Channel 1 Status  
$0028  
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 1  
Register High (T1CH1H)  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
Write:  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Timer 1 Channel 1  
Register Low (T1CH1L)  
Write:  
Reset:  
Read:  
Indeterminate after reset  
TOF  
0
0
TRST  
0
0
TOIE  
TSTOP  
PS2  
PS1  
Timer 2 Status and Control  
Write:  
Register (T2SC)  
Reset:  
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter Register  
High (T2CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 2 Counter Register  
Low (T2CNTL)  
0
Bit 15  
1
0
0
13  
1
0
12  
1
0
0
0
0
Bit 8  
1
14  
11  
10  
9
Timer 2 Counter Modulo  
Register High (T2MODH)  
1
1
1
1
Bit 7  
6
1
5
4
3
2
1
Bit 0  
1
Timer 2 Counter Modulo  
Register Low (T2MODL)  
1
1
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 2 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T2SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Channel 0  
Register High (T2CH0H)  
Write:  
Reset:  
Indeterminate after reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
43  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 0  
Register Low (T2CH0L)  
$0032  
Indeterminate after reset  
Unimplemented  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
$003B  
0
0
0
0
0
0
0
0
Unimplemented Write:  
Reset:  
Read:  
Indeterminate after reset  
Indeterminate after reset  
Unimplemented Write:  
Reset:  
Read:  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
Write:  
(PCTL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
LOCK  
AUTO  
ACQ  
R
0
PLL Bandwidth Control  
Write:  
Register (PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
MUL8  
0
PLL Multiplier Select High  
Write:  
Register (PMSH)  
Reset:  
Read:  
0
0
0
0
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
PLL Multiplier Select Low  
Write:  
Register (PMSL)  
Reset:  
Read:  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
PLL VCO Select Range  
Write:  
Register (PMRS)  
Reset:  
Read:  
0
0
1
0
0
0
0
0
RDS3  
0
RDS2  
0
RDS1  
0
RDS0  
1
PLL Reference Divider  
Select Register (PMDS)  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)  
Technical Data  
44  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
Analog-to-Digital Status  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
and Control Register Write:  
R
0
(ADSCR)  
Reset:  
0
AD6  
R
0
AD5  
R
1
AD4  
R
1
AD3  
R
1
AD2  
R
1
AD1  
R
1
AD0  
R
Read:  
AD7  
R
Analog-to-Digital Data  
$003D  
$003E  
$003F  
$FE00  
Write:  
Register (ADR)  
Reset:  
Read:  
Indeterminate after reset  
0
0
R
0
0
R
0
0
R
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADICLK  
R
Analog-to-Digital Input  
Clock Register (ADCLK)  
Write:  
Reset:  
Read:  
0
0
Unimplemented Write:  
Reset:  
Read:  
SBSW  
NOTE  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
SIM Break Status Register  
Write:  
(SBSR)  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
0
COP  
0
ILOP  
0
ILAD  
0
MODRST  
0
LVI  
0
0
0
SIM Reset Status Register  
(SRSR)  
$FE01  
$FE02  
$FE03  
$FE09  
$FE0A  
POR:  
Read:  
1
Unimplemented Write:  
Reset:  
Read:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Register (SBFCR)  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
R
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
45  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R
0
Interrupt Status Register 3  
(INT3)  
$FE0B  
R
0
R
0
R
0
R
0
R
0
0
0
R
R
R
R
R
R
R
R
0
FLASH Test Control  
Register (FLTCR)  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FF7E  
$FFFF  
0
0
0
0
0
0
0
0
0
0
MASS  
0
0
HVEN  
ERASE  
PGM  
0
FLASH Control Register  
(FLCR)  
0
Bit 15  
0
0
0
13  
0
0
12  
0
0
11  
0
0
9
0
1
14  
10  
0
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
0
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
BRKA  
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Write:  
LVI Status Register  
(LVISR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
BPR7  
U
0
BPR6  
U
0
BPR5  
U
0
BPR4  
U
0
BPR3  
U
0
BPR2  
U
0
BPR1  
U
0
BPR0  
U
FLASH Block Protect  
Register (FLBPR)  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
Writing clears COP counter (any value)  
Unaffected by reset  
Non-volatile FLASH register  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)  
Technical Data  
46  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Input/Output (I/O) Section  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Lowest  
Vector  
Timebase Vector (High)  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Timebase Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
Reserved  
IF8  
IF7  
Reserved  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF6  
IF5  
IF4  
IF3  
IF2  
PLL Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
47  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Memory Map  
Technical Data  
48  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Memory Map  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 3. Low Power Modes  
3.1 Contents  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .50  
Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . .51  
Clock Generator Module (CGM). . . . . . . . . . . . . . . . . . . . . . . .52  
Computer Operating Properly Module (COP). . . . . . . . . . . . . .52  
External Interrupt Module (IRQ) . . . . . . . . . . . . . . . . . . . . . . . .53  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . .53  
3.10 Low-Voltage Inhibit Module (LVI) . . . . . . . . . . . . . . . . . . . . . . .54  
3.11 Serial Communications Interface Module (SCI) . . . . . . . . . . . .54  
3.12 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . .55  
3.13 Timer Interface Module (TIM1 and TIM2). . . . . . . . . . . . . . . . .55  
3.14 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
3.15 Exiting Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
3.16 Exiting Stop Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
3.2 Introduction  
The MCU may enter two low-power modes: wait mode and stop mode.  
They are common to all HC08 MCUs and are entered through instruction  
execution. This section describes how each module acts in the low-  
power modes.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Low Power Modes  
49  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
3.2.1 Wait Mode  
The WAIT instruction puts the MCU in a low-power standby mode in  
which the CPU clock is disabled but the bus clock continues to run.  
Power consumption can be further reduced by disabling the LVI module  
and/or the timebase module through bits in the CONFIG register. (See  
Configuration Register (CONFIG).)  
3.2.2 Stop Mode  
Stop mode is entered when a STOP instruction is executed. The CPU  
clock is disabled and the bus clock is disabled if the OSCSTOPENB bit  
in the CONFIG register is at a logic 0. (See Configuration Register  
(CONFIG).)  
3.3 Analog-to-Digital Converter (ADC)  
3.3.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH4–ADCH0 bits in the ADC status  
and control register before executing the WAIT instruction.  
3.3.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode after an external interrupt. Allow one conversion  
cycle to stabilize the analog circuitry.  
Technical Data  
50  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
Break Module (BRK)  
3.4 Break Module (BRK)  
3.4.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if the BW  
bit in the break status register is set.  
3.4.2 Stop Mode  
The break module is inactive in stop mode. A break interrupt causes exit  
from stop mode and sets the BW bit in the break status register. The  
STOP instruction does not affect break module register states.  
3.5 Central Processor Unit (CPU)  
3.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
3.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Low Power Modes  
51  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
3.6 Clock Generator Module (CGM)  
3.6.1 Wait Mode  
The CGM remains active in wait mode. Before entering wait mode,  
software can disengage and turn off the PLL by clearing the BCS and  
PLLON bits in the PLL control register (PCTL). Less power-sensitive  
applications can disengage the PLL without turning it off. Applications  
that require the PLL to wake the MCU from wait mode also can deselect  
the PLL output without turning off the PLL.  
3.6.2 Stop Mode  
If the OSCSTOPEN bit in the CONFIG register is cleared (default), then  
the STOP instruction disables the CGM (oscillator and phase-locked  
loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and  
CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK,  
divided by two driving CGMOUT, the PLL automatically clears the BCS  
bit in the PLL control register (PCTL), thereby selecting the crystal clock,  
CGMXCLK, divided by two as the source of CGMOUT. When the MCU  
recovers from STOP, the crystal clock divided by two drives CGMOUT  
and BCS remains clear.  
If the OSCSTOPEN bit in the CONFIG register is set, then the phase  
locked loop is shut off, but the oscillator will continue to operate in stop  
mode.  
3.7 Computer Operating Properly Module (COP)  
3.7.1 Wait Mode  
The COP remains active in wait mode. To prevent a COP reset during  
wait mode, periodically clear the COP counter in a CPU interrupt routine  
or a DMA service routine.  
Technical Data  
52  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
External Interrupt Module (IRQ)  
3.7.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
The STOP bit in the configuration register (CONFIG) enables the STOP  
instruction. To prevent inadvertently turning off the COP with a STOP  
instruction, disable the STOP instruction by clearing the STOP bit.  
3.8 External Interrupt Module (IRQ)  
3.8.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing the IMASK1 bit  
in the IRQ status and control register enables IRQ CPU interrupt  
requests to bring the MCU out of wait mode.  
3.8.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing the IMASK1 bit  
in the IRQ status and control register enables IRQ CPU interrupt  
requests to bring the MCU out of stop mode.  
3.9 Keyboard Interrupt Module (KBI)  
3.9.1 Wait Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Low Power Modes  
53  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
3.9.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
3.10 Low-Voltage Inhibit Module (LVI)  
3.10.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
3.10.2 Stop Mode  
If enabled, the LVI module remains active in stop mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of stop mode.  
3.11 Serial Communications Interface Module (SCI)  
3.11.1 Wait Mode  
The SCI module remains active in wait mode. Any enabled CPU  
interrupt request from the SCI module can bring the MCU out of wait  
mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Technical Data  
54  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
Serial Peripheral Interface Module (SPI)  
3.11.2 Stop Mode  
The SCI module is inactive in stop mode. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after the MCU  
exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
3.12 Serial Peripheral Interface Module (SPI)  
3.12.1 Wait Mode  
The SPI module remains active in wait mode. Any enabled CPU interrupt  
request from the SPI module can bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
3.12.2 Stop Mode  
The SPI module is inactive in stop mode. The STOP instruction does not  
affect SPI register states. SPI operation resumes after an external  
interrupt. If stop mode is exited by reset, any transfer in progress is  
aborted, and the SPI is reset.  
3.13 Timer Interface Module (TIM1 and TIM2)  
3.13.1 Wait Mode  
The TIM remains active in wait mode. Any enabled CPU interrupt  
request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Low Power Modes  
55  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
3.13.2 Stop Mode  
The TIM is inactive in stop mode. The STOP instruction does not affect  
register states or the state of the TIM counter. TIM operation resumes  
when the MCU exits stop mode after an external interrupt.  
3.14 Timebase Module (TBM)  
3.14.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before enabling the WAIT  
instruction.  
3.14.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the oscillator has been enabled to operate during stop mode  
through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from  
stop mode.  
If the oscillator has not been enabled to operate in stop mode, the  
timebase module will not be active during stop mode. In stop mode, the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the  
power consumption by stopping the timebase before enabling the STOP  
instruction.  
Technical Data  
56  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
Exiting Wait Mode  
3.15 Exiting Wait Mode  
These events restart the CPU clock and load the program counter with  
the reset vector or with an interrupt vector:  
External reset — A logic 0 on the RST pin resets the MCU and  
loads the program counter with the contents of locations $FFFE  
and $FFFF.  
External interrupt — A high-to-low transition on an external  
interrupt pin (IRQ pin) loads the program counter with the contents  
of locations: $FFFA and $FFFB; IRQ pin.  
Break interrupt — A break interrupt loads the program counter  
with the contents of $FFFC and $FFFD.  
Computer operating properly module (COP) reset — A timeout of  
the COP counter resets the MCU and loads the program counter  
with the contents of $FFFE and $FFFF.  
Low-voltage inhibit module (LVI) reset — A power supply voltage  
below the Vtripf voltage resets the MCU and loads the program  
counter with the contents of locations $FFFE and $FFFF.  
Clock generator module (CGM) interrupt — A CPU interrupt  
request from the phase-locked loop (PLL) loads the program  
counter with the contents of $FFF8 and $FFF9.  
Keyboard module (KBI) interrupt — A CPU interrupt request from  
the KBI module loads the program counter with the contents of  
$FFDE and $FFDF.  
Timer 1 interface module (TIM1) interrupt — A CPU interrupt  
request from the TIM1 loads the program counter with the  
contents of:  
– $FFF2 and $FFF3; TIM1 overflow  
– $FFF4 and $FFF5; TIM1 channel 1  
– $FFF6 and $FFF7; TIM1 channel 0  
Timer 2 interface module (TIM2) interrupt — A CPU interrupt  
request from the TIM2 loads the program counter with the  
contents of:  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Low Power Modes  
57  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
– $FFEC and $FFED; TIM2 overflow  
– $FFF0 and $FFF1; TIM2 channel 0  
Serial peripheral interface module (SPI) interrupt — A CPU  
interrupt request from the SPI loads the program counter with the  
contents of:  
– $FFE8 and $FFE9; SPI transmitter  
– $FFEA and $FFEB; SPI receiver  
Serial communications interface module (SCI) interrupt — A CPU  
interrupt request from the SCI loads the program counter with the  
contents of:  
– $FFE2 and $FFE3; SCI transmitter  
– $FFE4 and $FFE5; SCI receiver  
– $FFE6 and $FFE7; SCI receiver error  
Analog-to-digital converter module (ADC) interrupt — A CPU  
interrupt request from the ADC loads the program counter with the  
contents of: $FFDE and $FFDF; ADC conversion complete.  
Timebase module (TBM) interrupt — A CPU interrupt request from  
the TBM loads the program counter with the contents of: $FFDC  
and $FFDD; TBM interrupt.  
3.16 Exiting Stop Mode  
These events restart the system clocks and load the program counter  
with the reset vector or with an interrupt vector:  
External reset — A logic 0 on the RST pin resets the MCU and  
loads the program counter with the contents of locations $FFFE  
and $FFFF.  
External interrupt — A high-to-low transition on an external  
interrupt pin loads the program counter with the contents of  
locations:  
– $FFFA and $FFFB; IRQ pin  
– $FFDE and $FFDF; keyboard interrupt pins  
Technical Data  
58  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
Low-voltage inhibit (LVI) reset — A power supply voltage below  
the LVItripf voltage resets the MCU and loads the program counter  
with the contents of locations $FFFE and $FFFF.  
Break interrupt — A break interrupt loads the program counter  
with the contents of locations $FFFC and $FFFD.  
Timebase module (TBM) interrupt — A TBM interrupt loads the  
program counter with the contents of locations $FFDC and $FFDD  
when the timebase counter has rolled over. This allows the TBM  
to generate a periodic wakeup from stop mode.  
Upon exit from stop mode, the system clocks begin running after an  
oscillator stabilization delay. A 12-bit stop recovery counter inhibits the  
system clocks for 4096 CGMXCLK cycles after the reset or external  
interrupt.  
The short stop recovery bit, SSREC, in the configuration register  
controls the oscillator stabilization delay during stop recovery. Setting  
SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32  
CGMXCLK cycles.  
NOTE: Use the full stop recovery time (SSREC = 0) in applications that use an  
external crystal.  
Technical Data  
59  
MC68HC908GR8 — Rev 4.0  
Low Power Modes  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low Power Modes  
Technical Data  
60  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Low Power Modes  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 4. Resets and Interrupts  
4.1 Contents  
4.2  
4.3  
4.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.2 Introduction  
Resets and interrupts are responses to exceptional events during  
program execution. A reset re-initializes the MCU to its startup condition.  
An interrupt vectors the program counter to a service routine.  
4.3 Resets  
A reset immediately returns the MCU to a known startup condition and  
begins program execution from a user-defined memory location.  
4.3.1 Effects  
A reset:  
Immediately stops the operation of the instruction being executed  
Initializes certain control and status bits  
Loads the program counter with a user-defined reset vector  
address from locations $FFFE and $FFFF  
Selects CGMXCLK divided by four as the bus clock  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Resets and Interrupts  
61  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
4.3.2 External Reset  
A logic 0 applied to the RST pin for a time, tIRL, generates an external  
reset. An external reset sets the PIN bit in the SIM reset status register.  
4.3.3 Internal Reset  
Sources:  
Power-on reset (POR)  
Computer operating properly (COP)  
Low-power reset circuits  
Illegal opcode  
Illegal address  
All internal reset sources pull the RST pin low for 32 CGMXCLK cycles  
to allow resetting of external devices. The MCU is held in reset for an  
additional 32 CGMXCLK cycles after releasing the RST pin.  
PULLED LOW BY MCU  
RST PIN  
32 CYCLES  
32 CYCLES  
CGMXCLK  
INTERNAL  
RESET  
Figure 4-1. Internal Reset Timing  
4.3.3.1 Power-On Reset  
A power-on reset is an internal reset caused by a positive transition on  
the VDD pin. VDD at the POR must go completely to 0 V to reset the MCU.  
This distinguishes between a reset and a POR. The POR is not a brown-  
out detector, low-voltage detector, or glitch detector.  
Technical Data  
62  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Resets  
A power-on reset:  
Holds the clocks to the CPU and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles  
Drives the RST pin low during the oscillator stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator  
stabilization delay  
Releases the CPU to begin the reset vector sequence 64  
CGMXCLK cycles after the oscillator stabilization delay  
Sets the POR bit in the SIM reset status register and clears all  
other bits in the register  
OSC1  
(1)  
PORRST  
4096  
32  
32  
CYCLES CYCLES CYCLES  
CGMXCLK  
CGMOUT  
RST PIN  
INTERNAL  
RESET  
1. PORRST is an internally generated power-on reset pulse.  
Figure 4-2. Power-On Reset Recovery  
4.3.3.2 COP Reset  
A COP reset is an internal reset caused by an overflow of the COP  
counter. A COP reset sets the COP bit in the system integration module  
(SIM) reset status register.  
To clear the COP counter and prevent a COP reset, write any value to  
the COP control register at location $FFFF.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Resets and Interrupts  
63  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
4.3.3.3 Low-Voltage Inhibit Reset  
A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in  
the power supply voltage to the LVI trip voltage, VTRIPF  
.
An LVI reset:  
Holds the clocks to the CPU and modules inactive for an oscillator  
stabilization delay of 4096 CGMXCLK cycles after the power  
supply voltage rises to VTRIPF  
Drives the RST pin low for as long as VDD is below VTRIPF and  
during the oscillator stabilization delay  
Releases the RST pin 32 CGMXCLK cycles after the oscillator  
stabilization delay  
Releases the CPU to begin the reset vector sequence  
64 CGMXCLK cycles after the oscillator stabilization delay  
Sets the LVI bit in the SIM reset status register  
4.3.3.4 Illegal Opcode Reset  
An illegal opcode reset is an internal reset caused by an opcode that is  
not in the instruction set. An illegal opcode reset sets the ILOP bit in the  
SIM reset status register.  
If the stop enable bit, STOP, in the mask option register is a logic 0, the  
STOP instruction causes an illegal opcode reset.  
4.3.3.5 Illegal Address Reset  
An illegal address reset is an internal reset caused by opcode fetch from  
an unmapped address. An illegal address reset sets the ILAD bit in the  
SIM reset status register.  
A data fetch from an unmapped address does not generate a reset.  
Technical Data  
64  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Resets  
4.3.4 SIM Reset Status Register  
This read-only register contains flags to show reset sources. All flag bits  
are automatically cleared following a read of the register. Reset service  
can read the SIM reset status register to clear the register after power-  
on reset and to determine the source of any subsequent reset.  
The register is initialized on powerup as shown with the POR bit set and  
all other bits cleared. During a POR or any other internal reset, the RST  
pin is pulled low. After the pin is released, it will be sampled 32 XCLK  
cycles later. If the pin is not above a VIH at that time, then the PIN bit in  
the SRSR may be set in addition to whatever other bits are set.  
NOTE: Only a read of the SIM reset status register clears all reset flags. After  
multiple resets from different sources without reading the register,  
multiple flags remain set.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
0
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Flag  
1 = Power-on reset since last read of SRSR  
0 = Read of SRSR since last power-on reset  
PIN — External Reset Flag  
1 = External reset via RST pin since last read of SRSR  
0 = POR or read of SRSR since last external reset  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by timeout of COP counter  
0 = POR or read of SRSR  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
65  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by low-power supply voltage  
0 = POR or read of SRSR  
4.4 Interrupts  
An interrupt temporarily changes the sequence of program execution to  
respond to a particular event. An interrupt does not stop the operation of  
the instruction being executed, but begins when the current instruction  
completes its operation.  
4.4.1 Effects  
An interrupt:  
Saves the CPU registers on the stack. At the end of the interrupt,  
the RTI instruction recovers the CPU registers from the stack so  
that normal processing can resume.  
Sets the interrupt mask (I bit) to prevent additional interrupts.  
Once an interrupt is latched, no other interrupt can take  
precedence, regardless of its priority.  
Loads the program counter with a user-defined vector address  
Technical Data  
66  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
CONDITION CODE REGISTER  
ACCUMULATOR  
5
4
3
2
1
1
2
3
4
5
INDEX REGISTER (LOW BYTE)*  
PROGRAM COUNTER (HIGH BYTE)  
PROGRAM COUNTER (LOW BYTE)  
STACKING  
ORDER  
UNSTACKING  
ORDER  
$00FF DEFAULT ADDRESS ON RESET  
*High byte of index register is not stacked.  
Figure 4-4. Interrupt Stacking Order  
After every instruction, the CPU checks all pending interrupts if the I bit  
is not set. If more than one interrupt is pending when an instruction is  
done, the highest priority interrupt is serviced first. In the example shown  
in Figure 4-5, if an interrupt is pending upon exit from the interrupt  
service routine, the pending interrupt is serviced before the LDA  
instruction is executed.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Resets and Interrupts  
67  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 4-5. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, save the  
H register and then restore it prior to exiting the routine.  
Technical Data  
68  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
FROM RESET  
YES  
BREAK  
INTERRUPT  
?
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
CGM  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
?
YES  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION  
?
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION  
?
NO  
Figure 4-6. Interrupt Processing  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
69  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
4.4.2 Sources  
The sources in Table 4-1 can generate CPU interrupt requests.  
Table 4-1. Interrupt Sources  
INT Register  
Flag  
Vector  
Address  
Mask(1)  
Priority(2)  
Source  
Flag  
Reset  
None  
None  
None  
None  
None  
None  
0
0
$FFFE$FFFF  
$FFFC$FFFD  
SWI instruction  
IRQ pin  
IRQF  
PLLF  
CH0F  
CH1F  
TOF  
IMASK1  
PLLIE  
CH0IE  
CH1IE  
TOIE  
IF1  
IF2  
IF3  
IF4  
IF5  
IF6  
IF8  
1
2
3
4
5
6
8
$FFFA$FFFB  
$FFF8–$FFF9  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEC–$FFED  
CGM (PLL)  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
TIM2 overflow  
SPI receiver full  
SPI overflow  
CH0F  
TOF  
CH0IE  
TOIE  
SPRF  
OVRF  
MODF  
SPTE  
OR  
SPRIE  
ERRIE  
ERRIE  
SPTIE  
ORIE  
IF9  
9
$FFEA–$FFEB  
$FFE8–$FFE9  
SPI mode fault  
SPI transmitter empty  
SCI receiver overrun  
SCI noise fag  
IF10  
10  
NF  
NEIE  
IF11  
11  
$FFE6–$FFE7  
SCI framing error  
SCI parity error  
SCI receiver full  
SCI input idle  
FE  
FEIE  
PE  
PEIE  
SCRF  
IDLE  
SCTE  
TC  
SCRIE  
ILIE  
IF12  
IF13  
12  
13  
$FFE4–$FFE5  
$FFE2–$FFE3  
SCI transmitter empty  
SCI transmission complete  
Keyboard pin  
SCTIE  
TCIE  
KEYF  
COCO  
TBIF  
IMASKK  
AIEN  
IF14  
IF15  
IF16  
14  
15  
16  
$FFDE–$FFDF  
$FFDE–$FFDF  
$FFDC–$FFDD  
ADC conversion complete  
Timebase  
TBIE  
Note:  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
2. 0 = highest priority  
Technical Data  
70  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
4.4.2.1 SWI Instruction  
The software interrupt instruction (SWI) causes a non-maskable  
interrupt.  
NOTE: A software interrupt pushes PC onto the stack. An SWI does not push  
PC – 1, as a hardware interrupt does.  
4.4.2.2 Break Interrupt  
The break module causes the CPU to execute an SWI instruction at a  
software-programmable break point.  
4.4.2.3 IRQ Pin  
4.4.2.4 CGM  
A logic 0 on the IRQ1 pin latches an external interrupt request.  
The CGM can generate a CPU interrupt request every time the phase-  
locked loop circuit (PLL) enters or leaves the locked state. When the  
LOCK bit changes state, the PLL flag (PLLF) is set. The PLL interrupt  
enable bit (PLLIE) enables PLLF CPU interrupt requests. LOCK is in the  
PLL bandwidth control register. PLLF is in the PLL control register.  
4.4.2.5 TIM1  
TIM1 CPU interrupt sources:  
TIM1 overflow flag (TOF) — The TOF bit is set when the TIM1  
counter value rolls over to $0000 after matching the value in the  
TIM1 counter modulo registers. The TIM1 overflow interrupt  
enable bit, TOIE, enables TIM1 overflow CPU interrupt requests.  
TOF and TOIE are in the TIM1 status and control register.  
TIM1 channel flags (CH1F–CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. The channel  
x interrupt enable bit, CHxIE, enables channel x TIM1 CPU  
interrupt requests. CHxF and CHxIE are in the TIM1 channel x  
status and control register.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Resets and Interrupts  
71  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
4.4.2.6 TIM2  
TIM2 CPU interrupt sources:  
TIM2 overflow flag (TOF) — The TOF bit is set when the TIM2  
counter value rolls over to $0000 after matching the value in the  
TIM2 counter modulo registers. The TIM2 overflow interrupt  
enable bit, TOIE, enables TIM2 overflow CPU interrupt requests.  
TOF and TOIE are in the TIM2 status and control register.  
TIM2 channel flag (CH0F) — The CH0F bit is set when an input  
capture or output compare occurs on channel 0. The channel 0  
interrupt enable bit, CH0IE, enables channel 0 TIM2 CPU interrupt  
requests. CH0F and CH0IE are in the TIM2 channel 0 status and  
control register.  
4.4.2.7 SPI  
SPI CPU interrupt sources:  
SPI receiver full bit (SPRF) — The SPRF bit is set every time a  
byte transfers from the shift register to the receive data register.  
The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU  
interrupt requests. SPRF is in the SPI status and control register  
and SPRIE is in the SPI control register.  
SPI transmitter empty (SPTE) — The SPTE bit is set every time a  
byte transfers from the transmit data register to the shift register.  
The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU  
interrupt requests. SPTE is in the SPI status and control register  
and SPTIE is in the SPI control register.  
Mode fault bit (MODF) — The MODF bit is set in a slave SPI if the  
SS pin goes high during a transmission with the mode fault enable  
bit (MODFEN) set. In a master SPI, the MODF bit is set if the SS  
pin goes low at any time with the MODFEN bit set. The error  
interrupt enable bit, ERRIE, enables MODF CPU interrupt  
requests. MODF, MODFEN, and ERRIE are in the SPI status and  
control register.  
Technical Data  
72  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
Overflow bit (OVRF) — The OVRF bit is set if software does not  
read the byte in the receive data register before the next full byte  
enters the shift register. The error interrupt enable bit, ERRIE,  
enables OVRF CPU interrupt requests. OVRF and ERRIE are in  
the SPI status and control register.  
4.4.2.8 SCI  
SCI CPU interrupt sources:  
SCI transmitter empty bit (SCTE) — SCTE is set when the SCI  
data register transfers a character to the transmit shift register.  
The SCI transmit interrupt enable bit, SCTIE, enables transmitter  
CPU interrupt requests. SCTE is in SCI status register 1. SCTIE is  
in SCI control register 2.  
Transmission complete bit (TC) — TC is set when the transmit  
shift register and the SCI data register are empty and no break or  
idle character has been generated. The transmission complete  
interrupt enable bit, TCIE, enables transmitter CPU interrupt  
requests. TC is in SCI status register 1. TCIE is in SCI control  
register 2.  
SCI receiver full bit (SCRF) — SCRF is set when the receive shift  
register transfers a character to the SCI data register. The SCI  
receive interrupt enable bit, SCRIE, enables receiver CPU  
interrupts. SCRF is in SCI status register 1. SCRIE is in SCI  
control register 2.  
Idle input bit (IDLE) — IDLE is set when 10 or 11 consecutive logic  
1s shift in from the RxD pin. The idle line interrupt enable bit, ILIE,  
enables IDLE CPU interrupt requests. IDLE is in SCI status  
register 1. ILIE is in SCI control register 2.  
Receiver overrun bit (OR) — OR is set when the receive shift  
register shifts in a new character before the previous character  
was read from the SCI data register. The overrun interrupt enable  
bit, ORIE, enables OR to generate SCI error CPU interrupt  
requests. OR is in SCI status register 1. ORIE is in SCI control  
register 3.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Resets and Interrupts  
73  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Noise flag (NF) — NF is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, enables NF to  
generate SCI error CPU interrupt requests. NF is in SCI status  
register 1. NEIE is in SCI control register 3.  
Framing error bit (FE) — FE is set when a logic 0 occurs where the  
receiver expects a stop bit. The framing error interrupt enable bit,  
FEIE, enables FE to generate SCI error CPU interrupt requests.  
FE is in SCI status register 1. FEIE is in SCI control register 3.  
Parity error bit (PE) — PE is set when the SCI detects a parity error  
in incoming data. The parity error interrupt enable bit, PEIE,  
enables PE to generate SCI error CPU interrupt requests. PE is in  
SCI status register 1. PEIE is in SCI control register 3.  
4.4.2.9 KBD0–KBD4 Pins  
A logic 0 on a keyboard interrupt pin latches an external interrupt  
request.  
4.4.2.10 ADC (Analog-to-Digital Converter)  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. The COCO/IDMAS bit is not  
used as a conversion complete flag when interrupts are enabled.  
4.4.2.11 TBM (Timebase Module)  
The timebase module can interrupt the CPU on a regular basis with a  
rate defined by TBR2–TBR0. When the timebase counter chain rolls  
over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
Technical Data  
74  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
4.4.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 4-2 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 4-2. Interrupt Source Flags  
Interrupt Source  
Interrupt Status Register Flag  
Reset  
SWI instruction  
IRQ pin  
IF1  
CGM (PLL)  
IF2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
Reserved  
IF3  
IF4  
IF5  
IF6  
IF7  
TIM2 overflow  
SPI receive  
IF8  
IF9  
SPI transmit  
SCI error  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
SCI receive  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
75  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
4.4.3.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
IF5  
R
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF6  
R
R
0
R
0
0
0
0
0
0
0
R = Reserved  
Figure 4-7. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 and Bit 0 — Always read 0  
4.4.3.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
IF13  
R
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF14  
R
0
0
0
0
0
0
0
0
R = Reserved  
Figure 4-8. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Technical Data  
76  
MC68HC908GR8 — Rev 4.0  
Resets and Interrupts  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Interrupts  
4.4.3.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R = Reserved  
Figure 4-9. Interrupt Status Register 3 (INT3)  
IF16–IF15 — Interrupt Flags 16–15  
This flag indicates the presence of an interrupt request from the  
source shown in Table 4-2.  
1 = Interrupt request present  
0 = No interrupt request present  
Bits 7–2 — Always read 0  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
77  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Resets and Interrupts  
Technical Data  
78  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Resets and Interrupts  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 5. Analog-to-Digital Converter (ADC)  
5.1 Contents  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
5.2 Introduction  
This section describes the 8-bit analog-to-digital converter (ADC).  
For further information regarding analog-to-digital converters on  
Motorola microcontrollers, please consult the HC08 ADC Reference  
Manual, ADCRM/AD.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
79  
Analog-to-Digital Converter (ADC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
5.3 Features  
Features of the ADC module include:  
Six channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
5.4 Functional Description  
The ADC provides six pins for sampling external sources at pins  
PTB5/ATD5–PTB0/ATD0. An analog multiplexer allows the single ADC  
converter to select one of six ADC channels as ADC voltage in (VADIN).  
VADIN is converted by the successive approximation register-based  
analog-to-digital converter. When the conversion is completed, ADC  
places the result in the ADC data register and sets a flag or generates  
an interrupt. See Figure 5-1.  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. If the MCU has no DMA,  
any DMA-related register bits should be left in their reset state for  
expected MCU operation.  
Technical Data  
80  
MC68HC908GR8 — Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRBx  
WRITE DDRBx  
DISABLE  
DDRBx  
PTBx  
RESET  
WRITE PTBx  
PTBx  
ADC CHANNEL x  
READ PTBx  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
(VADIN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
)
INTERRUPT  
LOGIC  
CHANNEL  
SELECT  
ADC  
ADC CLOCK  
AIEN  
COCO  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV2–ADIV0  
ADICLK  
Figure 5-1. ADC Block Diagram  
5.4.1 ADC Port I/O Pins  
PTB5/ATD5–PTB0/ATD0 are general-purpose I/O (input/output) pins  
that share with the ADC channels. The channel select bits define which  
ADC channel/port pin will be used as the input signal. The ADC  
overrides the port I/O logic by forcing that pin as input to the ADC. The  
remaining ADC channels/port pins are controlled by the port I/O logic  
and can be used as general-purpose I/O. Writes to the port register or  
DDR will not have any affect on the port pin that is selected by the ADC.  
Read of a port pin in use by the ADC will return a logic 0.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
81  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
5.4.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the  
signal to $FF (full scale). If the input voltage equals VREFL, the ADC  
converts it to $00. Input voltages between VREFH and VREFL are a  
straight-line linear conversion. All other input voltages will result in $FF,  
if greater than VREFH  
.
NOTE: Inside the ADC module, the reference voltage, VREFH is connected to the  
ADC analog power VDDAD; and VREFL is connected to the ADC analog  
ground VDDAD. Therefore, the ADC input voltage should not exceed the  
analog supply voltages  
For operation, VDDAD should be tied to the same potential as VDD via  
separate traces  
5.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. One conversion will take  
between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits  
should be set to provide a 1 MHz ADC clock frequency.  
16 to17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time x bus frequency  
5.4.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with  
