DSPB56L007FJ50 [MOTOROLA]

Digital Signal Processor;
DSPB56L007FJ50
型号: DSPB56L007FJ50
厂家: MOTOROLA    MOTOROLA
描述:

Digital Signal Processor

文件: 总83页 (文件大小:597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
Order this document by:  
DSP56007/D  
DSP56007  
SYMPHONY AUDIO DSP FAMILY  
24-BIT DIGITAL SIGNAL PROCESSORS  
Motorola designed the Symphony family of high-performance, programmable Digital Signal  
Processors (DSPs) to support a variety of digital audio applications, including Dolby ProLogic,  
ATRAC, and Lucasfilm Home THX processing. Software for these applications is licensed by  
Motorola for integration into products like audio/ video receivers, televisions, and automotive  
sound systems with such user-developed features as digital equalization and sound field  
processing. The DSP56007 is an MPU-style general purpose DSP, composed of an efficient 24-bit  
Digital Signal Processor core, program and data memories, various peripherals optimized for  
audio, and support circuitry. As illustrated in Figure 1, the DSP56000 core family compatible  
DSP is fed by program memory, two independent data RAMs and two data ROMs, a Serial  
Audio Interface (SAI), Serial Host Interface (SHI), External Memory Interface (EMI), dedicated  
I/ O lines, on-chip Phase Lock Loop (PLL), and On-Chip Emulation (OnCE ) port. The  
DSP56007 has significantly more on-chip memory than the DSP56004.  
ˇ
16-Bit Bus  
24-Bit Bus  
4
9
5
29  
General  
Purpose  
Input/  
Serial  
Serial  
External  
Audio  
Interface  
(SAI)  
Host  
Interface  
(SHI)  
Memory  
Interface  
(EMI)  
X Data  
Memory*  
Program  
Memory*  
Y Data  
Memory*  
Output  
PAB  
Address  
Generation  
Unit  
24-Bit  
DSP56000  
Core  
XAB  
YAB  
GDB  
PDB  
XDB  
YDB  
Internal  
Data  
Bus  
Switch  
TM  
OnCE Port  
Program  
Address  
Generator  
Program  
Decode  
Controller  
Data ALU  
24 × 24 + 56 56-Bit MAC  
Two 56-Bit Accumulators  
Interrupt  
Control  
Clock  
PLL  
Gen.  
Program Control Unit  
Refer to Table 1 for memory configurations.  
4
*
3
4
IRQA, IRQB, NMI, RESET  
AA0248  
Figure 1 DSP56007 Block Diagram  
©1996, 1997 MOTOROLA, INC.  
 
TABLE OF CONTENTS  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SECTION 5  
SIGNAL/CONNECTION DESCRIPTIONS. . . . . . . . . . . . . . . . . . . . .1-1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1  
PACKAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1  
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1  
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1  
FOR TECHNICAL ASSISTANCE:  
Telephone:  
Email:  
1-800-521-6274  
dsphelp@dsp.sps.mot.com  
http:/ / www.motorola-dsp.com  
Internet:  
Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
“asserted”  
“deasserted”  
Examples:  
Used to indicate a signal that is active when pulled low (For example, the RESET pin is  
active when low.)  
Means that a high true (active high) signal is high or that a low true (active low) signal  
is low  
Means that a high true (active high) signal is low or that a low true (active low) signal  
is high  
Signal/Symbol  
Logic State  
Signal State  
Voltage  
PIN  
PIN  
PIN  
PIN  
True  
False  
True  
False  
Asserted  
Deasserted  
Asserted  
V / V  
IL  
OL  
OH  
OH  
OL  
V
V
/ V  
/ V  
IH  
IH  
Deasserted  
V / V  
IL  
Note:  
Values for V , V , V , and V are defined by individual product specifications.  
OH  
IL  
OL  
IH  
ii  
DSP56007/D  
MOTOROLA  
DSP56007  
Features  
FEATURES  
Digital Signal Processing Core  
Efficient, object code compatible with the 24-bit DSP56000 core family engine  
Up to 44 Million Instructions Per Second (MIPS)—22.7 ns instruction cycle at  
88 MHz  
Highly parallel instruction set with unique DSP addressing modes  
Two 56-bit accumulators including extension byte  
Parallel 24 × 24-bit multiply-accumulate in 1 instruction cycle (2 clock cycles)  
Double precision 48 × 48-bit multiply with 96-bit result in 6 instruction cycles  
56-bit addition/ subtraction in 1 instruction cycle  
Fractional and integer arithmetic with support for multiprecision arithmetic  
Hardware support for block floating-point Fast Fourier Transforms (FFT)  
Hardware nested DO loops  
Zero-overhead fast interrupts (2 instruction cycles)  
Four 24-bit internal data buses and three 16-bit internal address buses for  
simultaneous accesses to one program and two data memories  
Fabricated in high-density CMOS  
Memory  
On-chip modified Harvard architecture, which permits simultaneous accesses  
to program and two data memories  
Bootstrap loading from Serial Host Interface or External Memory Interface  
Table 1 Memory Configuration (Word width is 24 bits)  
Mode  
PE  
Program  
X Data  
Y Data  
Bootstrap  
ROM  
ROM  
RAM  
ROM  
RAM  
ROM  
RAM  
0
1
6400  
5120  
None  
1024  
512  
512  
1024  
1024  
512  
512  
2176  
1152  
52  
52  
MOTOROLA  
DSP56007/D  
iii  
DSP56007  
Features  
Peripheral and Support Circuits  
Serial Audio Interface (SAI) includes two receivers and three transmitters,  
master or slave capability, implementation of I S, Sony, and Matsushita audio  
2
protocols; and two sets of SAI interrupt vectors  
Serial Host Interface (SHI) features single master capability, 10-word receive  
FIFO, and support for 8-, 16-, and 24-bit words  
External Memory Interface (EMI), implemented as a peripheral supporting:  
Page-mode DRAMs (one or two chips): 64 K × 4, 256 K × 4,  
and 4 M × 4 bits  
SRAMs (one to four): 256 K × 8 bits  
Data bus may be 4 or 8 bits wide  
Data words may be 8, 12, 16, 20, or 24 bits wide  
Four dedicated, independent, programmable General Purpose Input/ Output  
(GPIO) lines  
On-chip peripheral registers memory mapped in data memory space  
Three external interrupt request pins  
On-Chip Emulation (OnCE) port for unobtrusive, processor speed-  
independent debugging  
Software-programmable, Phase Lock Loop-based (PLL) frequency synthesizer  
for the core clock  
Power-saving Wait and Stop modes  
Fully static, HCMOS design for operating frequencies down to DC  
80-pin plastic Quad Flat Pack surface-mount package; 14 × 14 × 2.20 mm  
(2.15–2.45 mm range); 0.65 mm lead pitch  
Complete pinout compatibility between DSP56009, DSP56004,  
DSP56004ROM, and DSP56007 for easy upgrades  
5 V power supply  
iv  
DSP56007/D  
MOTOROLA  
DSP56007  
Product Documentation  
PRODUCT DOCUMENTATION  
Table 2 lists the documents that provide a complete description of the DSP56007 and  
are required to design properly with the part. Documentation is available from a local  
Motorola distributor, a Motorola semiconductor sales office, a Motorola Literature  
Distribution Center, or through the Motorola DSP home page on the Internet (the  
source for the latest information).  
Table 2 DSP56007 Documentation  
Document Name  
Description of Content  
Order Number  
DSP56000 Family  
Manual  
DSP56000 core family architecture and the 24-bit DSP56KFAMUM/ AD  
core processor and instruction set  
DSP56007 User’s  
Manual  
Memory, peripherals, and interfaces  
DSP56007UM/ AD  
DSP56007 Technical  
Data  
Electrical and timing specifications,  
and pin and package descriptions  
DSP56007/ D  
MOTOROLA  
DSP56007/D  
v
 
DSP56007  
Product Documentation  
vi  
DSP56007/D  
MOTOROLA  
SECTION 1  
SIGNAL/CONNECTION DESCRIPTIONS  
SIGNAL GROUPINGS  
The DSP56007 input and output signals are organized into the nine functional  
groups, as shown in Table 1-1. The individual signals are illustrated in Figure 1-1.  
Table 1-1 DSP56007 Functional Group Signal Allocations  
Functional Group  
Number of Signals  
Detailed Description  
Power (V  
)
9
13  
3
Table 1-2  
Table 1-3  
Table 1-4  
CC  
Ground (GND)  
Phase Lock Loop (PLL)  
External Memory Interface (EMI)  
29  
Table 1-5 and  
Table 1-6  
Interrupt and Mode Control  
Serial Host Interface (SHI)  
Serial Audio Interface (SAI)  
4
5
9
Table 1-7  
Table 1-8  
Table 1-9 and  
Table 1-10  
General Purpose Input/ Output (GPIO)  
On-Chip Emulation (OnCE) port  
Total  
4
4
Table 1-11  
Table 1-12  
80  
MOTOROLA  
DSP56007/D  
1-1  
 
Signal/Connection Descriptions  
Signal Groupings  
Power Inputs  
DSP56007  
V
CCP  
3
2
V
CCQ  
MOSI/HA0  
V
CCA  
V
V
CCD  
SS/HA2  
MISO/SDA  
SCK/SCL  
HREQ  
Port B  
Serial Host  
Interface  
2
CCS  
Ground  
GND  
P
3
4
GND  
Q
GND  
A
D
2
3
GND  
GND  
Port C  
Serial Audio  
Interface  
S
WSR  
PCAP  
PINIT  
SCKR  
PLL  
Rec0  
Rec1  
SDI0  
SDI1  
EXTAL  
WST  
SCKT  
SDO0  
SDO1  
SDO2  
15  
8
MA0–MA14  
MD0–MD7  
Tran0  
Tran1  
Tran2  
MA15/MCS3  
MA16/MCS2/MCAS  
MA17/MCS1/MRAS  
MCS0  
Port A  
External Memory  
Interface  
4
GPIO  
GPIO0–GPIO3  
MWR  
MRD  
DSCK/OS1  
DSI/OS0  
DSO  
MODC/NMI  
Mode/Interrupt  
Control  
MODB/IRQB  
MODA/IRQA  
RESET  
OnCE™  
Port  
Reset  
DR  
80 signals  
AA0249G  
Figure 1-1 DSP56007 SIgnals  
1-2  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
Power  
POWER  
Table 1-2 Power Inputs  
Power Name  
Description  
V
V
V
V
V
PLL Power—V  
provides isolated power for the Phase Lock Loop (PLL). The  
CCP  
CCQ  
CCA  
CCD  
CCS  
CCP  
voltage should be well-regulated and the input should be provided with an  
extremely low impedance path to the V power rail.  
CC  
Quiet Power—V  
provides isolated power for the internal processing logic. This  
CCQ  
input must be tied externally to all other chip power inputs. The user must provide  
adequate external decoupling capacitors.  
Address Bus Power—V  
I/ O drivers. This input must be tied externally to all other chip power inputs. The  
user must provide adequate external decoupling capacitors.  
provides isolated power for sections of the address bus  
CCA  
Data Bus Power—V  
provides isolated power for sections of the data bus I/ O  
CCD  
drivers. This input must be tied externally to all other chip power inputs. The user  
must provide adequate external decoupling capacitors.  
Serial Interface Power—V  
provides isolated power for the SHI and SAI. This  
CCS  
input must be tied externally to all other chip power inputs. The user must provide  
adequate external decoupling capacitors.  
GROUND  
Table 1-3 Grounds  
Ground Name  
Description  
GND  
PLL Ground—GND is ground dedicated for PLL use. The connection should be  
P
P
provided with an extremely low-impedance path to ground. V  
should be  
CCP  
bypassed to GND by a 0.47 µF capacitor located as close as possible to the chip  
P
package.  
GND  
GND  
GND  
GND  
Quiet Ground—GND provides isolated ground for the internal processing logic.  
This connection must be tied externally to all other chip ground connections. The  
user must provide adequate external decoupling capacitors.  
Q
A
D
S
Q
Address Bus Ground—GND provides isolated ground for sections of the address  
A
bus I/ O drivers. This connection must be tied externally to all other chip ground  
connections. The user must provide adequate external decoupling capacitors.  
Data Bus Ground—GND provides isolated ground for sections of the data bus I/ O  
D
drivers. This connection must be tied externally to all other chip ground  
connections. The user must provide adequate external decoupling capacitors.  
Serial Interface Ground—GND provides isolated ground for the SHI and SAI. This  
S
connection must be tied externally to all other chip ground connections. The user  
must provide adequate external decoupling capacitors.  
MOTOROLA  
DSP56007/D  
1-3  
Signal/Connection Descriptions  
Clock and PLL signals  
CLOCK AND PLL SIGNALS  
Note: While the PLL on this DSP is identical to the PLL described in the DSP56000  
Family Manual, two of the signals have not been implemented externally.  
Specifically, there is no PLOCK signal or CKOUT signal available. Therefore,  
the internal clock is not directly accessible and there is no external indication  
that the PLL is locked. These signals were omitted to reduce the number of  
pins and allow this DSP to be put in a smaller, less expensive package.  
Table 1-4 Clock and PLL Signals  
State  
during  
Reset  
Signal  
Name  
Signal  
Type  
Signal Description  
EXTAL  
Input  
Input  
External Clock/Crystal—This input should be connected to an  
external clock source. If the PLL is enabled, this signal is  
internally connected to the on-chip PLL. The PLL can multiply  
the frequency on the EXTAL pin to generate the internal DSP  
clock. The PLL output is divided by two to produce a four-phase  
instruction cycle clock, with the minimum instruction time being  
two PLL output clock periods. If the PLL is disabled, EXTAL is  
divided by two to produce the four-phase instruction cycle clock.  