new data after each conversion. Data from the previous conversion will  
be overwritten whether that data has been read or not. Conversions will  
continue until the ADCO bit is cleared. The COCO/IDMAS bit is set after  
the first conversion and will stay set until the next write of the ADC status  
and control register or the next read of the ADC data register.  
In single conversion mode, conversion begins with a write to the  
ADSCR. Only one conversion occurs between writes to the ADSCR.  
Technical Data  
82  
MC68HC908GR8 — Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
Interrupts  
5.4.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
5.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating CPU  
interrupts after each ADC conversion. A CPU interrupt is generated if the  
COCO/IDMAS bit is at logic 0. If COCO/IDMAS bit is set, a DMA interrupt  
is generated. The COCO/IDMAS bit is not used as a conversion  
complete flag when interrupts are enabled.  
5.6 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power-  
consumption standby modes.  
5.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH4–ADCH0 bits in the ADC status  
and control register before executing the WAIT instruction.  
5.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode after an external interrupt. Allow one conversion  
cycle to stabilize the analog circuitry.  
5.7 I/O Signals  
The ADC module has six pins shared with port B,  
PTB5/AD5–PTB0/ATD0.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
83  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
5.7.1 ADC Analog Power Pin (VDDAD)/ADC Voltage Reference High Pin (VREFH  
)
The ADC analog portion uses VDDAD as its power pin. Connect the  
VDDAD pin to the same voltage potential as VDD. External filtering may be  
necessary to ensure clean VDDAD for good results.  
NOTE:  
For maximum noise immunity, route VDDAD carefully and place bypass  
capacitors as close as possible to the package.  
5.7.2 ADC Analog Ground Pin (VSSAD)/ADC Voltage Reference Low Pin (VREFL  
)
The ADC analog portion uses VSSAD as its ground pin. Connect the  
VSSAD pin to the same voltage potential as VSS.  
NOTE: Route VSSAD cleanly to avoid any offset errors.  
5.7.3 ADC Voltage In (VADIN  
)
VADIN is the input voltage signal from one of the six ADC channels to the  
ADC module.  
Technical Data  
84  
MC68HC908GR8 — Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
I/O Registers  
5.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADCLK)  
5.8.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described  
here.  
Address: $0003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO/  
IDMAS  
0
Figure 5-2. ADC Status and Control Register (ADSCR)  
COCO/IDMAS — Conversions Complete/Interrupt DMA Select Bit  
When the AIEN bit is a logic 0, the COCO/IDMAS is a read-only bit  
which is set each time a conversion is completed except in the  
continuous conversion mode where it is set after the first conversion.  
This bit is cleared whenever the ADSCR is written or whenever the  
ADR is read.  
If the AIEN bit is a logic 1, the COCO/IDMAS is a read/write bit which  
selects either CPU or DMA to service the ADC interrupt request.  
Reset clears this bit.  
1 = Conversion completed (AIEN = 0)/DMA interrupt (AIEN = 1)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
CAUTION: Because the MC68HC908GR8 does NOT have a DMA module, the  
IDMAS bit should NEVER be set when AIEN is set. Doing so will mask  
ADC interrupts and cause unwanted results.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
85  
Analog-to-Digital Converter (ADC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When this bit is set, the ADC will convert samples continuously and  
update the ADR register at the end of each conversion. Only one  
conversion is completed between writes to the ADSCR when this bit  
is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 16  
ADC channels. Only six channels, AD5–AD0, are available on this  
MCU. The channels are detailed in Table 5-1. Care should be taken  
when using a port pin as both an analog and digital input  
simultaneously to prevent switching noise from corrupting the analog  
signal. See Table 5-1.  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not being used.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
The voltage levels supplied from internal reference nodes, as specified  
in Table 5-1, are used to verify the operation of the ADC converter both  
in production test and for user applications.  
Table 5-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Technical Data  
86  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
I/O Registers  
Table 5-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VREFH  
1
1
1
1
1
1
0
1
1
1
0
0
1
0
1
VREFL  
1
1
1
1
1
1
1
1
0
1
ADC power off  
NOTE: If an unknown channel is selected it should be made clear what value the user will read  
from the ADC Data Register, unknown or reserved is not specific enough.  
5.8.2 ADC Data Register  
One 8-bit result register, ADC data register (ADR), is provided. This  
register is updated each time an ADC conversion completes.  
Address: $0003D  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 5-3. ADC Data Register (ADR)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
87  
Analog-to-Digital Converter (ADC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
5.8.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the  
ADC.  
Address: $0003E  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
0
2
0
1
0
Bit 0  
0
Read:  
ADIV2  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 5-4. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by  
the ADC to generate the internal ADC clock. Table 5-2 shows the  
available clock configurations. The ADC clock should be set to  
approximately 1 MHz.  
Table 5-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
Technical Data  
88  
MC68HC908GR8 — Rev 4.0  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
I/O Registers  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at  
approximately 1 MHz, correct operation can be guaranteed.  
1 = Internal bus clock  
0 = External clock (CGMXCLK)  
ADC input clock frequency  
----------------------------------------------------------------------- = 1 M H z  
ADIV2–ADIV0  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Analog-to-Digital Converter (ADC)  
89  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Analog-to-Digital Converter (ADC)  
Technical Data  
90  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 6. Break Module (BRK)  
6.1 Contents  
6.2  
6.3  
6.4  
6.5  
6.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
6.2 Introduction  
6.3 Features  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
Features of the break module include:  
Accessible input/output (I/O) registers during the break interrupt  
CPU-generated break interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
91  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
6.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 6-1 shows the structure of the break module.  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 6-1. Break Module Block Diagram  
Technical Data  
92  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Break Module (BRK)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
0
5
0
4
1
3
0
2
0
1
BW  
NOTE  
0
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R
0
0
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
R
0
R
0
R
1
R
0
R
0
BCFE  
0
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE09  
$FE0A  
$FE0B  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
Note: Writing a logic 0 clears BW.  
= Unimplemented  
R
= Reserved  
Figure 6-2. I/O Register Summary  
6.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
6.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and  
$FEFD in monitor mode)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
93  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
6.4.3 TIMI and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
6.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on  
the RST pin.  
6.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
6.5.1 Wait Mode  
6.5.2 Stop Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set. See Low Power Modes. Clear the BW bit by writing logic 0 to it.  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
6.6 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Technical Data  
94  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Break Module (BRK)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
Break Module Registers  
Break address register low (BRKL)  
SIM break status register (SBSR)  
SIM break flag control register (SBFCR)  
6.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 6-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Break Module (BRK)  
95  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
6.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE09  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 6-4. Break Address Register High (BRKH)  
Address: $FE0A  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 6-5. Break Address Register Low (BRKL)  
6.6.3 Break Status Register  
The break status register (SBSR) contains a flag to indicate that a break  
caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Address: $FE00  
Bit 7  
0
6
0
5
0
4
1
3
0
2
0
1
BW  
NOTE  
0
Bit 0  
0
Read:  
Write:  
Reset:  
R
R
0
R
0
R
1
R
0
R
0
R
0
0
Note: Writing a logic 0 clears BW.  
R
= Reserved  
Figure 6-6. SIM Break Status Register (SBSR)  
Technical Data  
96  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Break Module (BRK)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
Break Module Registers  
BW — Break Wait Bit  
This read/write bit is set when a break interrupt causes an exit from  
wait mode. Clear BW by writing a logic 0 to it. Reset clears BW.  
1 = Break interrupt during wait mode  
0 = No break interrupt during wait mode  
BW can be read within the break interrupt routine. The user can modify  
the return address on the stack by subtracting 1 from it. The following  
code is an example.  
This code works if the H register was stacked in the break interrupt  
routine. Execute this code at the end of the break interrupt routine.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not BW, do RTI  
BRCLR BW,BSR, RETURN ; See if wait mode or stop mode  
; was exited by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low byte.  
; Else deal with high byte also.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
97  
Break Module (BRK)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Break Module (BRK)  
6.6.4 Break Flag Control Register  
The break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
BCFE  
0
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
=Reserved  
Figure 6-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
98  
MC68HC908GR8 — Rev 4.0  
Break Module (BRK)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 7. Clock Generator Module (CGMC)  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
CGMC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .125  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.2 Introduction  
This section describes the clock generator module. The CGMC  
generates the crystal clock signal, CGMXCLK, which operates at the  
frequency of the crystal. The CGMC also generates the base clock  
signal, CGMOUT, which is based on either the crystal clock divided by  
two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In  
user mode, CGMOUT is the clock from which the SIM derives the  
system clocks, including the bus clock, which is at a frequency of  
CGMOUT/2. In monitor mode, PTC3 determines the bus clock. The PLL  
is a fully functional frequency generator designed for use with crystals or  
ceramic resonators. The PLL can generate an 8-MHz bus frequency  
using a 32-kHz crystal.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
99  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.3 Features  
Features of the CGMC include:  
Phase-locked loop with output frequency in integer multiples of an  
integer dividend of the crystal reference  
Low-frequency crystal operation with low-power operation and  
high-output frequency resolution  
Programmable prescaler for power-of-two increases in frequency  
Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
Configuration register bit to allow oscillator operation during stop  
mode  
7.4 Functional Description  
The CGMC consists of three major submodules:  
Crystal oscillator circuit — The crystal oscillator circuit generates  
the constant crystal frequency clock, CGMXCLK.  
Phase-locked loop (PLL) — The PLL generates the  
programmable VCO frequency clock, CGMVCLK.  
Base clock selector circuit — This software-controlled circuit  
selects either CGMXCLK divided by two or the VCO clock,  
CGMVCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from either CGMOUT or CGMXCLK.  
Figure 7-1 shows the structure of the CGMC.  
Technical Data  
100  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
OSCILLATOR (OSC)  
OSC2  
CGMXCLK  
(TO: SIM, TIMTB15A, ADC)  
OSC1  
SIMOSCEN (FROM SIM)  
OSCSTOPENB  
(FROM CONFIG)  
PHASE-LOCKED LOOP (PLL)  
CGMRDV  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
CLOCK  
SELECT  
CIRCUIT  
CGMOUT  
(TO SIM)  
÷
2
BCS  
RDS3–RDS0  
V
V
SSA  
DDA  
VPR1–VPR0  
VRS7–VRS0  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
CGMVCLK  
PLL ANALOG  
PLLIREQ  
(TO SIM)  
AUTOMATIC  
MODE  
CONTROL  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL11–MUL0  
PRE1–PRE0  
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
Figure 7-1. CGMC Block Diagram  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
101  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.4.1 Crystal Oscillator Circuit  
The crystal oscillator circuit consists of an inverting amplifier and an  
external crystal. The OSC1 pin is the input to the amplifier and the OSC2  
pin is the output. The SIMOSCEN signal from the system integration  
module (SIM) or the OSCSTOPENB bit in the CONFIG register enable  
the crystal oscillator circuit.  
The CGMXCLK signal is the output of the crystal oscillator circuit and  
runs at a rate equal to the crystal frequency. CGMXCLK is then buffered  
to produce CGMRCLK, the PLL reference clock.  
CGMXCLK can be used by other modules which require precise timing  
for operation. The duty cycle of CGMXCLK is not guaranteed to be 50%  
and depends on external factors, including the crystal and related  
external components. An externally generated clock also can feed the  
OSC1 pin of the crystal oscillator circuit. Connect the external clock to  
the OSC1 pin and let the OSC2 pin float.  
7.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
7.4.3 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Reference divider  
Frequency prescaler  
Modulo VCO frequency divider  
Phase detector  
Loop filter  
Lock detector  
Technical Data  
102  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGM/XFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, fVRS  
.
Modulating the voltage on the CGM/XFC pin changes the frequency  
within this range. By design, fVRS is equal to the nominal center-of-range  
frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two  
factor, E, or (L × 2E)fNOM  
.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a  
programmable modulo reference divider, which divides fRCLK by a  
factor, R. The divider’s output is the final reference clock, CGMRDV,  
running at a frequency, fRDV = fRCLK/R. With an external crystal  
(30 kHz–100 kHz), always set R = 1 for specified performance. With an  
external high-frequency clock source, use R to divide the external  
frequency to between 30 kHz and 100 kHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is  
fed back through a programmable prescale divider and a programmable  
modulo divider. The prescaler divides the VCO clock by a power-of-two  
factor P and the modulo divider reduces the VCO clock by a factor, N.  
The dividers’ output is the VCO feedback clock, CGMVDV, running at a  
frequency, fVDV = fVCLK/(N × 2P). (See Programming the PLL for more  
information.)  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the DC voltage on the external capacitor connected  
to CGM/XFC based on the width and direction of the correction pulse.  
The filter can make fast or slow corrections depending on its mode,  
described in Acquisition and Tracking Modes. The value of the external  
capacitor and the reference frequency determine the speed of the  
corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
103  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
frequency, fRDV. The circuit determines the mode of the PLL and the lock  
condition based on this comparison.  
7.4.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
Acquisition mode — In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL  
startup or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in  
acquisition mode, the ACQ bit is clear in the PLL bandwidth control  
register. (See PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. (See Base Clock Selector Circuit.) The PLL is  
automatically in tracking mode when not in acquisition mode or  
when the ACQ bit is set.  
7.4.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically. Automatic mode is recommended for most  
users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT. (See PLL Bandwidth Control Register.) If PLL interrupts are  
enabled, the software can wait for a PLL interrupt request and then  
check the LOCK bit. If interrupts are disabled, software can poll the  
LOCK bit continuously (during PLL startup, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
Technical Data  
104  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
to use as the source for the base clock. (See Base Clock Selector  
Circuit.) If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
(See Interrupts for information and precautions on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth  
control mode:  
The ACQ bit (see PLL Bandwidth Control Register) is a read-only  
indicator of the mode of the filter. (See Acquisition and Tracking  
Modes.)  
The ACQ bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See Acquisition/Lock Time Specifications for  
more information.)  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See Acquisition/Lock Time Specifications for  
more information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s  
lock condition changes, toggling the LOCK bit. (See PLL Control  
Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode is  
used by systems that do not require an indicator of the lock condition for  
proper operation. Such systems typically operate well below fBUSMAX  
.
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
Before entering tracking mode (ACQ = 1), software must wait a  
given time, tACQ (see Acquisition/Lock Time Specifications), after  
turning on the PLL by setting PLLON in the PLL control register  
(PCTL).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
105  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Software must wait a given time, tAL, after entering tracking mode  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGMC are disabled.  
7.4.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE: The round function in the following equations means that the real  
number should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, fBUSDES  
.
2. Calculate the desired VCO frequency (four times the desired bus  
frequency).  
fVCLKDES = 4 × fBUSDES  
3. Choose a practical PLL (crystal) reference frequency, fRCLK, and  
the reference clock divider, R. Typically, the reference crystal is  
32.768 kHz and R = 1.  
Frequency errors to the PLL are corrected at a rate of fRCLK/R. For  
stability and lock time reduction, this rate must be as fast as  
possible. The VCO frequency must be an integer multiple of this  
rate. The relationship between the VCO frequency, fVCLK, and the  
reference frequency, fRCLK, is  
P
2 N  
R
fVCLK = ----------- (f RCLK  
)
P, the power of two multiplier, and N, the range multiplier, are  
integers.  
In cases where desired bus frequency has some tolerance,  
choose fRCLK to a value determined either by other module  
requirements (such as modules which are clocked by CGMXCLK),  
cost requirements, or ideally, as high as the specified range  
Technical Data  
106  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
allows. See Electrical Specifications. Choose the reference  
divider, R = 1. After choosing N and P, the actual bus frequency  
can be determined using equation in 2 above.  
When the tolerance on the bus frequency is tight, choose fRCLK to  
an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this  
requirement, use the following equation to solve for R with  
practical choices of fRCLK, and choose the fRCLK that gives the  
lowest R.  
fVCLKDES fVCLKDES  
------------------------- integer -------------------------  
fRCLK fRCLK  
R = round RMAX  
×
4. Select a VCO frequency multiplier, N.  
R × fVCLKDES  
N = round ------------------------------------  
fRCLK  
Reduce N/R to the lowest possible R.  
5. If N is < Nmax, use P = 0. If N > Nmax, choose P using this table:  
Current N Value  
P
0 < N N  
0
max  
N
< N N  
× 2  
1
2
3
max  
max  
N
N
× 2 < N N  
× 4 < N N  
× 4  
× 8  
max  
max  
max  
max  
Then recalculate N:  
R × fVCLKDES  
N = round ------------------------------------  
RCLK × 2P  
f
6. Calculate and verify the adequacy of the VCO and bus  
frequencies fVCLK and fBUS  
.
fVCLK = (2P × N R) × fRCLK  
fBUS = (fVCLK) ⁄ 4  
7. Select the VCO’s power-of-two range multiplier E, according to  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
107  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
this table:  
Frequency Range  
0 < fVCLK < 9,830,400  
E
0
1
2
9,830,400 fVCLK < 19,660,800  
19,660,800 fVCLK < 39,321,600  
NOTE: Do not program E to a value of 3.  
8. Select a VCO linear range multiplier, L, where fNOM = 38.4 kHz  
fVCLK  
L = round --------------------------  
2E × fNOM  
9. Calculate and verify the adequacy of the VCO programmed  
center-of-range frequency, fVRS. The center-of-range frequency is  
the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
fVRS = (L × 2E)fNOM  
For proper operation,  
f
NOM × 2E  
VRS fVCLK --------------------------  
f
2
10. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS  
and fVCLKDES. For proper operation, fVCLK must be within the  
application’s tolerance of fVCLKDES, and fVRS must be as close as  
possible to fVCLK  
.
NOTE: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
11. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program  
the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program  
the binary equivalent of E.  
Technical Data  
108  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
c. In the PLL multiplier select register low (PMSL) and the PLL  
multiplier select register high (PMSH), program the binary  
equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the  
binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program  
the binary coded equivalent of R.  
Table 7-1 provides numeric examples (numbers are in hexadecimal  
notation):  
Table 7-1. Numeric Example  
fBUS  
fRCLK  
R
1
1
1
1
1
1
1
1
N
P
0
0
0
0
0
0
0
0
E
0
1
1
1
2
2
2
2
L
2.0 MHz  
2.4576 MHz  
2.5 MHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
F5  
D1  
80  
83  
D1  
80  
82  
C0  
D0  
12C  
132  
1E9  
258  
263  
384  
3D1  
4.0 MHz  
4.9152 MHz  
5.0 MHz  
7.3728 MHz  
8.0 MHz  
7.4.7 Special Programming Exceptions  
The programming method described in Programming the PLL does not  
account for three possible exceptions. A value of 0 for R, N, or L is  
meaningless when used in the equations given. To account for these  
exceptions:  
A 0 value for R or N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock.  
(See Base Clock Selector Circuit.)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
109  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.4.8 Base Clock Selector Circuit  
This circuit is used to select either the crystal clock, CGMXCLK, or the  
VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The  
two input clocks go through a transition control circuit that waits up to  
three CGMXCLK cycles and three CGMVCLK cycles to change from  
one clock source to the other. During this time, CGMOUT is held in  
stasis. The output of the transition control circuit is then divided by two  
to correct the duty cycle. Therefore, the bus clock frequency, which is  
one-half of the base clock frequency, is one-fourth the frequency of the  
selected clock (CGMXCLK or CGMVCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The VCO clock cannot be selected as the base clock source  
if the PLL is not turned on. The PLL cannot be turned off if the VCO clock  
is selected. The PLL cannot be turned on or off simultaneously with the  
selection or deselection of the VCO clock. The VCO clock also cannot  
be selected as the base clock source if the factor L is programmed to a  
0. This value would set up a condition inconsistent with the operation of  
the PLL, so that the PLL would be disabled and the crystal clock would  
be forced as the source of the base clock.  
7.4.9 CGMC External Connections  
In its typical configuration, the CGMC requires up to nine external  
components. Five of these are for the crystal oscillator and two or four  
are for the PLL.  
The crystal oscillator is normally connected in a Pierce oscillator  
configuration, as shown in Figure 7-2. Figure 7-2 shows only the logical  
representation of the internal components and may not represent actual  
circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS  
Technical Data  
110  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Functional Description  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines. Refer to the crystal manufacturer’s data for more  
information regarding values for C1 and C2.  
Figure 7-2 also shows the external components for the PLL:  
Bypass capacitor, CBYP  
Filter network  
Routing should be done with great care to minimize signal cross talk and  
noise.  
See CGM Component Specifications for capacitor and resistor values.  
SIMOSCEN  
OSCSTOPENB  
(FROM CONFIG)  
CGMXCLK  
CGMXFC  
V
SSA  
OSC1  
OSC2  
V
DDA  
VDD  
RB  
10 k  
CBYP  
0.1 µF  
0.01 µF  
RS  
0.033 µF  
X1  
C1  
C2  
Note: Filter network in box can be replaced with a 0.47 µF capacitor, but will degrade stability.  
Figure 7-2. CGMC External Connections  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
111  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.5 I/O Signals  
The following paragraphs describe the CGMC I/O signals.  
7.5.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier.  
7.5.2 Crystal Amplifier Output Pin (OSC2)  
The OSC2 pin is the output of the crystal oscillator inverting amplifier.  
7.5.3 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. An external filter network is connected to this pin. (See  
Figure 7-2.)  
NOTE: To prevent noise problems, the filter network should be placed as close  
to the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
7.5.4 PLL Analog Power Pin (VDDA  
)
VDDA is a power pin used by the analog portions of the PLL. Connect the  
VDDA pin to the same voltage potential as the VDD pin.  
NOTE: Route VDDA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
7.5.5 PLL Analog Ground Pin (VSSA  
)
VSSA is a ground pin used by the analog portions of the PLL. Connect  
the VSSA pin to the same voltage potential as the VSS pin.  
NOTE: Route VSSA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
Technical Data  
112  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
I/O Signals  
7.5.6 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM)  
and enables the oscillator and PLL.  
7.5.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB)  
OSCSTOPENB is a bit in the CONFIG register that enables the oscillator  
to continue operating during stop mode. If this bit is set, the Oscillator  
continues running during stop mode. If this bit is not set (default), the  
oscillator is controlled by the SIMOSCEN signal which will disable the  
oscillator during stop mode.  
7.5.8 Crystal Output Frequency Signal (CGMXCLK)  
CGMXCLK is the crystal oscillator output signal. It runs at the full speed  
of the crystal (fXCLK) and comes directly from the crystal oscillator circuit.  
Figure 7-2 shows only the logical relation of CGMXCLK to OSC1 and  
OSC2 and may not represent the actual circuitry. The duty cycle of  
CGMXCLK is unknown and may depend on the crystal and other  
external factors. Also, the frequency and amplitude of CGMXCLK can be  
unstable at startup.  
7.5.9 CGMC Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGMC. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by  
two or the VCO clock, CGMVCLK, divided by two.  
7.5.10 CGMC CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
113  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.6 CGMC Registers  
These registers control and monitor operation of the CGMC:  
PLL control register (PCTL)  
(See PLL Control Register.)  
PLL bandwidth control register (PBWC)  
(See PLL Bandwidth Control Register.)  
PLL multiplier select register high (PMSH)  
(See PLL Multiplier Select Register High.)  
PLL multiplier select register low (PMSL)  
(See PLL Multiplier Select Register Low.)  
PLL VCO range select register (PMRS)  
(See PLL VCO Range Select Register.)  
PLL reference divider select register (PMDS)  
(See PLL Reference Divider Select Register.)  
Figure 7-3 is a summary of the CGMC registers.  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PLLF  
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
(PCTL)  
$0036  
0
0
0
0
0
0
0
0
0
0
LOCK  
AUTO  
ACQ  
R
0
PLL Bandwidth Control  
Register (PBWC)  
$0037  
$0038  
$0039  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
MUL8  
0
PLL Multiplier Select High  
Register (PMSH)  
0
MUL7  
0
0
MUL6  
1
0
MUL5  
0
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
PLL Multiplier Select Low  
Register (PMSL)  
Figure 7-3. CGMC I/O Register Summary  
Technical Data  
114  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
CGMC Registers  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
PLL VCO Select Range  
Register (PMRS)  
$003A  
$003B  
0
0
1
0
0
0
0
0
RDS3  
RDS2  
0
RDS1  
0
RDS0  
1
PLL Reference Divider  
Select Register (PMDS)  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
NOTES:  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 7-3. CGMC I/O Register Summary  
7.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, the base clock selector bit, the prescaler bits, and  
the VCO power-of-two range selector bits.  
Address: $0036  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
0
= Unimplemented  
Figure 7-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE  
bit.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
115  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF  
always reads as logic 0 when the AUTO bit in the PLL bandwidth  
control register (PBWC) is clear. Clear the PLLF bit by reading the  
PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). (See Base Clock Selector Circuit.)  
Reset sets this bit so that the loop can stabilize as the MCU is  
powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the crystal oscillator output,  
CGMXCLK, or the VCO clock, CGMVCLK, as the source of the  
CGMC output, CGMOUT. CGMOUT frequency is one-half the  
frequency of the selected clock. BCS cannot be set while the PLLON  
bit is clear. After toggling BCS, it may take up to three CGMXCLK and  
three CGMVCLK cycles to complete the transition from one source  
clock to the other. During the transition, CGMOUT is held in stasis.  
(See Base Clock Selector Circuit.) Reset clears the BCS bit.  
1 = CGMVCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
Technical Data  
116  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
CGMC Registers  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMVCLK requires two writes to the PLL control  
register. (See Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler  
power-of-two multiplier, P. (See PLL Circuits and Programming the  
PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set.  
Reset clears these bits.  
NOTE: The value of P is normally 0 when using a 32.768-kHz crystal as the  
reference.  
Table 7-2. PRE 1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and 0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range  
multiplier E that, in conjunction with L (See PLL Circuits,  
Programming the PLL, and PLL VCO Range Select Register.)  
controls the hardware center-of-range frequency, fVRS. VPR1:VPR0  
cannot be written when the PLLON bit is set. Reset clears these bits.  
Table 7-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
11  
0
1
2
1
2
4
8
3(1)  
1. Do not program E to a value of 3.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
117  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth  
control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking  
mode  
Address: $0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
AUTO  
Write:  
LOCK  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 7-5. PLL Bandwidth Control Register (PBWC)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. The write one function of this bit is  
reserved for test, so this bit must always be written a 0. Reset clears  
the LOCK bit.  
Technical Data  
118  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
CGMC Registers  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the  
PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
7.6.3 PLL Multiplier Select Register High  
The PLL multiplier select register high (PMSH) contains the  
programming information for the high byte of the modulo feedback  
divider.  
Address: $0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 7-6. PLL Multiplier Select Register High (PMSH)  
MUL11–MUL8 — Multiplier Select Bits  
These read/write bits control the high byte of the modulo feedback  
divider that selects the VCO frequency multiplier N. (See PLL Circuits  
and Programming the PLL.) A value of $0000 in the multiplier select  
registers configures the modulo feedback divider the same as a value  
of $0001. Reset initializes the registers to $0040 for a default multiply  
value of 64.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
119  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
PMSH[7:4] — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
7.6.4 PLL Multiplier Select Register Low  
The PLL multiplier select register low (PMSL) contains the programming  
information for the low byte of the modulo feedback divider.  
Address: $0038  
Bit 7  
MUL7  
0
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
Figure 7-7. PLL Multiplier Select Register Low (PMSL)  
MUL7–MUL0 — Multiplier Select Bits  
These read/write bits control the low byte of the modulo feedback  
divider that selects the VCO frequency multiplier, N. (See PLL Circuits  
and Programming the PLL.) MUL7–MUL0 cannot be written when the  
PLLON bit in the PCTL is set. A value of $0000 in the multiplier select  
registers configures the modulo feedback divider the same as a value  
of $0001. Reset initializes the register to $40 for a default multiply  
value of 64.  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
Technical Data  
120  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
CGMC Registers  
7.6.5 PLL VCO Range Select Register  
NOTE: PMRS may be called PVRS on other HC08 derivatives.  
The PLL VCO range select register (PMRS) contains the programming  
information required for the hardware configuration of the VCO.  
Address: $003A  
Bit 7  
VRS7  
0
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
Figure 7-8. PLL VCO Range Select Register (PMRS)  
VRS7–VRS0 — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L which, in conjunction with E (see PLL Circuits,  
Programming the PLL, and PLL Control Register), controls the  
hardware center-of-range frequency, fVRS. VRS7–VRS0 cannot be  
written when the PLLON bit in the PCTL is set. (See Special  
Programming Exceptions.) A value of $00 in the VCO range select  
register disables the PLL and clears the BCS bit in the PLL control  
register (PCTL). (See Base Clock Selector Circuit and Special  
Programming Exceptions.). Reset initializes the register to $40 for a  
default range multiply value of 64.  
NOTE: The VCO range select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
121  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
7.6.6 PLL Reference Divider Select Register  
NOTE: PMDS may be called PRDS on other HC08 derivatives.  
The PLL reference divider select register (PMDS) contains the  
programming information for the modulo reference divider.  
Address: $003B  
Bit 7  
0
6
0
5
0
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 7-9. PLL Reference Divider Select Register (PMDS)  
RDS3–RDS0 — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects  
the reference division factor, R. (See PLL Circuits and Programming  
the PLL.) RDS7–RDS0 cannot be written when the PLLON bit in the  
PCTL is set. A value of $00 in the reference divider select register  
configures the reference divider the same as a value of $01. (See  
Special Programming Exceptions.) Reset initializes the register to  
$01 for a default divide value of 1.  
NOTE: The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE: The default divide value of 1 is recommended for all applications.  
PMDS7–PMDS4 — Unimplemented Bits  
These bits have no function and always read as logic 0s.  
Technical Data  
122  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Interrupts  
7.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the VCO clock, CGMVCLK, divided by two can be  
selected as the CGMOUT source by setting BCS in the PCTL. When the  
PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not frequency sensitive,  
interrupts should be disabled to prevent PLL interrupt service routines  
from impeding software performance or from exceeding stack  
limitations.  
NOTE: Software can select the CGMVCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
7.8 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby  
modes.  
7.8.1 Wait Mode  
The WAIT instruction does not affect the CGMC. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL) to save power. Less  
power-sensitive applications can disengage the PLL without turning it  
off, so that the PLL clock is immediately available at WAIT exit. This  
would be the case also when the PLL is to wake the MCU from wait  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
123  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
mode, such as when the PLL is first enabled and waiting for LOCK or  
LOCK is lost.  
7.8.2 Stop Mode  
If the OSCSTOPENB bit in the CONFIG register is cleared (default),  
then the STOP instruction disables the CGMC (oscillator and phase  
locked loop) and holds low all CGMC outputs (CGMXCLK, CGMOUT,  
and CGMINT).  
If the STOP instruction is executed with the VCO clock, CGMVCLK,  
divided by two driving CGMOUT, the PLL automatically clears the BCS  
bit in the PLL control register (PCTL), thereby selecting the crystal clock,  
CGMXCLK, divided by two as the source of CGMOUT. When the MCU  
recovers from STOP, the crystal clock divided by two drives CGMOUT  
and BCS remains clear.  
If the OSCSTOPENB bit in the CONFIG register is set, then the phase  
locked loop is shut off but the oscillator will continue to operate in stop  
mode.  
7.8.3 CGMC During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
the PLL control register during the break state without affecting the PLLF  
bit.  
Technical Data  
124  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Acquisition/Lock Time Specifications  
7.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
7.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percentage of  
the step input or when the output settles to the desired value plus or  
minus a percentage of the frequency change. Therefore, the reaction  
time is constant in this definition, regardless of the size of the step input.  
For example, consider a system with a 5 percent acquisition time  
tolerance. If a command instructs the system to change from 0 Hz to  
1 MHz, the acquisition time is the time taken for the frequency to reach  
1 MHz ±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is  
operating at 1 MHz and suffers a –100-kHz noise hit, the acquisition time  
is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5%  
of the 100-kHz step input.  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
7.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Clock Generator Module (CGMC)  
125  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, fRDV. This frequency is the input to the phase  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is under user control via the choice of crystal  
frequency fXCLK and the R value programmed in the reference divider.  
(See PLL Circuits, Programming the PLL, and PLL Reference Divider  
Select Register.)  
Another critical parameter is the external filter network. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is  
proportional to the capacitance. The size of the capacitor also is related  
to the stability of the PLL. If the capacitor is too small, the PLL cannot  
make small enough adjustments to the voltage and the system cannot  
lock. If the capacitor is too large, the PLL may not be able to adjust the  
voltage in a reasonable time. (See Choosing a Filter.)  
Also important is the operating voltage potential applied to VDDA. The  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
filter capacitor, filter capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
Technical Data  
126  
MC68HC908GR8 — Rev 4.0  
Clock Generator Module (CGMC)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Acquisition/Lock Time Specifications  
7.9.3 Choosing a Filter  
As described in Parametric Influences on Reaction Time, the external  
filter network is critical to the stability and reaction time of the PLL. The  
PLL is also dependent on reference frequency and supply voltage.  
Either of the filter networks in Figure 7-10 is recommended when using  
a 32.768-kHz reference crystal. In low-cost applications, where stability  
and reaction time of the PLL is not critical, this filter network can be  
replaced by a single capacitor.  
CGMXFC  
10 k  
0.01 µF  
0.033 µF  
V
SSA  
Figure 7-10. PLL Filter  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
127  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Clock Generator Module (CGMC)  
Technical Data  
128  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Clock Generator Module (CGMC)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 8. Configuration Register (CONFIG)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
8.2 Introduction  
This section describes the configuration registers, CONFIG1 and  
CONFIG2. The configuration registers enable or disable these options:  
Stop mode recovery time (32 CGMXCLK cycles or 4096  
CGMXCLK cycles)  
COP timeout period (218 – 24 or 213 – 24 CGMXCLK cycles)  
STOP instruction  
Computer operating properly module (COP)  
Low-voltage inhibit (LVI) module control and voltage trip point  
selection  
Enable/disable the oscillator (OSC) during stop mode  
8.3 Functional Description  
The configuration registers are used in the initialization of various  
options. The configuration registers can be written once after each reset.  
All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU, it is recommended that  
these registers be written immediately after reset. The configuration  
registers are located at $001E and $001F. The configuration register  
may be read at anytime.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
129  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Configuration Register (CONFIG)  
NOTE: To ensure correct operation of the MCU under all operating conditions,  
the user must write data $1C to address $0033 immediately after reset.  
This is to ensure proper termination of an unused module within the  
MCU.  
NOTE: On a FLASH device, the options except LVI5OR3 are one-time writeable  
by the user after each reset. The LVI5OR3 bit is one-time writeable by  
the user only after each POR (power-on reset). The CONFIG registers  
are not in the FLASH memory but are special registers containing one-  
time writeable latches after each reset. Upon a reset, the CONFIG  
registers default to predetermined settings as shown in Figure 8-1 and  
Figure 8-2.  
Address: $001E  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
OSC-  
STOPEN  
B
SCIBD-  
SRC  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 8-1. Configuration Register 2 (CONFIG2)  
Address: $001F  
Bit 7  
6
5
4
3
2
1
STOP  
0
Bit 0  
COPD  
0
Read:  
LVIP-  
WRD  
COPRS LVISTOP LVIRSTD  
LVI5OR3 SSREC  
See Note  
Write:  
Reset:  
0
0
0
0
0
Note: LVI5OR3 bit is only reset via POR (power-on reset)  
Figure 8-2. Configuration Register 1 (CONFIG1)  
Technical Data  
130  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Configuration Register (CONFIG)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Configuration Register (CONFIG)  
Functional Description  
OSCSTOPENB— Oscillator Stop Mode Enable Bar Bit  
OSCSTOPENB enables the oscillator to continue operating during stop  
mode. Setting the OSCSTOPENB bit allows the oscillator to operate  
continuously even during stop mode. This is useful for driving the  
timebase module to allow it to generate periodic wakeup while in stop  
mode. (See Clock Generator Module (CGM) subsection Stop Mode.)  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
SCIBDSRC — SCI Baud Rate Clock Source Bit  
SCIBDSRC controls the clock source used for the SCI. The setting of  
this bit affects the frequency at which the SCI operates.  
1 = Internal data bus clock used as clock source for SCI  
0 = External oscillator used as clock source for SCI  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS. See  
Computer Operating Properly (COP).  
1 = COP timeout period = 213 – 24 CGMXCLK cycles  
0 = COP timeout period = 218 – 24 CGMXCLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP. See Stop  
Mode.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. See Low-  
Voltage Inhibit (LVI).  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. See Low-Voltage Inhibit (LVI).  
1 = LVI module power disabled  
0 = LVI module power enabled  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Configuration Register (CONFIG)  
131  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Configuration Register (CONFIG)  
LVI5OR3 — LVI 5V or 3V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. See  
Low-Voltage Inhibit (LVI). The voltage mode selected for the LVI  
should match the operating VDD. See Electrical Specifications for the  
LVI’s voltage trip points for each of the modes.  
1 = LVI operates in 5V mode.  
0 = LVI operates in 3V mode.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32  
CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLKC cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
NOTE: When the LVISTOP is enabled, the system stabilization time for power  
on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a  
delay longer than the enable time for the LVI. There is no period where  
the MCU is not protected from a low power condition. However, when  
using the short stop recovery configuration option, the 32-CGMXCLK  
delay is less than the LVI’s turn-on time and there exists a period in  
startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. See Computer Operating Properly  
(COP).  
1 = COP module disabled  
0 = COP module enabled  
Technical Data  
132  
MC68HC908GR8 — Rev 4.0  
Configuration Register (CONFIG)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 9. Computer Operating Properly (COP)  
9.1 Contents  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .137  
9.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the CONFIG register.  
9.3 Functional Description  
Figure 9-1 shows the structure of the COP module.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
133  
Computer Operating Properly (COP)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Computer Operating Properly (COP)  
RESET CIRCUIT  
12-BIT COP PRESCALER  
CGMXCLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(FROM CONFIG)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(FROM CONFIG)  
Figure 9-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler counter. If not cleared by software, the COP counter overflows  
and generates an asynchronous reset after 218 – 24 or 213 – 24  
CGMXCLK cycles, depending on the state of the COP rate select bit,  
COPRS, in the configuration register. With a 213 – 24 CGMXCLK cycle  
overflow option, a 32.768-kHz crystal gives a COP timeout period of  
250 ms. Writing any value to location $FFFF before an overflow occurs  
prevents a COP reset by clearing the COP counter and stages 12  
through 5 of the prescaler.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the  
COP bit in the reset status register (RSR).  
Technical Data  
134  
MC68HC908GR8 — Rev 4.0  
Computer Operating Properly (COP)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Computer Operating Properly (COP)  
I/O Signals  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held  
at VTST. During the break state, VTST on the RST pin disables the COP.  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
9.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 9-1.  
9.4.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency  
is equal to the crystal frequency.  
9.4.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
9.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see COP  
Control Register) clears the COP counter and clears bits 12 through 5 of  
the prescaler. Reading the COP control register returns the low byte of  
the reset vector.  
9.4.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096  
CGMXCLK cycles after power-up.  
9.4.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Computer Operating Properly (COP)  
135  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Computer Operating Properly (COP)  
9.4.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
9.4.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register. See Configuration Register (CONFIG).  
9.4.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the configuration register. See Configuration Register (CONFIG).  
9.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 9-2. COP Control Register (COPCTL)  
9.6 Interrupts  
The COP does not generate CPU interrupt requests.  
Technical Data  
136  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Computer Operating Properly (COP)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Computer Operating Properly (COP)  
Monitor Mode  
9.7 Monitor Mode  
When monitor mode is entered with VTST on the IRQ pin, the COP is  
disabled as long as VTST remains on the IRQ pin or the RST pin. When  
monitor mode is entered by having blank reset vectors and not having  
VTST on the IRQ pin, the COP is automatically disabled until a POR  
occurs.  
9.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
9.8.1 Wait Mode  
9.8.2 Stop Mode  
The COP remains active during wait mode. To prevent a COP reset  
during wait mode, periodically clear the COP counter in a CPU interrupt  
routine.  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction.  
When the STOP bit in the configuration register has the STOP  
instruction disabled, execution of a STOP instruction results in an illegal  
opcode reset.  
9.9 COP Module During Break Mode  
The COP is disabled during a break interrupt when VTST is present on  
the RST pin.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
137  
Computer Operating Properly (COP)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Computer Operating Properly (COP)  
Technical Data  
138  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Computer Operating Properly (COP)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 10. Central Processing Unit (CPU)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
10.4 CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
10.5 Arithmetic/logic unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
10.6 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
10.7 CPU during break interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .146  
10.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
10.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
10.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
10.3 Features  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
139  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
64K byte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64K bytes  
Low-power stop and wait modes  
10.4 CPU registers  
Figure 10-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
7
0
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
7
V 1 1 H  
I
N Z C CONDITION CODE REGISTER (CCR)  
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 10-1. CPU registers  
Technical Data  
140  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
CPU registers  
10.4.1 Accumulator (A)  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
A
Unaffected by reset  
Figure 10-2. Accumulator (A)  
10.4.2 Index register (H:X)  
The 16-bit index register allows indexed addressing of a 64K byte  
memory space. H is the upper byte of the index register and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
H:X  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 10-3. Index register (H:X)  
The index register can also be used as a temporary data storage  
location.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
141  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
10.4.3 Stack pointer (SP)  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
8
0
7
1
6
1
5
1
4
1
3
1
2
1
1
1
Read:  
Write:  
Reset:  
SP  
0
0
0
0
0
0
1
Figure 10-4. Stack pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page zero ($0000 to $00FF) frees direct  
address (page zero) space. For correct operation, the stack pointer must  
point only to RAM locations.  
10.4.4 Program counter (PC)  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
Technical Data  
142  
MC68HC908GR8 — Rev 4.0  
Central Processing Unit (CPU)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
CPU registers  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
PC  
Loaded with vector from $FFFE and $FFFF  
Figure 10-5. Program counter (PC)  
10.4.5 Condition code register (CCR)  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
5 are set permanently to ‘1’. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
3
I
2
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
CCR  
H
X
N
X
X
1
X
X = Indeterminate  
Figure 10-6. Condition code register (CCR)  
V — Overflow flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-carry flag  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
143  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an ADD or ADC operation. The half-  
carry flag is required for binary-coded decimal (BCD) arithmetic  
operations. The DAA instruction uses the states of the H and C flags  
to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 compatibility, the upper byte of the index register (H)  
is not stacked automatically. If the interrupt service routine modifies H,  
then the user must stack and unstack H using the PSHH and PULH  
instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return from interrupt (RTI) instruction pulls the CPU registers from the  
stack and restores the interrupt mask from the stack. After any reset, the  
interrupt mask is set and can only be cleared by the clear interrupt mask  
software instruction (CLI).  
Technical Data  
144  
MC68HC908GR8 — Rev 4.0  
Central Processing Unit (CPU)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Arithmetic/logic unit (ALU)  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting bit  
7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/borrow flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions - such as bit test and  
branch, shift, and rotate - also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
10.5 Arithmetic/logic unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Motorola document number  
CPU08RM/AD) for a description of the instructions and addressing  
modes and more detail about CPU architecture.  
10.6 Low-power modes  
The WAIT and STOP instructions put the MCU in low--power  
consumption standby modes.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
145  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
10.6.1 WAIT mode  
The WAIT instruction:  
clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from WAIT mode by interrupt, the I  
bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
10.6.2 STOP mode  
The STOP instruction:  
clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from STOP mode by  
external interrupt, the I bit remains clear. After exit by reset, the I  
bit is set.  
Disables the CPU clock  
After exiting STOP mode, the CPU clock begins running after the  
oscillator stabilization delay.  
10.7 CPU during break interrupts  
If the break module is enabled, a break interrupt causes the CPU to  
execute the software interrupt instruction (SWI) at the completion of the  
current CPU instruction. See Break Module (BRK). The program counter  
vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor mode).  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
Technical Data  
146  
MC68HC908GR8 — Rev 4.0  
Central Processing Unit (CPU)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Instruction Set Summary  
10.8 Instruction Set Summary  
Table 10-1 provides a summary of the M68HC08 instruction set.  
Table 10-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
Logical AND  
A (A) & (M)  
0
↕ ↕ –  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
58  
68 ff  
78  
9E68 ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
C
0
–  
–  
↕ ↕ ↕  
↕ ↕ ↕  
b7  
b7  
b0  
b0  
SP1  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37 dd  
47  
4
1
1
4
3
5
57  
C
Arithmetic Shift Right  
67 ff  
77  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
147  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N  
V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
Bit Test  
(A) & (M)  
0
↕ ↕ –  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N  
V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (N  
V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
Branch if Interrupt Mask Set  
Technical Data  
148  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Instruction Set Summary  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BNE rel  
Branch if Not Equal  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
– REL  
– REL  
– REL  
26 rr  
2A rr  
20 rr  
3
3
3
BPL rel  
BRA rel  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
149  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CMP #opr  
IMM  
DIR  
EXT  
IX2  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
Compare A with M  
(A) – (M)  
–  
↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F1  
CMP opr,SP  
CMP opr,SP  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33 dd  
43  
4
1
1
4
3
5
COMX  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
↕ ↕ 1  
COM opr,X  
COM ,X  
COM opr,SP  
63 ff  
73  
9E63 ff  
SP1  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
–  
↕ ↕ ↕  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
Compare X with M  
(X) – (M)  
–  
↕ ↕ ↕  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
(A)  
DAA  
Decimal Adjust A  
U –  
↕ ↕ ↕ INH  
72  
2
10  
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
3B dd rr  
4B rr  
5B rr  
6B ff rr  
7B rr  
9E6B ff rr  
Decrement and Branch if Not Zero  
SP1  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
SP1  
3A dd  
4A  
4
1
1
4
3
5
DECX  
5A  
Decrement  
Divide  
–  
↕ ↕ –  
DEC opr,X  
DEC ,X  
DEC opr,SP  
6A ff  
7A  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
0
↕ ↕ INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
Exclusive OR M with A  
↕ ↕ –  
A (A  
M)  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
Technical Data  
150  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Instruction Set Summary  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
INC opr  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C dd  
4C  
4
1
1
4
3
5
INCA  
INCX  
5C  
Increment  
Jump  
–  
↕ ↕ –  
INC opr,X  
INC ,X  
6C ff  
7C  
9E6C ff  
INC opr,SP  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
PC Jump Address  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
↕ ↕ –  
↕ ↕ –  
↕ ↕ –  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45 ii jj  
55 dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
2
3
4
4
3
2
4
5
FE  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
–  
–  
↕ ↕ ↕  
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0 ↕ ↕  
64 ff  
74  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
6E ii dd  
7E dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
IMD  
IX+D  
Move  
0
0
↕ ↕ –  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
151  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
NEG opr  
DIR  
INH  
INH  
IX1  
IX  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGA  
NEGX  
50  
Negate (Two’s Complement)  
–  
↕ ↕ ↕  
NEG opr,X  
NEG ,X  
60 ff  
70  
9E60 ff  
NEG opr,SP  
SP1  
NOP  
NSA  
No Operation  
None  
– INH  
– INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
IX2  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
Inclusive OR A and M  
A (A) | (M)  
0
↕ ↕ –  
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
–  
–  
↕ ↕ ↕  
↕ ↕ ↕  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
IX  
69 ff  
79  
9E69 ff  
b7  
b0  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
56  
66 ff  
76  
9E66 ff  
4
1
1
4
3
5
C
b7  
b0  
SP1  
RSP  
RTI  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
80  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
– INH  
81  
4
Technical Data  
152  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Instruction Set Summary  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
SBC #opr  
IMM  
DIR  
EXT  
IX2  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
Subtract with Carry  
A (A) – (M) – (C)  
–  
↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F2  
SBC opr,SP  
SBC opr,SP  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
F7  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
↕ ↕ – DIR  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
– INH  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
↕ ↕ – IX1  
IX  
SP1  
SP2  
FF  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
↕ ↕ ↕  
IX1  
Subtract  
A (A) (M)  
–  
IX  
SP1  
SP2  
F0  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕ INH  
84  
97  
85  
2
1
1
– INH  
– INH  
Transfer CCR to A  
A (CCR)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
153  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Table 10-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
TST opr  
DIR  
INH  
INH  
IX1  
IX  
3D dd  
4D  
3
1
1
3
2
4
TSTA  
TSTX  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
↕ ↕ –  
TST opr,X  
TST ,X  
6D ff  
7D  
9E6D ff  
TST opr,SP  
SP1  
TSX  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
TXA  
TXS  
Transfer H:X to SP  
(SP) (H:X) – 1  
A Accumulatorn  
Any bit  
C Carry/borrow bitopr  
CCRCondition code registerPC  
Operand (one or two bytes)  
Program counter  
ddDirect address of operandPCH  
Program counter high byte  
Program counter low byte  
Relative addressing mode  
Relative program counter offset byte  
Relative program counter offset byte  
dd rrDirect address of operand and relative offset of branch instructionPCL  
DDDirect to direct addressing modeREL  
DIRDirect addressing moderel  
DIX+Direct to indexed with post increment addressing moderr  
ee ffHigh and low bytes of offset in indexed, 16-bit offset addressingSP1  
EXTExtended addressing modeSP2  
Stack pointer, 8-bit offset addressing mode  
Stack pointer 16-bit offset addressing mode  
ff Offset byte in indexed, 8-bit offset addressingSP  
H Half-carry bitU  
Stack pointer  
Undefined  
H Index register high byteV  
hh llHigh and low bytes of operand address in extended addressingX  
I Interrupt maskZ  
Overflow bit  
Index register low byte  
Zero bit  
ii Immediate operand byte&  
IMDImmediate source to direct destination addressing mode|  
Logical AND  
Logical OR  
IMMImmediate addressing mode  
INHInherent addressing mode( )  
Logical EXCLUSIVE OR  
Contents of  
IXIndexed, no offset addressing mode–( )  
IX+Indexed, no offset, post increment addressing mode#  
Negation (two’s complement)  
Immediate value  
IX+DIndexed with post increment to direct addressing mode«  
IX1Indexed, 8-bit offset addressing mode←  
IX1+Indexed, 8-bit offset, post increment addressing mode?  
IX2Indexed, 16-bit offset addressing mode:  
MMemory location↕  
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
N Negative bit—  
10.9 Opcode Map  
See Table 10-2.  
Technical Data  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
154  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Technical Data  
155  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Central Processing Unit (CPU)  
Technical Data  
156  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Central Processing Unit (CPU)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 11. Flash Memory  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
11.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
11.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . .160  
11.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . .161  
11.7 FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . .162  
11.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
11.9 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
11.10 STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
11.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program, erase, and read operations are enabled  
through the use of an internal charge pump.  
11.3 Functional Description  
The FLASH memory is an array of 7,680 bytes for the MC68HC908GR8  
or 4,096 bytes for the MC68HC908GR4 with an additional 36 bytes of  
user vectors and one byte used for block protection. An erased bit reads  
as logic 1 and a programmed bit reads as a logic 0. The program and  
erase operations are facilitated through control bits in the Flash Control  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Flash Memory  
157  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
Register (FLCR). Details for these operations appear later in this  
section.  
The FLASH is organized internally as a 8192-word by 8-bit CMOS page  
erase, byte (8-bit) program Embedded Flash Memory. Each page  
consists of 64 bytes. The page erase operation erases all words within  
a page. A page is composed of two adjacent rows.  
The address ranges for the user memory and vectors are as follows:  
$E000–$FDFF; user memory for the MC68HC908GR8  
$EE00–$FDFF; user memory for the MC68HC908GR4.  
$FF7E; FLASH block protect register.  
$FE08; FLASH control register.  
$FFDC–$FFFF; these locations are reserved for user-defined  
interrupt and reset vectors.  
Programming tools are available from Motorola. Contact your local  
Motorola representative for more information.  
NOTE: A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
158  
MC68HC908GR8 — Rev 4.0  
Flash Memory  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
FLASH Control Register  
11.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 11-1. FLASH Control Register (FLCR)  
HVEN — High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
Setting this read/write bit configures the 8K byte FLASH array for  
mass erase operation.  
1 = MASS erase operation selected  
0 = MASS erase operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Flash Memory  
159  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
11.5 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH  
memory to read as logic 1:  
1. Set the ERASE bit, and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address  
range desired.  
4. Wait for a time, tnvs (min. 10µs)  
5. Set the HVEN bit.  
6. Wait for a time, tErase (min. 1ms)  
7. Clear the ERASE bit.  
8. Wait for a time, tnvh (min. 5µs)  
9. Clear the HVEN bit.  
10. After a time, trcv (typ. 1µs), the memory can be accessed again in  
read mode.  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps.  
Technical Data  
160  
MC68HC908GR8 — Rev 4.0  
Flash Memory  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
FLASH Mass Erase Operation  
11.6 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory to read  
as logic 1:  
1. Set both the ERASE bit, and the MASS bit in the FLASH control  
register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address* within the FLASH memory  
address range.  
4. Wait for a time, tnvs (min. 10µs)  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (min. 4ms)  
7. Clear the ERASE bit.  
8. Wait for a time, tnvhl (min. 100µs)  
9. Clear the HVEN bit.  
10. After a time, trcv (min. 1µs), the memory can be accessed again in  
read mode.  
* When in Monitor mode, with security sequence failed Monitor ROM (MON), write to the FLASH  
block protect register instead of any FLASH address.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
161  
Flash Memory  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
11.7 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 32 consecutive bytes starting from addresses $XX00,  
$XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory (Figure 11-  
2 is a flowchart representation):  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address  
range desired.  
4. Wait for a time, tnvs (min. 10µs).  
5. Set the HVEN bit.  
6. Wait for a time, tpgs (min. 5µs).  
7. Write data to the FLASH address to be programmed.*  
8. Wait for a time, tPROG (min. 30µs).  
9. Repeat step 7 and 8 until all the bytes within the row are  
programmed.  
10. Clear the PGM bit.*  
11. Wait for a time, tnvh (min. 5µs).  
12. Clear the HVEN bit.  
13. After time, trcv (min. 1µs), the memory can be accessed in read  
mode again.  
* The time between each FLASH address change, or the time between the last FLASH address  
programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG max.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
Technical Data  
162  
MC68HC908GR8 — Rev 4.0  
Flash Memory  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
FLASH Block Protection  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum. See Memory  
Characteristics.  
11.8 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
a block of memory from unintentional erase or program operations due  
to system malfunction. This protection is done by using of a FLASH  
Block Protect Register (FLBPR). The FLBPR determines the range of  
the FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends at the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
NOTE: In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit  
When the FLBPR is programmed with all 0s, the entire memory is  
protected from being programmed and erased. When all the bits are  
erased (all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of  
memory with address ranges as shown in FLASH Block Protect  
Register. Once the FLBPR is programmed with a value other than $FF,  
any erase or program of the FLBPR or the protected block of FLASH  
memory is prohibited. The FLBPR itself can be erased or programmed  
only with an external voltage, VTST, present on the IRQ pin. This voltage  
also allows entry from reset into the monitor mode.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
163  
Flash Memory  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
1
Set PGM bit  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
2
3
Read the FLASH block protect register  
Write any data to any FLASH address  
within the row address range desired  
4
5
6
Wait for a time, t  
nvs  
Set HVEN bit  
Wait for a time, t  
pgs  
7
8
Write data to the FLASH address  
to be programmed  
Wait for a time, t  
PROG  
Completed  
programming  
this row?  
Y
N
10  
11  
12  
13  
Clear PGM bit  
NOTE:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
Wait for a time, t  
nvh  
must not exceed the maximum programming  
time, t  
max.  
PROG  
Clear HVEN bit  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, t  
rcv  
End of programming  
Figure 11-2. FLASH Programming Flowchart  
Technical Data  
164  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Flash Memory  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
FLASH Block Protection  
11.8.1 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte  
within the FLASH memory, and therefore can only be written during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting location of the protected range within the FLASH  
memory.  
Address: $FF7E  
Bit 7  
BPR7  
U
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
U = Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 11-3. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
These eight bits represent bits [13:6] of a 16-bit memory address.  
Bits [15:14] are logic 1s and bits [5:0] are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be $XX00, $XX40,  
$XX80, and $XXC0 (64 bytes page boundaries) within the FLASH  
memory.  
16-bit memory address  
Start address of FLASH block protect  
FLBPR value  
0 0 0 0 0 0  
1
1
Figure 11-4. FLASH Block Protect Start Address  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
165  
Flash Memory  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Flash Memory  
Examples of protect start address:  
Table 11-1. Examples of protect start address:  
BPR[7:0]  
$80  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$E040 (1110 0000 0100 0000)  
$E080 (1110 0000 1000 0000)  
and so on...  
$81 (1000 0001)  
$82 (1000 0010)  
$FE (1111 1110)  
$FF80 (1111 1111 1000 0000)  
The entire FLASH memory is not protected.  
Note:  
$FF  
The end address of the protected range is always $FFFF.  
11.9 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a  
program or erase operation on the FLASH, otherwise the operation will  
discontinue, and the FLASH will be on Standby Mode.  
11.10 STOP Mode  
Putting the MCU into stop mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a  
program or erase operation on the FLASH, otherwise the operation will  
discontinue, and the FLASH will be on Standby Mode  
NOTE: Standby Mode is the power saving mode of the FLASH module in which  
all internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
Technical Data  
166  
MC68HC908GR8 — Rev 4.0  
Flash Memory  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 12. External Interrupt (IRQ)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
12.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .171  
12.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .172  
12.2 Introduction  
12.3 Features  
The IRQ (external interrupt) module provides a maskable interrupt input.  
Features of the IRQ module include:  
A dedicated external interrupt pin (IRQ1)  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup resistor  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
167  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
12.4 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 12-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ1 pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
Software clear — Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (INTSCR). Writing a logic 1 to the ACK bit clears  
the IRQ latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE bit in the INTSCR controls the triggering sensitivity  
of the IRQ1 pin.  
When an interrupt pin is edge-triggered only, the interrupt remains set  
until a vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the  
interrupt remains set until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
Technical Data  
168  
MC68HC908GR8 — Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
Functional Description  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
ACK  
RESET  
TO CPU FOR  
VECTOR  
BIL/BIH  
FETCH  
INSTRUCTIONS  
DECODER  
V
DD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
IRQ1  
CK  
IRQ  
FF  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 12-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF  
MODE  
0
IRQ Status and Control  
Register (INTSCR)  
$001D  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 12-2. IRQ I/O Register Summary  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
169  
External Interrupt (IRQ)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
12.5 IRQ1 Pin  
A logic 0 on the IRQ1 pin can latch an interrupt request into the IRQ  
latch. A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ1 pin is both falling-edge-sensitive and  
low-level-sensitive. With MODE set, both of the following actions must  
occur to clear IRQ:  
Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (INTSCR).  
The ACK bit is useful in applications that poll the IRQ1 pin and  
require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent  