PCAP  
Input  
Input  
PLL Filter Capacitor—This input is used to connect a high-  
quality (high “Q” factor) external capacitor needed for the PLL  
filter. The capacitor should be as close as possible to the DSP with  
heavy, short traces connecting one terminal of the capacitor to  
PCAP and the other terminal to V  
. The required capacitor  
CCP  
value is specified in Table 2-6 on page 2-6.  
Note:  
When short lock time is critical, low dielectric absorption  
capacitors such as polystyrene, polypropylene, or teflon are  
recommended.  
If the PLL is not used (i.e., it remains disabled at all times), there is  
no need to connect a capacitor to the PCAP pin. It may remain  
unconnected, or be tied to either V or GND.  
cc  
PINIT  
Input  
Input  
PLL Initialization (PINIT)—During the assertion of hardware  
reset, the value on the PINIT line is written into the PEN bit of the  
PCTL register. When set, the PEN bit enables the PLL by causing  
it to derive the internal clocks from the PLL voltage controlled  
oscillator output. When the bit is cleared, the PLL is disabled and  
the DSP’s internal clocks are derived from the clock connected to  
the EXTAL signal. After hardware RESET is deasserted, the  
PINIT signal is ignored.  
1-4  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
External Memory Interface (EMI)  
EXTERNAL MEMORY INTERFACE (EMI)  
Table 1-5 External Memory Interface (EMI) Signals  
Signal  
Type  
State during  
Reset  
Signal Name  
Signal Description  
MA0–MA14  
Output  
Output  
Table 1-6 Memory Address Lines 0–14—The MA0–MA10 lines provide  
the multiplexed row/ column addresses for DRAM accesses.  
Lines MA0–MA14 provide the non-multiplexed address lines  
0–14 for SRAM accesses.  
MA15  
Table 1-6 Memory Address Line 15 (MA15)—This line functions as the  
non-multiplexed address line 15.  
MCS3  
MA16  
Memory Chip Select 3 (MCS3)—For SRAM accesses, this line  
functions as memory chip select 3.  
Output  
Table 1-6 Memory Address Line 16 (MA16)—This line functions as the  
non-multiplexed address line 16 or as memory chip select 2 for  
SRAM accesses.  
MCS2  
Memory Chip Select 2 (MCS2)—For SRAM access, this line  
functions as memory chip select 2.  
MCAS  
Memory Column Address Strobe (MCAS)—This line  
functions as the Memory Column Address Strobe (MCAS)  
during DRAM accesses.  
MA17  
MCS1  
MRAS  
Output  
Table 1-6 Memory Address Line 17 (MA17)—This line functions as the  
non-multiplexed address line 17.  
Memory Chip Select 1 (MCS1)—This line functions as chip  
select 1 for SRAM accesses.  
Memory Row Address Strobe (MRAS)—This line also  
functions as the Memory Row Address Strobe during DRAM  
accesses.  
MCS0  
MWR  
MRD  
Output  
Output  
Output  
Table 1-6 Memory Chip Select 0—This line functions as memory chip  
select 0 for SRAM accesses.  
Table 1-6 Memory Write Strobe—This line is asserted when writing to  
external memory.  
Table 1-6 Memory Read Strobe—This line is asserted when reading  
external memory.  
MOTOROLA  
DSP56007/D  
1-5  
Signal/Connection Descriptions  
External Memory Interface (EMI)  
Table 1-5 External Memory Interface (EMI) Signals (Continued)  
Signal  
Type  
State during  
Reset  
Signal Name  
Signal Description  
MD0–MD7  
Bidi-  
rectional  
Tri-stated Data Bus—These signals provide the bidirectional data bus for  
EMI accesses. They are inputs during reads from external  
memory, outputs during writes to external memory, and tri-  
stated if no external access is taking place. If the data bus width  
is defined as four bits wide, only signals MD0–MD3 are active,  
while signals MD4–MD7 remain tri-stated. While tri-stated,  
MD0–MD7 are disconnected from the pins and do not require  
external pull-ups.  
.
Table 1-6 EMI States during Reset and Stop States  
Operating Mode  
Signal  
Hardware Reset Software Reset Individual Reset  
Stop Mode  
MA0–MA14  
MA15  
Driven High  
Driven High  
Previous State  
Driven High  
Previous State  
Previous State  
Previous State  
Previous State  
MCS3  
MA16  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Previous State  
Previous State  
MCS2  
Driven High  
Driven High  
Driven High  
Driven High  
MCAS:  
DRAM refresh disabled  
DRAM refresh enabled  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven Low  
Driven High  
Driven High  
MA17  
MCS1  
Driven High  
Driven High  
Driven High  
Driven High  
Previous State  
Driven High  
Previous State  
Driven High  
MRAS:  
DRAM refresh disabled  
DRAM refresh enabled  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven Low  
Driven High  
Driven High  
MCS0  
MWR  
MRD  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
Driven High  
1-6  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
Interrupt and Mode Control  
INTERRUPT AND MODE CONTROL  
The interrupt and mode control signals select the DSPs operating mode as it comes  
out of hardware reset and receives interrupt requests from external sources after  
reset.  
Table 1-7 Interrupt and Mode Control Signals  
Signal  
Type  
State during  
Reset  
Signal Name  
Signal Description  
MODA  
Input  
Input (MODA) Mode Select A—This input signal has three functions:  
to work with the MODB and MODC signals to select  
the DSP’s initial operating mode,  
to allow an external device to request a DSP  
interrupt after internal synchronization, and  
to turn on the internal clock generator when the DSP  
is in the Stop processing state, causing the DSP to  
resume processing.  
MODA is read and internally latched in the DSP when the  
processor exits the Reset state. The logic state present on the  
MODA, MODB, and MODC pins selects the initial DSP  
operating mode. Several clock cycles after leaving the Reset  
state, the MODA signal changes to the external interrupt  
request IRQA. The DSP operating mode can be changed by  
software after reset.  
IRQA  
External Interrupt Request A (IRQA)—The IRQA input is a  
synchronized external interrupt request. It may be  
programmed to be level-sensitive or negative-edge-  
triggered. When the signal is edge-triggered, triggering  
occurs at a voltage level and is not directly related to the fall  
time of the interrupt signal. However, as the fall time of the  
interrupt signal increases, the probability that noise on IRQA  
will generate multiple interrupts also increases.  
While the DSP is in the Stop mode, asserting IRQA gates on  
the oscillator and, after a clock stabilization delay, enables  
clocks to the processor and peripherals. Hardware reset  
causes this input to function as MODA.  
MOTOROLA  
DSP56007/D  
1-7  
Signal/Connection Descriptions  
Interrupt and Mode Control  
Table 1-7 Interrupt and Mode Control Signals (Continued)  
Signal  
Type  
State during  
Reset  
Signal Name  
Signal Description  
MODB  
Input  
Input (MODB) Mode Select B—This input signal has two functions:  
to work with the MODA and MODC signals to select  
the DSP’s initial operating mode, and  
to allow an external device to request a DSP  
interrupt after internal synchronization.  
MODB is read and internally latched in the DSP when the  
processor exits the Reset state. The logic state present on the  
MODA, MODB, and MODC pins selects the initial DSP  
operating mode. Several clock cycles after leaving the Reset  
state, the MODB signal changes to the external interrupt  
request IRQB. The DSP operating mode can be changed by  
software after reset.  
External Interrupt Request B (IRQB)—The IRQB input is a  
synchronized external interrupt request. It may be  
IRQB  
programmed to be level-sensitive or negative-edge-  
triggered. When the signal is edge-triggered, triggering  
occurs at a voltage level and is not directly related to the fall  
time of the interrupt signal. However, as the fall time of the  
interrupt signal increases, the probability that noise on IRQB  
will generate multiple interrupts also increases. Hardware  
reset causes this input to function as MODB.  
1-8  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
Interrupt and Mode Control  
Table 1-7 Interrupt and Mode Control Signals (Continued)  
Signal  
Type  
State during  
Reset  
Signal Name  
Signal Description  
MODC  
Input,  
edge-  
Input (MODC) Mode Select C—This input signal has two functions:  
triggered  
to work with the MODA and MODB signals to select  
the DSP’s initial operating mode, and  
to allow an external device to request a DSP  
interrupt after internal synchronization.  
MODC is read and internally latched in the DSP when the  
processor exits the Reset state. The logic state present on the  
MODA, MODB, and MODC pins selects the initial DSP  
operating mode. Several clock cycles after leaving the Reset  
state, the MODC signal changes to the Non-Maskable  
Interrupt request, NMI. The DSP operating mode can be  
changed by software after reset.  
NMI  
Non-Maskable Interrupt Request—The NMI input is a  
negative-edge-triggered external interrupt request. This is a  
level 3 interrupt that can not be masked out. Triggering  
occurs at a voltage level and is not directly related to the fall  
time of the interrupt signal. However, as the fall time of the  
interrupt signal increases, the probability that noise on NMI  
will generate multiple interrupts also increases. Hardware  
reset causes this input to function as MODC.  
RESET  
input  
active  
RESET—This input causes a direct hardware reset of the  
processor. When RESET is asserted, the DSP is initialized and  
placed in the Reset state. A Schmitt-trigger input is used for  
noise immunity. When the reset signal is deasserted, the initial  
DSP operating mode is latched from the MODA, MODB, and  
MODC signals. The DSP also samples the PINIT signal and  
writes its status into the PEN bit of the PLL Control Register.  
When the DSP comes out of the Reset state, deassertion  
occurs at a voltage level and is not directly related to the rise  
time of the RESET signal. However, the probability that  
noise on RESET will generate multiple resets increases with  
increasing rise time of the RESET signal.  
For proper hardware reset to occur, the clock must be active,  
since a number of clock ticks are required for proper  
propagation of the hardware Reset state.  
MOTOROLA  
DSP56007/D  
1-9  
Signal/Connection Descriptions  
Serial Host Interface (SHI)  
SERIAL HOST INTERFACE (SHI)  
The Serial Host Interface (SHI) has five I/ O signals, which may be configured to  
2
operate in either SPI or I C mode. Table 1-8 lists the SHI signals.  
Table 1-8 Serial Host Interface (SHI) signals  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
SCK  
Input or  
Output  
Tri-stated  
SPI Serial Clock (SCK)—The SCK signal is an output  
when the SPI is configured as a master, and a Schmitt-  
trigger input when the SPI is configured as a slave. When  
the SPI is configured as a master, the SCK signal is  
derived from the internal SHI clock generator. When the  
SPI is configured as a slave, the SCK signal is an input,  
and the clock signal from the external master  
synchronizes the data transfer. The SCK signal is ignored  
by the SPI if it is defined as a slave and the Slave Select  
(SS) signal is not asserted. In both the master and slave  
SPI devices, data is shifted on one edge of the SCK signal  
and is sampled on the opposite edge where data is stable.  
Edge polarity is determined by the SPI transfer protocol.  
2
SCL  
Input or  
Output  
I C Serial Clock (SCL)—SCL carries the clock for bus  
2
transactions in the I C mode. SCL is a Schmitt-trigger  
input when configured as a slave, and an open-drain  
output when configured as a master. SCL should be  
connected to V through a pull-up resistor. The  
CC  
maximum allowed internally generated bit clock  
Fosc  
Fosc  
frequency is  
/
for the SPI mode and  
/ for the  
4
6
2
I C mode where F is the clock on EXTAL. The  
osc  
maximum allowed externally generated bit clock  
Fosc  
Fosc  
frequency is  
/
for the SPI mode and  
/ for the  
3
5
2
I C mode. This signal is tri-stated during hardware reset,  
software reset, or individual reset (no need for external  
pull-up in this state).  
1-10  
DSP56007/D  
MOTOROLA  
 
Signal/Connection Descriptions  
Serial Host Interface (SHI)  
Table 1-8 Serial Host Interface (SHI) signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
MISO  
Input or  
Output  
Tri-stated  
SPI Master-In-Slave-Out (MISO)—When the SPI is  
configured as a master, MISO is the master data input  
line. The MISO signal is used in conjunction with the  
MOSI signal for transmitting and receiving serial data.  
This signal is a Schmitt-trigger input when configured  
for the SPI Master mode, an output when configured for  
the SPI Slave mode, and tri-stated if configured for the  
SPI Slave mode when SS is deasserted.  
2
2
SDA  
Input or  
Output  
I C Serial Data and Acknowledge (SDA)—In I C mode,  
SDA is a Schmitt-trigger input when receiving and an  
open-drain output when transmitting. SDA should be  
connected to V through a pull-up resistor. SDA carries  
CC  
2
the data for I C transactions. The data in SDA must be  
stable during the high period of SCL. The data in SDA is  
only allowed to change when SCL is low. When the bus  
is free, SDA is high. The SDA line is only allowed to  
change during the time SCL is high in the case of Start  
and Stop events. A high-to-low transition of the SDA line  
while SCL is high is an unique situation, and is defined  
as the Start event. A low-to-high transition of SDA while  
SCL is high is an unique situation, and is defined as the  
Stop event.  
Note:  
This line is tri-stated during hardware reset, software  
reset, or individual reset (no need for external pull-up  
in this state).  
MOSI  
Input or  
Output  
Tri-stated  
SPI Master-Out-Slave-In (MOSI)—When the SPI is  
configured as a master, MOSI is the master data output  
line. The MOSI signal is used in conjunction with the  
MISO signal for transmitting and receiving serial data.  
MOSI is the slave data input line when the SPI is  
configured as a slave. This signal is a Schmitt-trigger  
input when configured for the SPI Slave mode.  
2
HA0  
Input  
I C Slave Address 0 (HA0)—This signal uses a Schmitt-  
2
trigger input when configured for the I C mode. When  
2
configured for I C Slave mode, the HA0 signal is used to  
form the slave device address. HA0 is ignored when the  
2
SHI is configured for the I C Master mode.  