transitions on the IRQ1 pin. A falling edge that occurs after writing  
to the ACK bit another interrupt request. If the IRQ mask bit,  
IMASK, is clear, the CPU loads the program counter with the  
vector address at locations $FFFA and $FFFB.  
Return of the IRQ1 pin to logic 1 — As long as the IRQ1 pin is at  
logic 0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ1 pin to logic  
1 may occur in any order. The interrupt request remains pending as long  
as the IRQ1 pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ1 pin is falling-edge-sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
Technical Data  
170  
MC68HC908GR8 — Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
The IRQF bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
12.6 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear the latch during the break state. See Break Module  
(BRK).  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a logic 0 to  
the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ interrupt flags.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
171  
External Interrupt (IRQ)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
12.7 IRQ Status and Control Register  
The IRQ status and control register (INTSCR) controls and monitors  
operation of the IRQ module. The INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ1 interrupt pin  
Address: $001D  
Bit 7  
Read:  
6
5
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
IRQF  
Write:  
ACK  
0
Reset:  
0
0
0
0
= Unimplemented  
Figure 12-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always  
reads as logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
Technical Data  
172  
MC68HC908GR8 — Rev 4.0  
External Interrupt (IRQ)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
IRQ Status and Control Register  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin.  
Reset clears MODE.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
External Interrupt (IRQ)  
173  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
External Interrupt (IRQ)  
Technical Data  
174  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
External Interrupt (IRQ)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 13. Keyboard Interrupt (KBI)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
13.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .180  
13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
13.2 Introduction  
13.3 Features  
The keyboard interrupt module (KBI) provides four independently  
maskable external interrupts.  
Four keyboard interrupt pins with separate keyboard interrupt  
enable bits and one keyboard interrupt mask  
Hysteresis buffers  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-power modes  
I/O (input/output) port bit(s) software configurable with pullup  
device(s) if configured as input port bit(s)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Keyboard Interrupt (KBI)  
175  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
13.4 Functional Description  
Writing to the KBIE3–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port A pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin also enables its internal  
pullup device. A logic 0 applied to an enabled keyboard interrupt pin  
latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
If the keyboard interrupt is falling-edge and low-level sensitive, an  
interrupt request is present as long as any keyboard interrupt pin  
is low and the pin is keyboard interrupt enabled.  
Technical Data  
176  
MC68HC908GR8 — Rev 4.0  
Keyboard Interrupt (KBI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBD0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
.
.
D
Q
TO PULLUP  
ENABLE  
SYNCHRONIZER  
CK  
KEYBOARD  
INTERRUPT  
REQUEST  
KB0IE  
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBD3  
MODEK  
TO PULLUP  
ENABLE  
KB3IE  
Figure 13-1. Keyboard Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
IMASKK MODEK  
$001A  
and Control Register Write:  
(INTKBSCR)  
Reset:  
0
0
0
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
KBIE2  
0
Keyboard Interrupt Enable  
Register (INTKBIER)  
$001B  
Write:  
Reset:  
= Unimplemented  
Figure 13-2. I/O Register Summary  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
177  
Keyboard Interrupt (KBI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low-level sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register (INTKBSCR). The ACKK bit is useful in applications that  
poll the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFDE and  
$FFDF.  
Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and read the data  
register.  
Technical Data  
178  
MC68HC908GR8 — Rev 4.0  
Keyboard Interrupt (KBI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
Keyboard Initialization  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
13.5 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pullup to reach a logic 1. Therefore, a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt is:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Keyboard Interrupt (KBI)  
179  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
13.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
13.6.1 Wait Mode  
13.6.2 Stop Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
13.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
SIM break flag control register (SBFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect. See Keyboard Status and Control  
Register.  
Technical Data  
180  
MC68HC908GR8 — Rev 4.0  
Keyboard Interrupt (KBI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
I/O Registers  
13.8 I/O Registers  
These registers control and monitor operation of the keyboard module:  
Keyboard status and control register (INTKBSCR)  
Keyboard interrupt enable register (INTKBIER)  
13.8.1 Keyboard Status and Control Register  
The keyboard status and control register:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. Keyboard Status and Control Register (INTKBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as logic 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset  
clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Keyboard Interrupt (KBI)  
181  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Keyboard Interrupt (KBI)  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests. Reset  
clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
13.8.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port A  
pin to operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
6
5
4
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER)  
KBIE3–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin to latch interrupt requests. Reset clears the keyboard  
interrupt enable register.  
1 = PTAx pin enabled as keyboard interrupt pin  
0 = PTAx pin not enabled as keyboard interrupt pin  
Technical Data  
182  
MC68HC908GR8 — Rev 4.0  
Keyboard Interrupt (KBI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 14. Low-Voltage Inhibit (LVI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
14.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
14.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
14.2 Introduction  
14.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the VDD pin and can force a reset when the VDD  
voltage falls below the LVI trip falling voltage, VTRIPF  
.
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
183  
Low-Voltage Inhibit (LVI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low-Voltage Inhibit (LVI)  
14.4 Functional Description  
Figure 14-1 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator. Clearing the LVI power disable bit, LVIPWRD, enables the  
LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD,  
enables the LVI module to generate a reset when VDD falls below the trip  
point voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP,  
enables the LVI to operate in stop mode. Setting the LVI 5V or 3V trip  
point bit, LVI5OR3, enables VTRIPF to be configured for 5V operation.  
Clearing the LVI5OR3 bit enables VTRIPF to be configured for 3V  
operation. The actual trip points are shown in Electrical Specifications.  
NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3 V.  
If a 5V system is used, the user must set the LVI5OR3 bit to raise the trip  
point to 5V operation. Note that this must be done after every POR since  
the default will revert back to 3V mode after each POR. If the VDD supply  
is below the 5V mode trip voltage but above the 3V mode trip voltage  
when POR is released, the part will operate because VTRIPF defaults to  
3V mode after a POR. So, in a 5V system care must be taken to ensure  
that VDD is above the 5V mode trip voltage after POR is released.  
NOTE: If the user requires 5V mode and sets the LVI5OR3 bit after a POR while  
the VDD supply is not above the VTRIPR for 5V mode, the MCU will  
immediately go into reset. The LVI in this case will hold the part in reset  
until either VDD goes above the rising 5V trip point, VTRIPR, which will  
release reset or VDD decreases to approximately 0 V which will re-trigger  
the POR and reset the trip point to 3V operation.  
Technical Data  
184  
MC68HC908GR8 — Rev 4.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low-Voltage Inhibit (LVI)  
Functional Description  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration  
register (MOR1). See Configuration Register (CONFIG) for details of the  
LVI’s configuration bits. Once an LVI reset occurs, the MCU remains in  
reset until VDD rises above a voltage, VTRIPR, which causes the MCU to  
exit reset. See Low-Voltage Inhibit (LVI) Reset for details of the  
interaction between the SIM and the LVI. The output of the comparator  
controls the state of the LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG  
FROM CONFIG  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
V
V
> LVI  
= 0  
= 1  
LVI RESET  
DD  
Trip  
LOW V  
DETECTOR  
DD  
LVI  
DD  
Trip  
LVIOUT  
LVI5OR3  
FROM CONFIG  
Figure 14-1. LVI Module Block Diagram  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
185  
Low-Voltage Inhibit (LVI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low-Voltage Inhibit (LVI)  
Addr.  
Register Name  
Bit 7  
Read: LVIOUT  
Write:  
6
5
4
3
2
1
Bit 0  
0
0
0
0
0
0
0
LVI Status Register  
(LVISR)  
$FE0C  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-2. LVI I/O Register Summary  
14.4.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level,  
software can monitor VDD by polling the LVIOUT bit. In the configuration  
register, the LVIPWRD bit must be at logic 0 to enable the LVI module,  
and the LVIRSTD bit must be at logic 1 to disable LVI resets.  
14.4.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level,  
enabling LVI resets allows the LVI module to reset the MCU when VDD  
falls below the VTRIPF level. In the configuration register, the LVIPWRD  
and LVIRSTD bits must be at logic 0 to enable the LVI module and to  
enable LVI resets.  
14.4.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI  
will maintain a reset condition until VDD rises above the rising trip point  
voltage, VTRIPR. This prevents a condition in which the MCU is  
continually entering and exiting reset if VDD is approximately equal to  
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS  
.
Technical Data  
186  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
14.4.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is  
configured for 5V or 3V protection.  
NOTE: The microcontroller is guaranteed to operate at a minimum supply  
voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than  
this. (See Electrical Specifications for the actual trip point voltages.)  
14.5 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was  
detected below the VTRIPF level.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-3. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the  
VTRIPF trip voltage. See Table 14-1. Reset clears the LVIOUT bit.  
Table 14-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
V
DD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
187  
Low-Voltage Inhibit (LVI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Low-Voltage Inhibit (LVI)  
14.6 LVI Interrupts  
The LVI module does not generate interrupt requests.  
14.7 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
14.7.1 Wait Mode  
14.7.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
If enabled in stop mode (LVISTOP set), the LVI module remains active  
in stop mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of stop mode.  
Technical Data  
188  
MC68HC908GR8 — Rev 4.0  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 15. Monitor ROM (MON)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
15.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
15.2 Introduction  
This section describes the monitor ROM (MON) and the monitor mode  
entry methods. The monitor ROM allows complete testing of the MCU  
through a single-wire interface with a host computer. Monitor mode entry  
can be achieved without use of the higher test voltage, VTST, as long as  
vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
15.3 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM  
and host computer  
Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
Execution of code in RAM or FLASH  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
189  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
FLASH memory security feature(1)  
FLASH memory programming interface  
Enhanced PLL (phase-locked loop) option to allow use of external  
32.768-kHz crystal to generate internal frequency of 2.4576 MHz  
310 byte monitor ROM code size ($FE20 to $FF55)  
Monitor mode entry without high voltage, VTST, if reset vector is  
blank ($FFFE and $FFFF contain $FF)  
Standard monitor mode entry if high voltage, VTST, is applied to  
IRQ  
15.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 15-1 shows an example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute code downloaded into RAM by a host  
computer while most MCU pins retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
the PTA0 pin. A level-shifting and multiplexing interface is required  
between PTA0 and the host computer. PTA0 is used in a wired-OR  
configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Technical Data  
190  
MC68HC908GR8 — Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
68HC08  
RST  
0.1 µF  
V
TST  
RESET VECTORS  
$FFFE  
(SEE NOTE 3)  
10 kΩ  
$FFFF  
(SEE NOTES 2  
AND 3)  
C
D
SW2  
IRQ  
V
DDA  
V
DDA  
CGMXFC  
10 k  
0.033 µF  
SW3  
(SEE NOTE 2)  
C
C
OSC1  
6–30 pF  
1
20  
MC145407  
D
+
+
+
+
OSC2  
PTA1  
10  
10  
µ
F
F
10 µF  
SW4  
(SEE NOTE 2)  
3
4
18  
17  
32.768 kHz XTAL  
V
10 kΩ  
330 k  
D
V
V
V
SS  
6–30 pF  
DD  
10 µF  
µ
/V  
SSAD REFL  
2
19  
SSA  
DB-25  
2
V
5
6
16  
15  
DD  
V
3
7
DD  
V
/V  
DDAD REFH  
0.1 µF  
V
DD  
V
DD  
1
2
6
4
14  
3
MC74HC125  
10 k  
PTA0  
5
V
DD  
7
10 kΩ  
PTB0  
PTB1  
10 kΩ  
Notes:  
1. SW2, SW3, and SW4: Position C — Enter monitor mode using external oscillator.  
SW2, SW3, and SW4: Position D — Enter monitor mode using external XTAL and internal PLL.  
2. See . Monitor Mode Signal Requirements and Options for IRQ voltage level requirements.  
Figure 15-1. Monitor Mode Circuit  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
191  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
The monitor code has been updated from previous versions to allow  
enabling the PLL to generate the internal clock, provided the reset vector  
is blank, when the device is being clocked by a low-frequency crystal.  
This addition, which is enabled when IRQ is held low out of rest, is  
intended to support serial communication/ programming at 9600 baud in  
monitor mode by stepping up the external frequency (assumed to be  
32.768 kHz) by a fixed amount to generate the desired internal  
frequency (2.4576 MHz). Since this feature is enabled only when IRQ is  
held low out of reset, it cannot be used when the reset vector is not blank  
because entry into monitor mode in this case requires VTST on IRQ.  
15.4.1 Entering Monitor Mode  
Table 15-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a power-on  
reset (POR) and will allow communication at 9600 baud provided one of  
the following sets of conditions is met:  
1. If $FFFE and $FFFF contain values not cared:  
– The external clock is 9.8304 MHz  
– IRQ = VTST (PLL off)  
2. If $FFFE and $FFFF contain $FF, blank state:  
– The external clock is 9.8304 MHz  
– IRQ = VDD (this can be implemented through the internal IRQ  
pullup; PLL off)  
3. If $FFFE and $FFFF contain $FF, blank state:  
– The external clock is 32.768 kHz (crystal)  
– IRQ = VSS (this setting initiates the PLL to boost the external  
32.768 kHz to an internal bus frequency of 2.4576 MHz)  
Technical Data  
192  
MC68HC908GR8 — Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
Table 15-1. Monitor Mode Signal Requirements and Options  
For Serial  
Communication  
External  
Clock(1)  
$FFFE/  
$FFFF  
Bus  
Freq  
IRQ RESET  
PLL PTB0 PTB1  
CGMOUT  
COP  
Comment  
Baud  
PTA0 PTA1  
Rate(2) (3)  
No operation until  
reset goes high  
X
GND  
X
X
X
X
1
X
0
X
0
0
Disabled  
Disabled  
X
1
X
0
0
9600  
PTB0 and PTB1  
voltages only  
required if  
V
DD  
9.8304  
MHz  
4.9152 2.4576  
MHz MHz  
V
or  
OFF  
TST  
X
1
DNA  
V
TST  
IRQ =V  
TST  
1
0
1
0
1
9600 Externalfrequency  
always divided by  
9.8304  
MHz  
4.9152 2.4576  
VDD  
V
DD  
$FFFF OFF  
$FFFF ON  
X
X
X
X
Disabled  
Disabled  
MHz  
MHz  
X
1
DNA  
4
9600 PLL enabled (BCS  
set) in monitor  
32.768  
kHz  
4.9152 2.4576  
V
GND  
DD  
MHz  
MHz  
X
DNA  
code  
Enters user mode  
will encounter  
an illegal address  
reset  
VDD  
or  
V
$FFFF OFF  
X
X
X
X
X
X
Enabled  
Enabled  
X
X
X
X
TST  
GND  
V
VDD  
DD  
Not  
OFF  
or  
Enters user mode  
or  
GND  
$FFFF  
V
TST  
Notes:  
1. External clock is derived by a 32.768 kHz crystal or a 9.8304 MHz off-chip oscillator  
2. PTA0 = 1 if serial communication; PTA0 = X if parallel communication  
3. PTA1 = 0 serial, PTA1 = 1 parallel communication for security code entry  
4. DNA = does not apply, X = don’t care  
If entering monitor mode with VTST applied on IRQ (condition set 1), the  
CGMOUT frequency is equal to the CGMXCLK frequency and the OSC1  
input directly generates internal bus clocks. In this case, the OSC1  
signal must have a 50% duty cycle at maximum bus frequency.  
If entering monitor mode without high voltage applied on IRQ (condition  
set 2 or 3, where applied voltage is either VDD or VSS), then all port B pin  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Monitor ROM (MON)  
193  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
requirements and conditions, are not in effect. This is to reduce circuit  
requirements when performing in-circuit programming.  
NOTE: If the reset vector is blank and monitor mode is entered, the chip will see  
an additional reset cycle after the initial POR reset. Once the part has  
been programmed, the traditional method of applying a voltage, VTST, to  
IRQ must be used to enter monitor mode.  
The COP module is disabled in monitor mode based on these  
conditions:  
If monitor mode was entered as a result of the reset vector being  
blank (condition set 2 or 3), the COP is always disabled regardless  
of the state of IRQ or RST.  
If monitor mode was entered with VTST on IRQ (condition set 1),  
then the COP is disabled as long as VTST is applied to either IRQ  
or RST.  
The second condition states that as long as VTST is maintained on the  
IRQ pin after entering monitor mode, or if VTST is applied to RST after  
the initial reset to get into monitor mode (when VTST was applied to IRQ),  
then the COP will be disabled. In the latter situation, after VTST is applied  
to the RST pin, VTST can be removed from the IRQ pin in the interest of  
freeing the IRQ for normal functionality in monitor mode.  
Figure 15-2 shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and just 1 x VDD voltage is applied to the IRQ  
pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
9600, as the internal bus frequency is automatically set to the external  
frequency divided by four.  
Technical Data  
194  
MC68HC908GR8 — Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 15-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with pin configuration shown in Figure 15-1 by  
pulling RST low and then high. The rising edge of RST latches monitor  
mode. Once monitor mode is latched, the values on the specified pins  
can change.  
Once out of reset, the MCU waits for the host to send eight security  
bytes. (See Security.) After the security bytes, the MCU sends a break  
signal (10 consecutive logic 0s) to the host, indicating that it is ready to  
receive a command.  
NOTE: The PTA1 pin must remain at logic 0 for 24 bus cycles after the RST pin  
goes high to enter monitor mode properly.  
In monitor mode, the MCU uses different vectors for reset, SWI  
(software interrupt), and break interrupt than those for user mode. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE: Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset. Pulling RST low will not exit monitor  
mode in this situation.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
195  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Table 15-2 summarizes the differences between user mode and monitor  
mode.  
Table 15-2. Mode Differences  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
15.4.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5  
BIT 7  
Figure 15-3. Monitor Data Format  
15.4.3 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 15-4. Break Transaction  
Technical Data  
196  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
15.4.4 Baud Rate  
The communication baud rate is controlled by the crystal frequency upon  
entry into monitor mode. The divide by ratio is 1024.  
If monitor mode was entered with VDD on IRQ, then the divide by ratio is  
also set at 1024. If monitor mode was entered with VSS on IRQ, then the  
internal PLL steps up the external frequency, presumed to be 32.768  
kHz, to 2.4576 MHz. These latter two conditions for monitor mode entry  
require that the reset vector is blank.  
Table 15-3 lists external frequencies required to achieve a standard  
baud rate of 9600 BPS. Other standard baud rates can be accomplished  
using proportionally higher or lower frequency generators. If using a  
crystal as the clock source, be aware of the upper frequency limit that the  
internal clock module can handle. See 5.0 V Control Timing and 3.0 V  
Control Timing for this limit.  
Table 15-3. Monitor Baud Rate Selection  
External  
Frequency  
Internal  
Frequency  
Baud Rate  
(BPS)  
IRQ  
VTST  
VDD  
VSS  
9.8304 MHz  
9.8304 MHz  
32.768 kHz  
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
9600  
9600  
9600  
15.4.5 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
197  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-5. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 15-6. Write Transaction  
Technical Data  
198  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
A brief description of each monitor mode command is given in Table 15-  
4 through Table 15-9.  
Table 15-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand  
2-byte address in high-byte:low-byte order  
Returns contents of specified address  
Data  
Returned  
Opcode  
$4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Table 15-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by  
data byte  
Operand  
Data  
Returned  
None  
Opcode  
$49  
Command Sequence  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS ADDRESS  
HIGH LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
199  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Table 15-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand  
2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
Returned  
Opcode  
$1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 15-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Single data byte  
Data  
Returned  
None  
$19  
Opcode  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
Technical Data  
200  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Functional Description  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64K byte memory map.  
Table 15-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Data  
Returned  
Returns incremented stack pointer value (SP + 1) in high-byte:low-  
byte order  
Opcode  
$0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 15-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand  
None  
None  
$28  
Data  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
201  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER SP + 1  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 2  
SP + 3  
SP + 4  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER SP + 5  
LOW BYTE OF PROGRAM COUNTER SP + 6  
SP + 7  
Figure 15-7. Stack Pointer at Monitor Mode Entry  
15.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, they  
should be programmed even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 15-8.)  
Technical Data  
202  
MC68HC908GR8 — Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
Security  
V
DD  
4096 + 32 CGMXCLK CYCLES  
24 BUS CYCLES  
RST  
PA1  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PA0  
1
1
4
1
4
2
1
NOTES:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 15-8. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6–$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $40 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
203  
Monitor ROM (MON)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Monitor ROM (MON)  
If the security sequence fails, the device can be reset and brought up in  
monitor mode to attempt another entry. After failing the security  
sequence, the FLASH mode can also be bulk erased by executing an  
erase routine that was downloaded into internal RAM. The bulk erase  
operation clears the security code locations so that all eight security  
bytes become $FF (blank).  
Technical Data  
204  
MC68HC908GR8 — Rev 4.0  
Monitor ROM (MON)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 16. Input/Output Ports (I/O)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
16.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
16.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
16.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
16.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
16.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
16.2 Introduction  
Twenty one (21) bidirectional input-output (I/O) pins form five parallel  
ports. All I/O pins are programmable as inputs or outputs. All individual  
bits within port A, port C, and port D are software configurable with pullup  
devices if configured as input port bits. The pullup devices are  
automatically and dynamically disabled when a port bit is switched to  
output mode.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
205  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
0
0
0
0
0
0
PTB5  
0
PTB2  
0
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
0
0
Port C Data Register  
(PTC)  
Unaffected by reset  
PTD4 PTD3  
PTD6  
0
PTD5  
PTD2  
Port D Data Register  
(PTD)  
Unaffected by reset  
0
0
0
DDRA3 DDRA2 DDRA1 DDRA0  
Data Direction Register A  
(DDRA)  
0
0
0
0
0
0
0
0
0
DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
Data Direction Register B  
(DDRB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DDRC1 DDRC0  
Data Direction Register C  
(DDRC)  
0
0
0
0
0
0
0
0
0
DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0  
Data Direction Register D  
(DDRD)  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-1. I/O Port Register Summary  
Technical Data  
206  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Introduction  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
PTE1  
PTE0  
Port E Data Register  
(PTE)  
$0008  
Unaffected by reset  
0
0
0
0
0
0
0
DDRE1 DDRE0  
Data Direction Register E  
(DDRE)  
$000C  
$000D  
$000E  
$000F  
0
0
0
0
0
0
0
0
0
0
0
PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Port A Input Pullup Enable  
Register (PTAPUE)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTCPUE1 PTCPUE0  
Port C Input Pullup Enable  
Register (PTCPUE)  
0
0
0
0
0
0
0
0
0
PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Port D Input Pullup Enable  
Register (PTDPUE)  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-1. I/O Port Register Summary (Continued)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
207  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Table 16-1. Port Control Register Bits Summary  
Port  
Bit  
0
1
2
3
-
DDR  
DDRA0  
DDRA1  
DDRA2  
DDRA3  
--  
Module Control  
KBIE0  
Pin  
PTA0/KBD0  
PTA1/KBD1  
PTA2/KBD2  
PTA3/KBD3  
--  
KBIE1  
KBIE2  
KBIE3  
A
KBD  
-
-
-
--  
--  
-
--  
-
--  
-
--  
-
--  
0
1
2
3
4
5
-
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
--  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
-
PTB0/ATD0  
PTB1/ATD1  
PTB2/ATD2  
PTB3/ATD3  
PTB4/ATD4  
PTB5/ATD5  
--  
B
ADC  
-
--  
-
--  
0
1
-
DDRC0  
DDRC1  
--  
PTC0  
PTC1  
--  
C
-
--  
--  
-
--  
--  
-
--  
--  
-
--  
--  
0
1
2
3
4
5
6
-
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
--  
PTD0/SS  
PTD1/MISO  
PTD2/MOSI  
PTD3/SPSCK  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/T2CH0  
--  
SPI  
D
E
TIM1  
TIM2  
SCI  
0
1
DDRE0  
DDRE1  
PTE0/TxD  
PTE1/RxD  
Technical Data  
208  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port A  
16.3 Port A  
Port A is an 4-bit special-function port that shares all four of its pins with  
the keyboard interrupt (KBI) module. Port A also has software  
configurable pullup devices if configured as an input port.  
16.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the four  
port A pins.  
Address: $0000  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
KBD3  
Alternate  
Function:  
KBD2  
KBD1  
KBD0  
Figure 16-2. Port A Data Register (PTA)  
PTA3–PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
KBD3–KBD0 — Keyboard Inputs  
The keyboard interrupt enable bits, KBIE3–KBIE0, in the keyboard  
interrupt control register (KBICR) enable the port A pins as external  
interrupt pins. See Keyboard Interrupt (KBI).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Input/Output Ports (I/O)  
209  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is  
an input or an output. Writing a logic 1 to a DDRA bit enables the output  
buffer for the corresponding port A pin; a logic 0 disables the output  
buffer.  
Address: $0004  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRA3 DDRA2 DDRA1 DDRA0  
0
0
0
0
0
0
0
0
Figure 16-3. Data Direction Register A (DDRA)  
DDRA3–DDRA0 — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA3–DDRA0, configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 16-4 shows the port A I/O logic.  
Technical Data  
210  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port A  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
VDD  
PTAPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTA ($0000)  
Figure 16-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-2 summarizes  
the operation of the port A pins.  
Table 16-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE Bit DDRA Bit PTA Bit  
I/O Pin Mode  
Read  
Write  
(4)  
PTA3–PTA0(3  
X(1)  
1
0
0
DDRA3–DDRA0  
Pin  
Input, VDD  
)
PTA3–PTA0(3  
Input, Hi-Z(2)  
Output  
0
1
X
X
DDRA3–DDRA0  
DDRA3–DDRA0  
Pin  
)
X
PTA3–PTA0  
PTA3–PTA0  
NOTES:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device  
MC68HC908GR8 — Rev 4.0  
Technical Data  
211  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.3.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software  
configurable pullup device for each of the four port A pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRA, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRA is configured for output  
mode.  
Address: $000D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 16-5. Port A Input Pullup Enable Register (PTAPUE)  
PTAPUE3–PTAPUE0 — Port A Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port A pin configured to have internal pullup  
0 = Corresponding port A pin has internal pullup disconnected  
Technical Data  
212  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port B  
16.4 Port B  
Port B is an 6-bit special-function port that shares all six of its pins with  
the analog-to-digital converter (ADC) module.  
16.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the six  
port pins.  
Address: $0001  
Bit 7  
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
AD4 AD3  
Alternate  
Function:  
AD5  
AD2  
AD1  
AD0  
Figure 16-6. Port B Data Register (PTB)  
PTB5–PTB0 — Port B Data Bits  
These read/write bits are software-programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
AD5–AD0 — Analog-to-Digital Input Bits  
AD5–AD0 are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits in the ADC status and  
control register define which port B pin will be used as an ADC input  
and overrides any control from the port I/O logic by forcing that pin as  
the input to the analog circuitry.  
NOTE: Care must be taken when reading port B while applying analog voltages  
to AD5–AD0 pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTBx/ADx pin, while PTB is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
NOTE: PTB4 and 5 are not available in a 28-pin DIP and SOIC package  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
213  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is  
an input or an output. Writing a logic 1 to a DDRB bit enables the output  
buffer for the corresponding port B pin; a logic 0 disables the output  
buffer.  
Address: $0005  
Bit 7  
0
6
0
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
0
0
0
0
0
0
0
0
Figure 16-7. Data Direction Register B (DDRB)  
DDRB5–DDRB0 — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB5–DDRB0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
NOTE: For those devices packaged in a 28-pin DIP and SOIC package, PTB5,4  
are not connected. Set DDRB5,4 to a 1 to configure PTB5,4 as outputs.  
Figure 16-8 shows the port B I/O logic.  
Technical Data  
214  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port B  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 16-8. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-3 summarizes  
the operation of the port B pins.  
Table 16-3. Port B Pin Functions  
Accesses  
to DDRB  
Accesses to PTB  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read/Write  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB5–PTB0(3)  
PTB5–PTB0  
0
DDRB5–DDRB0  
DDRB5–DDRB0  
1
PTB5–PTB0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
215  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.5 Port C  
Port C is a 2-bit, general-purpose bidirectional I/O port. Port C also has  
software configurable pullup devices if configured as an input port.  
16.5.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the two  
port C pins.  
Address: $0002  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 16-9. Port C Data Register (PTC)  
PTC1–PTC0 — Port C Data Bits  
These read/write bits are software-programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
NOTE: PTC is not available in a 28-pin DIP and SOIC package  
Technical Data  
216  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port C  
16.5.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is  
an input or an output. Writing a logic 1 to a DDRC bit enables the output  
buffer for the corresponding port C pin; a logic 0 disables the output  
buffer.  
Address: $0006  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
DDRC1 DDRC0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-10. Data Direction Register C (DDRC)  
DDRC1–DDRC0 — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC1–DDRC0, configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 16-11 shows the port C I/O logic.  
NOTE: For those devices packaged in a 28-pin DIP and SOIC package, PTC1,0  
are not connected. Set DDRC1,0 to a 1 to configure PTC1,0 as outputs.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
217  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
PTCx  
VDD  
PTCPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTC ($0002)  
Figure 16-11. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-4 summarizes  
the operation of the port C pins.  
Table 16-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE Bit DDRC Bit PTC Bit I/O Pin Mode  
Read  
Write  
(4)  
X(1)  
X
PTC1–PTC0(3)  
1
0
0
DDRC1–DDRC0  
Pin  
Input, VDD  
Input, Hi-Z(2)  
Output  
PTC1–PTC0(3)  
PTC1–PTC0  
0
1
DDRC1–DDRC0  
DDRC1–DDRC0  
Pin  
X
X
PTC1–PTC0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
Technical Data  
218  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port C  
16.5.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software  
configurable pullup device for each of the two port C pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRC, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRC is configured for output  
mode.  
Address: $000E  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE1–PTCPUE0 — Port C Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port C pin configured to have internal pullup  
0 = Corresponding port C pin internal pullup disconnected  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Input/Output Ports (I/O)  
219  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.6 Port D  
Port D is an 7-bit special-function port that shares four of its pins with the  
serial peripheral interface (SPI) module and three of its pins with two  
timer interface (TIM1 and TIM2) modules. Port D also has software  
configurable pullup devices if configured as an input port.  
16.6.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the  
seven port D pins.  
.
Address: $0003  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
T1CH0 SPSCK  
Alternate  
Function:  
T2CH0  
T1CH1  
MOSI  
MISO  
SS  
Figure 16-13. Port D Data Register (PTD)  
PTD6–PTD0 — Port D Data Bits  
These read/write bits are software-programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
T2CH0 — Timer 2 Channel I/O Bits  
The PTD6/T2CH0 pin is the TIM2 input capture/output compare pin.  
The edge/level select bits, ELSxB:ELSxA, determine whether the  
PTD6/T2CH0 pin is a timer channel I/O pin or a general-purpose I/O  
pin. See Timer Interface Module (TIM).  
Technical Data  
220  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port D  
T1CH1 and T1CH0 — Timer 1 Channel I/O Bits  
The PTD5/T1CH1–PTD4/T1CH0 pins are the TIM1 input  
capture/output compare pins. The edge/level select bits, ELSxB and  
ELSxA, determine whether the PTD5/T1CH1–PTD4/T1CH0 pins are  
timer channel I/O pins or general-purpose I/O pins. See Timer  
Interface Module (TIM).  
SPSCK — SPI Serial Clock  
The PTD3/SPSCK pin is the serial clock input of the SPI module.  
When the SPE bit is clear, the PTD3/SPSCK pin is available for  
general-purpose I/O.  
MOSI — Master Out/Slave In  
The PTD2/MOSI pin is the master out/slave in terminal of the SPI  
module. When the SPE bit is clear, the PTD2/MOSI pin is available  
for general-purpose I/O.  
MISO — Master In/Slave Out  
The PTD1/MISO pin is the master in/slave out terminal of the SPI  
module. When the SPI enable bit, SPE, is clear, the SPI module is  
disabled, and the PTD0/SS pin is available for general-purpose I/O.  
Data direction register D (DDRD) does not affect the data direction of  
port D pins that are being used by the SPI module. However, the  
DDRD bits always determine whether reading port D returns the  
states of the latches or the states of the pins. See Table 16-5.  
SS — Slave Select  
The PTD0/SS pin is the slave select input of the SPI module. When  
the SPE bit is clear, or when the SPI master bit, SPMSTR, is set, the  
PTD0/SS pin is available for general-purpose I/O. When the SPI is  
enabled, the DDRB0 bit in data direction register B (DDRB) has no  
effect on the PTD0/SS pin.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Input/Output Ports (I/O)  
221  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.6.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is  
an input or an output. Writing a logic 1 to a DDRD bit enables the output  
buffer for the corresponding port D pin; a logic 0 disables the output  
buffer.  
Address: $0007  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0  
0
0
0
0
0
0
0
0
Figure 16-14. Data Direction Register D (DDRD)  
DDRD6–DDRD0 — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD6–DDRD0, configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 16-15 shows the port D I/O logic.  
Technical Data  
222  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port D  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
VDD  
PTDPUEx  
INTERNAL  
PULLUP  
DEVICE  
READ PTD ($0003)  
Figure 16-15. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx  
data latch. When bit DDRDx is a logic 0, reading address $0003 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-5 summarizes  
the operation of the port D pins.  
Table 16-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE Bit DDRD Bit PTD Bit I/O Pin Mode  
Read  
Write  
(4)  
X(1)  
X
PTD6–PTD0(3)  
1
0
0
DDRD6–DDRD0  
Pin  
Input, VDD  
Input, Hi-Z(2)  
Output  
PTD6–PTD0(3)  
PTD6–PTD0  
0
1
DDRD6–DDRD0  
DDRD6–DDRD0  
Pin  
X
X
PTD6–PTD0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
4. I/O pin pulled up to VDD by internal pullup device.  
MC68HC908GR8 — Rev 4.0  
Technical Data  
223  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
16.6.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software  
configurable pullup device for each of the seven port D pins. Each bit is  
individually configurable and requires that the data direction register,  
DDRD, bit be configured as an input. Each pullup is automatically and  
dynamically disabled when a port bit’s DDRD is configured for output  
mode.  
Address: $000F  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 16-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE6–PTDPUE0 — Port D Input Pullup Enable Bits  
These writeable bits are software programmable to enable pullup  
devices on an input port bit.  
1 = Corresponding port D pin configured to have internal pullup  
0 = Corresponding port D pin has internal pullup disconnected  
Technical Data  
224  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port E  
16.7 Port E  
Port E is a 2-bit special-function port that shares two of its pins with the  
serial communications interface (SCI) module.  
16.7.1 Port E Data Register  
The port E data register contains a data latch for each of the two port E  
pins.  
Address: $0008  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTE1  
PTE0  
Unaffected by reset  
Alternate  
Function:  
RxD  
TxD  
= Unimplemented  
Figure 16-17. Port E Data Register (PTE)  
PTE1 and PTE0 — Port E Data Bits  
PTE1 and PTE0 are read/write, software programmable bits. Data  
direction of each port E pin is under the control of the corresponding  
bit in data direction register E.  
NOTE: Data direction register E (DDRE) does not affect the data direction of  
port E pins that are being used by the SCI module. However, the DDRE  
bits always determine whether reading port E returns the states of the  
latches or the states of the pins. See Table 16-6.  
RxD — SCI Receive Data Input  
The PTE1/RxD pin is the receive data input for the SCI module. When  
the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and  
the PTE1/RxD pin is available for general-purpose I/O. See Serial  
Communications Interface (SCI).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
225  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
TxD — SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module.  
When the enable SCI bit, ENSCI, is clear, the SCI module is disabled,  
and the PTE0/TxD pin is available for general-purpose I/O. See Serial  
Communications Interface (SCI).  
16.7.2 Data Direction Register E  
Data direction register E (DDRE) determines whether each port E pin is  
an input or an output. Writing a logic 1 to a DDRE bit enables the output  
buffer for the corresponding port E pin; a logic 0 disables the output  
buffer.  
Address: $000C  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
DDRE1 DDRE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-18. Data Direction Register E (DDRE)  
DDRE1 and DDRE0 — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE1 and DDRE0, configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 16-19 shows the port E I/O logic.  
Technical Data  
226  
MC68HC908GR8 — Rev 4.0  
Input/Output Ports (I/O)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Port E  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 16-19. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx  
data latch. When bit DDREx is a logic 0, reading address $0008 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 16-6 summarizes  
the operation of the port E pins.  
Table 16-6. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE Bit  
PTE Bit  
I/O Pin Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTE1–PTE0(3)  
PTE1–PTE0  
0
DDRE1–DDRE0  
DDRE1–DDRE0]  
Pin  
1
PTE1–PTE0  
Notes:  
1. X = Don’t care  
2. Hi-Z = High impedance  
3. Writing affects data register, but does not affect input.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
227  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Input/Output Ports (I/O)  
Technical Data  
228  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Input/Output Ports (I/O)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 17. RAM  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
17.2 Introduction  
This section describes the 384 bytes of RAM (random-access memory).  
17.3 Functional Description  
Addresses $0040 through $01BF are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64K byte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 192 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode  
instructions can efficiently access all page zero RAM locations. Page  
zero RAM, therefore, provides ideal locations for frequently accessed  
global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
229  
RAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
RAM  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Technical Data  
230  
MC68HC908GR8 — Rev 4.0  
RAM  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 18. Serial Communications Interface (SCI)  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
18.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
18.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
18.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .251  
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
18.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
18.2 Introduction  
This section describes the serial communications interface (SCI)  
module, which allows high-speed asynchronous communications with  
peripheral devices and other MCUs.  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. This MCU does not have  
the DMA function. Any DMA-related register bits should be left in their  
reset state for normal MCU operation.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
231  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.3 Features  
Features of the SCI module include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
– Idle line wakeup  
– Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
– Transmitter empty  
– Transmission complete  
– Receiver full  
– Idle receiver input  
– Receiver overrun  
– Noise error  
– Framing error  
– Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Configuration register bit, SCIBDSRC, to allow selection of baud  
rate clock source  
Technical Data  
232  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Pin Name Conventions  
18.4 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
RxD (receive data)  
TxD (transmit data)  
SCI I/O (input/output) lines are implemented by sharing parallel I/O port  
pins. The full name of an SCI input or output reflects the name of the  
shared port pin. Table 18-1 shows the full names and the generic names  
of the SCI I/O pins.  
The generic pin names appear in the text of this section.  
Table 18-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PE1/RxD  
PE0/TxD  
18.5 Functional Description  
Figure 18-1 shows the structure of the SCI module. The SCI allows full-  
duplex, asynchronous, NRZ serial communication among the MCU and  
remote devices, including other MCUs. The transmitter and receiver of  
the SCI operate independently, although they use the same baud rate  
generator. During normal operation, the CPU monitors the status of the  
SCI, writes the data to be transmitted, and processes received data.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC, of the CONFIG2 register ($001E). Source  
selection values are shown in Figure 18-1.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
233  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
PE1/RxD  
PE2/TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
SCIBDSRC  
FROM  
M
BKF  
RPF  
ENSCI  
CONFIG  
WAKE  
ILTY  
PEN  
PTY  
SL  
A
PRE-  
SCALER  
BAUD  
DIVIDER  
CGMXCLK  
IT12  
÷ 4  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
∏ ÷ 16  
Figure 18-1. SCI Module Block Diagram  
Technical Data  
234  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCI Control Register 1  
(SCC1)  
$0013  
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 18-2. SCI I/O Register Summary  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
235  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.5.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 18-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 18-3. SCI Data Formats  
18.5.2 Transmitter  
Figure 18-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC. Source selection values are shown in  
Figure 18-4.  
Technical Data  
236  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
SCIBDSRC  
FROM  
CONFIG2  
SL  
A
B
CGMXCLK  
IT12  
X
SL = 0 => X = A  
SL = 1 => X = B  
INTERNAL BUS  
PRE-  
SCALER DIVIDER  
BAUD  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
PE2/TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SCTIE  
SBK  
DMATE  
SCTE  
SCTIE  
LOOPS  
ENSCI  
TE  
TC  
TC  
TCIE  
TCIE  
Figure 18-4. SCI Transmitter  
18.5.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
237  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.5.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the PE2/TxD pin. The SCI data register (SCDR) is the write-only  
buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit position of the transmit shift register. A logic 1 stop bit goes  
into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the  
PE2/TxD pin goes to the idle condition, logic 1. If at any time software  
clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port E pins.  
18.5.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
Technical Data  
238  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception in progress flag (RPF) bits  
18.5.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the PE2/TxD pin becomes  
idle after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the TxD pin. Setting TE after  
the stop bit appears on TxD causes data previously written to the SCDR  
to be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit  
becomes set and just before writing the next byte to the SCDR.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
239  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.5.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values, including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
See SCI Control Register 1.  
18.5.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI  
transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
18.5.3 Receiver  
Figure 18-5 shows the structure of the SCI receiver.  
18.5.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
Technical Data  
240  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
18.5.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the PE1/RxD pin. The SCI data register (SCDR) is the read-only  
buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
241  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
INTERNAL BUS  
SCIBDSRC  
FROM  
CONFIG2  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
SL  
A
B
PRE-  
BAUD  
CGMXCLK  
IT12  
X
÷ 4  
÷ 16  
SCALER DIVIDER  
11-BIT  
SL = 0 => X = A  
SL = 1 => X = B  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
PE1/RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
DMARE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 18-5. SCI Receiver Block Diagram  
Technical Data  
242  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
18.5.3.3 Data Sampling  
The receiver samples the PE1/RxD pin at the RT clock rate. The RT  
clock is an internal signal with a frequency 16 times the baud rate. To  
adjust for baud rate mismatch, the RT clock is resynchronized at the  
following times (see Figure 18-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
PE1/RxD  
START BIT  
QUALIFICATION  
START BIT  
DATA  
SAMPLES  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 18-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 18-2 summarizes the results of  
the start bit verification samples.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
243  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Table 18-2. Start Bit Verification  
Start Bit  
Verification  
RT3, RT5, and RT7 Samples  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
Start bit verification is not successful if any two of the three verification  
samples are logic 1s. If start bit verification is not successful, the RT  
clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 18-3 summarizes the  
results of the data bit samples.  
Table 18-3. Data Bit Recovery  
RT8, RT9, and RT10 Samples  
Data Bit Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
Technical Data  
244  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 18-4 summarizes the results of the stop bit  
samples.  
Table 18-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
18.5.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is  
set.  
18.5.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above  
the receiver baud rate. Accumulated bit time misalignment can cause  
one of the three stop bit data samples to fall outside the actual stop bit.  
Then a noise error occurs. If more than one of the samples is outside the  
stop bit, a framing error occurs. In most applications, the baud rate  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
245  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
tolerance is much more than the degree of misalignment that is likely to  
occur.  
As the receiver samples an incoming character, it resynchronizes the RT  
clock on any valid falling edge within the character. Resynchronization  
within characters corrects misalignments between transmitter bit times  
and receiver bit times.  
18.5.3.6 Slow Data Tolerance  
Figure 18-7 shows how much a slow received character can be  
misaligned without causing a noise error or a framing error. The slow  
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit  
data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 18-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 18-7, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
Technical Data  
246  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
With the misaligned character shown in Figure 18-7, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
18.5.3.7 Fast Data Tolerance  
Figure 18-8 shows how much a fast received character can be  
misaligned without causing a noise error or a framing error. The fast stop  
bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 18-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 18-8, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
·
154 160  
-------------------------  
154  
× 100 = 3.90%  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
247  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 18-8, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
18.5.3.8 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the PE1/RxD pin can bring the receiver out of the standby  
state:  
Address mark — An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition — When the WAKE bit is clear, an idle  
character on the PE1/RxD pin wakes the receiver from the  
standby state by clearing the RWU bit. The idle character that  
wakes the receiver does not set the receiver idle bit, IDLE, or the  
Technical Data  
248  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Functional Description  
SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines  
whether the receiver begins counting logic 1s as idle character bits  
after the start bit or after the stop bit.  
NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
18.5.3.9 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI  
receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the PE1/RxD pin. The idle line  
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
18.5.3.10 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt  
requests:  
Receiver overrun (OR) — The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
249  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
18.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
18.6.1 Wait Mode  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode, the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Refer to Low Power Modes for information on exiting wait mode.  
18.6.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect SCI register states. SCI module  
operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
Refer to Low Power Modes for information on exiting stop mode.  
Technical Data  
250  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
SCI During Break Module Interrupts  
18.7 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
18.8 I/O Signals  
Port E shares two of its pins with the SCI module. The two SCI I/O pins  
are:  
PE2/TxD — Transmit data  
PE1/RxD — Receive data  
18.8.1 PE2/TxD (Transmit Data)  
The PE2/TxD pin is the serial data output from the SCI transmitter. The  
SCI shares the PE2/TxD pin with port E. When the SCI is enabled, the  
PE2/TxD pin is an output regardless of the state of the DDRE0 bit in data  
direction register E (DDRE).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
251  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.8.2 PE1/RxD (Receive Data)  
The PE1/RxD pin is the serial data input to the SCI receiver. The SCI  
shares the PE1/RxD pin with port E. When the SCI is enabled, the  
PE1/RxD pin is an input regardless of the state of the DDRE1 bit in data  
direction register E (DDRE).  
18.9 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
18.9.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Technical Data  
252  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
Address: $0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
Bit 0  
Read:  
LOOPS  
Write:  
PEN  
0
PTY  
0
Reset:  
0
Figure 18-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
PE1/RxD pin is disconnected from the SCI, and the transmitter output  
goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1  
and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. See Table 18-5. The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
253  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit position of a received  
character or an idle condition on the PE1/RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. See Table 18-5.  
When enabled, the parity function inserts a parity bit in the most  
significant bit position. See Figure 18-3. Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity. See Table 18-5. Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
Technical Data  
254  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 18-5. Character Format Selection  
Control Bits  
PEN and  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
PTY  
0X  
0X  
10  
Bits  
0
1
0
0
1
1
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
11  
10  
Even  
Odd  
11  
18.9.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
– Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
– Enables the TC bit to generate transmitter CPU interrupt  
requests  
– Enables the SCRF bit to generate receiver CPU interrupt  
requests  
– Enables the IDLE bit to generate receiver CPU interrupt  
requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
255  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Address: $0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
SCTIE  
Write:  
Reset:  
0
Figure 18-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver  
CPU interrupt requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
PE2/TxD pin. If software clears the TE bit, the transmitter completes  
any transmission in progress before the PE2/TxD returns to the idle  
Technical Data  
256  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
condition (logic 1). Clearing and then setting TE during a transmission  
queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK before the preamble begins causes the SCI to send a  
break character instead of a preamble.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
257  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.9.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
Enables these interrupts:  
– Receiver overrun interrupts  
– Noise error interrupts  
– Framing error interrupts  
Parity error interrupts  
Address: $0015  
Bit 7  
6
T8  
U
5
4
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R8  
DMARE DMATE  
U
0
0
= Unimplemented  
U = Unaffected  
Figure 18-11. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
Technical Data  
258  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
DMARE — DMA Receive Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt  
requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt  
requests enabled  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
259  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt requests  
generated by the parity error bit, PE. See SCI Status Register 1.  
Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
18.9.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address: $0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 18-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
Technical Data  
260  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is automatically cleared when data, preamble or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the IDLE  
bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
261  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 18-13 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next flag-  
clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the flag-  
clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
PE1/RxD pin. NF generates an NF CPU interrupt request if the NEIE  
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
Technical Data  
262  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 18-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates a PE CPU interrupt request if the  
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
263  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
18.9.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
Address: $0017  
Bit 7  
6
5
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
BKF  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 18-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break  
character on the PE1/RxD pin. In SCS1, the FE and SCRF bits are  
also set. In 9-bit character transmissions, the R8 bit in SCC3 is  
cleared. BKF does not generate a CPU interrupt request. Clear BKF  
by reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the PE1/RxD pin followed by another break character. Reset  
clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch) or when the receiver  
detects an idle character. Polling RPF before disabling the SCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
Technical Data  
264  
MC68HC908GR8 — Rev 4.0  
Serial Communications Interface (SCI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
18.9.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus  
and the receive and transmit shift registers. Reset has no effect on data  
in the SCI data register.  
Address: $0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 18-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading address $0018 accesses the read-only received data bits,  
R7:R0. Writing to address $0018 writes the data to be transmitted,  
T7:T0. Reset has no effect on the SCI data register.  
NOTE: Do not use read/modify/write instructions on the SCI data register.  
18.9.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver  
and the transmitter.  
Address: $0019  
Bit 7  
6
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCR2  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 18-16. SCI Baud Rate Register (SCBR)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
265  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 18-6. Reset clears SCP1 and SCP0.  
Table 18-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 18-7. Reset clears SCR2–SCR0.  
Table 18-7. SCI Baud Rate Selection  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Technical Data  
266  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
I/O Registers  
Use this formula to calculate the SCI baud rate:  
f
BUS  
baud rate = ------------------------------------  
64 × PD × BD  
where:  
fBUS = bus frequency  
PD = prescaler divisor  
BD = baud rate divisor  
SCI_BDSRC is an input to the SCI. Normally it will be tied off low at the  
top level to select the bus clock as the clock source. This makes the  
formula:  
f
BUS  
baud rate = ------------------------------------  
64 × PD × BD  
Table 18-8 shows the SCI baud rates that can be generated with a  
4.9152-MHz bus clock.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Communications Interface (SCI)  
267  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Table 18-8. SCI Baud Rate Selection Examples  
Baud Rate  
(fBUS = 4.9152 MHz)  
SCP1 and  
SCP0  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
13  
13  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
4
8
16  
32  
64  
128  
1
25,600  
12,800  
6400  
3200  
1600  
800  
2
4
8
16  
32  
64  
128  
1
400  
200  
19,200  
9600  
4800  
2400  
1200  
600  
2
4
8
16  
32  
64  
128  
1
300  
150  
5908  
2954  
2
Technical Data  
268  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Table 18-8. SCI Baud Rate Selection Examples  
Baud Rate  
(fBUS = 4.9152 MHz)  
SCP1 and  
SCP0  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
11  
11  
11  
11  
11  
11  
13  
13  
13  
13  
13  
13  
010  
011  
100  
101  
110  
111  
4
8
1477  
739  
369  
185  
92  
16  
32  
64  
128  
46  
Technical Data  
269  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Communications Interface (SCI)  
Technical Data  
270  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Communications Interface (SCI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 19. System Integration Module (SIM)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
19.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .275  
19.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .276  
19.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
19.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
19.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
19.2 Introduction  
This section describes the system integration module (SIM). Together  
with the CPU, the SIM controls all MCU activities. A block diagram of the  
SIM is shown in Figure 19-1. Table 19-1 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that  
coordinates CPU and exception timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
Master reset control, including power-on reset (POR) and COP  
timeout  
Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
271  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
– Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 19-1 shows the internal signal names used in this section.  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM CGM)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
V
DD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
RESET  
CONTROL  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET PIN CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 19-1. SIM Block Diagram  
Technical Data  
272  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Introduction  
Table 19-1. Signal Name Conventions  
Signal Name  
CGMXCLK  
CGMVCLK  
Description  
Buffered version of OSC1 from clock generator module (CGM)  
PLL output  
PLL-based or OSC1-based clock output from CGM module  
(Bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
273  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
R
0
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
(SRSR)  
$FE01  
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
POR:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
SIM Upper Byte Address  
Register (SUBAR)  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
0
R
0
R
Interrupt Status Register 1  
(INT1)  
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
0
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-2. SIM I/O Register Summary  
Technical Data  
274  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
19.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 19-3. This clock can  
come from either an external oscillator or from the on-chip PLL. See  
Clock Generator Module (CGMC).  
OSC2  
OSC1  
OSCILLATOR (OSC)  
CGMXCLK  
TO TIMTB15A, ADC  
SIM  
SIMOSCEN  
OSCSTOPENB  
FROM  
CONFIG  
SIM COUNTER  
IT12  
CGMRCLK  
TO REST  
OF CHIP  
CGMOUT  
BUS CLOCK  
GENERATORS  
IT23  
TO REST  
OF CHIP  
÷ 2  
PHASE-LOCKED LOOP (PLL)  
Figure 19-3. CGM Clock Signals  
19.3.1 Bus Timing  
In user mode, the internal bus frequency is either the crystal oscillator  
output (CGMXCLK) divided by four or the PLL output (CGMVCLK)  
divided by four. See External Interrupt (IRQ).  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
275  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.3.2 Clock Startup from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module  
generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 CGMXCLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this  
entire period. The IBUS clocks start upon completion of the timeout.  
19.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 CGMXCLK cycles. See Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
19.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
Technical Data  
276  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Reset and System Initialization  
An internal reset clears the SIM counter (see SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). See SIM Registers.  
19.4.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 CGMXCLK cycles, assuming that neither the POR nor  
the LVI was the source of the reset. See Table 19-2 for details. Figure  
19-4 shows the relative timing.  
Table 19-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 19-4. External Reset Timing  
19.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 CGMXCLK  
cycles to allow resetting of external peripherals. The internal reset signal  
IRST continues to be asserted for an additional 32 cycles. See Figure  
19-5. An internal reset can be caused by an illegal address, illegal  
opcode, COP timeout, LVI, or POR. See Figure 19-6.  
NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
277  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
then follows the sequence from the falling edge of RST shown in Figure  
19-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 19-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 19-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
19.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
A POR pulse is generated.  
Technical Data  
278  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Reset and System Initialization  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
CGMXCLK  
CGMOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 19-7. POR Recovery  
19.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 12 through 4  
of the SIM counter. The SIM counter output, which occurs at least every  
213 – 24 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
279  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
The COP module is disabled if the RST pin or the IRQ pin is held at Vtst  
while the MCU is in monitor mode. The COP module can be disabled  
only through combinational logic conditioned with the high voltage signal  
on the RST or the IRQ pin. This prevents the COP from becoming  
disabled as a result of external noise. During a break state, Vtst on the  
RST pin disables the COP module.  
19.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
19.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
19.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset  
status register (SRSR) is set, and the external reset pin (RST) is held low  
while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four  
CGMXCLK cycles later, the CPU is released from reset to allow the reset  
vector sequence to occur. The SIM actively pulls down the RST pin for  
all internal reset sources.  
Technical Data  
280  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
SIM Counter  
19.4.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to  
the SIM when monitor mode is entered in the condition where the reset  
vectors are blank ($00). (See Entering Monitor Mode.) When MODRST  
gets asserted, an internal reset occurs. The SIM actively pulls down the  
RST pin for all internal reset sources.  
19.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 13 bits long and is clocked by the falling edge of CGMXCLK.  
19.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the clock generation module (CGM) to drive the  
bus clock state machine.  
19.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic 1, then the stop recovery is  
reduced from the normal delay of 4096 CGMXCLK cycles down to 32  
CGMXCLK cycles. This is ideal for applications using canned oscillators  
that do not require long startup times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC  
cleared.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
281  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See Stop Mode for  
details.) The SIM counter is free-running after all reset states. (See  
Active Resets from Internal Sources for counter control and internal  
reset recovery sequences.)  
19.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
Interrupts:  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
19.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 19-8 shows interrupt entry timing. Figure  
19-9 shows interrupt recovery timing.  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared). See Figure  
19-10.  
Technical Data  
282  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Exception Control  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP 1  
SP 2  
SP 3  
SP 4  
VECT H  
VECT L START ADDR  
DUMMY  
PC 1[7:0] PC1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 19-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC 1 [7:0] PC1[15:8] OPCODE OPERAND  
R/W  
Figure 19-9. Interrupt Recovery Timing  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
283  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
FROM RESET  
BREAK  
YES  
INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
IRQ0  
INTERRUPT?  
YES  
YES  
NO  
IRQ  
INTERRUPT?  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
NO  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 19-10. Interrupt Processing  
19.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
Technical Data  
284  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Exception Control  
condition code register) and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 19-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 19-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
285  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
19.6.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 19-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 19-3. Interrupt Sources  
Interrupt Status  
Register Flag  
Priority  
Highest  
Interrupt Source  
Reset  
Technical Data  
286  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Exception Control  
Table 19-3. Interrupt Sources  
Interrupt Status  
Register Flag  
Priority  
Interrupt Source  
SWI instruction  
IRQ pin  
I1  
PLL  
I2  
TIM1 channel 0  
TIM1 channel 1  
TIM1 overflow  
TIM2 channel 0  
Reserved  
I3  
I4  
I5  
I6  
I7  
TIM2 overflow  
SPI receiver full  
SPI transmitter empty  
SCI receive error  
SCI receive  
I8  
I9  
I10  
I11  
I12  
I13  
I14  
I15  
I16  
SCI transmit  
Keyboard  
ADC conversion complete  
Timebase module  
Lowest  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
287  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.6.1.4 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
I4  
R
0
4
I3  
R
0
3
I2  
R
0
2
I1  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I6  