Note:  
This signal is tri-stated during hardware reset,  
software reset, or individual reset (no need for  
external pull-up in this state).  
MOTOROLA  
DSP56007/D  
1-11  
Signal/Connection Descriptions  
Serial Host Interface (SHI)  
Table 1-8 Serial Host Interface (SHI) signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
SS  
Input  
Tri-stated  
SPI Slave Select (SS)—This signal is an active low  
Schmitt-trigger input when configured for the SPI  
mode. When configured for the SPI Slave mode, this  
signal is used to enable the SPI slave for transfer.  
When configured for the SPI Master mode, this  
signal should be kept deasserted. If it is asserted  
while configured as SPI master, a bus error  
condition will be flagged.  
2
I C Slave Address 2 (HA2)—This signal uses a  
HA2  
Input  
2
Schmitt-trigger input when configured for the I C  
2
mode. When configured for the I C Slave mode, the  
HA2 signal is used to form the slave device address.  
2
HA2 is ignored in the I C Master mode. If SS is  
deasserted, the SHI ignores SCK clocks and keeps  
the MISO output signal in the high-impedance  
state.  
Note:  
This signal is tri-stated during hardware reset,  
software reset, or individual reset (no need for  
external pull-up in this state).  
HREQ  
Input or  
Output  
Tri-stated  
Host Request—This signal is an active low Schmitt-  
trigger input when configured for the Master mode, but  
an active low output when configured for the Slave  
mode. When configured for the Slave mode, HREQ is  
asserted to indicate that the SHI is ready for the next data  
word transfer and deasserted at the first clock pulse of  
the new data word transfer. When configured for the  
Master mode, HREQ is an input and when asserted by  
the external slave device, it will trigger the start of the  
data word transfer by the master. After finishing the data  
word transfer, the master will await the next assertion of  
HREQ to proceed to the next transfer.  
Note:  
This signal is tri-stated during hardware, software,  
individual reset, or when the HREQ[1:0] bits (in the  
HCSR) are cleared (no need for external pull-up in this  
state).  
1-12  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
Serial Audio Interface (SAI)  
SERIAL AUDIO INTERFACE (SAI)  
The SAI is composed of separate receiver and transmitter sections.  
SAI Receiver Section  
Table 1-9 Serial Audio Interface (SAI) Receiver signals  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
SDI0  
Input  
Tri-stated  
Tri-stated  
Tri-stated  
Serial Data Input 0—While in the high impedance  
state, the internal input buffer is disconnected from  
the pin and no external pull-up is necessary. SDI0 is  
the serial data input for receiver 0.  
Note:  
This signal is high impedance during hardware or  
software reset, while receiver 0 is disabled  
(R0EN = 0), or while the DSP is in the Stop state.  
SDI1  
Input  
Serial Data Input 1—While in the high impedance  
state, the internal input buffer is disconnected from  
the pin and no external pull-up is necessary. SDI1 is  
the serial data input for receiver 1.  
Note:  
This signal is high impedance during hardware or  
software reset, while receiver 1 is disabled  
(R1EN = 0), or while the DSP is in the Stop state.  
SCKR  
Input or  
Output  
Receive Serial Clock—SCKR is an output if the  
receiver section is programmed as a master, and a  
Schmitt-trigger input if programmed as a slave. While  
in the high impedance state, the internal input buffer  
is disconnected from the pin and no external pull-up is  
necessary.  
Note:  
SCKR is high impedance if all receivers are  
disabled (individual reset) and during hardware or  
software reset, or while the DSP is in the Stop state.  
MOTOROLA  
DSP56007/D  
1-13  
Signal/Connection Descriptions  
Serial Audio Interface (SAI)  
Table 1-9 Serial Audio Interface (SAI) Receiver signals (Continued)  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
WSR  
Input or  
Output  
Tri-stated  
Word Select Receive (WSR)—WSR is an output if the  
receiver section is configured as a master, and a  
Schmitt-trigger input if configured as a slave. WSR is  
used to synchronize the data word and to select the  
left/ right portion of the data sample.  
Note:  
WSR is high impedance if all receivers are disabled  
(individual reset), during hardware reset, during  
software reset, or while the DSP is in the Stop state.  
While in the high impedance state, the internal  
input buffer is disconnected from the signal and no  
external pull-up is necessary.  
1-14  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
Serial Audio Interface (SAI)  
SAI Transmitter Section  
Table 1-10 Serial Audio Interface (SAI) Transmitter signals  
State  
during  
Reset  
Signal  
Name  
Signal  
Type  
Signal Description  
SDO0  
SDO1  
SDO2  
SCKT  
Output  
Output  
Output  
Driven  
High  
Serial Data Output 0 (SDO0)—SDO0 is the serial output for  
transmitter 0. SDO0 is driven high if transmitter 0 is disabled,  
during individual reset, hardware reset, and software reset,  
or when the DSP is in the Stop state.  
Driven  
High  
Serial Data Output 1 (SDO1)—SDO1 is the serial output for  
transmitter 1. SDO1 is driven high if transmitter 1 is disabled,  
during individual reset, hardware reset and software reset, or  
when the DSP is in the Stop state.  
Driven  
High  
Serial Data Output 2 (SDO2)—SDO2 is the serial output for  
transmitter 2. SDO2 is driven high if transmitter 2 is disabled,  
during individual reset, hardware reset and software reset, or  
when the DSP is in the Stop state.  
Input or  
Output  
Tri-stated  
Serial Clock Transmit (SCKT)—This signal provides the  
clock for the SAI. SCKT can be an output if the transmit  
section is configured as a master, or a Schmitt-trigger input if  
the transmit section is configured as a slave. When the SCKT  
is an output, it provides an internally generated SAI transmit  
clock to external circuitry. When the SCKT is an input, it  
allows external circuitry to clock data out of the SAI.  
Note:  
SCKT is high impedance if all transmitters are disabled  
(individual reset), during hardware reset, software reset, or  
while the DSP is in the Stop state. While in the high  
impedance state, the internal input buffer is disconnected  
from the pin and no external pull-up is necessary.  
WST  
Input or  
Output  
Tri-stated  
Word Select Transmit (WST)—WST is an output if the  
transmit section is programmed as a master, and a Schmitt-  
trigger input if it is programmed as a slave. WST is used to  
synchronize the data word and select the left/ right portion of  
the data sample.  
Note:  
WST is high impedance if all transmitters are disabled  
(individual reset), during hardware or software reset, or  
while the DSP is in the Stop state. While in the high  
impedance state, the internal input buffer is disconnected  
from the pin and no external pull-up is necessary.  
MOTOROLA  
DSP56007/D  
1-15  
Signal/Connection Descriptions  
General Purpose I/O  
GENERAL PURPOSE I/O  
Table 1-11 General Purpose I/ O (GPIO) Signals  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
GPIO0–  
GPIO3  
Standard  
Output,  
Open-drain  
Output, or  
Input  
Disconnected  
GPIO lines can be used for control and handshake  
functions between the DSP and external circuitry.  
Each GPIO line can be configured individually as  
disconnected, open-drain output, standard output,  
or an input.  
Note:  
Hardware reset or software reset configures all  
the GPIO lines as disconnected (external  
circuitry connected to these pins may need pull-  
ups until the pins are configured for operation).  
ON-CHIP EMULATION (OnCETM) PORT  
There are four signals associated with the OnCE port controller and its serial  
interface.  
Table 1-12 On-Chip Emulation Port Signals  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
DSI  
Input  
Output,  
Debug Serial Input (DSI)—The DSI signal is the signal  
Driven Low through which serial data or commands are provided to the  
OnCE port controller. The data received on the DSI signal  
will be recognized only when the DSP has entered the  
Debug mode of operation. Data must have valid TTL logic  
levels before the serial clock falling edge. Data is always  
shifted into the OnCE port Most Significant Bit (MSB) first.  
OS0  
Output  
Operating Status 0 (OS0)—When the DSP is not in the Debug  
mode, the OS0 signal provides information about the DSP  
status if it is an output and used in conjunction with the OS1  
signal. When switching from output to input, the signal is  
tri-stated.  
Note:  
If the OnCE port is in use, an external pull-down resistor  
should be attached to the DSI/ OS0 signal. If the OnCE  
port is not in use, the resistor is not required.  
1-16  
DSP56007/D  
MOTOROLA  
Signal/Connection Descriptions  
TM  
On-Chip Emulation (OnCE ) Port  
Table 1-12 On-Chip Emulation Port Signals (Continued)  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
DSCK  
Input  
Output,  
Debug Serial Clock (DSCK)—The DSCK/ OS1 signal,  
Driven Low when an input, is the signal through which the serial clock  
is supplied to the OnCE port. The serial clock provides  
pulses required to shift data into and out of the OnCE port.  
Data is clocked into the OnCE port on the falling edge and  
is clocked out of the OnCE port on the rising edge.  
OS1  
Output  
Operating Status 1 (OS1)—If the OS1 signal is an output  
and used in conjunction with the OS0 signal, it provides  
information about the DSP status when the DSP is not in the  
Debug mode. The debug serial clock frequency must be no  
greater than 1/ 8 of the processor clock frequency. The  
signal is tri-stated when it is changing from input to output.  
Note:  
If the OnCE port is in use, an external pull-down resistor  
should be attached to the DSCK/ OS1 pin. If the OnCE  
port is not in use, the resistor is not required.  
DSO  
Output  
Driven High Debug Serial Output (DSO)—The DSO line provides the  
data contained in one of the OnCE port controller registers  
as specified by the last command received from the  
command controller. The Most Significant Bit (MSB) of the  
data word is always shifted out of the OnCE port first. Data  
is clocked out of the OnCE port on the rising edge of DSCK.  
The DSO line also provides acknowledge pulses to the  
external command controller. When the DSP enters the  
Debug mode, the DSO line will be pulsed low to indicate  
that the OnCE port is waiting for commands. After  
receiving a read command, the DSO line will be pulsed low  
to indicate that the requested data is available and the  
OnCE port is ready to receive clock pulses in order to  
deliver the data. After receiving a write command, the DSO  
line will be pulsed low to indicate that the OnCE port is  
ready to receive the data to be written; after the data is  
written, another acknowledge pulse will be provided.  
Note:  
During hardware reset and when idle, the DSO line is  
held high.  
MOTOROLA  
DSP56007/D  
1-17  
Signal/Connection Descriptions  
TM  
On-Chip Emulation (OnCE ) Port  
Table 1-12 On-Chip Emulation Port Signals (Continued)  
Signal  
Name  
Signal  
Type  
State during  
Reset  
Signal Description  
DR  
Input  
Input  
Debug Request (DR)—The debug request input provides a  
means of entering the Debug mode of operation. This signal,  
when asserted (pulled low), will cause the DSP to finish the  
current instruction being executed, to save the instruction  
pipeline information, to enter the Debug mode, and to wait  
for commands to be entered from the debug serial input line.  
While the DSP is in the Debug mode, the user can reset the  
OnCE port controller by asserting DR, waiting for an  
acknowledge pulse on DSO, and then deasserting DR. It  
may be necessary to reset the OnCE port controller in cases  
where synchronization between the OnCE port controller  
and external circuitry is lost. Asserting DR when the DSP is  
in the Wait or the Stop mode, and keeping it asserted until  
an acknowledge pulse in the DSP is produced, puts the DSP  
into the Debug mode. After receiving the acknowledge  
pulse, DR must be deasserted before sending the first OnCE  
port command. For more information, see Methods Of  
Entering The Debug Mode in the DSP56000 Family  
Manual.  
Note:  
If the OnCE port is not in use, an external pull-up resistor  
should be attached to the DR line.  
1-18  
DSP56007/D  
MOTOROLA  
SECTION 2  
SPECIFICATIONS  
INTRODUCTION  
The DSP56007 is fabricated in high density CMOS with Transistor-Transistor Logic  
(TTL) compatible inputs and outputs.  
MAXIMUM RATINGS  
CAUTION  
This device contains circuitry protecting  
against damage due to high static voltage or  
electrical fields; however, normal precautions  
should be taken to avoid exceeding maximum  
voltage ratings. Reliability is enhanced if  
unused inputs are tied to an appropriate logic  
voltage level (e.g., either GND or V ).  
CC  
Note: In the calculation of timing requirements, adding a maximum value of one  
specification to a minimum value of another specification does not yield a  
reasonable sum. A maximum specification is calculated using a worst case  
variation of process parameter values in one direction. The minimum  
specification is calculated using the worst case for the same parameters in the  
opposite direction. Therefore, a “maximum” value for a specification will  
never occur in the same device that has a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that  
can never exist.  
MOTOROLA  
DSP56007/D  
2-1  
Specifications  
Thermal characteristics  
Table 2-1 Maximum Ratings (GND = 0 V )  
dc  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
V
–0.3 to +7.0  
V
V
CC  
All Input Voltages  
V
(GND – 0.25) to (V + 0.25)  
IN  
CC  
Current Drain per Pin excluding V and GND  
I
10  
mA  
CC  
Operating Temperature Range:  
T
J
50 and 66 MHz  
88 MHz  
–40 to +125  
–40 to +110  
°C  
°C  
Storage Temperature  
T
–55 to +125  
°C  
STG  
THERMAL CHARACTERISTICS  
Table 2-2 Thermal Characteristics  
3
4
Characteristic  
Symbol  
QFP Value  
QFP Value  
Unit  
1
Junction-to-ambient thermal resistance  
R
or θ  
or θ  
61.5  
11.8  
2.7  
37  
˚C/ W  
˚C/ W  
˚C/ W  
θJA  
JA  
JC  
2
Junction-to-case thermal resistance  
R
θJC  
Thermal characterization parameter  
Ψ
JT  
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal-single-sided  
Printed Circuit Board per SEMI G38-87 in natural convection.(SEMI is Semiconductor Equipment  
and Materials International, 805 East Middlefield Rd., Mountain View, CA 94043, (415) 964-5111)  
2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-  
88, with the exception that the cold plate temperature is used for the case temperature.  
3. These are measured values. See note 1 for test board conditions.  
4. These are measured values; testing is not complete. Values were measured on a non-standard  
four-layer thermal test board (two internal planes) at one watt in a horizontal configuration.  
2-2  
DSP56007/D  
MOTOROLA  
Specifications  
DC Electrical Characteristics  
DC ELECTRICAL CHARACTERISTICS  
Table 2-3 DC Electrical Characteristics  
50 MHz  
66 MHz  
88 MHz  
Unit  
Characteristics  
Symbol  
Min Typ Max Min Typ Max Min Typ Max  
Supply voltage  
Input high voltage  
V
4.75 5.0 5.25 4.75 5.0 5.25 4.75 5.0 5.25  
V
CC  
EXTAL  
RESET  
MODA, MODB,  
MODC  
SHI inputs  
V
V
V
4.0  
2.5  
3.5  
V
V
V
4.0  
2.5  
3.5  
V
V
V
4.0  
2.5  
3.5  
V
V
V
V
V
V
IHC  
IHR  
IHM  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
1
V
0.7 ×  
V
V
0.7 ×  
V
V
0.7 ×  
V
V
V
V
IHS  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
CC  
CC  
CC  
All other inputs  
V
2.0  
2.0  
2.0  
IH  
Input low voltage  
EXTAL  
MODA, MODB,  
MODC  
V
–0.5  
–0.5  
0.4  
2.0  
–0.5  
–0.5  
0.4  
2.0  
–0.5  
–0.5  
0.4  
2.0  
V
V
ILC  
V
ILM  
1
SHI inputs  
V
–0.5  
–0.5  
0.3 × –0.5  
0.3 × –0.5  
0.3 ×  
V
V
ILS  
V
V
V
CC  
CC  
CC  
All other inputs  
V
0.8  
–0.5  
–1  
0.8  
–0.5  
–1  
0.8  
1
IL  
Input leakage current  
I
IN  
EXTAL, RESET,  
MODA, MODB,  
MODC, DR  
–1  
1
1
µA  
Other Input Pins  
(@ 2.4 V/ 0.4 V)  
–10  
–10  
2.4  
10  
10  
0.4  
–10  
–10  
2.4  
10  
10  
0.4  
–10  
–10  
2.4  
10  
10  
0.4  
µA  
µA  
V
High impedance (off-state)  
input current (@ 2.4 V / 0.4 V)  
I
TSI  
Output high voltage  
V
OH  
(I  
= –0.4 mA)  
OH  
Output low voltage  
(I = 3.2 mA)  
V
V
OL  
OL  
SCK/ SCL I = 6.7 mA  
OL  
MISO/ SDA I = 6.7 mA  
OL  
HREQ I = 6.7 mA  
OL  
Internal Supply Current  
4
4
4
Normal mode  
Wait mode  
Stop mode  
I
80 105  
14  
5
110 130  
18  
5
147 169  
24  
5
mA  
mA  
µA  
CCI  
I
25  
110  
30  
110  
33  
110  
CCW  
2
I
CCS  
MOTOROLA  
DSP56007/D  
2-3  
Specifications  
AC Electrical Characteristics  
Table 2-3 DC Electrical Characteristics (Continued)  
50 MHz  
66 MHz  
88 MHz  
Characteristics  
Symbol  
Unit  
Min Typ Max Min Typ Max Min Typ Max  
PLL supply current  
0.7  
10  
1.1  
1.0  
10  
1.5  
1.3  
10  
2.2  
mA  
pF  
3
Input capacitance  
C
IN  
Notes: 1. The SHI inputs are: MOSI/ HA0, SS/ HA2, MISO/ SDA, SCK/ SCL, and HREQ.  
2. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). PLL signals are  
disabled during Stop state.  
3. Periodically sampled and not 100% tested  
4. Maximum values are derived using the methodology described in Section 4. Actual maximums are  
application dependent and may vary widely from these numbers.  
AC ELECTRICAL CHARACTERISTICS  
The timing waveforms in the AC Electrical Characteristics are tested with a V  
IL  
maximum of 0.5 V and a V minimum of 2.4 V for all pins, except EXTAL, RESET,  
IH  
MODA, MODB, MODC, and SHI pins (MOSI/ HA0, SS/ HA2, MISO/ SDA, SCK/  
SCL, HREQ). These pins are tested using the input levels set forth in the DC Electrical  
Characteristics. AC timing specifications that are referenced to a device input signal  
are measured in production with respect to the 50% point of the respective input  
signals transition. DSP56007 output levels are measured with the production test  
machine V and V  
reference levels set at 0.8 V and 2.0 V, respectively.  
OL  
OH  
All output delays are given for a 50 pF load unless otherwise specified.  
For load capacitance greater than 50 pF, the drive capability of the output pins  
typically decreases linearly:  
1. At 1.5 ns per 10 pF of additional capacitance at all output pins except  
MOSI/ HA0, MISO/ SDA, SCK/ SCL, HREQ  
2. At 1.0 ns per 10 pF of additional capacitance at output pins MOSI/ HA0,  
MISO/ SDA, SCK/ SCL, HREQ (in SPI mode only)  
2-4  
DSP56007/D  
MOTOROLA  
Specifications  
Internal Clocks  
INTERNAL CLOCKS  
For each occurrence of T , T , T , or I , substitute with the numbers in Table 2-4.  
CYC  
C
H
L
Table 2-4 Internal Clocks  
Characteristics  
Internal Operation Frequency  
Symbol  
Expression  
f
Internal Clock High Period  
with PLL disabled  
T
H
ET  
H
with PLL enabled and MF 4  
(Min) 0.48 × T  
(Max) 0.52 × T  
C
C
with PLL enabled and MF > 4  
(Min) 0.467 × T  
(Max) 0.533 × T  
C
C
Internal Clock Low Period  
with PLL disabled  
with PLL enabled and MF 4  
T
T
L
ET  
L
(Min) 0.48 × T  
(Max) 0.52 × T  
(Min) 0.467 × T  
C
C
with PLL enabled and MF > 4  
C
C
(Max) 0.533 × T  
Internal Clock Cycle Time  
Instruction Cycle Time  
(DF / MF) × ET  
C
C
I
2 × T  
C
CYC  
EXTERNAL CLOCK (EXTAL PIN)  
The DSP56007 system clock is externally supplied via the EXTAL pin. Timings shown  
in this document are valid for clock rise and fall times of 3 ns maximum.  
Table 2-5 External Clock (EXTAL Pin)  
50 MHz  
66 MHz  
88 MHz  
No.  
Characteristics  
Sym.  
Unit  
MHz  
ns  
Min Max Min  
Max Min Max  
— Frequency of External Clock (EXTAL Pin) Ef  
0
50  
0
66  
0
88  
1
1
External Clock Input High—EXTAL Pin  
with PLL disabled  
ET  
H
9.3  
7.1  
5.3  
(46.7%–53.3% duty cycle)  
with PLL enabled  
8.5 235500 6.4 235500 4.8 235500 ns  
(42.5%–57.5% duty cycle)  
MOTOROLA  
DSP56007/D  
2-5  
Specifications  
Phase Lock Loop (PLL) Characteristics  
Table 2-5 External Clock (EXTAL Pin) (Continued)  
50 MHz  
66 MHz  
88 MHz  
No.  
Characteristics  
Sym.  
Unit  
Min Max Min  
Max Min Max  
1
2
External Clock Input Low—EXTAL Pin  
with PLL disabled  
ET  
L
9.3  
7.1  
5.4  
ns  
(46.7%–53.3% duty cycle)  
with PLL enabled  
8.5 235500 6.4 235500 4.8 235500 ns  
(42.5%–57.5% duty cycle)  
1
3
External Clock Cycle Time  
with PLL disabled  
with PLL enabled  
ET  
I
C
20  
15.15  
11.4  
ns  
20 409600 15.15 409600 11.4 409600 ns  
1
4
Instruction Cycle Time = I = 2 × T  
cyc  
C
cyc  
with PLL disabled  
40  
30.3  
22.7  
ns  
with PLL enabled  
40 819200 30.3 819200 22.7 819200 ns  
Note:  
1. External Clock Input High and External Clock Input Low are measured at 50% of the input transition.  
EXTAL  
1
2
ET  
ET  
H
L
3
ET  
C
4
AA0250  
Figure 2-1 External Clock Timing  
PHASE LOCK LOOP (PLL) CHARACTERISTICS  
Table 2-6 Phase Lock Loop (PLL) Characteristics  
Characteristics  
Expression  
Min  
Max  
Unit  
1
VCO frequency when PLL enabled  
PLL external capacitor  
MF × Ef  
10  
f
MHz  
1
MF × C  
PCAP  
(PCAP pin to V  
)
@ MF 4  
@ MF > 4  
MF × 340  
MF × 380  
MF × 480  
MF × 970  
pF  
pF  
CCP  
Note:  
1. Cpcap is the value of the PLL capacitor (connected between PCAP pin and V  
) for MF = 1.  
CCP  
The recommended value for Cpcap is 400 pF for MF 4 and 540 pF for MF > 4.  
The maximum VCO frequency is limited to the internal operation frequency, defined in Table 2-4.  
2-6  
DSP56007/D  
MOTOROLA  
Specifications  
RESET, Stop, Mode Select, and Interrupt Timing  
RESET, STOP, MODE SELECT, AND INTERRUPT TIMING  
Table 2-7 Reset, Stop, Mode Select, and Interrupt Timing (C = 50 pF + 2 TTL Loads)  
L
No.  
Characteristics  
Min  
Max  
Unit  
10 Minimum RESET assertion width:  
PLL disabled  
PLL enabled  
25 × T  
2500 × ET  
ns  
ns  
C
1
C
14 Mode Select Setup Time  
15 Mode Select Hold Time  
21  
0
ns  
ns  
ns  
16 Minimum Edge-triggered Interrupt Request Assertion  
Width  
13  
16a Minimum Edge-triggered Interrupt Request  
Deassertation Width  
13  
ns  
ns  
18 Delay from IRQA, IRQB, NMI Assertion to GPIO Valid  
Caused by First Interrupt Instruction Execution  
12 × T + T  
C
H
22 Delay from General Purpose Output Valid to Interrupt  
Request Deassertation for Level Sensitive Fast  
2
Interrupts—If Second Interrupt Instruction is:  
Single Cycle  
Two Cycles  
T – 31  
ns  
L
(2 × T ) + T – 31 ns  
C
L
25 Duration of IRQA Assertion for Recovery from Stop State  
12  
ns  
27 Duration for Level Sensitive IRQA Assertion to ensure  
interrupt service (when exiting “STOP”)  
Stable External Clock, OMR Bit 6 = 1  
Stable External Clock, PCTL Bit 17 = 1  
6 × T + T  
ns  
ns  
C
L
12  
Note:  
1. This timing requirement is sensitive to the quality of the external PLL capacitor connected to the PCAP  
pin. For capacitor values less than or equal to 2 nF, asserting RESET according to this timing requirement  
will ensure proper processor initialization for capacitors with a deltaC/ C less than 0.5%. (This is typical  
for ceramic capacitors.) For capacitor values greater than 2 nF, asserting RESET according to this timing  
requirement will ensure proper processor initialization for capacitors with a deltaC/ C less than 0.01%.  
(This is typical for Teflon, polystyrene, and polypropylene capacitors.) However, capacitors with values  
greater than 2 nF with a deltaC/ C greater than 0.01% may require longer RESET assertion to ensure  
proper initialization.  
2. When using fast interrupts and IRQA and IRQB are defined as level-sensitive, then timing 22 applies to  
prevent multiple interrupt service. To avoid these timing restrictions, the Negative Edge-triggered  
mode is recommended when using fast interrupts. Long interrupts are recommended when using  
Level-sensitive mode.  