R
0
I5  
R
R
0
R
0
0
R
=Reserved  
Figure 19-12. Interrupt Status Register 1 (INT1)  
I6–I1 — Interrupt Flags 1–6  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
19.6.1.5 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
I12  
R
4
I11  
R
3
I10  
R
2
I9  
R
0
1
I8  
R
0
Bit 0  
I7  
Read:  
Write:  
Reset:  
I14  
R
I13  
R
R
0
0
0
0
0
0
R
=Reserved  
Figure 19-13. Interrupt Status Register 2 (INT2)  
I14–I7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Technical Data  
288  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Exception Control  
19.6.1.6 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
0
1
I16  
R
Bit 0  
I15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
R
0
R
0
0
0
0
R
=Reserved  
Figure 19-14. Interrupt Status Register 3 (INT3)  
Bits 7–2 — Always read 0  
I16–I15 — Interrupt Flags 16–15  
These flags indicate the presence of an interrupt request from the  
source shown in Table 19-3.  
1 = Interrupt request present  
0 = No interrupt request present  
19.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
19.6.3 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. See  
Timer Interface Module (TIM). The SIM puts the CPU into the break state  
by forcing it to the SWI vector location. Refer to the break interrupt  
subsection of each module to see how each module is affected by the  
break state.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
System Integration Module (SIM)  
289  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.6.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a 2-step clearing mechanism — for example, a read of  
one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
19.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described in  
the following subsections. Both STOP and WAIT clear the interrupt mask  
(I) in the condition code register, allowing interrupts to occur.  
19.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 19-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
Technical Data  
290  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
Low-Power Modes  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the mask  
option register is logic 0, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 19-15. Wait Mode Entry Timing  
Figure 19-16 and Figure 19-17 show the timing for WAIT recovery.  
IAB  
IDB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = RST pin, CPU interrupt, or break interrupt  
Figure 19-16. Wait Recovery from Interrupt or Break  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
291  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
$A6  
CGMXCLK  
Figure 19-17. Wait Recovery from Internal Reset  
19.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module outputs (CGMOUT and  
CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop  
recovery time is selectable using the SSREC bit in the mask option  
register (MOR). If SSREC is set, stop recovery is reduced from the  
normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for  
applications using canned oscillators that do not require long startup  
times from stop mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 19-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
Technical Data  
292  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
SIM Registers  
CPUSTOP  
IAB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
SAME  
IDB  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
R/W  
Note : Previous data can be operand data or the STOP opcode, depending  
on the last instruction.  
Figure 19-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT/BREAK  
IAB  
STOP +1  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
Figure 19-19. Stop Mode Recovery from Interrupt or Break  
19.8 SIM Registers  
The SIM has three memory-mapped registers. Table 19-4 shows the  
mapping of these registers.  
Table 19-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
293  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
19.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from stop mode or wait mode.  
Address: $FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
=Reserved  
Note: 1. Writing a logic 0 clears SBSW.  
Figure 19-20. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop  
mode after exiting from a break interrupt. Clear SBSW by writing a  
logic 0 to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt.  
0 = Stop mode or wait mode was not exited by break interrupt.  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this. Writing 0 to the SBSW bit clears it.  
This code works if the H register has been pushed onto the stack in the break  
service routine software. This code should be executed at the end of the break  
service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
;
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
Technical Data  
294  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
MOTOROLA  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
DEC  
DEC  
HIBYTE,SP  
LOBYTE,SP  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
DOLO  
RETURN  
PULH  
RTI  
19.8.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset  
provided all previous reset status bits have been cleared. Clear the SIM  
reset status register by reading it. A power-on reset sets the POR bit and  
clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
Technical Data  
295  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
System Integration Module (SIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
System Integration Module (SIM)  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations  
$FFFE and $FFFF are $00 after POR while IRQ = VDD  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
19.8.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to  
clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
=Reserved  
Figure 19-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Technical Data  
296  
MC68HC908GR8 — Rev 4.0  
System Integration Module (SIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 20. Serial Peripheral Interface (SPI)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
20.4 Pin Name Conventions and I/O Register Addresses . . . . . . .298  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
20.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303  
20.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .309  
20.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
20.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
20.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
20.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
20.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318  
20.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322  
20.2 Introduction  
This section describes the serial peripheral interface (SPI) module,  
which allows full-duplex, synchronous, serial communications with  
peripheral devices.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
297  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
20.3 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive  
registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
– SPRF (SPI receiver full)  
– SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
I2C (inter-integrated circuit) compatibility  
I/O (input/output) port bit(s) software configurable with pullup  
device(s) if configured as input port bit(s)  
20.4 Pin Name Conventions and I/O Register Addresses  
The text that follows describes the SPI. The SPI I/O pin names are SS  
(slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI  
(master out slave in), and MISO (master in/slave out). The SPI shares  
four I/O pins with four parallel I/O ports.  
Technical Data  
298  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Functional Description  
The full names of the SPI I/O pins are shown in Table 20-1. The generic  
pin names appear in the text that follows.  
Table 20-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
Full SPI  
Pin Names:  
PTD2/ATD1  
0
PTD0/AT  
D8  
VSS  
SPI  
PTD1/ATD9  
PTD3/ATD11  
20.5 Functional Description  
Figure 20-1 summarizes the SPI I/O registers and Figure 20-2 shows the  
structure of the SPI module.  
Addr.  
Register Name  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
DMAS  
SPMSTR CPOL  
CPHA SPWOM  
SPI Control Register  
(SPCR)  
$0010  
0
1
0
1
0
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN SPR1  
SPR0  
SPI Status and Control  
Register (SPSCR)  
$0011  
$0012  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
= Unimplemented  
Figure 20-1. SPI I/O Register Summary  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
299  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
FROM SIM  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR SPE  
SELECT  
M
CLOCK  
LOGIC  
S
SPR1  
SPR0  
SPMSTR CPHA  
CPOL  
RESERVED  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
DMAS  
SPE  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RESERVED  
SPI  
CONTROL  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
SPRF  
SPTE  
OVRF  
MODF  
Figure 20-2. SPI Module Block Diagram  
The SPI module allows full-duplex, synchronous, serial communication  
between the MCU and peripheral devices, including other MCUs.  
Software can poll the SPI status flags or SPI operation can be interrupt-  
driven.  
If a port bit is configured for input, then an internal pullup device may be  
enabled for that port bit. See Port D Input Pullup Enable Register.  
Technical Data  
300  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Functional Description  
The following paragraphs describe the operation of the SPI module.  
20.5.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is  
set.  
NOTE: Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave  
SPI before disabling the master SPI. See SPI Control Register.  
Only a master SPI module can initiate transmissions. Software begins  
the transmission from a master SPI module by writing to the transmit  
data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte  
begins shifting out on the MOSI pin under the control of the serial clock.  
See Figure 20-3.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
DD  
Figure 20-3. Full-Duplex Master-Slave Connections  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
301  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
The SPR1 and SPR0 bits control the baud rate generator and determine  
the speed of the shift register. See SPI Status and Control Register.  
Through the SPSCK pin, the baud rate generator of the master also  
controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts  
in from the slave on the master’s MISO pin. The transmission ends when  
the receiver full bit, SPRF, becomes set. At the same time that SPRF  
becomes set, the byte from the slave transfers to the receive data  
register. In normal operation, SPRF signals the end of a transmission.  
Software clears SPRF by reading the SPI status and control register with  
SPRF set and then reading the SPI data register. Writing to the SPI data  
register clears the SPTE bit.  
20.5.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave  
mode, the SPSCK pin is the input for the serial clock from the master  
MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is  
complete. See Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of  
the serial clock from the master SPI module. After a byte enters the shift  
register of a slave SPI, it transfers to the receive data register, and the  
SPRF bit is set. To prevent an overflow condition, slave software then  
must read the receive data register before another full byte enters the  
shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave  
is the bus clock speed (which is twice as fast as the fastest master  
SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI  
baud rate. The baud rate only controls the speed of the SPSCK  
generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency  
less than or equal to the bus speed.  
Technical Data  
302  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Transmission Formats  
When the master SPI starts a transmission, the data in the slave shift  
register begins shifting out on the MISO pin. The slave can load its shift  
register with a new byte for the next transmission by writing to its transmit  
data register. The slave must write to its transmit data register at least  
one bus cycle before the master starts the next transmission. Otherwise,  
the byte already in the slave shift register shifts out on the MISO pin.  
Data written to the slave shift register during a transmission remains in  
a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts  
a transmission. When CPHA is clear, the falling edge of SS starts a  
transmission. See Transmission Formats.  
NOTE: SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
20.6 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted  
out serially) and received (shifted in serially). A serial clock synchronizes  
shifting and sampling on the two serial data lines. A slave select line  
allows selection of an individual slave SPI device; slave devices that are  
not selected do not interfere with SPI bus activities. On a master SPI  
device, the slave select line can optionally be used to indicate multiple-  
master bus contention.  
20.6.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK)  
phase and polarity using two bits in the SPI control register (SPCR). The  
clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission  
format.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
303  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
The clock phase (CPHA) control bit selects one of two fundamentally  
different transmission formats. The clock phase and polarity should be  
identical for the master SPI device and the communicating slave device.  
In some cases, the phase and polarity are changed between  
transmissions to allow a master device to communicate with peripheral  
slaves having different requirements.  
NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by  
clearing the SPI enable bit (SPE).  
20.6.2 Transmission Format When CPHA = 0  
Figure 20-4 shows an SPI transmission in which CPHA is logic 0. The  
figure should not be used as a replacement for data sheet parametric  
information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another  
for CPOL = 1. The diagram may be interpreted as a master or slave  
timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. See Mode Fault Error. When CPHA = 0, the first SPSCK edge is the  
MSB capture strobe. Therefore, the slave must begin driving its data  
before the first SPSCK edge, and a falling edge on the SS pin is used to  
start the slave data transmission. The slave’s SS pin must be toggled  
back to high and then low again between each byte transmitted as  
shown in Figure 20-5.  
Technical Data  
304  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Transmission Formats  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 20-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 20-5. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the falling edge of SS. Any data  
written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
20.6.3 Transmission Format When CPHA = 1  
Figure 20-6 shows an SPI transmission in which CPHA is logic 1. The  
figure should not be used as a replacement for data sheet parametric  
information. Two waveforms are shown for SPSCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master  
or slave timing diagram since the serial clock (SPSCK), master in/slave  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
305  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
out (MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. See Mode Fault Error. When CPHA = 1, the master begins driving  
its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first  
SPSCK edge as a start transmission signal. The SS pin can remain low  
between transmissions. This format may be preferable in systems  
having only one master and only one slave driving the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 20-6. Transmission Format (CPHA = 1)  
Technical Data  
306  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Transmission Formats  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the first edge of SPSCK. Any  
data written after the first edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
20.6.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the  
SPDR starts a transmission. CPHA has no effect on the delay to the start  
of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first  
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle  
begins with an edge on the SPSCK line from its inactive to its active  
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay  
from the write to SPDR and the start of the SPI transmission. See Figure  
20-7. The internal SPI clock in the master is a free-running derivative of  
the internal MCU clock. To conserve power, it is enabled only when both  
the SPE and SPMSTR bits are set. SPSCK edges occur halfway through  
the low time of the internal MCU clock. Since the SPI clock is free-  
running, it is uncertain where the write to the SPDR occurs relative to the  
slower SPSCK. This uncertainty causes the variation in the initiation  
delay shown in Figure 20-7. This delay is no longer than a single SPI bit  
time. That is, the maximum delay is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU  
bus cycles for DIV128.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
307  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 20-7. Transmission Start Delay (Master)  
Technical Data  
308  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Queuing Transmission Data  
20.7 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be  
queued and transmitted. For an SPI configured as a master, a queued  
data byte is transmitted immediately after the previous transmission has  
completed. The SPI transmitter empty flag (SPTE) indicates when the  
transmit data buffer is ready to accept new data. Write to the transmit  
data register only when the SPTE bit is high. Figure 20-8 shows the  
timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
11  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
12 CPU READS SPDR, CLEARING SPRF BIT.  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 20-8. .SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the  
slave precisely timing its writes between transmissions as in a system  
with a single data buffer. Also, if no new data is written to the data buffer,  
the last value contained in the shift register is the next data word to be  
transmitted.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
309  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
For an idle master or idle slave that has no data loaded into its transmit  
buffer, the SPTE is set again no more than two bus cycles after the  
transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of  
the shift register cannot occur until the transmission is completed. This  
implies that a back-to-back write to the transmit data register is not  
possible. The SPTE indicates when the next write can occur.  
20.8 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before  
the next full byte enters the shift register sets the OVRF bit. The  
new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control  
register.  
Mode fault error (MODF) — The MODF bit indicates that the  
voltage on the slave select pin (SS) is inconsistent with the mode  
of the SPI. MODF is in the SPI status and control register.  
20.8.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still  
has unread data from a previous transmission when the capture strobe  
of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs  
in the middle of SPSCK cycle 7. (See Figure 20-4 and Figure 20-6.) If an  
overflow occurs, all data received after the overflow and before the  
OVRF bit is cleared does not transfer to the receive data register and  
does not set the SPI receiver full bit (SPRF). The unread data that  
transferred to the receive data register before the overflow occurred can  
still be read. Therefore, an overflow error always indicates the loss of  
data. Clear the overflow flag by reading the SPI status and control  
register and then reading the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
Technical Data  
310  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Error Conditions  
interrupts share the same CPU interrupt vector. See Figure 20-11. It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,  
watch for an overflow condition. Figure 20-9 shows how it is possible to  
miss an overflow. The first part of Figure 20-9 shows how it is possible  
to read the SPSCR and SPDR to clear the SPRF without problems.  
However, as illustrated by the second transmission example, the OVRF  
bit can be set in between the time that SPSCR and SPDR are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
2
5
5
SPSCR  
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 20-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF  
interrupts can be generated until this OVRF is serviced, it is not obvious  
that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the  
SPSCR following the read of the SPDR. This ensures that the OVRF  
was not set before the SPRF was cleared and that future transmissions  
can set the SPRF bit. Figure 20-10 illustrates this process. Generally, to  
avoid this second SPSCR read, enable the OVRF to the CPU by setting  
the ERRIE bit.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
311  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11 BYTE 4 SETS SPRF BIT.  
12 CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
13 CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 20-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
20.8.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the  
SPSCK and MOSI pins as outputs and the MISO pin as an input.  
Clearing SPMSTR selects slave mode and configures the SPSCK and  
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,  
MODF, becomes set any time the state of the slave select pin, SS, is  
inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault  
error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN)  
must be set. Clearing the MODFEN bit does not clear the MODF flag but  
does prevent MODF from being set again after MODF is cleared.  
Technical Data  
312  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Error Conditions  
MODF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
interrupts share the same CPU interrupt vector. See Figure 20-11. It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode  
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master  
SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU  
interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of  
port drivers.  
NOTE: To prevent bus contention with another master SPI after a mode fault  
error, clear all SPI bits of the data direction register of the shared I/O port  
before enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS  
goes high during a transmission. When CPHA = 0, a transmission begins  
when SS goes low and ends once the incoming SPSCK goes back to its  
idle level following the shift of the eighth data bit. When CPHA = 1, the  
transmission begins when the SPSCK leaves its idle level and SS is  
already low. The transmission continues until the SPSCK returns to its  
idle level following the shift of the last data bit. See Transmission  
Formats.  
NOTE: Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit  
has no function when SPE = 0. Reading SPMSTR when MODF = 1  
shows the difference between a MODF occurring when the SPI is a  
master and when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)  
and later unselected (SS is at logic 1) even if no SPSCK is sent to that  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
313  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
slave. This happens because SS at logic 0 indicates the start of the  
transmission (MISO driven out with the value of MSB) for CPHA = 0.  
When CPHA = 1, a slave can be selected and then later unselected with  
no transmission occurring. Therefore, MODF does not occur since a  
transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI  
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF  
bit does not clear the SPE bit or reset the SPI in any way. Software can  
abort the SPI transmission by clearing the SPE bit of the slave.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK  
clocks, even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then  
write to the SPCR register. This entire clearing mechanism must occur  
with no MODF condition existing or else the flag is not cleared.  
20.9 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt  
requests.  
Table 20-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(DMAS = 0, SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(DMAS = 0, SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF  
Mode fault  
Technical Data  
314  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Interrupts  
Reading the SPI status and control register with SPRF set and then  
reading the receive data register clears SPRF. The clearing mechanism  
for the SPTE flag is always just a write to the transmit data register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag  
to generate transmitter CPU interrupt requests, provided that the SPI is  
enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to  
generate receiver CPU interrupt requests, regardless of the state of the  
SPE bit. See Figure 20-11.  
The error interrupt enable bit (ERRIE) enables both the MODF and  
OVRF bits to generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from  
being set so that only the OVRF bit is enabled by the ERRIE bit to  
generate receiver/error CPU interrupt requests.  
NOT AVAILABLE  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
DMAS  
NOT AVAILABLE  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 20-11. SPI Interrupt Request Generation  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
315  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
The following sources in the SPI status and control register can generate  
CPU interrupt requests:  
SPI receiver full bit (SPRF) — The SPRF bit becomes set every  
time a byte transfers from the shift register to the receive data  
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF generates an SPI receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — The SPTE bit becomes set every  
time a byte transfers from the transmit data register to the shift  
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE CPU interrupt request.  
20.10 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur  
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the  
following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new  
complete transmission.  
All the SPI port logic is defaulted back to being general-purpose  
I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,  
and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE  
between transmissions without having to set all control bits again when  
SPE is set back high for the next transmission.  
Technical Data  
316  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
Low-Power Modes  
By not resetting the SPRF, OVRF, and MODF flags, the user can still  
service these interrupts after the SPI has been disabled. The user can  
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled  
by a mode fault occurring in an SPI that was configured as a master with  
the MODFEN bit set.  
20.11 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.11.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction.  
In wait mode the SPI module registers are not accessible by the CPU.  
Any enabled CPU interrupt request from the SPI module can bring the  
MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF  
bit to generate CPU interrupt requests by setting the error interrupt  
enable bit (ERRIE). See Interrupts.  
20.11.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect register conditions. SPI operation  
resumes after an external interrupt. If stop mode is exited by reset, any  
transfer in progress is aborted, and the SPI is reset.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
317  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
20.12 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See System Integration Module (SIM).  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit  
cleared, a write to the transmit data register in break mode does not  
initiate a transmission nor is this data transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared  
has no effect.  
20.13 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel  
I/O port. They are:  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
CGND — Clock ground (internally connected to VSS)  
The SPI has limited inter-integrated circuit (I2C) capability (requiring  
software support) as a master in a single-master environment. To  
Technical Data  
318  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
I/O Signals  
communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C  
communication, the MOSI and MISO pins are connected to a  
bidirectional pin from the I2C peripheral and through a pullup resistor to  
VDD  
.
20.13.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full  
duplex operation, the MISO pin of the master SPI module is connected  
to the MISO pin of the slave SPI module. The master SPI simultaneously  
receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is  
configured as a slave. The SPI is configured as a slave when its  
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multiple-  
slave system, a logic 1 on the SS pin puts the MISO pin in a high-  
impedance state.  
When enabled, the SPI controls data direction of the MISO pin  
regardless of the state of the data direction register of the shared I/O  
port.  
20.13.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-  
duplex operation, the MOSI pin of the master SPI module is connected  
to the MOSI pin of the slave SPI module. The master SPI simultaneously  
transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin  
regardless of the state of the data direction register of the shared I/O  
port.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
319  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
20.13.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and  
slave devices. In a master MCU, the SPSCK pin is the clock output. In a  
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,  
the master and slave MCUs exchange a byte of data in eight serial clock  
cycles.  
When enabled, the SPI controls data direction of the SPSCK pin  
regardless of the state of the data direction register of the shared I/O  
port.  
20.13.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the  
SPI. For an SPI configured as a slave, the SS is used to select a slave.  
For CPHA = 0, the SS is used to define the start of a transmission. See  
Transmission Formats. Since it is used to indicate the start of a  
transmission, the SS must be toggled high and low between each byte  
transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 20-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 20-12CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured  
as an input. It cannot be used as a general-purpose I/O regardless of the  
state of the MODFEN control bit. However, the MODFEN bit can still  
prevent the state of the SS from creating a MODF error. See SPI Status  
and Control Register.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high-  
impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
Technical Data  
320  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
I/O Signals  
When an SPI is configured as a master, the SS input can be used in  
conjunction with the MODF flag to prevent multiple masters from driving  
MOSI and SPSCK. See Mode Fault Error. For the state of the SS pin to  
set the MODF flag, the MODFEN bit in the SPSCK register must be set.  
If the MODFEN bit is low for an SPI master, the SS pin can be used as  
a general-purpose I/O under the control of the data direction register of  
the shared I/O port. With MODFEN high, it is an input-only pin to the SPI  
regardless of the state of the data direction register of the shared I/O  
port.  
The CPU can always read the state of the SS pin by configuring the  
appropriate pin as an input and reading the port data register. See Table  
20-3.  
Table 20-3. SPI Configuration  
SPE SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
X(1)  
0
X
X
0
1
1
1
1
0
1
1
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
Master without MODF  
Master with MODF  
Input-only to SPI  
Note 1. X = Don’t care  
20.13.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the  
ground for the port output buffers. It is internally connected to VSS as  
shown in Table 20-1.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
321  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
20.14 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
20.14.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain  
outputs  
Enables the SPI module  
Address: $0010  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
DMAS  
SPMSTR CPOL  
CPHA SPWOM  
0
1
0
1
0
= Unimplemented  
Figure 20-13. SPI Control Register (SPCR)  
Technical Data  
322  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
I/O Registers  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPRF bit. The SPRF bit is set when a byte transfers from the shift  
register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
DMAS —DMA Select Bit  
This read only bit has no effect on this version of the SPI. This bit  
always reads as a 0.  
0 = SPRF DMA and SPTE DMA service requests disabled  
(SPRF CPU and SPTE CPU interrupt requests enabled)  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode  
operation. Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin  
between transmissions. (See Figure 20-4 and Figure 20-6.) To  
transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial  
clock and SPI data. (See Figure 20-4 and Figure 20-6.) To transmit  
data between SPI modules, the SPI modules must have identical  
CPHA values. When CPHA = 0, the SS pin of the slave SPI module  
must be set to logic 1 between bytes. See Figure 20-12. Reset sets  
the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI,  
and MISO so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
323  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a  
partial reset of the SPI. See Resetting the SPI. Reset clears the SPE  
bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the  
SPTE bit. SPTE is set when a byte transfers from the transmit data  
register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
20.14.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these  
conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow  
error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these  
functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Technical Data  
324  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
I/O Registers  
Address: $0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
1
Bit 0  
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
MODFEN SPR1  
SPR0  
0
Reset:  
0
0
0
1
0
0
= Unimplemented  
Figure 20-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from  
the shift register to the receive data register. SPRF generates a CPU  
interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the  
SPI status and control register with SPRF set and then reading the  
SPI data register.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate  
CPU interrupt requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte  
in the receive data register before the next full byte enters the shift  
register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the  
OVRF bit by reading the SPI status and control register with OVRF set  
and then reading the receive data register. Reset clears the OVRF bit.  
1 = Overflow  
0 = No overflow  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Serial Peripheral Interface (SPI)  
325  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes  
high during a transmission with the MODFEN bit set. In a master SPI,  
the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and  
control register (SPSCR) with MODF set and then writing to the SPI  
control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data  
register transfers a byte into the shift register. SPTE generates an  
SPTE CPU interrupt request or an SPTE DMA service request if the  
SPTIE bit in the SPI control register is set also.  
NOTE: Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by  
writing to the transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If  
the MODF flag is set, clearing the MODFEN does not clear the MODF  
flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-  
purpose I/O. When the SPI is enabled as a slave, the SS pin is not  
available as a general-purpose I/O regardless of the value of  
MODFEN. See SS (Slave Select).  
If the MODFEN bit is low, the level of the SS pin does not affect the  
operation of an enabled SPI configured as a master. For an enabled  
SPI configured as a slave, having MODFEN low only prevents the  
MODF flag from being set. It does not affect any other part of SPI  
operation. See Mode Fault Error.  
Technical Data  
326  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
I/O Registers  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as  
shown in Table 20-4. SPR1 and SPR0 have no effect in slave mode.  
Reset clears SPR1 and SPR0.  
Table 20-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
327  
Serial Peripheral Interface (SPI)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Serial Peripheral Interface (SPI)  
20.14.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and  
the write-only transmit data register. Writing to the SPI data register  
writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive  
data registers are separate registers that can contain different values.  
See Figure 20-2.  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after reset  
Figure 20-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE: Do not use read-modify-write instructions on the SPI data register since  
the register read is not the same as the register written.  
Technical Data  
328  
MC68HC908GR8 — Rev 4.0  
Serial Peripheral Interface (SPI)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 21. Timebase Module (TBM)  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