VIHR  
RESET  
10  
AA0251  
Figure 2-2 Reset Timing  
MOTOROLA  
DSP56007/D  
2-7  
Specifications  
RESET, Stop, Mode Select, and Interrupt Timing  
RESET  
VIHR  
14  
15  
V
V
IH  
IHM  
MODA, MODB  
MODC  
IRQA, IRQB,  
NMI  
V
V
IL  
ILM  
AA0252  
Figure 2-3 Operating Mode Select Timing  
IRQA, IRQB,  
NMI  
16  
IRQA, IRQB,  
NMI  
16A  
AA0253  
Figure 2-4 External Interrupt Timing (Negative Edge-triggered)  
General  
Purpose  
I/O  
(Output)  
18  
22  
IRQA  
IRQB  
NMI  
General Purpose I/O  
AA0254  
AA0255  
AA0256  
Figure 2-5 External Level-sensitive Fast Interrupt Timing  
25  
IRQA  
Figure 2-6 Recovery from Stop State Using IRQA  
27  
IRQA  
Figure 2-7 Recovery from Stop State Using IRQA Interrupt Service  
2-8  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) DRAM Timing  
EXTERNAL MEMORY INTERFACE (EMI) DRAM TIMING  
(C = 50 pF + 2 TTL Loads)  
L
Table 2-8 External Memory Interface (EMI) DRAM Timing  
50 MHz  
66 MHz  
88 MHz  
Timing  
Mode  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min Max Min Max Min Max  
41 Page Mode Cycle Time  
t
slow  
fast  
4 × T  
3 × T  
80  
60  
61  
46  
45.5  
34.1  
ns  
ns  
PC  
C
C
42 RAS or RD Assertion to  
Data Valid  
t
,
slow  
fast  
7 × T – 16  
124  
84  
90  
60  
63.5 ns  
40.8 ns  
RAC  
C
t
5 × T – 16  
GA  
C
43 CAS Assertion to Data  
Valid  
T
slow  
fast  
3 × T – 10  
50  
30  
35  
20  
24.1 ns  
12.7 ns  
CAC  
C
2 × T – 10  
C
44 Column Address Valid  
to Data Valid  
t
slow 3 ×T + T – 7  
63  
43  
46  
30  
32.8 ns  
21.4 ns  
AA  
C
L
fast  
2 × T + T –  
C L  
7
45 CAS Assertion to Data  
Active  
T
0
0
0
0
ns  
CLZ  
46 RAS Assertion Pulse  
t
slow  
fast  
3 ×T –11  
+ n × 4 × T  
209  
149  
156  
110  
114  
ns  
ns  
RASP  
C
1
Width  
(Page Mode Access  
Only)  
C
2 × T –11  
79.9  
C
+ n × 3 ×T  
C
47 RAS Assertion Pulse  
Width  
t
slow  
fast  
7 × T – 11 129  
95  
65  
68.5  
45.8  
ns  
ns  
RAS  
C
5 × T – 11  
89  
C
(Single Access Only)  
48 RAS or CAS  
Deassertation to RAS  
Assertion  
t
T
,
slow  
fast  
5 × T – 5  
95  
55  
70  
40  
51.8  
29.1  
ns  
ns  
RP  
C
3 × T – 5  
CRP  
C
49 CAS Assertion Pulse  
Width  
T
t
slow  
fast  
3 × T – 10  
50  
30  
35  
20  
24.1  
12.7  
ns  
ns  
CAS  
C
2 × T – 10  
C
50 Last CAS Assertion to  
RAS Deassertation  
(Page Mode Access  
Only)  
slow  
fast  
3 × T – 15  
45  
25  
30  
15  
19.1  
7.7  
ns  
ns  
RSH  
C
2 × T – 15  
C
51  
T
T
,
slow  
fast  
7 × T – 15 125  
91  
61  
64.5  
41.8  
ns  
ns  
RAS or WR Assertion to  
CAS Deassertation  
CSH  
C
5 × T – 15  
85  
CWL  
C
52 RAS Assertion to CAS  
Assertion  
t
slow  
fast  
4 ×T – 13  
67  
47  
47  
32  
32.5  
21.1  
ns  
ns  
RCD  
RAD  
C
3 × T – 13  
C
53 RAS Assertion to  
Column Address Valid  
t
slow  
3 ×T + T – 57  
40  
26.8  
ns  
C
H
13  
fast  
2 ×T + T – 37  
25  
15.4  
ns  
C
H
13  
MOTOROLA  
DSP56007/D  
2-9  
Specifications  
External Memory Interface (EMI) DRAM Timing  
Table 2-8 External Memory Interface (EMI) DRAM Timing (Continued)  
50 MHz  
66 MHz  
88 MHz  
Timing  
Mode  
No.  
Characteristics  
Symbol  
Expression  
T – 5  
Unit  
Min Max Min Max Min Max  
54 CAS Deassertation Pulse  
Width  
T
15  
4
10  
2
6.4  
0.1  
ns  
CP  
C
(Page Mode Access  
Only)  
55 Row Address Valid to  
RAS Assertion  
t
T – 6  
ns  
ASR  
L
(Row Address Setup  
Time)  
56 RAS Assertion to ROW  
Address Not Valid  
(Row Address Hold  
Time)  
t
slow 3 × T + T – 56  
39  
24  
25.8  
14.4  
ns  
ns  
RAH  
C
H
14  
fast  
2 × T + T – 36  
C
H
14  
57 Column Address Valid  
to CAS Assertion  
(Column Address Setup  
Time)  
t
T – 6  
4
2
0.1  
ns  
ASC  
L
58 CAS Assertion to  
Column Address Not  
Valid  
T
T
slow 3 × T + T – 56  
39  
24  
25.8  
14.4  
ns  
ns  
CAH  
C
H
14  
fast  
2 × T + T – 36  
C
H
(Column Address Hold  
Time)  
14  
59  
slow 7 × T + T – 136  
100  
54  
71.2  
37.1  
ns  
ns  
Last CAS Assertion to  
Column Address Not  
Valid (Column Address  
Hold Time)  
CAH  
C
H
14  
fast  
4 × T + T – 76  
C
H
14  
60 RAS Assertion to  
Column Address Not  
Valid  
t
slow 7 × T + T – 136  
100  
69  
71.2  
48.5  
ns  
ns  
AR  
C
H
14  
fast  
5 × T + T – 96  
C
H
14  
61 Column Address Valid  
to RAS Deassertation  
t
slow 3 × T + T – 63  
46  
30  
32.8  
21.2  
ns  
ns  
RAL  
C
L
fast  
7
43  
2 × T + T –  
C
L
7
62 CAS, RAS, RD, or WR  
Deassertation to WR or  
RD Assertion  
t
t
,
slow  
fast  
5 × T – 11  
89  
49  
65  
35  
45.8  
23.1  
ns  
ns  
RCH  
C
3 × T – 11  
RRH  
C
63 CAS or RD  
Deassertation to Data  
Not Valid  
t
,
0
0
0
0
ns  
OFF  
t
GZ  
(Data Hold Time)  
2-10  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) DRAM Timing  
Table 2-8 External Memory Interface (EMI) DRAM Timing (Continued)  
50 MHz  
66 MHz  
88 MHz  
Timing  
Mode  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min Max Min Max Min Max  
64 Random Read or Write  
Cycle Time (Single  
Access Only)  
t
slow  
fast  
12 × T  
240  
98.8  
182  
121  
136.4  
91.0  
ns  
ns  
RC  
C
8 × T  
C
65 WR Deassertation to  
CAS Assertion  
t
slow  
fast  
9 × T – 11 169  
125  
80  
91.3  
57.2  
ns  
ns  
RCS  
C
6 × T – 11 109  
C
66 CAS Assertion to WR  
Deassertation  
t
slow  
fast  
3 × T – 13  
47  
27  
32  
17  
21.1  
9.7  
ns  
ns  
WCH  
C
2 × T – 13  
C
67 Data Valid to CAS  
Assertion  
t
T – 6  
4
2
0.1  
ns  
DS  
L
(Data Setup Time)  
68 CAS Assertion to Data  
Not Valid (Data Hold  
Time)  
t
slow 3 × T + T – 56  
39  
24  
25.8  
14.4  
ns  
ns  
DH  
C
H
14  
fast  
2 × T + T – 36  
C
H
14  
69 RAS Assertion to Data  
Not Valid  
t
t
slow 7 × T + T – 136  
100  
69  
71.2  
48.5  
ns  
ns  
DHR  
C
H
14  
fast  
5 × T + T – 96  
C
H
14  
70 WR Assertion to CAS  
Assertion  
slow  
fast  
4 × T – 14  
66  
46  
47  
31  
31.4  
20.1  
ns  
ns  
WCS  
C
3 × T – 14  
C
71 WR Assertion Pulse  
Width (Single Cycle  
Only)  
t
slow  
fast  
7 × T – 9  
131  
91  
97  
67  
70.5  
47.8  
ns  
ns  
WP  
C
5 × T – 9  
C
72  
t
slow  
fast  
7 × T – 15 125  
91  
61  
64.5  
41.8  
ns  
ns  
RAS Assertion to WR  
Deassertation  
WCR  
C
5 × T – 15  
85  
C
(Single Cycle Only)  
73 WR Assertion to Data  
Active  
slow 3 × T + T – 57  
40  
25  
26.8  
15.4  
ns  
ns  
C
H
13  
fast  
2 × T + T – 37  
C
H
13  
74 RD or WR Assertion to  
RAS Deassertation  
t
t
,
slow  
fast  
7 × T – 13 127  
93  
63  
66.5  
43.8  
ns  
ns  
ROH  
C
5 × T – 13  
87  
RWL  
C
(Single Cycle Only)  
Note:  
1. n is the number of successive accesses. n = 2, 3, 4, or 6.  
MOTOROLA  
DSP56007/D  
2-11  
Specifications  
External Memory Interface (EMI) DRAM Timing  
48  
48  
47  
74  
64  
MRAS  
52  
50  
49  
65  
MCAS  
55  
53  
59  
60  
Row Address  
56  
Last Column Address  
MA0–MA10  
MWR  
57  
62  
44  
61  
43  
MRD  
42  
63  
45  
Data In  
MD0–MD7  
AA0257  
Figure 2-8 DRAM Single Read Cycle  
2-12  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) DRAM Timing  
48  
46  
48  
60  
50  
MRAS  
65  
41  
54  
54  
52  
49  
49  
49  
MCAS  
51  
61  
55  
53  
58  
58  
59  
Row Address  
Col. Address  
Col. Address  
Last Column Address  
MA0–MA10  
56  
57  
62  
44  
57  
44  
57  
MWR  
MRD  
44  
43  
43  
43  
42  
63  
63  
63  
45  
45  
45  
Data In  
Data In  
Data In  
MD0–MD7  
AA0263  
Figure 2-9 DRAM Page Mode Read Cycle  
MOTOROLA  
DSP56007/D  
2-13  
Specifications  
External Memory Interface (EMI) DRAM Timing  
64  
48  
47  
48  
MRAS  
74  
52  
50  
49  
65  
MCAS  
55  
61  
60  
53  
59  
Row Address  
Column Address  
MA0–MA10  
56  
70  
57  
66  
62  
72  
MWR  
MRD  
71  
69  
68  
67  
73  
MD0–MD7  
Data Out  
AA0264  
Figure 2-10 DRAM Single Write Cycle  
2-14  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) DRAM Timing  
48  
46  
48  
60  
50  
MRAS  
65  
41  
54  
54  
52  
49  
49  
49  
MCAS  
51  
61  
55  
53  
58  
58  
59  
MA0–MA10  
Row Address  
Col. Address  
Col. Address  
Last Column Address  
56  
70  
66  
57  
57  
62  
57  
MWR  
MRD  
69  
68  
68  
67  
67  
73  
68  
67  
Data Out  
Data Out  
Data Out  
MD0–MD7  
AA0265  
Figure 2-11 DRAM Page Mode Write Cycle  
MOTOROLA  
DSP56007/D  
2-15  
Specifications  
External Memory Interface (EMI) DRAM Refresh Timing  
EXTERNAL MEMORY INTERFACE (EMI) DRAM REFRESH TIMING  
(C = 50pF + 2 TTL Loads)  
L
Table 2-9 External Memory Interface (EMI) DRAM Refresh Timing  
50 MHz  
66 MHz  
88 MHz  
Timing  
Mode  
No.  
Characteristics  
Sym.  
Exp.  
Unit  
Min Max Min Max Min Max  
81  
t
slow  
fast  
6 × T – 7 113  
84  
61.2  
ns  
ns  
RAS Deassertation to  
RAS Assertion  
RP  
C
1
4 × T – 7  
73  
C
82 CAS Deassertation to  
CAS Assertion  
T
slow  
fast  
5 × T – 7  
93  
53  
71  
49.8  
ns  
ns  
CPN  
C
1
3 × T – 7  
C
83 Refresh Cycle Time  
t
slow  
fast  
13 × T  
260  
180  
197 — 147.7  
ns  
ns  
RC  
C
1
9 × T  
C
84 RAS Assertion Pulse  
Width  
t
slow  
fast  
7 × T – 9 131  
97  
70.5  
ns  
ns  
RAS  
C
1
5 × T – 9  
91  
C
85 RAS Deassertation to  
RAS Assertion for  
t
slow  
fast  
5 × T – 5  
95  
55  
70  
51.8  
ns  
ns  
RP  
C
1
3 × T – 5  
C
2
Refresh Cycle  
86 CAS Assertion to RAS  
Assertion on Refresh  
Cycle  
T
T
T – 7  
13  
8
4.4  
ns  
CSR  
C
87 RAS Assertion to CAS  
Deassertation on  
slow  
fast  
7 × T – 15 125  
91  
64.5  
ns  
ns  
CHR  
RPC  
OFF  
C
1
5 × T – 15 85  
C
Refresh Cycle  
88 RAS Deassertation to  
CAS Assertion on a  
Refresh Cycle  
t
t
slow  
5 × T – 11 89  
65  
45.8  
ns  
ns  
C
1
fast  
3 × T – 11 49  
C
89 CAS Deassertation to  
Data Not Valid  
0
0
0
0
ns  
Note:  
1. Fast mode is not available for operating frequencies above 50 MHz.  
2. This happens when a Refresh Cycle is followed by an Access Cycle.  
2-16  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) SRAM Timing  
83  
81  
84  
87  
85  
MRAS  
88  
82  
MCAS  
86  
89  
MD0–MD7  
Data In  
AA0266  
Figure 2-12 CAS before RAS Refresh Cycle  
EXTERNAL MEMORY INTERFACE (EMI) SRAM TIMING  
(C = 50pF + 2 TTL Loads)  
L
Table 2-10 External Memory Interface (EMI) SRAM Timing  
50 MHz 66 MHz 88 MHz  
Min Max Min Max Min Max  
No.  
Characteristics  
Symbol  
t , t  
Expression  
Unit  
91  
4 × T – 11 +  
69  
50  
34.5  
ns  
Address Valid and CS  
Assertion Pulse Width  
RC WC  
C
Ws × T  
C
92 Address Valid to RD or WR  
Assertion  
t
T + T – 13  
17  
35  
29  
4
55  
25  
10  
23  
19  
2
38  
15  
4.4  
17.7  
11.7  
0.1  
ns  
ns  
ns  
ns  
AS  
C
L
93 RD or WR Assertion Pulse  
Width  
t
2 × T – 5 +  
WP  
C
Ws × T  
C
94 RD or WR Deassertation to  
RD or WR Assertion  
2 × T – 11  
C
95 RD or WR Deassertation to  
Address not Valid  
t
T – 6  
WR  
H
96 Address Valid to Input Data  
Valid  
t
, t  
3 × T + T –15 +  
0
0
24.8 ns  
AA AC  
C
L
Ws × T  
C
97 RD Assertion to Input Data  
Valid  
t
2 × T – 15 +  
7.7  
ns  
ns  
OE  
C
Ws × T  
C
98 RD Deassertation to Data  
Not Valid (Data Hold Time)  
t
0
0
OHZ  
MOTOROLA  
DSP56007/D  
2-17  
Specifications  
External Memory Interface (EMI) SRAM Timing  
Table 2-10 External Memory Interface (EMI) SRAM Timing  
50 MHz 66 MHz 88 MHz  
Min Max Min Max Min Max  
No.  
Characteristics  
Symbol  
, t  
Expression  
Unit  
ns  
99 Address Valid to WR  
Deassertation  
T
3 × T + T –14 + 56  
39  
18  
2
25.8  
12.0  
0.1  
9.7  
CW AW  
C
L
Ws × T  
C
100 Data Setup Time to WR  
Deassertation  
t
(t  
)
T + T – 5 +  
25  
4
ns  
DS DW  
C
L
Ws × T  
C
101 Data Hold Time from WR  
Deassertation  
t
T – 6  
ns  
DH  
H
102 WR Assertion to Data Valid  
103 WR Deassertation to Data  
T + 4  
14  
20  
12  
18  
ns  
H
T + 10  
15.7 ns  
H
1
high impedance  
104 WR Assertion to Data  
Active  
T – 6  
4
2
0.1  
ns  
H
Note:  
1. This value is periodically sampled and not 100% tested.  
MA0–MA14  
MA15/MCS3  
91  
MA16/MCS2/MCAS  
MA17/MCS1/MRAS  
MCS0  
92  
95  
94  
93  
RD  
94  
98  
WR  
97  
96  
Data In  
MD0–MD7  
AA0267  
Figure 2-13 SRAM Read Cycle  
2-18  
DSP56007/D  
MOTOROLA  
Specifications  
External Memory Interface (EMI) SRAM Timing  
MA0–MA14  
MA15/MCS3  
91  
MA16/MCS2/MCAS  
MA17/MCS1/MRAS  
MCS0  
99  
95  
93  
92  
WR  
94  
94  
RD  
100  
102  
103  
Data Out  
MD0–MD7  
104  
101  
AA0268  
Figure 2-14 SRAM Write Cycle  
MOTOROLA  
DSP56007/D  
2-19  
Specifications  
Serial Audio Interface (SAI) Timing  
SERIAL AUDIO INTERFACE (SAI) TIMING  
(C = 50pF + 2 TTL Loads)  
L
Table 2-11 Serial Audio Interface (SAI) Timing  
50 MHz 66 MHz 81 MHz  
Min Max Min Max Min Max  
No.  
Characteristics  
Mode  
Expression  
Unit  
111 Minimum Serial Clock Cycle = master  
(min) slave  
4 × T  
80  
65  
61  
51  
45.5  
39.1  
ns  
ns  
C
t
3 × T + 5  
SAICC  
C
112 Serial Clock High Period  
113 Serial Clock Low Period  
114 Serial Clock Rise/ Fall Time  
master 0.5 × t  
– 8  
32  
23  
22  
18  
14.7  
13.7  
ns  
ns  
SAICC  
slave  
0.35 × t  
SAICC  
master 0.5 × t  
– 8  
32  
23  
22  
18  
14.8  
13.7  
ns  
ns  
SAICC  
slave  
0.35 × t  
SAICC  
master  
slave  
8
8
10  
8
8
8.0 ns  
5.9 ns  
0.15 × t  
SAICC  
115 Data In Valid to SCKR edge  
(Data In Set-up Time)  
master  
slave  
26  
4
26  
4
26  
4
26  
4
ns  
ns  
116 SCKR Edge to Data In Not  
Valid (Data In Hold Time)  
master  
slave  
0
14  
0
14  
0
14  
0
14  
ns  
ns  
117 SCKR Edge to Word Select Out master  
Valid (WSR Out Delay Time)  
20  
12  
12  
12  
12  
20  
12  
12  
20  
12  
12  
20  
ns  
ns  
ns  
118 Word Select In Valid to SCKR  
Edge (WSR In Set-up Time)  
slave  
119 SCKR Edge to Word Select In  
Not Valid (WSR In Hold Time)  
slave  
121 SCKT Edge to Data Out Valid  
(Data Out Delay Time)  
master  
13  
40  
T + 34  
13  
40  
44  
13  
40  
41  
13  
40  
39.7 ns  
ns  
ns  
1
slave  
2
slave  
H
122 SCKT Edge to Word Select Out master  
Valid (WST Out Delay Time)  
19  
12  
12  
12  
12  
19  
12  
12  
19  
12  
12  
19  
ns  
ns  
ns  
123 Word Select In Valid to SCKT  
Edge (WST In Set-up Time)  
slave  
124 SCKT Edge to Word Select In  
Not Valid (WST In Hold Time)  
slave  
Note:  
1. When the Frequency Ratio between Parallel and Serial clocks is 1:4 or greater  
2. When the Frequency Ratio between Parallel and Serial clocks is 1:3 – 1:4  
2-20  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Audio Interface (SAI) Timing  
111  
112  
113  
114  
114  
114  
113  
SCKR  
(RCKP = 1)  
111  
114  
SCKR  
(RCKP = 0)  
112  
115  
116  
SDI0–SDI1  
(Data Input)  
Valid  
119  
118  
WSR  
(Input)  
Valid  
117  
WSR  
(Output)  
AA0269  
Figure 2-15 SAI Receiver Timing  
MOTOROLA  
DSP56007/D  
2-21  
Specifications  
Serial Audio Interface (SAI) Timing  
111  
112  
113  
114  
114  
114  
114  
113  
112  
SCKT  
(T KP = 1)  
C
111  
SCKT  
(T KP = 0)  
C
121  
SDO0–SDO2  
(Data Output)  
124  
123  
WST  
(Input)  
Valid  
122  
WST  
(Output)  
AA0270  
Figure 2-16 SAI Transmitter Timing  
2-22  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
SERIAL HOST INTERFACE (SHI) SPI PROTOCOL TIMING  
(C = 50 pF; V  
= 0.7 × V , V = 0.3 × V  
)
CC  
L
IHS  
CC  
ILS  
Table 2-12 Serial Host Interface (SHI) SPI Protocol Timing  
50 MHz  
66 MHz  
88 MHz  
Filter  
Mode  
No.  
Characteristics  
Mode  
Expression  
Unit  
Min Max Min Max Min Max  
Tolerable Spike Width  
on Clock or Data In  
bypassed  
narrow  
wide  
0
20  
100  
0
20  
100  
0
20  
100 ns  
ns  
ns  
141 Minimum Serial Clock  
Cycle = t (min)  
SPICC  
For frequency below 33  
1
MHz  
master bypassed  
4 × T  
ns  
C
For frequency above 33  
1
MHz  
bypassed  
narrow  
wide  
6 × T  
1000  
2000  
3 × T  
120  
1000  
2000  
60  
91  
1000  
2000  
45  
68.2  
1000  
2000  
34.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
2
CPHA = 0, CPHA = 1  
slave bypassed  
narrow  
wide  
slave bypassed  
narrow  
C
3 × T + 25  
85  
70  
59.1  
C
CPHA = 1  
3 × T + 85  
145  
139  
491  
1082  
130  
124  
476  
1067  
119.1  
113.1  
465.1  
1056.1  
C
3 × T + 79  
C
3 × T + 431  
C
wide  
3 × T + 1022  
C
142 Serial Clock High Period master  
0.5 × t  
–10  
50  
35  
24.1  
ns  
SPICC  
2
CPHA = 0, CPHA = 1  
slave bypassed  
T + 8  
28  
51  
63  
70  
246  
541  
23  
46  
58  
63  
239  
534  
19.4  
42.4  
54.4  
57.0  
233.0  
528.0  
ns  
ns  
ns  
ns  
ns  
ns  
C
narrow  
wide  
slave bypassed  
narrow  
T + 31  
C
CPHA = 1  
T + 43  
C
T + T + 40  
C
H
T + T + 216  
C
H
wide  
T + T + 511  
C
H
143 Serial Clock Low Period master  
0.5 × t  
–10  
50  
35  
24.1  
ns  
SPICC  
2
CPHA = 0, CPHA = 1  
slave bypassed  
T + 8  
28  
51  
63  
70  
246  
541  
23  
46  
58  
63  
239  
534  
19.4  
42.4  
54.4  
57.0  
233.0  
528.0  
ns  
ns  
ns  
ns  
ns  
ns  
C
narrow  
wide  
slave bypassed  
narrow  
T + 31  
C
CPHA = 1  
T + 43  
C
T + T + 40  
C
H
T + T + 216  
C
H
wide  
T + T + 511  
C
H
144 Serial Clock Rise/ Fall  
Time  
master  
slave  
10  
2000  
10  
2000  
10  
2000  
10  
ns  
2000 ns  
MOTOROLA  
DSP56007/D  
2-23  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
Table 2-12 Serial Host Interface (SHI) SPI Protocol Timing (Continued)  
50 MHz  
66 MHz  
88 MHz  
Filter  
Mode  
No.  
Characteristics  
Mode  
Expression  
T + T + 35  
Unit  
Min Max Min Max Min Max  
146 SS Assertion to First  
SCK Edge CPHA = 0  
slave bypassed  
narrow  
wide  
slave bypassed  
narrow  
65  
65  
65  
6
0
0
58  
58  
58  
6
52.0  
52.0  
52.0  
6
ns  
ns  
ns  
ns  
ns  
ns  
C
H
T + T + 35  
C
H
T + T + 35  
C H  
CPHA = 1  
6
0
0
0
0
0
0
wide  
147 Last SCK Edge to SS Not slave bypassed  
T + 6  
26  
90  
217  
2
66  
193  
21  
85  
212  
2
66  
193  
17.4  
81.4  
208.4  
2
66  
193  
ns  
ns  
ns  
ns  
ns  
ns  
C
Asserted  
CPHA = 0  
CPHA = 1  
narrow  
wide  
slave bypassed  
narrow  
T + 70  
C
T + 197  
C
3
2
66  
193  
wide  
148 Data In Valid to SCK  
Edge (Data In Set-up  
Time)  
master bypassed  
0
0
0
22  
0
25.6  
ns  
ns  
narrow MAX {(37 –T ), 0} 17  
C
MAX {(52 –T ), 0}  
C
wide  
0
32  
37  
40.6  
ns  
MAX {(38 –T ), 0}  
C
slave bypassed MAX {(53 –T ), 0}  
0
18  
0
23  
0
26.6  
ns  
ns  
C
narrow  
wide  
33  
38  
41.6  
ns  
149 SCK Edge to Data In Not master bypassed  
2 × T + 17  
57  
58  
68  
57  
58  
68  
47  
48  
58  
47  
48  
58  
39.7  
40.7  
50.7  
39.7  
40.7  
50.7  
ns  
ns  
ns  
ns  
ns  
ns  
C
Valid  
(Data In Hold Time)  
narrow  
wide  
2 × T + 18  
C
2 × T + 28  
C
slave bypassed  
narrow  
2 × T + 17  
C
2 × T + 18  
C
wide  
2 × T + 28  
C
150 SS Assertion to Data Out slave  
Active  
4
4
4
4
24  
41  
214 ns  
504 ns  
41  
214 ns  
504 ns  
57.0 ns  
233 ns  
528 ns  
ns  
ns  
ns  
151 SS Deassertation to Data slave  
24  
24  
24  
4
high impedance  
152 SCK Edge to Data Out  
Valid (Data Out Delay  
Time)  
master bypassed  
41  
214  
504  
41  
214  
504  
41  
214  
504  
41  
214  
504  
70  
41  
214  
504  
41  
214  
504  
63  
narrow  
wide  
2
CPHA = 0, CPHA = 1  
slave bypassed  
narrow  
ns  
wide  
CPHA = 1  
slave bypassed  
narrow  
T + T + 40  
C H  
T + T + 216  
246  
541  
239  
534  
C
H
wide  
T + T + 511  
C H  
2-24  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
Table 2-12 Serial Host Interface (SHI) SPI Protocol Timing (Continued)  
50 MHz  
66 MHz  
88 MHz  
Filter  
Mode  
No.  
Characteristics  
Mode  
Expression  
Unit  
Min Max Min Max Min Max  
153 SCK Edge to Data Out  
Not Valid  
master bypassed  
narrow  
wide  
slave bypassed  
narrow  
0
57  
163  
0
57  
163  
0
57  
163  
0
57  
163  
0
57  
163  
0
57  
163  
0
57  
163  
0
57  
163  
ns  
ns  
ns  
ns  
ns  
ns  
(Data Out Hold Time)  
wide  
154 SS Assertion to Data Out slave  
Valid CPHA = 0  
T + T + 35  
65  
58  
52.0 ns  
C
H
157 First SCK Sampling  
Edge to HREQ Output  
Deassertation  
slave bypassed 3 × T + T + 32  
102  
279  
577  
85  
262  
560  
71.8 ns  
248.8 ns  
546.8 ns  
C
H
narrow 3 × T + T + 209  
C
H
wide  
3 × T + T + 507  
C H  
158 Last SCK Sampling Edge slave bypassed 2 × T + T + 6  
56  
44  
101  
207  
34.4  
91.4  
197.4  
ns  
ns  
ns  
C
H
to HREQ Output Not  
narrow  
2 × T + T + 63 113  
C
H
Deasserted  
wide  
2 × T + T + 169 219  
C
H
CPHA = 1  
159 SS Deassertation to  
HREQ Output Not  
Deasserted  
slave  
2 × T + T + 7  
57  
45  
35.4  
ns  
C
H
CPHA = 0  
160 SS Deassertation Pulse  
Width CPHA = 0  
slave  
T + 4  
24  
106  
0
19  
82  
0
15.4  
62.8  
0
ns  
ns  
ns  
C
161 HREQ In Assertion to  
First SCK Edge  
master  
0.5 × t  
+
SPICC  
2 × T + 6  
C
162 HREQ In Deassertation master  
to Last SCK Sampling  
0
Edge (HREQ In Set-up  
Time) CPHA = 1  
163 First SCK Edge to HREQ master  
In Not Asserted  
0
0
0
0
ns  
(HREQ In Hold Time)  
Note:  
1. For an Internal Clock frequency below 33 MHz, the minimum permissible Internal Clock to Serial Clock frequency  
ratio is 4:1. For an Internal Clock frequency above 33 MHz, the minimum permissible Internal Clock to Serial  
Clock frequency ratio is 6:1.  