21.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .331  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
21.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
21.2 Introduction  
This section describes the timebase module (TBM). The TBM will  
generate periodic interrupts at user selectable rates using a counter  
clocked by the external crystal clock. This TBM version uses 15 divider  
stages, eight of which are user selectable.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
21.3 Features  
Features of the TBM module include:  
Software programmable 1 Hz, 4 Hz, 16 Hz, 256 Hz, 512 Hz, 1024  
Hz, 2048 Hz, and 4096 Hz periodic interrupt using external 32.768  
kHz crystal  
User selectable oscillator clock source enable during stop mode to  
allow periodic wakeup from stop  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timebase Module (TBM)  
329  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timebase Module (TBM)  
21.4 Functional Description  
NOTE: This module is designed for a 32.768 kHz oscillator.  
This module can generate a periodic interrupt by dividing the crystal  
frequency, CGMXCLK. The counter is initialized to all 0s when TBON bit  
is cleared. The counter, shown in Figure 21-1, starts counting when the  
TBON bit is set. When the counter overflows at the tap selected by  
TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt  
request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the  
TACK bit. The first time the TBIF flag is set after enabling the timebase  
module, the interrupt is generated at approximately half of the overflow  
period. Subsequent events occur at the exact period.  
TBON  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
CGMXCLK  
TBMINT  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
÷2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 21-1. Timebase Block Diagram  
Technical Data  
330  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timebase Module (TBM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timebase Module (TBM)  
Timebase Register Description  
21.5 Timebase Register Description  
The timebase has one register, the TBCR, which is used to enable the  
timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
TBIF  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
0
2
TBIE  
0
1
Bit 0  
Read:  
Write:  
Reset:  
TBON Reserved  
TACK  
0
0
0
0
= Unimplemented  
Figure 21-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled  
over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2:TBR0 — Timebase Rate Selection  
These read/write bits are used to select the rate of timebase interrupts  
as shown in Table 21-1.  
Table 21-1. Timebase Rate Selection for OSC1 = 32.768 kHz  
Timebase Interrupt Rate  
TBR2  
TBR1  
TBR0  
Divider  
Hz  
1
ms  
1000  
250  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
32,768  
8192  
2048  
128  
64  
4
16  
62.5  
~ 3.9  
~2  
256  
512  
1024  
2048  
4096  
32  
~1  
16  
~0.5  
~0.24  
8
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
331  
Timebase Module (TBM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timebase Module (TBM)  
NOTE: Do not change TBR2–TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACK— Timebase ACKnowledge  
The TACK bit is a write-only bit and always reads as 0. Writing a logic  
1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic  
0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled  
This read/write bit enables the timebase interrupt when the TBIF bit  
becomes set. Reset clears the TBIE bit.  
1 = Timebase interrupt enabled  
0 = Timebase interrupt disabled  
TBON — Timebase Enabled  
This read/write bit enables the timebase. Timebase may be turned off  
to reduce power consumption when its function is not necessary. The  
counter can be initialized by clearing and then setting this bit. Reset  
clears the TBON bit.  
1 = Timebase enabled  
0 = Timebase disabled and the counter initialized to 0s  
21.6 Interrupts  
The timebase module can interrupt the CPU on a regular basis with a  
rate defined by TBR2:TBR0. When the timebase counter chain rolls  
over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt  
request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
Technical Data  
332  
MC68HC908GR8 — Rev 4.0  
Timebase Module (TBM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timebase Module (TBM)  
Low-Power Modes  
21.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
21.7.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before enabling the WAIT  
instruction.  
21.7.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the oscillator has been enabled to operate during stop mode  
through the OSCSTOPEN bit in the CONFIG register. The timebase  
module can be used in this mode to generate a periodic wakeup from  
stop mode.  
If the oscillator has not been enabled to operate in stop mode, the  
timebase module will not be active during STOP mode. In stop mode, the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the  
power consumption by stopping the timebase before enabling the STOP  
instruction.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timebase Module (TBM)  
333  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timebase Module (TBM)  
Technical Data  
334  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timebase Module (TBM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 22. Timer Interface Module (TIM)  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
22.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
22.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
22.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
22.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .348  
22.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
22.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
22.2 Introduction  
This section describes the timer interface (TIM) module. The TIM on this  
part is a 2-channel and a1-channel timer that provides a timing reference  
with input capture, output compare, and pulse-width-modulation  
functions. Figure 22-1 is a block diagram of the TIM. This particular MCU  
has two timer interface modules which are denoted as TIM1 and TIM2.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
335  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
22.3 Features  
Features of the TIM include:  
Three input capture/output compare channels:  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal  
generation  
Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
I/O port bit(s) software configurable with pullup device(s) if  
configured as input port bit(s)  
22.4 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM  
input/output (I/O) pin names are T[1,2]CH0 (timer 1 channel 0, timer 2  
channel 0) and T[1]CH1 (timer channel 1), where “1” is used to indicate  
TIM1 and “2” is used to indicate TIM2. The two TIMs share three I/O pins  
with three port D I/O port pins. The full names of the TIM I/O pins are  
listed in Table 22-1. The generic pin names appear in the text that  
follows.  
Table 22-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
T[1,2]CH1  
PTD5/T1CH1  
--  
TIM1  
PTD4/ATD12/TBLCK  
PTD6/ATD14/TACLK  
Full TIM  
Pin Names:  
TIM2  
Technical Data  
336  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Functional Description  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TCH0 may refer generically  
to T1CH0 and T2CH0, and TCH1 will refer to T1CH1.  
NOTE: The Timer Interface Module in MC68HC908GR8 is constructed by TIM1  
which is contained channel 0 and 1, and TIM2 which is contained  
channel 0 only.  
22.5 Functional Description  
NOTE: References to TCLK and external TIM clock input are only valid if the  
MCU has an external TCLK pin. If the MCU has no external TCLK pin,  
the TIM module must use the internal bus clock prescaler selections.  
Figure 22-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The TIM channels (per timer) are programmable independently as input  
capture or output compare channels. If a channel is configured as input  
capture, then an internal pullup device may be enabled for that channel.  
See Port D Input Pullup Enable Register.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
337  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
INTERNAL  
TCLK  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
T[1,2]CH0  
CH0F  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B ELS1A  
PORT  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1]CH1  
LOGIC  
INTER-  
RUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 22-1. TIM Block Diagram  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC and T2SC.  
NOTE: In Figure 22-1, channel1 will only be available in TIM1 while channel 0  
will be available in both TIM1 and TIM2  
Technical Data  
338  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Functional Description  
Figure 22-2 summarizes the timer registers.  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Timer 1 Status and Control  
Register (T1SC)  
$0020  
TRST  
0
12  
0
0
14  
1
13  
0
11  
0
10  
0
9
0
Bit 8  
Read: Bit 15  
Write:  
Timer 1 Counter Register  
High (T1CNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
Timer 1 Counter Register  
Low (T1CNTL)  
0
Bit 15  
1
0
0
13  
1
0
12  
1
0
0
0
0
Bit 8  
1
14  
11  
10  
9
Timer 1 Counter Modulo  
Register High (T1MODH)  
1
1
1
1
Bit 7  
6
1
5
4
3
2
1
Bit 0  
1
Timer 1 Counter Modulo  
Register Low (T1MODL)  
1
1
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 0  
Register High (T1CH0H)  
Indeterminate after reset  
Bit 7  
6
5
0
4
3
2
1
Bit 0  
Timer 1 Channel 0  
Register Low (T1CH0L)  
Indeterminate after reset  
Read: CH1F  
Timer 1 Channel 1 Status  
CH1IE  
0
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
9
0
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Channel 1  
Register High (T1CH1H)  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Timer 1 Channel 1  
Register Low (T1CH1L)  
Indeterminate after reset  
TOF  
0
0
0
TRST  
0
0
TOIE  
TSTOP  
PS2  
PS1  
Timer 2 Status and Control  
Register (T2SC)  
0
14  
1
13  
0
11  
0
10  
0
9
0
Bit 8  
Read: Bit 15  
Write:  
12  
Timer 2 Counter Register  
High (T2CNTH)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-2. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
339  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Counter Register  
Low (T2CNTL)  
$002D  
0
Bit 15  
1
0
0
13  
1
0
12  
1
0
0
0
0
Bit 8  
1
14  
11  
10  
9
Timer 2 Counter Modulo  
Register High (T2MODH)  
$002E  
$002F  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
1
1
1
1
Bit 7  
6
1
5
4
3
2
1
Bit 0  
1
Timer 2 Counter Modulo  
Register Low (T2MODL)  
1
1
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
and Control Register Write:  
Timer 2 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
0
0
(T2SC0)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Channel 0  
Register High (T2CH0H)  
Indeterminate after reset  
Bit 7  
6
0
5
0
4
3
2
0
1
0
Bit 0  
0
Timer 2 Channel 0  
Register Low (T2CH0L)  
Indeterminate after reset  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
0
0
0
Indeterminate after reset  
Indeterminate after reset  
= Unimplemented  
Figure 22-2. TIM I/O Register Summary (Sheet 2 of 2)  
22.5.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs or the  
TIM clock pin, TCLK. The prescaler generates seven clock rates from  
the internal bus clock. The prescaler select bits, PS[2:0], in the TIM  
status and control register select the TIM clock source.  
Technical Data  
340  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Functional Description  
22.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
22.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
22.5.4 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in Output Compare. The pulses are unbuffered  
because changing the output compare value requires writing the new  
value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
341  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
22.5.5 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
Technical Data  
342  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Functional Description  
22.5.6 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 22-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIM to set the pin if the state of the PWM  
pulse is logic 0.  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000. See TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 22-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
343  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
22.5.7 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in Pulse Width Modulation (PWM). The pulses are unbuffered  
because changing the pulse width requires writing the new pulse width  
value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt  
routine (at the end of the current pulse) could cause two output  
compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
Technical Data  
344  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Functional Description  
22.5.8 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
22.5.9 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset  
bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
345  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxB:MSxA. See Table 22-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 22-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. (See TIM Channel Status  
and Control Registers.)  
22.6 Interrupts  
The following TIM sources can generate interrupt requests:  
Technical Data  
346  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Low-Power Modes  
TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter value reaches the modulo value programmed in the TIM  
counter modulo registers. The TIM overflow interrupt enable bit,  
TOIE, enables TIM overflow CPU interrupt requests. TOF and  
TOIE are in the TIM status and control register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests and TIM DMA service requests are  
controlled by the channel x interrupt enable bit, CHxIE. Channel x  
TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF  
and CHxIE are in the TIM channel x status and control register.  
DMAxS is in the TIM DMA select register.  
22.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
22.7.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode, the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
22.7.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIM  
counter. TIM operation resumes when the MCU exits stop mode after an  
external interrupt.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
347  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
22.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. See SIM Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
22.9 I/O Signals  
Port D shares three of its pins with the TIM. (There is an optional TCLK  
which can be used as an external clock input to the TIM prescaler, but is  
not available on this MCU.) The three TIM channel I/O pins are T1CH0,  
T1CH1 and T2CH0 as described in Pin Name Conventions.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. T1CH0 and T2CH0 can be  
configured as buffered output compare or buffered PWM pins.  
Technical Data  
348  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
22.10 I/O Registers  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM control registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0, TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
22.10.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 22-4. TIM Status and Control Register (TSC)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
349  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by  
reading the TIM status and control register when TOF is set and then  
writing a logic 0 to TOF. If another TIM overflow occurs before the  
clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic 0. Reset clears the  
TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
Technical Data  
350  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
PS2–PS0 — Prescaler Select Bits  
These read/write bits select either the TCLK pin or one of the seven  
prescaler outputs as the input to the TIM counter as Table 22-2  
shows. Reset clears the PS[2:0] bits.  
Table 22-2. Prescaler Selection  
PS2–PS0  
000  
TIM Clock Source  
Internal bus clock ÷1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
001  
010  
011  
100  
101  
110  
111  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
351  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
22.10.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-6. TIM Counter Registers Low (TCNTL)  
Technical Data  
352  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
22.10.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH)  
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is  
written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
1
1
1
1
1
1
1
1
= Unimplemented  
Figure 22-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
1
1
1
1
1
1
1
1
= Unimplemented  
Figure 22-8. TIM Counter Modulo Register Low (TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
353  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
22.10.4 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-9. TIM Counter Register High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-10. TIM Counter Register Low (TCNTL)  
Technical Data  
354  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
22.10.5 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
Write:  
0
0
Reset:  
Figure 22-11. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028  
Bit 7  
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
Write:  
0
0
Reset:  
0
Figure 22-12. TIM Channel 1 Status and Control Register (TSC1)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
355  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear  
CHxF by reading TIM channel x status and control register with CHxF  
set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0  
to CHxF has no effect. Therefore, an interrupt request cannot be lost  
due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt service requests enabled  
0 = Channel x CPU interrupt service requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status  
and control registers.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation. See Table  
22-3.  
1 = Unbuffered output compare/PWM operation  
Technical Data  
356  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin. See Table 22-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port D, and pin PTDx/TCHx is available as a general-purpose I/O  
pin. Table 22-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
357  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Table 22-3. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
X1  
00  
00  
Output preset  
Pin under port control;  
initial output level low  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output  
compare or  
PWM  
Buffered  
output  
compare or  
buffered PWM  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the PTD/TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
Technical Data  
358  
MC68HC908GR8 — Rev 4.0  
Timer Interface Module (TIM)  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
I/O Registers  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As .  
CHxMAX Latency shows, the CHxMAX bit takes effect in the cycle  
after it is set or cleared. The output stays at the 100% duty cycle level  
until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
CHxMAX  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 22-13. CHxMAX Latency  
22.10.6 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Timer Interface Module (TIM)  
359  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Timer Interface Module (TIM)  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 22-14. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 22-15. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Bit 15  
14  
13  
12  
11  
10  
Write:  
Reset:  
Indeterminate after reset  
Figure 22-16. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A  
Bit 7  
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
Indeterminate after reset  
Figure 22-17. TIM Channel 1 Register Low (TCH1L)  
Technical Data  
360  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Timer Interface Module (TIM)  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 23. Electrical Specifications  
23.1 Contents  
23.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .362  
23.3 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.5 5.0 V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .364  
23.6 3.0 V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .366  
23.7 5.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
23.8 3.0 V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
23.9 Output High-Voltage Characteristics . . . . . . . . . . . . . . . . . . .370  
23.10 Output Low-Voltage Characteristics . . . . . . . . . . . . . . . . . . . .373  
23.11 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
23.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378  
23.13 5.0 V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
23.14 3.0 V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .380  
23.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .383  
23.16 Clock Generation Module Characteristics . . . . . . . . . . . . . . .383  
23.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
361  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly beyond the maximum  
ratings. Refer to 5.0 V DC Electrical Characteristics for guaranteed  
operating conditions.  
Table 23-1. Absolute Maximum Ratings  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to + 5.5  
VIn  
VSS – 0.3 to VDD + 0.3  
Input voltage  
V
Maximum current per pin  
excluding VDD, VSS  
,
I
± 15  
± 25  
mA  
mA  
and PTC0–PTC1  
Maximum current for pins  
PTC0–PTC1  
IPTC0–PTC1  
I
Maximum current into VDD  
Maximum current out of VSS  
Storage temperature  
150  
150  
mA  
mA  
°C  
mvdd  
I
mvss  
T
–55 to +150  
stg  
Note:  
1. Voltages referenced to VSS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn and VOut be constrained to the  
range VSS (VIn or VOut) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD).  
Technical Data  
362  
MC68HC908GR8 — Rev 4.0  
Electrical Specifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Functional Operating Range  
23.3 Functional Operating Range  
Table 23-2. Functional Operation Range  
Characteristic  
Symbol  
Value  
Unit  
TA  
Operating temperature range  
–40 to +125  
°C  
3.0 ±10%  
5.0 ±10%  
VDD  
Operating voltage range  
V
NOTE: To ensure correct operation of the MCU under all operating conditions,  
the user must write data $1C to address $0033 immediately after reset.  
This is to ensure proper termination of an unused module within the  
MCU.  
23.4 Thermal Characteristics  
Table 23-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
PDIP (28-pin)  
SOIC (28-pin)  
QFP (32-pin)  
60  
60  
95  
θJA  
°C/W  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User-Determined  
W
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
PD x (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
°C  
°C  
TJM  
Maximum junction temperature  
Notes:  
140  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known T and measured  
A
P . With this value of K, P and T can be determined for any value of T .  
D
D
J
A
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
363  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.5 5.0 V DC Electrical Characteristics  
Table 23-4. 5.0V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(I  
(I  
(I  
= –2.0 mA) all I/O pins  
VOH  
VOH  
VOH  
IOH1  
Load  
Load  
Load  
VDD – 0.8  
50  
V
V
V
= –10.0 mA) all I/O pins  
V
V
DD – 1.5  
DD – 0.8  
= –10.0 mA) pins PTC0–PTC1 only  
mA  
Maximum combined IOH for port C, port E,  
port PTD0–PTD3  
Maximum combined IOH for port PTD4–PTD6,  
port A, port B  
Maximum total IOH for all port pins  
50  
mA  
mA  
IOH2  
IOHT  
100  
Output low voltage  
(I  
(I  
(I  
= 1.6 mA) all I/O pins  
VOL  
VOL  
VOL  
IOL1  
Load  
Load  
Load  
0.4  
1.5  
1.0  
50  
V
V
V
= 10 mA) all I/O pins  
= 15 mA) pins PTC0–PTC1 only  
mA  
Maximum combined IOL for port C, port E,  
port PTD0–PTD3  
Maximum combined IOL for port PTD4–PTD6,  
50  
mA  
mA  
IOL2  
IOLT  
port A, port B  
Maximum total IOL for all port pins  
100  
Input high voltage  
All ports, IRQs, RESET  
OSC1  
VIH  
VIL  
VDD  
0.7 x VDD  
0.8 x VDD  
V
V
Input low voltage  
All ports, IRQs, RESET, OSC1  
VSS  
0.2 x VDD  
VDD supply current  
Run(3)  
Wait(4)  
IDD  
15  
4
20  
8
mA  
mA  
Stop(5) (<85 °C)  
Stop (>85 °C)  
Stop with TBM enabled(6)  
3
5
20  
300  
5
10  
35  
500  
µA  
µA  
µA  
µA  
IDD  
Stop with LVI and TBM enabled(6)  
I/O ports Hi-Z leakage current(7)  
Input current  
IIL  
±10  
µA  
µA  
I
1
In  
Technical Data  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
364  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
5.0 V DC Electrical Characteristics  
Table 23-4. 5.0V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Pullup resistors (as input only)  
Symbol  
Min  
Max  
Unit  
RPU  
Ports PTA3/KBD3–PTA0/KBD0, PTC1–PTC0,  
PTD6/T2CH0–PTD0/SS  
20  
45  
65  
kΩ  
C
Capacitance  
Ports (as input or output)  
Out  
12  
8
pF  
C
In  
VTST  
VDD +2.5  
3.85  
Monitor mode entry voltage  
8
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage – target  
Low-voltage inhibit, trip rising voltage – target  
Low-voltage inhibit reset/recover hysteresis – target  
4.25  
4.35  
4.50  
4.60  
3.95  
VHYS  
100  
mV  
(VTRIPF + VHYS = VTRIPR  
)
POR rearm voltage(8)  
POR reset voltage(9)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
Notes:  
0.035  
V/ms  
1. V  
= 5.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
SS A L H  
DD  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source (f = 32.8 MHz). All inputs 0.2 V from rail. No  
DD  
osc  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f  
= 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less  
DD  
osc  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
L
I
. Measured with PLL and LVI enabled.  
DD  
5. Stop I  
is measured with OSC1 = V  
.
DD  
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 KHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled. Port B leakage is specified in ADC Characteristics.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum V  
is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
365  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.6 3.0 V DC Electrical Characteristics  
Table 23-5. 3.0 V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(I  
(I  
(I  
= –0.6 mA) all I/O pins  
VOH  
VOH  
VOH  
IOH1  
Load  
Load  
Load  
VDD – 0.3  
30  
V
V
V
= –4.0 mA) all I/O pins  
V
V
DD – 1.0  
DD – 0.5  
= –4.0 mA) pins PTC0–PTC1 only  
mA  
Maximum combined IOH for port C, port E,  
port PTD0–PTD3  
Maximum combined IOH for port PTD4–PTD6,  
port A, port B  
Maximum total IOH for all port pins  
30  
60  
mA  
mA  
IOH2  
IOHT  
Output low voltage  
(I  
(I  
(I  
= 0.5 mA) all I/O pins  
VOL  
VOL  
VOL  
IOL1  
Load  
Load  
Load  
0.3  
1.0  
0.8  
30  
V
V
V
= 6.0 mA) all I/O pins  
= 10.0 mA) pins PTC0–PTC1 only  
mA  
Maximum combined IOL for port C, port E,  
port PTD0–PTD3  
Maximum combined IOL for port PTD4–PTD6,  
30  
60  
mA  
mA  
IOL2  
IOLT  
port A, port B  
Maximum total IOL for all port pins  
Input high voltage  
All ports, IRQs, RESET  
OSC1  
VIH  
VDD  
0.7 x VDD  
0.8 x VDD  
V
V
Input low voltage  
All ports, IRQs, RESET  
OSC1  
VIL  
VSS  
0.3 x VDD  
0.2 x VDD  
VDD supply current  
Run(3)  
Wait(4)  
IDD  
4.5  
1.65  
8
4
mA  
mA  
Stop(5)(<85 °C)  
1
3
12  
200  
3
6
20  
300  
µA  
µA  
µA  
µA  
Stop (>85 °C)  
IDD  
Stop with TBM enabled(6)  
Stop with LVI and TBM enabled(6)  
I/O ports Hi-Z leakage current(7)  
Input current  
IIL  
±10  
µA  
µA  
I
1
In  
Technical Data  
366  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
3.0 V DC Electrical Characteristics  
Table 23-5. 3.0 V DC Electrical Characteristics  
Typ(2)  
Characteristic(1)  
Pullup resistors (as input only)  
Symbol  
Min  
Max  
Unit  
RPU  
Ports PTA3/KBD37–PTA0/KBD0, PTC1–PTC0,  
PTD6/T2CH0–PTD0/SS  
20  
45  
65  
kΩ  
C
Capacitance  
Ports (as input or output)  
Out  
12  
8
pF  
C
In  
VTST  
VDD +2.5  
2.35  
Monitor mode entry voltage  
8
V
V
V
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage – target  
Low-voltage inhibit, trip rising voltage – target  
Low-voltage inhibit reset/recover hysteresis – target  
2.60  
2.66  
2.70  
2.80  
2.45  
VHYS  
60  
mV  
(VTRIPF + VHYS = VTRIPR  
)
POR rearm voltage(8)  
POR reset voltage(9)  
VPOR  
VPORRST  
RPOR  
0
0
700  
100  
800  
mV  
mV  
POR rise time ramp rate(10)  
Notes:  
0.02  
V/ms  
1. V  
= 3.0 Vdc ± 10%, V = 0 Vdc, T = T to T , unless otherwise noted  
SS A L H  
DD  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) I measured using external square wave clock source (f = 16.4 MHz). All inputs 0.2 V from rail. No  
DD  
osc  
dc loads. Less than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
L
affects run I . Measured with all modules enabled.  
DD  
4. Wait I measured using external square wave clock source (f  
= 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less  
DD  
osc  
than 100 pF on all outputs. C = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait  
L
I
. Measured with PLL and LVI enabled.  
DD  
5. Stop I  
is measured with OSC1 = V  
.
DD  
SS  
6. Stop IDD with TBM enabled is measured using an external square wave clock source (fOSC = 32.8 KHz). All inputs 0.2 V  
from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.  
7. Pullups and pulldowns are disabled.  
8. Maximum is highest voltage that POR is guaranteed.  
9. Maximum is highest voltage that POR is possible.  
10. If minimum V  
is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD  
V
is reached.  
DD  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
367  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.7 5.0 V Control Timing  
Table 23-6. 5.0 V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation(2)  
Crystal option  
External clock option(3)  
f
32  
dc(4)  
100  
32.8  
kHz  
MHz  
osc  
f
Internal operating frequency  
122  
50  
8.2  
MHz  
ns  
op  
Internal clock period (1/fOP  
)
tcyc  
tIRL  
tILIH  
tILIL  
RESET input pulse width low(5)  
ns  
IRQ interrupt pulse width low(6)  
(edge-triggered)  
50  
ns  
tcyc  
IRQ interrupt pulse period  
Note 8  
16-bit timer(7)  
Input capture pulse width  
Input capture period  
tTH, TL  
t
ns  
tcyc  
Note 8  
tTLTL  
Notes:  
1. V = 0 Vdc; timing shown with respect to 20% V and 70% V unless otherwise noted.  
SS  
DD  
SS  
2. See Clock Generation Module Characteristics for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation.  
See appropriate table for this information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse  
width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to  
execute the interrupt service routine plus tcyc  
.
Technical Data  
368  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
3.0 V Control Timing  
23.8 3.0 V Control Timing  
Table 23-7. 3.0 V Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation(2)  
Crystal option  
External clock option(3)  
f
32  
dc(4)  
100  
16.4  
kHz  
MHz  
osc  
f
Internal operating frequency  
4.1  
MHz  
ns  
op  
Internal clock period (1/fOP  
)
tcyc  
tIRL  
tILIH  
tILIL  
244  
125  
RESET input pulse width low(5)  
ns  
IRQ interrupt pulse width low(6)  
(edge-triggered)  
125  
ns  
tcyc  
IRQ interrupt pulse period  
Note 8  
16-bit timer(7)  
Input capture pulse width  
Input capture period  
tTH, TL  
t
ns  
tcyc  
Note 8  
tTLTL  
Notes:  
1. V = 0 Vdc; timing shown with respect to 20% V and 70% V unless otherwise noted.  
SS  
DD  
SS  
2. See Clock Generation Module Characteristics for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation.  
See appropriate table for this information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse  
width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes to  
execute the interrupt service routine plus tCYC  
.
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
369  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.9 Output High-Voltage Characteristics  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
0
25  
85  
3
3.2  
3.4  
3.6  
(V)  
3.8  
4.0  
4.2  
V
OH  
V
V
> V –0.8 V @ I = –2.0 mA  
DD OH  
OH  
OH  
> V –1.5 V @ I = –10.0 mA  
DD  
OH  
Figure 23-1. Typical High-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 4.5 Vdc)  
0
–5  
–40  
–10  
0
25  
–15  
–20  
–25  
85  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
V
> V –0.3 V @ I = –0.6 mA  
DD OH  
OH  
OH  
> V –1.0 V @ I = –4.0 mA  
DD  
OH  
Figure 23-2. Typical High-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 2.7 Vdc)  
Technical Data  
370  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Output High-Voltage Characteristics  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–40  
0
25  
85  
3
3.2  
3.4  
3.6  
(V)  
3.8  
4.0  
4.2  
V
OH  
V
> V –0.8 V @ I = –10.0 mA  
DD OH  
OH  
Figure 23-3. Typical High-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 4.5 Vdc)  
0
–5  
–40  
–10  
0
25  
–15  
–20  
–25  
85  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
> V –0.5 V @ I = –4.0 mA  
DD OH  
OH  
Figure 23-4. Typical High-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 2.7 Vdc)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
371  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
0
25  
85  
3
3.2  
3.4  
3.6  
3.8  
(V)  
4.0  
4.2  
4.4  
4.6  
V
OH  
V
V
> V –0.8 V @ I = –2.0 mA  
DD OH  
OH  
OH  
> V –1.5 V @ I = –10.0 mA  
DD  
OH  
Figure 23-5. Typical High-Side Driver Characteristics –  
Ports PTB5–PTB0, PTD6–PTD0, and  
PTE1–PTE0 (VDD = 5.5 Vdc)  
0
–5  
–40  
–10  
0
25  
85  
–15  
–20  
–25  
1.3  
1.5  
1.7  
1.9  
(V)  
2.1  
2.3  
2.5  
V
OH  
V
V
> V –0.3 V @ I = –0.6 mA  
DD OH  
OH  
OH  
> V –1.0 V @ I = –4.0 mA  
DD  
OH  
Figure 23-6. Typical High-Side Driver Characteristics –  
Ports PTB5–PTB0, PTD6–PTD0, and  
PTE1–PTE0 (VDD = 2.7 Vdc)  
Technical Data  
372  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Output Low-Voltage Characteristics  
23.10 Output Low-Voltage Characteristics  
35  
30  
25  
20  
15  
10  
5
–40  
0
25  
85  
0
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
V
OL  
V
V
< 0.4 V @ I = 1.6 mA  
OL  
OL  
OL  
< 1.5 V @ I = 10.0 mA  
OL  
Figure 23-7. Typical Low-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 5.5 Vdc)  
14  
12  
–40  
10  
0
8
25  
85  
6
4
2
0
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
V
< 0.3 V @ I = 0.5 mA  
OL  
OL  
OL  
< 1.0 V @ I = 6.0 mA  
OL  
Figure 23-8. Typical Low-Side Driver Characteristics –  
Port PTA3–PTA0 (VDD = 2.7 Vdc)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
373  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
60  
50  
40  
30  
20  
10  
0
–40  
0
25  
85  
1.6  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
< 1.0 V @ I = 15 mA  
OL  
OL  
Figure 23-9. Typical Low-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 4.5 Vdc)  
30  
25  
–40  
0
20  
15  
10  
5
25  
85  
0
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
V
OL  
V
< 0.8 V @ I = 10 mA  
OL  
OL  
Figure 23-10. Typical Low-Side Driver Characteristics –  
Port PTC1–PTC0 (VDD = 2.7 Vdc)  
Technical Data  
374  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Output Low-Voltage Characteristics  
35  
30  
25  
20  
15  
10  
5
–40  
0
25  
85  
0
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
1.4  
V
OL  
V
V
< 0.4 V @ I = 1.6 mA  
OL  
OL  
OL  
< 1.5 V @ I = 10.0 mA  
OL  
Figure 23-11. Typical Low-Side Driver Characteristics –  
Ports PTB5–PTB0, PTD6–PTD0, and  
PTE1–PTE0 (VDD = 5.5 Vdc)  
14  
12  
–40  
10  
0
8
25  
85  
6
4
2
0
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
(V)  
1.0  
1.2  
V
OL  
V
V
< 0.3 V @ I = 0.5 mA  
OL  
OL  
OL  
< 1.0 V @ I = 6.0 mA  
OL  
Figure 23-12. Typical Low-Side Driver Characteristics –  
Ports PTB5–PTB0, PTD6–PTD0, and  
PTE1–PTE0 (VDD = 2.7 Vdc)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
375  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.11 Typical Supply Currents  
16  
14  
12  
10  
8
6
4
5.5 V  
3.6 V  
2
0
0
1
2
3
4
5
6
7
8
9
f
(MHz)  
bus  
Figure 23-13. Typical Operating IDD, with All Modules  
Turned On (–40 °C to 125 °C)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.5 V  
3.6 V  
0
1
2
3
4
5
6
7
8
f
(MHz)  
bus  
Figure 23-14. Typical Wait Mode IDD, with all Modules Disabled  
(–40 °C to 125 °C)  
Technical Data  
376  
MC68HC908GR8 — Rev 4.0  
Electrical Specifications  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Typical Supply Currents  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1
5.5 V  
3.6 V  
0
1
2
3
4
5
6
7
8
9
f
(MHz)  
bus  
Figure 23-15. Typical Stop Mode IDD, with all Modules Disabled  
(–40 °C to 125 °C)  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Electrical Specifications  
377  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.12 ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Comments  
VDDAD should be tied  
to the same potential  
as VDD via separate  
2.7  
(VDD  
5.5  
(VDD  
VDDAD  
Supply voltage  
V
min)  
max)  
traces.  
VADIN  
BAD  
VDDAD  
8
VADIN <= VREFH  
Input voltages  
Resolution  
0
8
V
Bits  
Absolute accuracy  
(VREFL = 0 V, VDDAD = VREFH  
=
AAD  
−−  
± 1  
LSB  
Includes quantization  
5 V ± 10%)  
tAIC = 1/fADIC, tested  
only at 1 MHz  
fADIC  
ADC internal clock  
Conversion range  
0.5  
1.048  
MHz  
V
V
REFH = VDDAD  
RAD  
tADPU  
tADC  
VREFL  
VREFH  
VREFL = VSSAD  
t
AIC cycles  
AIC cycles  
Power-up time  
16  
16  
t
Conversion time  
17  
tAIC  
cycles  
Sample time(2)  
tADS  
5
Zero input reading(3)  
ZADI  
FADI  
CADI  
V
IN = VREFL  
IN = VREFH  
Not tested  
00  
FE  
01  
FF  
Hex  
Hex  
pF  
Full-scale reading(3)  
Input capacitance  
V
(20) 8  
Input leakage(4)  
Port B  
± 1  
µA  
Notes:  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDAD = 5.0 Vdc ± 10%, VSSAD = 0 Vdc, VREFH = 5.0 Vdc ± 10%, VREFL = 0  
2. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
4. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
Technical Data  
378  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
5.0 V SPI Characteristics  
23.13 5.0 V SPI Characteristics  
Diagram  
Number(1)  
Characteristic(2)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
f
OP/2  
fOP  
fOP/128  
DC  
MHz  
MHz  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tcyc  
tcyc  
1
2
1
128  
tLead(S)  