2. In CPHA = 1 mode, the SPI slave supports data transfers at t  
= 3 × T , if the user assures that the HTX is  
SPICC  
C
written at least T ns before the first edge of SCK of each word.In CPHA = 1 mode, the SPI slave supports data  
C
transfers at t  
SCK of each word.  
= 3 × T , if the user assures that the HTX is written at least T ns before the first edge of  
SPICC  
C
C
3. When CPHA = 1, the SS line may remain active low between successive transfers.  
4. Periodically sampled, not 100% tested  
5. Refer to the DSP56007 User’s Manual for a detailed description of how to use the different filtering  
modes.  
MOTOROLA  
DSP56007/D  
2-25  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
SS  
(Input)  
143  
142  
141  
141  
144  
144  
144  
144  
SCK (CPOL = 0)  
(Output)  
142  
143  
SCK (CPOL = 1)  
(Output)  
148  
149  
148  
149  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
152  
MSB  
153  
MOSI  
(Output)  
LSB  
161  
163  
HREQ  
(Input)  
AA0271  
Figure 2-17 SPI Master Timing (CPHA = 0)  
2-26  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
SS  
(Input)  
143  
142  
141  
142  
143  
144  
144  
144  
144  
SCK (CPOL = 0)  
(Output)  
141  
SCK (CPOL = 1)  
(Output)  
148  
148  
149  
149  
MISO  
(Input)  
MSB  
Valid  
LSB  
Valid  
152  
153  
MOSI  
(Output)  
MSB  
LSB  
161  
162  
163  
HREQ  
(Input)  
AA0272  
Figure 2-18 SPI Master Timing (CPHA = 1)  
MOTOROLA  
DSP56007/D  
2-27  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
SS  
(Input)  
143  
142  
141  
141  
147  
144  
144  
144  
144  
160  
SCK (CPOL = 0)  
(Input)  
146  
154  
142  
143  
SCK (CPOL = 1)  
(Input)  
152  
153  
153  
151  
LSB  
150  
MISO  
(Output)  
MSB  
148  
148  
149  
149  
MSB  
Valid  
MOSI  
(Input)  
LSB  
Valid  
157  
159  
HREQ  
(Output)  
AA0273  
Figure 2-19 SPI Slave Timing (CPHA = 0)  
2-28  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) SPI Protocol Timing  
SS  
(Input)  
143  
141  
147  
142  
144  
144  
144  
SCK (CPOL = 0)  
(Input)  
146  
142  
144  
143  
152  
SCK (CPOL = 1)  
(Input)  
152  
153  
151  
150  
MISO  
(Output)  
MSB  
LSB  
148  
148  
149  
149  
MSB  
Valid  
LSB  
Valid  
MOSI  
(Input)  
157  
158  
HREQ  
(Output)  
AA0274  
Figure 2-20 SPI Slave Timing (CPHA = 1)  
MOTOROLA  
DSP56007/D  
2-29  
Specifications  
2
Serial Host Interface (SHI) I C Protocol Timing  
SERIAL HOST INTERFACE (SHI) I2C PROTOCOL TIMING  
(V  
(V  
= 0.7 × V , V = 0.3 × V  
)
CC  
IHS  
CC  
ILS  
= 0.8 × V , V  
= 0.2 × V  
)
CC  
OHS  
CC  
OLS  
(R (min) = 1.5 k)  
P
2
Table 2-13 SHI I C Protocol Timing  
2
Standard I C  
(C = 400 pF, R = 2 k, 100 kHz)  
L
P
All frequencies  
No.  
Characteristics  
Symbol  
Unit  
Min  
Max  
Tolerable Spike Width on SCL or SDA  
Filters Bypassed  
0
20  
100  
ns  
ns  
ns  
Narrow Filters Enabled  
Wide Filters Enabled  
171 Minimum SCL Serial Clock Cycle  
172 Bus Free Time  
t
t
10.0  
4.7  
4.7  
4.0  
4.7  
4.0  
1.0  
0.3  
3.4  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
SCL  
BUF  
173 Start Condition Set-up Time  
174 Start Condition Hold Time  
175 SCL Low Period  
t
SU;STA  
t
HD;STA  
t
LOW  
176 SCL High Period  
t
HIGH  
177 SCL and SDA Rise Time  
178 SCL and SDA Fall Time  
179 Data Set-up Time  
t
r
t
f
t
250  
0.0  
SU;DAT  
180 Data Hold Time  
t
t
HD;DAT  
VD;DAT  
182 SCL Low to Data Out Valid  
183 Stop Condition Set-up Time  
t
4.0  
SU;STO  
Note: Refer to the DSP56007 User’s Manual for a detailed description of how to use the different filtering  
modes.  
2-30  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) I C Protocol Timing  
2
2
The Programmed Serial Clock Cycle, t  
, is specified by the value of the HDM5–  
I CCP  
HDM0 and HRS bits of the HCKR (SHI Clock control Register).  
2
The expression for t  
is:  
I CCP  
tI2CCP = [Tc × 2 × (HDM[5:0] + 1) × (7 × (1 – HRS) + 1)]  
where  
HRS is the Prescaler Rate Select bit. When HRS is cleared, the fixed divide-by-  
eight prescaler is operational. When HRS is set, the prescaler is bypassed.  
HDM5–HDM0 are the Divider Modulus Select bits.  
A divide ratio from 1 to 64 (HDM5–HDM0 = 0 to $3F) may be selected.  
2
In I C mode, you may select a value for the Programmed Serial Clock Cycle from  
6 × T  
(HDM5–HDM0 = 2, HRS = 1)  
to  
C
1024 × T  
(HDM5–HDM0 = $3F, HRS = 0).  
C
2
The DSP56007 provides an improved I C bus protocol. In addition to supporting the  
2
2
100 kHz I C bus protocol, the SHI in I C mode supports data transfers at up to 1000  
kHz. The actual maximum frequency is limited by the bus capacitances (C ),the pull-  
L
up resistors (R ), (which affect the rise and fall time of SDA and SCL, (see table  
P
below)), and by the input filters.  
Consideration for programming the SHI Clock Control Register (HCKR)—Clock  
Divide Ratio: the master must generate a bus free time greater than T172 slave when  
2
operating with a DSP56007 SHI I C slave.  
The table below describes a few examples:  
Table 2-14 Considerations for Programming the SHI Clock control Register (HCKR)  
Conditions to be Considered  
Resulting Limitations  
Master  
Slave  
Oper-  
ating  
Freq.  
Min.  
Perm-  
Master  
Filter  
Mode  
Slave  
Filter  
Mode  
Maximum  
I C Serial  
Frequency  
Oper-  
ating  
Freq.  
T172  
Slave  
T172  
Master  
2
Bus Load  
issible  
2
t
I CCP  
C = 50 pF, 88 MHz 88 MHz Bypassed Bypassed 36 ns  
56 × T  
60 × T  
66 × T  
41 ns  
66 ns  
103 ns  
1010 kHz  
825 kHz  
634 kHz  
L
C
R = 2 kΩ  
Narrow  
Wide  
Narrow 60 ns  
Wide 95 ns  
P
C
C
MOTOROLA  
DSP56007/D  
2-31  
Specifications  
Serial Host Interface (SHI) I C Protocol Timing  
2
Example: for C = 50 pF, R = 2 k, f = 88 MHz, Bypassed Filter mode: The master,  
L
P
2
when operating with a DSP56007 SHI I C slave with an 88 MHz operating frequency,  
must generate a bus free time greater than 36 ns (T172 slave). Thus, the minimum  
2
permissible t  
is 56 × T which gives a bus free time of at least 41 ns (T172 master).  
C
I CCP  
2
This implies a maximum I C serial frequency of 1010 kHz.  
In general, bus performance may be calculated from the C and R of the bus, the  
L
P
Input Filter modes and operating frequencies of the master and the slave. Table 2-15  
contains the expressions required to calculate all relevant performance timing for a  
given C and R .  
L
P
2
Table 2-15 SHI Improved I C Protocol Timing  
2
Improved I C (C = 50 pF, R = 2 k)  
L
P
2
3
4
50 MHz  
66 MHz  
88 MHz  
U
n
i
Filter  
Mode  
No.  
Char.  
Sym. Mode  
Expression  
Min Max Min Max Min Max  
t
— Tolerable Spike  
Width on SCL or  
SDA  
bypassed  
narrow  
wide  
0
20  
100  
0
20  
100  
0
20  
100  
0
ns  
20 ns  
100 ns  
2
171 SCL Serial Clock  
Cycle  
t
master bypassed  
narrow  
t
+ 3 × T + 1050  
1007  
1225  
1591  
478  
981  
1199  
1557  
461  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
I CCP  
C
72 + t  
r
2
t
t
+ 3 × T + 1263  
I CCP  
C
245 + t  
wide  
+ 3 ×rT + 1593  
2
I CCP  
C
535 + t  
r
bypassed  
slave  
4 × T + T +  
500  
694  
976  
C
H
172 + t  
r
narrow  
4 × T + T +  
672  
655  
C
H
366 + t  
r
wide  
4 × T + T +  
954  
937  
C
H
648 + t  
r
2
172 Bus Free Time  
t
master bypassed  
narrow  
0.5 × t  
0.5 × t  
0.5 × t  
60  
80  
46  
68  
38.2  
60.9  
95  
ns  
ns  
ns  
BUF  
I CCP  
42 – t  
r
2
I CCP  
42 – t  
r
2
wide  
100  
102  
I CCP  
42 – t  
r
slave  
slave  
bypassed  
narrow  
wide  
2 × T + 11  
51  
75  
110  
41  
65  
100  
33.7  
57.7  
92.7  
ns  
ns  
ns  
C
2 × T + 35  
C
2 × T + 70  
C
173 Start Condition  
Set-up Time  
t
bypassed  
narrow  
wide  
12  
50  
150  
12  
50  
150  
12  
50  
150  
12  
50  
150  
ns  
ns  
ns  
SU;STA  
2-32  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) I C Protocol Timing  
2
2
Table 2-15 SHI Improved I C Protocol Timing (Continued)  
2
Improved I C (C = 50 pF, R = 2 k)  
L
P
2
3
4
50 MHz  
66 MHz  
88 MHz  
U
n
i
Filter  
Mode  
No.  
Char.  
Sym. Mode  
Expression  
Min Max Min Max Min Max  
t
2
174 Start Condition  
Hold Time  
t
master bypassed  
narrow  
0.5 × t  
0.5 × t  
0.5 × t  
+
332  
352  
372  
318  
340  
378  
310  
333  
367  
ns  
ns  
ns  
HD;STA  
I CCP  
12 – t  
f
2
+
+
I CCP  
12 – t  
f
2
wide  
I CCP  
12 – t  
f
slave  
bypassed 2 × T + T + 21 71  
59  
138  
238  
49.4  
128  
228  
ns  
ns  
ns  
C
H
narrow  
2 × T + T + 100 150  
C
H
wide  
2 × T + T + 200 250  
C
H
2
175 SCL Low Period  
176 SCL High Period  
177 SCL Rise Time  
t
master bypassed  
narrow  
0.5 × t  
+
+
+
338  
358  
378  
352  
324  
346  
384  
316  
339  
373  
ns  
ns  
ns  
LOW  
I CCP  
18 – t  
f
2
0.5 × t  
I CCP  
18 – t  
f
2
wide  
0.5 × t  
I CCP  
18 – t  
2 × T + 74 + t  
2 × T + 286 + t 564  
f
slave  
bypassed  
narrow  
wide  
342  
554  
854  
335  
534  
847  
ns  
ns  
ns  
C
r
C
r
2 × T + 586 + t 864  
C
r
2
t
master bypassed 0.5 × t  
+ 2 × 379  
375  
523  
773  
360  
507  
754  
ns  
ns  
ns  
HIGH  
I CCP  
T + 19  
C
2
narrow  
wide  
0.5 × t  
+
544  
776  
49  
I CCP  
2 × T + 144  
C
2
0.5 × t  
+
I CCP  
2 × T + 356  
2 × T + T – 1  
2 × T + T + 18 68  
C
slave  
bypassed  
narrow  
wide  
37  
56  
68  
27.4  
46.4  
58.4  
ns  
ns  
ns  
C
H
C
H
2 × T + T + 30 80  
C
H
t
t
r
f
1
Output  
1.7 × R ×  
(C + 20)  
238  
238  
238 ns  
2000 ns  
P
L
Input  
2000  
2000  
2000  
178 SCL Fall Time  
1
Output  
20 + 0.1 ×  
(C – 50)  
20  
20  
20 ns  
L
Input  
2000  
2000  
2000  
2000 ns  
179 Data Set-up Time t  
bypassed  
narrow  
wide  
T + 8  
28  
80  
94  
23  
75  
89  
19.4  
71.4  
85.4  
ns  
ns  
ns  
SU;DAT  
C
T + 60  
C
T + 74  
C
MOTOROLA  
DSP56007/D  
2-33  
Specifications  
Serial Host Interface (SHI) I C Protocol Timing  
2
2
Table 2-15 SHI Improved I C Protocol Timing (Continued)  
2
Improved I C (C = 50 pF, R = 2 k)  
L
P
2
3
4
50 MHz  
66 MHz  
88 MHz  
U
n
i
Filter  
Mode  
No.  