tLag(S)  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –25  
1/2 tcyc –25  
64 tcyc  
4
5
6
7
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –25  
64 tcyc  
ns  
ns  
1/2 tcyc –25  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
tV(M)  
tV(S)  
10  
50  
50  
ns  
ns  
Data hold time, outputs, after enable edge  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
0
ns  
ns  
Notes:  
1. Numbers refer to dimensions in Figure 23-16 and Figure 23-17.  
2. All timing is shown with respect to 20% V  
and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
379  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.14 3.0 V SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
f
/2  
fOP(M)  
fOP(S)  
f
/128  
MHz  
MHz  
OP  
f
OP  
DC  
OP  
Cycle time  
Master  
Slave  
tCYC(M)  
tCYC(S)  
tcyc  
tcyc  
1
2
1
128  
tLead(s)  
tLag(s)  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
1
1
Clock (SPSCK) high time  
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
4
5
6
7
ns  
ns  
±
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –35  
64 tcyc  
ns  
ns  
1/2 tcyc –35  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
40  
40  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
tA(CP0)  
tA(CP1)  
8
9
0
0
50  
50  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
tV(M)  
tV(S)  
10  
60  
60  
ns  
ns  
Data hold time, outputs, after enable edge  
Master  
Slave  
tHO(M)  
tHO(S)  
11  
0
0
ns  
ns  
Notes:  
1. Numbers refer to dimensions in Figure 23-16 and Figure 23-17.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
Technical Data  
380  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
3.0 V SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
6
7
MISO  
MSB IN  
BITS 61  
BITS 61  
LSB IN  
INPUT  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
MSB IN  
11  
BITS 61  
BITS 61  
LSB IN  
INPUT  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 23-16. SPI Master Timing  
MC68HC908GR8 — Rev 4.0  
Technical Data  
381  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
SLAVE MSB OUT  
BITS 61  
BITS 61  
SLAVE LSB OUT  
11  
NOTE  
INPUT  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 61  
BITS 61  
SLAVE LSB OUT  
OUTPUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 23-17. SPI Slave Timing  
Technical Data  
382  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Timer Interface Module Characteristics  
23.15 Timer Interface Module Characteristics  
Table 23-8. Timer Interface Module Characteristics  
Characteristic  
Input capture pulse width  
Symbol  
, t  
Min  
Max  
Unit  
t
tcyc  
1
TIH TIL  
23.16 Clock Generation Module Characteristics  
23.16.1 CGM Component Specifications  
Table 23-9. CGM Component Specifications  
Characteristic  
Crystal reference frequency(1)  
Symbol  
Min  
30  
Typ  
32.768  
Max  
Unit  
f
100  
kHz  
pF  
XCLK  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
C2  
RB  
RS  
2 × CL  
2 × CL  
6
40  
pF  
Crystal tuning capacitance(2)  
Feedback bias resistor  
6
40  
pF  
10  
330  
10  
22  
MΩ  
kΩ  
Series resistor  
Notes:  
330  
470  
1. Fundamental mode crystals only  
2. Consult crystal manufacturer’s data.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
383  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
23.16.2 CGM Electrical Specifications  
Description  
Operating voltage  
Symbol  
Min  
2.7  
Typ  
Max  
5.5  
Unit  
VDD  
V
oC  
kHz  
kHz  
Hz  
Operating temperature  
T
–40  
30  
25  
125  
fRCLK  
fNOM  
fVRS  
fVRS  
L
Crystal reference frequency  
Range nominal multiplier  
32.768  
38.4  
100  
VCO center-of-range frequency(1)  
38.4 k  
40.0 M  
Medium-voltage VCO center-of-range frequency(2)  
VCO range linear range multiplier  
VCO power-of-two range multiplier  
VCO multiply factor  
38.4 k  
1
40.0 M  
255  
4
Hz  
1
2E  
N
1
1
1
4095  
8
2P  
R
VCO prescale multiplier  
Reference divider factor  
1
1
15  
fVCLK  
VCO operating frequency  
38.4 k  
40.0 M  
8.2  
Hz  
MHz  
MHz  
ms  
Bus operating frequency(1)  
fBUS  
fBUS  
tLock  
tLock  
Bus frequency @ medium voltage(2)  
Manual acquisition time  
4.1  
50  
50  
Automatic lock time  
ms  
fRCLK x  
PLL jitter(3)  
fJ  
0.025%  
x 2P N/4  
0
Hz  
External clock input frequency  
PLL disabled  
fOSC  
dc  
32.8 M  
1.5 M  
Hz  
Hz  
External clock input frequency  
PLL enabled  
fOSC  
30 k  
Notes:  
1. 5.0 V ± 10% VDD  
2. 3.0 V ± 10% VDD  
3. Deviation of average bus frequency over 2 ms. N = VCO multiplier.  
Technical Data  
384  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Memory Characteristics  
23.17 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Typ  
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
32k  
8.4M  
fRead  
(2)  
FLASH page erase time  
1
ms  
tErase  
(3)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
tMErase  
tnvs  
tnvh  
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tnvhl  
100  
5
tpgs  
tPROG  
FLASH program time  
30  
1
(4)  
FLASH return to read time  
trcv  
(5)  
FLASH cumulative program HV period  
10k  
10k  
10  
4
ms  
tHV  
FLASH row erase endurance(6)  
FLASH row program endurance(8)  
100k(7)  
100k(7)  
100(10)  
Cycles  
Cycles  
Years  
FLASH data retention time(9)  
Notes:  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 64) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
7. FLASH endurance is a function of the temperature at which erasure occurs. Typical endurance degrades when the tem-  
perature while erasing is less than 25°C.  
8. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at  
least this many erase / program cycles.  
9. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
10. Motorola performs reliability testing for data retention. These tests are based on samples tested at elevated temperatures.  
Due to the higher activation energy of the elevated test temperature, calculated life tests correspond to more than 100  
years of operation/storage at 55°C  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
385  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Electrical Specifications  
Technical Data  
386  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Electrical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 24. Mechanical Specifications  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
24.3 32-Pin LQFP (Case #873A) . . . . . . . . . . . . . . . . . . . . . . . . . .388  
24.4 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . .389  
24.5 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . .390  
24.2 Introduction  
The MC68HC908GR8 is available in these packages:  
32-pin low-profile quad flat pack (LQFP)  
28-pin dual in-line package (PDIP)  
28-pin small outline package (SOIC)  
The package information contained in this section is the latest available  
at the time of this publication. To make sure that you have the latest  
package specifications, contact one of the following:  
Local Motorola Sales Office  
World Wide Web at http://www.motorola.com/semiconductors/  
Follow World Wide Web on-line instructions to retrieve the current  
mechanical specifications.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
387  
Mechanical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Specifications  
24.3 32-Pin LQFP (Case #873A)  
4X  
A
A1  
0.20 (0.008) AB T-U  
Z
32  
25  
1
AE  
AE  
P
- U -  
V1  
- T -  
B
V
DETAIL Y  
DETAIL Y  
B1  
9
8
NOTES:  
17  
1. DIMENSIONS AND TOLERANCING AS PER ANSI  
Y14.5M, 1982  
2. CONTROLLING DIMENSION: MILLIMETER  
3. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF  
LEAD AND IS CONSISTENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE  
4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT  
DATUM PLANE -AB-  
9
4X  
- Z -  
0.20 (0.008) AC T-U  
Z
S1  
S
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE -AC-  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE -AB-  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020)  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003)  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION  
DETAIL AD  
G
-AB-  
-AC-  
Seating  
plane  
0.10 (0.004) AC  
MILLIMETERS  
MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
Base Metal  
N
DIM  
A
A1  
B
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
3.500 BSC  
7.000 BSC  
3.500 BSC  
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
F
D
8x M °  
D
E
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
F
G
H
J
0.800 BSC  
0.031 BSC  
J
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
R
E
K
M
N
P
C
Section AEAE  
12° REF  
12° REF  
0.090  
0.160  
0.004  
0.006  
0.400 BSC  
0.016 BSC  
Q
R
1°  
5°  
1°  
5°  
H
0.150  
0.250  
0.006  
0.010  
Q °  
K
S
9.000 BSC  
0.354 BSC  
W
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
X
DETAIL AD  
Technical Data  
388  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Mechanical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Specifications  
28-Pin PDIP (Case #710)  
24.4 28-Pin PDIP (Case #710)  
A
B
1
G
H
L
N
C
K
M
J
F
D
Seating  
Plane  
Dim.  
A
Min.  
Max.  
37.21  
14.22  
5.08  
Notes  
Dim.  
H
Min.  
1.65  
0.20  
2.92  
Max.  
2.16  
0.38  
3.43  
36.45  
13.72  
3.94  
1. All dimensions in mm.  
B
J
2. Positional tolerance of leads (D) shall be within 0.25 mm at  
maximum material condition, in relation to seating plane and to  
each other.  
3. Dimension Lis to centre of leads when formed parallel.  
4. Dimension Bdoes not include mould protrusion.  
C
K
D
0.36  
0.56  
L
15.24 BSC  
F
1.02  
1.52  
M
N
0°  
15°  
G
2.54 BSC  
0.51  
1.02  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
389  
Mechanical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Mechanical Specifications  
24.5 28-Pin SOIC (Case #751F)  
A –  
B –  
P
M
M
0.25  
B
14 PL  
1
R x 45°  
G
J
C
T –  
Seating  
Plane  
K
M
D 28 PL  
F
M
S
S
A
0.25  
T B  
Dim.  
A
Min.  
Max.  
18.05  
Notes  
Dim.  
J
Min.  
0.229  
0.127  
0°  
Max.  
0.317  
0.292  
8°  
17.80  
7.40  
2.35  
0.35  
0.41  
B
7.60 1. Dimensions Aand Bare datums and Tis a datum surface.  
K
2. Dimensioning and tolerancing per ANSI Y14.5M, 1982.  
C
2.65  
M
P
3. All dimensions in mm.  
D
0.49  
10.05  
0.25  
10.55  
0.75  
4. Dimensions Aand Bdo not include mould protrusion.  
F
0.90 5. Maximum mould protrusion is 0.15 mm per side.  
R
G
1.27 BSC  
Technical Data  
390  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Mechanical Specifications  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Section 25. Ordering Information  
25.1 Contents  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
25.4 Development Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
25.2 Introduction  
This section contains instructions for ordering the MC68HC908GR8 and  
MC68HC908GR4.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
Ordering Information  
391  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Ordering Information  
25.3 MC Order Numbers  
Table 25-1. MC Order Numbers  
Operating  
Temperature Range  
(°C)  
MC Order Number(1)  
MC68HC908GR8CP  
– 40 to + 85  
– 40 to + 85  
– 40 to + 85  
– 40 to + 105  
– 40 to + 105  
– 40 to + 105  
– 40 to + 125  
– 40 to + 125  
– 40 to + 125  
MC68HC908GR8CFA  
MC68HC908GR8CDW  
MC68HC908GR8VFA  
MC68HC908GR8VP  
MC68HC908GR8VDW  
MC68HC908GR8MFA  
MC68HC908GR8MP  
MC68HC908GR8MDW  
Production Parts  
MC68HC908GR4CP  
MC68HC908GR4CFA  
MC68HC908GR4CDW  
MC68HC908GR4VFA  
MC68HC908GR4VP  
MC68HC908GR4VDW  
MC68HC908GR4MFA  
MC68HC908GR4MP  
MC68HC908GR4MDW  
– 40 to + 85  
– 40 to + 85  
– 40 to + 85  
– 40 to + 105  
– 40 to + 105  
– 40 to + 105  
– 40 to + 125  
– 40 to + 125  
– 40 to + 125  
MC908GR8CFAR2  
MC908GR8CDWR2  
MC908GR8VFAR2  
MC908GR8VDWR2  
MC908GR8MFAR2  
MC908GR8MDWR2  
– 40 to + 85  
– 40 to + 85  
– 40 to + 105  
– 40 to + 105  
– 40 to + 125  
– 40 to + 125  
Tape and Reel  
MC908GR4CFAR2  
MC908GR4CDWR2  
MC908GR4VFAR2  
MC908GR4VDWR2  
MC908GR4MFAR2  
MC908GR4MDWR2  
– 40 to + 85  
– 40 to + 85  
– 40 to + 105  
– 40 to + 105  
– 40 to + 125  
– 40 to + 125  
1. FA = quad flat pack  
P = plastic dual in line package  
DW = Small outline integrated circuit (SOIC) package  
Technical Data  
392  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Ordering Information  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Ordering Information  
Development Tools  
25.4 Development Tools  
Table 25-2. Development Tool Kits  
Ordering Part Number  
Description  
HC908GR8 ICS KIT includes: M68ICS08GR programmer board, Windows-  
based IDE, 68HC908GR8 sample, ICS Board & IDE documentation, Universal  
Power Supply, Serial cable  
M68ICS08GR  
HC908GR8 EVS KIT includes: M68MMPFB0508, M68EML08GP32,  
M68CBL05C, M68TC08GR8P28, M68TC08GR8FA32, M68TQS032SAG1,  
M68TQP032SA1, M68ICS08GR Kit  
KITMMEVS08GR  
KITMMDS08GR  
HC908GR8 MMDS KIT includes: M68MMDS0508, M68EML08GP32,  
M68CBL05C, M68TC08GR8P28, M68TC08GR8FA32, M68TQS032SAG1,  
M68TQP032SA1, M68ICS08GR Kit  
Table 25-3. Development Tool Components  
Ordering Part Number  
M68MMDS0508  
Description  
High performance emulator  
MMEVS Platform Board  
HC908GP32 Emulator Board  
Low noise flex-cable  
Comments  
M68MMPFB0508  
M68EML08GP32  
M68CBL05C  
Used for HC908GR8/GR4 emulation  
M68TC08GR8P28  
M68TC08GR8FA32  
M68TQS032SAG1  
M68TQP032SA1  
28-pin DIP target head adapter  
32-pin QFP target head adapter  
32-pin TQ socket with guides  
32-pin TQPACK  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
393  
Ordering Information  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Ordering Information  
Technical Data  
394  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Ordering Information  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Glossary  
A — See “accumulator (A).”  
accumulator (A) — An 8-bit general-purpose register in the CPU08. The CPU08 uses the  
accumulator to hold operands and results of arithmetic and logic operations.  
acquisition mode — A mode of PLL operation during startup before the PLL locks on a  
frequency. Also see "tracking mode."  
address bus — The set of wires that the CPU or DMA uses to read and write memory locations.  
addressing mode — The way that the CPU determines the operand address for an instruction.  
The M68HC08 CPU has 16 addressing modes.  
ALU — See “arithmetic logic unit (ALU).”  
arithmetic logic unit (ALU) — The portion of the CPU that contains the logic circuitry to perform  
arithmetic, logic, and manipulation operations on operands.  
asynchronous — Refers to logic circuits and operations that are not synchronized by a common  
reference signal.  
baud rate — The total number of bits transmitted per unit of time.  
BCD — See “binary-coded decimal (BCD).”  
binary — Relating to the base 2 number system.  
binary number system — The base 2 number system, having two digits, 0 and 1. Binary  
arithmetic is convenient in digital circuit design because digital circuits have two  
permissible voltage levels, low and high. The binary digits 0 and 1 can be interpreted to  
correspond to the two digital voltage levels.  
binary-coded decimal (BCD) — A notation that uses 4-bit binary numbers to represent the 10  
decimal digits and that retains the same positional structure of a decimal number. For  
example,  
234 (decimal) = 0010 0011 0100 (BCD)  
bit — A binary digit. A bit has a value of either logic 0 or logic 1.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
395  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
branch instruction — An instruction that causes the CPU to continue processing at a memory  
location other than the next sequential address.  
break module — A module in the M68HC08 Family. The break module allows software to halt  
program execution at a programmable point in order to enter a background routine.  
breakpoint — A number written into the break address registers of the break module. When a  
number appears on the internal address bus that is the same as the number in the break  
address registers, the CPU executes the software interrupt instruction (SWI).  
break interrupt — A software interrupt caused by the appearance on the internal address bus  
of the same value that is written in the break address registers.  
bus — A set of wires that transfers logic signals.  
bus clock — The bus clock is derived from the CGMOUT output from the CGM. The bus clock  
frequency, fop, is equal to the frequency of the oscillator output, CGMXCLK, divided by  
four.  
byte — A set of eight bits.  
C — The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit  
when an addition operation produces a carry out of bit 7 of the accumulator or when a  
subtraction operation requires a borrow. Some logical operations and data manipulation  
instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and  
shifts and rotates).  
CCR — See “condition code register.”  
central processor unit (CPU) — The primary functioning unit of any computer system. The  
CPU controls the execution of instructions.  
CGM — See “clock generator module (CGM).”  
clear — To change a bit from logic 1 to logic 0; the opposite of set.  
clock — A square wave signal used to synchronize events in a computer.  
clock generator module (CGM) — A module in the M68HC08 Family. The CGM generates a  
base clock signal from which the system clocks are derived. The CGM may include a  
crystal oscillator circuit and or phase-locked loop (PLL) circuit.  
comparator — A device that compares the magnitude of two inputs. A digital comparator defines  
the equality or relative differences between two binary numbers.  
computer operating properly module (COP) — A counter module in the M68HC08 Family that  
resets the MCU if allowed to overflow.  
Technical Data  
396  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
condition code register (CCR) — An 8-bit register in the CPU08 that contains the interrupt  
mask bit and five bits that indicate the results of the instruction just executed.  
control bit — One bit of a register manipulated by software to control the operation of the  
module.  
control unit — One of two major units of the CPU. The control unit contains logic functions that  
synchronize the machine and direct various operations. The control unit decodes  
instructions and generates the internal control signals that perform the requested  
operations. The outputs of the control unit drive the execution unit, which contains the  
arithmetic logic unit (ALU), CPU registers, and bus interface.  
COP — See "computer operating properly module (COP)."  
counter clock — The input clock to the TIM counter. This clock is the output of the TIM  
prescaler.  
CPU — See “central processor unit (CPU).”  
CPU08 — The central processor unit of the M68HC08 Family.  
CPU clock — The CPU clock is derived from the CGMOUT output from the CGM. The CPU  
clock frequency is equal to the frequency of the oscillator output, CGMXCLK, divided by  
four.  
CPU cycles — A CPU cycle is one period of the internal bus clock, normally derived by dividing  
a crystal oscillator source by two or more so the high and low times will be equal. The  
length of time required to execute an instruction is measured in CPU clock cycles.  
CPU registers — Memory locations that are wired directly into the CPU logic instead of being  
part of the addressable memory map. The CPU always has direct access to the  
information in these registers. The CPU registers in an M68HC08 are:  
A (8-bit accumulator)  
H:X (16-bit index register)  
SP (16-bit stack pointer)  
PC (16-bit program counter)  
CCR (condition code register containing the V, H, I, N, Z, and C  
bits)  
CSIC — customer-specified integrated circuit  
cycle time — The period of the operating frequency: tCYC = 1/fOP.  
decimal number system — Base 10 numbering system that uses the digits zero through nine.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
397  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
direct memory access module (DMA) — A M68HC08 Family module that can perform data  
transfers between any two CPU-addressable locations without CPU intervention. For  
transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster  
and more code-efficient than CPU interrupts.  
DMA — See "direct memory access module (DMA)."  
DMA service request — A signal from a peripheral to the DMA module that enables the DMA  
module to transfer data.  
duty cycle — A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is  
usually represented by a percentage.  
EEPROM — Electrically erasable, programmable, read-only memory. A nonvolatile type of  
memory that can be electrically reprogrammed.  
EPROM — Erasable, programmable, read-only memory. A nonvolatile type of memory that can  
be erased by exposure to an ultraviolet light source and then reprogrammed.  
exception — An event such as an interrupt or a reset that stops the sequential execution of the  
instructions in the main program.  
external interrupt module (IRQ) — A module in the M68HC08 Family with both dedicated  
external interrupt pins and port pins that can be enabled as interrupt pins.  
fetch — To copy data from a memory location into the accumulator.  
firmware — Instructions and data programmed into nonvolatile memory.  
free-running counter — A device that counts from zero to a predetermined number, then rolls  
over to zero and begins counting again.  
full-duplex transmission — Communication on a channel in which data can be sent and  
received simultaneously.  
H — The upper byte of the 16-bit index register (H:X) in the CPU08.  
H — The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from  
the low-order four bits of the accumulator value to the high-order four bits. The half-carry  
bit is required for binary-coded decimal arithmetic operations. The decimal adjust  
accumulator (DAA) instruction uses the state of the H and C bits to determine the  
appropriate correction factor.  
hexadecimal — Base 16 numbering system that uses the digits 0 through 9 and the letters A  
through F.  
high byte — The most significant eight bits of a word.  
Technical Data  
398  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
illegal address — An address not within the memory map  
illegal opcode — A nonexistent opcode.  
I — The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts  
are disabled.  
index register (H:X) — A 16-bit register in the CPU08. The upper byte of H:X is called H. The  
lower byte is called X. In the indexed addressing modes, the CPU uses the contents of  
H:X to determine the effective address of the operand. H:X can also serve as a temporary  
data storage location.  
input/output (I/O) — Input/output interfaces between a computer system and the external world.  
A CPU reads an input to sense the level of an external signal and writes to an output to  
change the level on an external signal.  
instructions — Operations that a CPU can perform. Instructions are expressed by programmers  
as assembly language mnemonics. A CPU interprets an opcode and its associated  
operand(s) and instruction.  
interrupt — A temporary break in the sequential execution of a program to respond to signals  
from peripheral devices by executing a subroutine.  
interrupt request — A signal from a peripheral to the CPU intended to cause the CPU to  
execute a subroutine.  
I/O — See “input/output (I/0).”  
IRQ — See "external interrupt module (IRQ)."  
jitter — Short-term signal instability.  
latch — A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power  
is applied to the circuit.  
latency — The time lag between instruction completion and data movement.  
least significant bit (LSB) — The rightmost digit of a binary number.  
logic 1 — A voltage level approximately equal to the input power voltage (VDD).  
logic 0 — A voltage level approximately equal to the ground voltage (VSS).  
low byte — The least significant eight bits of a word.  
low voltage inhibit module (LVI) — A module in the M68HC08 Family that monitors power  
supply voltage.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
399  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
LVI — See "low voltage inhibit module (LVI)."  
M68HC08 — A Motorola family of 8-bit MCUs.  
mark/space — The logic 1/logic 0 convention used in formatting data in serial communication.  
mask — 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used  
in integrated circuit fabrication to transfer an image onto silicon.  
mask option — A optional microcontroller feature that the customer chooses to enable or  
disable.  
mask option register (MOR) — An EPROM location containing bits that enable or disable  
certain MCU features.  
MCU — Microcontroller unit. See “microcontroller.”  
memory location — Each M68HC08 memory location holds one byte of data and has a unique  
address. To store information in a memory location, the CPU places the address of the  
location on the address bus, the data information on the data bus, and asserts the write  
signal. To read information from a memory location, the CPU places the address of the  
location on the address bus and asserts the read signal. In response to the read signal,  
the selected memory location places its data onto the data bus.  
memory map — A pictorial representation of all memory locations in a computer system.  
microcontroller — Microcontroller unit (MCU). A complete computer system, including a CPU,  
memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.  
modulo counter — A counter that can be programmed to count to any number from zero to its  
maximum possible modulus.  
monitor ROM — A section of ROM that can execute commands from a host computer for testing  
purposes.  
MOR — See "mask option register (MOR)."  
most significant bit (MSB) — The leftmost digit of a binary number.  
multiplexer — A device that can select one of a number of inputs and pass the logic level of that  
input on to the output.  
N — The negative bit in the condition code register of the CPU08. The CPU sets the negative bit  
when an arithmetic operation, logical operation, or data manipulation produces a negative  
result.  
nibble — A set of four bits (half of a byte).  
Technical Data  
400  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
object code — The output from an assembler or compiler that is itself executable machine code,  
or is suitable for processing to produce executable machine code.  
opcode — A binary code that instructs the CPU to perform an operation.  
open-drain — An output that has no pullup transistor. An external pullup device can be  
connected to the power supply to provide the logic 1 output voltage.  
operand — Data on which an operation is performed. Usually a statement consists of an  
operator and an operand. For example, the operator may be an add instruction, and the  
operand may be the quantity to be added.  
oscillator — A circuit that produces a constant frequency square wave that is used by the  
computer as a timing and sequencing reference.  
OTPROM — One-time programmable read-only memory. A nonvolatile type of memory that  
cannot be reprogrammed.  
overflow — A quantity that is too large to be contained in one byte or one word.  
page zero — The first 256 bytes of memory (addresses $0000–$00FF).  
parity — An error-checking scheme that counts the number of logic 1s in each byte transmitted.  
In a system that uses odd parity, every byte is expected to have an odd number of logic  
1s. In an even parity system, every byte should have an even number of logic 1s. In the  
transmitter, a parity generator appends an extra bit to each byte to make the number of  
logic 1s odd for odd parity or even for even parity. A parity checker in the receiver counts  
the number of logic 1s in each byte. The parity checker generates an error signal if it finds  
a byte with an incorrect number of logic 1s.  
PC — See “program counter (PC).”  
peripheral — A circuit not under direct CPU control.  
phase-locked loop (PLL) — A oscillator circuit in which the frequency of the oscillator is  
synchronized to a reference signal.  
PLL — See "phase-locked loop (PLL)."  
pointer — Pointer register. An index register is sometimes called a pointer register because its  
contents are used in the calculation of the address of an operand, and therefore points to  
the operand.  
polarity — The two opposite logic levels, logic 1 and logic 0, which correspond to two different  
voltage levels, VDD and VSS.  
polling — Periodically reading a status bit to monitor the condition of a peripheral device.  
port — A set of wires for communicating with off-chip devices.  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
401  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
prescaler — A circuit that generates an output signal related to the input signal by a fractional  
scale factor such as 1/2, 1/8, 1/10 etc.  
program — A set of computer instructions that cause a computer to perform a desired operation  
or operations.  
program counter (PC) — A 16-bit register in the CPU08. The PC register holds the address of  
the next instruction or operand that the CPU will use.  
pull — An instruction that copies into the accumulator the contents of a stack RAM location. The  
stack RAM address is in the stack pointer.  
pullup — A transistor in the output of a logic gate that connects the output to the logic 1 voltage  
of the power supply.  
pulse-width — The amount of time a signal is on as opposed to being in its off state.  
pulse-width modulation (PWM) — Controlled variation (modulation) of the pulse width of a  
signal with a constant frequency.  
push — An instruction that copies the contents of the accumulator to the stack RAM. The stack  
RAM address is in the stack pointer.  
PWM period — The time required for one complete cycle of a PWM waveform.  
RAM — Random access memory. All RAM locations can be read or written by the CPU. The  
contents of a RAM memory location remain valid until the CPU writes a different value or  
until power is turned off.  
RC circuit — A circuit consisting of capacitors and resistors having a defined time constant.  
read — To copy the contents of a memory location to the accumulator.  
register — A circuit that stores a group of bits.  
reserved memory location — A memory location that is used only in special factory test modes.  
Writing to a reserved location has no effect. Reading a reserved location returns an  
unpredictable value.  
reset — To force a device to a known condition.  
ROM — Read-only memory. A type of memory that can be read but cannot be changed (written).  
The contents of ROM must be specified before manufacturing the MCU.  
SCI — See "serial communication interface module (SCI)."  
serial — Pertaining to sequential transmission over a single line.  
Technical Data  
402  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
serial communications interface module (SCI) — A module in the M68HC08 Family that  
supports asynchronous communication.  
serial peripheral interface module (SPI) — A module in the M68HC08 Family that supports  
synchronous communication.  
set — To change a bit from logic 0 to logic 1; opposite of clear.  
shift register — A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to  
them and that can shift the logic levels to the right or left through adjacent circuits in the  
chain.  
signed — A binary number notation that accommodates both positive and negative numbers.  
The most significant bit is used to indicate whether the number is positive or negative,  
normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the  
magnitude of the number.  
software — Instructions and data that control the operation of a microcontroller.  
software interrupt (SWI) — An instruction that causes an interrupt and its associated vector  
fetch.  
SPI — See "serial peripheral interface module (SPI)."  
stack — A portion of RAM reserved for storage of CPU register contents and subroutine return  
addresses.  
stack pointer (SP) — A 16-bit register in the CPU08 containing the address of the next available  
storage location on the stack.  
start bit — A bit that signals the beginning of an asynchronous serial transmission.  
status bit — A register bit that indicates the condition of a device.  
stop bit — A bit that signals the end of an asynchronous serial transmission.  
subroutine — A sequence of instructions to be used more than once in the course of a program.  
The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each  
place in the main program where the subroutine instructions are needed, a jump or branch  
to subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the  
flow of the main program to execute the instructions in the subroutine. When the RTS  
instruction is executed, the CPU returns to the main program where it left off.  
synchronous — Refers to logic circuits and operations that are synchronized by a common  
reference signal.  
TIM — See "timer interface module (TIM)."  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
403  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Glossary  
timer interface module (TIM) — A module used to relate events in a system to a point in time.  
timer — A module used to relate events in a system to a point in time.  
toggle — To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.  
tracking mode — Mode of low-jitter PLL operation during which the PLL is locked on a  
frequency. Also see "acquisition mode."  
two’s complement — A means of performing binary subtraction using addition techniques. The  
most significant bit of a two’s complement number indicates the sign of the number (1  
indicates negative). The two’s complement negative of a number is obtained by inverting  
each bit in the number and then adding 1 to the result.  
unbuffered — Utilizes only one register for data; new data overwrites current data.  
unimplemented memory location — A memory location that is not used. Writing to an  
unimplemented location has no effect. Reading an unimplemented location returns an  
unpredictable value. Executing an opcode at an unimplemented location causes an illegal  
address reset.  
V —The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when  
a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE,  
and BLT use the overflow bit.  
variable — A value that changes during the course of program execution.  
VCO — See "voltage-controlled oscillator."  
vector — A memory location that contains the address of the beginning of a subroutine written  
to service an interrupt or reset.  
voltage-controlled oscillator (VCO) — A circuit that produces an oscillating output signal of a  
frequency that is controlled by a dc voltage applied to a control input.  
waveform — A graphical representation in which the amplitude of a wave is plotted against time.  
wired-OR — Connection of circuit outputs so that if any output is high, the connection point is  
high.  
word — A set of two bytes (16 bits).  
write — The transfer of a byte of data from the CPU to a memory location.  
X — The lower byte of the index register (H:X) in the CPU08.  
Z — The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when  
an arithmetic operation, logical operation, or data manipulation produces a result of $00.  
Technical Data  
404  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Glossary  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Technical Data — MC68HC908GR8  
Revision History  
Contents  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Changes from Rev 3.0 published in February 2002 to Rev 4.0  
published in June 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Changes from Rev 2.0 published in January 2002 to Rev 3.0 pub-  
lished in February 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406  
Changes from Rev 1.0 published in April 2001 to Rev 2.0 pub-  
lished in December 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . .406  
Introduction  
This section contains the revision history for the MC68HC908GR8  
technical data book.  
Changes from Rev 3.0 published in February 2002 to Rev 4.0 published in  
June 2002  
Section  
Page (in Rev 3.0)  
Description of change  
All references to the ROM MC68HC08GR8 removed. Appendix A removed.  
363  
364  
Maximum junction temperature increased to 140°C  
Input High Voltage for OSC1 changed  
Stop IDD for temperatures >85°C added  
Electrical  
Specifications  
Input High Voltage for OSC1 changed  
Input Low Voltage for OSC1 changed  
Stop IDD for temperatures >85°C added  
366  
MC68HC908GR8 — Rev 4.0  
MOTOROLA  
Technical Data  
405  
Revision History  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Revision History  
Changes from Rev 2.0 published in January 2002 to Rev 3.0 published in  
February 2002  
Section  
Page (in Rev 3.0)  
Description of change  
All references to the ROM MC68HC08GR8 removed. Appendix A removed.  
363  
376-377  
383  
Maximum operating temperature increased to 125°C  
Electrical  
Specifications  
Maximum temperature increased to 125°C in titles of figures 23-  
13, 23-14 and 23-15  
Maximum operating temperature increaed to 125°C  
New section added  
Ordering  
Information  
391  
Changes from Rev 1.0 published in April 2001 to Rev 2.0 published in  
December 2001  
Section  
Page (in Rev 2.0)  
Description of change  
The blank state of the reset vectors, $FFFE and $FFFF, was incorrectly defined as $00  
and is now $FF. This affects several places in the Monitor ROM (MON) section. The  
information was previously described in an addendum. See details below:  
Monitor ROM  
(MON)  
190  
192  
193  
329  
Penultimate bullet of features list  
Final sentence of first paragraph  
Each list item in Entering Monitor Mode section  
Third column of Table 15-1  
Timebase Module  
(TBM)  
Several changes for clarification  
Timer Interface  
Module (TIM)  
335  
385  
Several changes for clarification  
Electrical  
Specifications  
Typical column added to table. Typical values added for FLASH  
row program endurance and FLASH data retention time  
Technical Data  
406  
MC68HC908GR8 — Rev 4.0  
Revision History  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters which may be provided in Motorola data sheets  
and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MC68HC908GR8/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

M68MOD912C32

M68MOD912C32
ETC

M68PA11A8P48

HC11 Microcontrollers
FREESCALE

M68PA11E20B56

HC11 Microcontrollers
FREESCALE

M68PA11E20FN52

HC11 Microcontrollers
FREESCALE

M68PA11E20FU64

HC11 Microcontrollers
FREESCALE

M68PA11E20PB52

HC11 Microcontrollers
FREESCALE

M68SC302ADS

Passive ISDN Protocol Engine
FREESCALE

M68SDIL

Advance Information - Rev 4.0
MOTOROLA

M68SDIL12

microcontroller unit 16BIT DEVICE
MOTOROLA

M68SMASM

Assembly Language Toolset for Microcontrollers
FREESCALE

M68SMASMAB

Assembly Language Toolset for Microcontrollers
FREESCALE

M68SMCUASMBB

MCUasm Assembly Language Toolset for Microcontrollers
FREESCALE