Char.  
Sym. Mode  
Expression  
Min Max Min Max Min Max  
t
180 Data Hold Time  
t
bypassed  
narrow  
wide  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
HD;DAT  
182 SCL Low to Data t  
Out Valid  
bypassed  
narrow  
wide  
2 × T + 71 + t  
349  
522  
813  
339  
512  
803  
332 ns  
505 ns  
796 ns  
VD;DAT  
C
r
2 × T + 244 + t  
C
r
r
2 × T + 535 + t  
C
2
183 Stop Condition  
Set-up Time  
t
master bypassed  
narrow  
0.5 × t  
+
381  
459  
613  
359  
440  
592  
346  
427  
575  
ns  
ns  
ns  
SU;STO  
I CCP  
T + T + 11  
C
H
2
0.5 × t  
+
I CCP  
T + T + 69  
C
H
2
wide  
0.5 × t  
+
I CCP  
T + T + 183  
C
H
slave  
bypassed  
narrow  
wide  
11  
50  
150  
11  
50  
150  
11  
50  
150  
11  
50  
150  
ns  
ns  
ns  
184 HREQ In  
Deassertation to  
Last SCL Edge  
(HREQ In Set-up  
Time)  
master bypassed  
narrow  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
wide  
186 First SCL  
Sampling Edge  
to HREQ Output  
Deassertation  
slave  
slave  
bypassed 3 × T + T + 32  
102  
279  
577  
85  
262  
560  
72 ns  
249 ns  
547 ns  
C
H
narrow  
3 × T + T + 209  
C
H
wide  
3 × T + T + 507  
C
H
187 Last SCL Edge to  
HREQ Output  
bypassed  
narrow  
wide  
2 × T + T + 6  
56  
44  
101  
207  
34.4  
91.4  
197.4  
ns  
ns  
ns  
C
H
2 × T + T + 63 113  
C
H
Not Deasserted  
2 × T + T + 169 219  
C
H
2
188 HREQ In  
Assertion to First  
SCL Edge  
master bypassed  
narrow  
t
t
t
+ 2 × T + 6 726  
688  
733  
809  
665  
711  
779  
ns  
ns  
ns  
I CCP  
2
I CCP  
2
C
+ 2 × T + 6 766  
C
wide  
+ 2 × T + 6 846  
I CCP  
C
189 First SCL Edge  
to HREQ In Not  
Asserted (HREQ  
In Hold Time)  
master  
0
0
0
0
ns  
2-34  
DSP56007/D  
MOTOROLA  
Specifications  
Serial Host Interface (SHI) I C Protocol Timing  
2
2
Table 2-15 SHI Improved I C Protocol Timing (Continued)  
2
Improved I C (C = 50 pF, R = 2 k)  
L
P
2
3
4
50 MHz  
66 MHz  
88 MHz  
U
n
i
Filter  
Mode  
No.  
Char.  
Sym. Mode  
Expression  
Min Max Min Max Min Max  
t
Note:  
1. C is in pF, R is in k, and result is in ns.  
L
P
2
2. A t  
of 34 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
Bypassed Filter mode.  
A t  
Narrow Filter mode.  
A t  
2
of 36 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
2
of 40 × T (the maximum permitted for the given bus load) was used for the calculations in the Wide  
I CCP  
C
Filter mode.  
2
3. A t  
of 43 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
Bypassed Filter mode.  
A t  
Narrow Filter mode.  
A t  
2
of 46 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
2
of 51 × T (the maximum permitted for the given bus load) was used for the calculations in the Wide  
I CCP  
C
Filter mode.  
2
4. A t  
of 56 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
Bypassed Filter mode.  
A t  
Narrow Filter mode.  
A t  
2
of 60 × T (the maximum permitted for the given bus load) was used for the calculations in the  
I CCP  
C
2
of 66 × T (the maximum permitted for the given bus load) was used for the calculations in the Wide  
I CCP  
C
Filter mode.  
5. Refer to the DSP56007 User’s Manual for a detailed description of how to use the different filtering  
modes.  
171  
173  
176  
175  
SCL  
SDA  
177  
180  
178  
172  
179  
MSB  
LSB  
ACK  
Stop  
Stop  
Start  
174  
188  
186  
182  
183  
187  
189  
184  
HREQ  
AA0275  
2
Figure 2-21 I C Timing  
MOTOROLA  
DSP56007/D  
2-35  
Specifications  
General Purpose I/O (GPIO) Timing  
GENERAL PURPOSE I/O (GPIO) TIMING  
(C = 50 pF + 2 TTL Loads)  
L
Table 2-16 GPIO Timing  
50/66/88 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
201 EXTAL Edge to GPIO Out Valid (GPIO Out Delay Time)  
26  
2
2
26  
ns  
ns  
202 EXTAL Edge to GPIO Out Not Valid (GPIO Out Hold  
Time)  
203 GPIO In Valid to EXTAL Edge (GPIO In Set-up Time)  
204 EXTAL Edge to GPIO In Not Valid (GPIO In Hold Time)  
10  
6
10  
6
ns  
ns  
EXTAL  
(Input)  
(Note 1)  
201  
202  
GPIO(0:3)  
(Output)  
203  
204  
GPIO(0:3)  
(Input)  
Valid  
Note: 1. Valid when the ratio between EXTAL frequency and internal clock frequency equals 1  
AA0276  
Figure 2-22 GPIO Timing  
2-36  
DSP56007/D  
MOTOROLA  
Specifications  
On-Chip Emulation (OnCE ) Timing  
ON-CHIP EMULATION (OnCE ) TIMING  
(C = 50 pF + 2 TTL Loads)  
L
Table 2-17 OnCE Timing  
50/66/88 MHz  
Unit  
No.  
Characteristics  
Min  
Max  
40  
40  
42  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
230  
231  
DSCK Low  
DSCK High  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
DSCK Cycle Time  
200  
DR Asserted to DSO (ACK) Asserted  
DSCK High to DSO Valid  
5 T  
C
3
DSCK High to DSO Invalid  
DSI Valid to DSCK Low (Set-up)  
DSCK Low to DSI Invalid (Hold)  
Last DSCK Low to OS0–OS1, ACK Active  
DSO (ACK) Asserted to First DSCK High  
DSO (ACK) Assertion Width  
15  
3
3 T + T  
C
L
2 T  
C
4 T + T – 3  
5 T + 7  
C
H
C
DSO (ACK) Asserted to OS0–OS1 High  
0
1
Impedance  
242  
243  
244  
OS0–OS1 Valid to EXTAL Transition #2  
EXTAL Transition #2 to OS0–OS1 Invalid  
T – 21  
ns  
ns  
ns  
C
0
Last DSCK Low of Read Register to First DSCK  
High of Next Command  
7 T + 10  
C
245  
246  
Last DSCK Low to DSO Invalid (Hold)  
3
ns  
ns  
DR Assertion to EXTAL Transition #2 for Wake  
Up from WAIT State  
10  
T – 10  
C
247  
EXTAL Transition #2 to DSO After Wake Up from  
WAIT State  
17 T  
ns  
C
MOTOROLA  
DSP56007/D  
2-37  
Specifications  
On-Chip Emulation (OnCE ) Timing  
Table 2-17 OnCE Timing (Continued)  
50/66/88 MHz  
No.  
Characteristics  
Unit  
Min  
Max  
248  
DR Assertion Width  
to recover from WAIT  
to recover from WAIT and enter Debug  
mode  
15  
12 T – 15  
ns  
ns  
C
13 T + 15  
C
249  
DR Assertion to DSO (ACK) Valid (Enter Debug  
mode) After Asynchronous Recovery from WAIT  
State  
17 T  
ns  
C
2
250A DR Assertion Width to Recover from STOP  
• Stable External Clock, OMR Bit 6 = 0  
• Stable External Clock, OMR Bit 6 = 1  
• Stable External Clock, PCTL Bit 17 = 1  
15  
15  
15  
65548 T + T  
ns  
ns  
ns  
C
L
20 T + T  
C
L
L
13 T + T  
C
250B DR Assertion Width to Recover from STOP and  
2
enter Debug mode  
• Stable External Clock, OMR Bit 6 = 0  
• Stable External Clock, OMR Bit 6 = 1  
• Stable External Clock, PCTL Bit 17 = 1  
65549 T + T  
ns  
ns  
ns  
C
L
L
21 T + T  
C
L
L
14 T + T  
C
251  
DR Assertion to DSO (ACK) Valid (Enter Debug  
2
mode) After Recovery from STOP State  
• Stable External Clock, OMR Bit 6 = 0  
• Stable External Clock, OMR Bit 6 = 1  
• Stable External Clock, PCTL Bit 17 = 1  
65553 T + T  
ns  
ns  
ns  
C
25 T + T  
C
L
L
18 T + T  
C
Note:  
1. Maximum T  
L
2. Periodically sampled, not 100% tested  
246  
246  
230  
DSCK  
(input)  
231  
232  
AA0277  
Figure 2-23 DSP56007 OnCE Serial Clock Timing  
2-38  
DSP56007/D  
MOTOROLA  
Specifications  
On-Chip Emulation (OnCE ) Timing  
DR  
(Input)  
233  
240  
DSO  
(Output)  
ACK  
AA0278  
Figure 2-24 DSP56007 OnCE Acknowledge Timing  
DSCK  
(Input)  
(Last)  
(OS1)  
DSO  
(Output)  
(ACK)  
(OS0)  
236  
237  
238  
DSI  
(Input)  
(Note 1)  
Note: 1. High Impedance, external pull-down resistor  
AA0279  
Figure 2-25 DSP56007 OnCE Data I/O to Status Timing  
DSCK  
(Input)  
(Last)  
(Note 1)  
(OS0)  
234  
235  
245  
DSO  
(Output)  
Note: 1. High Impedance, external pull-down resistor  
AA0280  
Figure 2-26 DSP56007 OnCE Read Timing  
239  
OS1  
(Output)  
(Note 1)  
241  
(DSCK Input)  
240  
DSO  
(Output)  
(DSO Output)  
(DSI Input)  
OS0  
(Output)  
(Note 1)  
241  
236  
237  
Note: 1. High Impedance, external pull-down resistor  
AA0281  
Figure 2-27 DSP56007 OnCE Data I/O Status Timing  
MOTOROLA  
DSP56007/D  
2-39  
Specifications  
On-Chip Emulation (OnCE ) Timing  
EXTAL  
(Note 2)  
242  
OS0–OS1  
(Output)  
(Note 1)  
243  
Note: 1. High Impedance, external pull-down resistor  
2. Valid when the ratio between EXTAL frequency and clock frequency equals 1  
AA0282  
Figure 2-28 DSP56007 OnCE EXTAL to Status Timing  
DSCK  
(Input)  
(Next Command)  
244  
AA0283  
Figure 2-29 DSP56007 OnCE DSCK Next Command After Read Register Timing  
T0, T2  
T1, T3  
248  
EXTAL  
DR  
(Input)  
246  
247  
DSO  
(Output)  
AA0284  
Figure 2-30 Synchronous Recovery from WAIT State  
248  
DR  
(Input)  
249  
DSO  
(Output)  
AA0285  
Figure 2-31 Asynchronous Recovery from WAIT State  
2-40  
DSP56007/D  
MOTOROLA  
Specifications  
On-Chip Emulation (OnCE ) Timing  
250  
DR  
(Input)  
251  
DSO  
(Output)  
AA0286  
Figure 2-32 Asynchronous Recovery from STOP State  
MOTOROLA  
DSP56007/D  
2-41  
Specifications  
On-Chip Emulation (OnCE ) Timing  
2-42  
DSP56007/D  
MOTOROLA  
SECTION 3  
PACKAGING  
PIN-OUT AND PACKAGE INFORMATION  
This section provides information about the available packages for this product,  
including diagrams of the package pinouts and tables describing how the signals  
described in Section 1 are allocated. The DSP56007 is available in an 80-pin Quad  
Flat Pack (QFP) package.  
MOTOROLA  
DSP56007/D  
3-1  
Packaging  
Pin-out and Package Information  
QFP Package Description  
Top and bottom views of the QFP package are shown in Figure 3-1 and Figure 3-2  
with their pin-outs.  
41  
61  
V
DR  
MD7  
MD6  
MD5  
MD4  
CCS  
MODC/NMI  
MODB/IRQB  
MODA/IRQA  
RESET  
(Top View)  
MISO/SDA  
GND  
D
GND  
MD3  
S
V
MD2  
MD1  
CCP  
PCAP  
GND  
V
P
CCD  
PINIT  
MD0  
GND  
GND  
Q
D
V
GPIO3  
CCQ  
EXTAL  
SCK/SCL  
MA0  
GPIO2  
GPIO1  
GPIO0  
MA1  
MRD  
Orientation Mark  
MA2  
MA3  
GND  
MWR  
MA17/MCS1/MRAS  
MA16/MCS2/MCAS  
21  
A
1
Note: An OVERBAR indicates the signal is asserted when the  
voltage = ground (active low). To simplify locating the pins,  
each fifth pin is shaded in the illustration.  
Figure 3-1 Top View  
3-2  
DSP56007/D  
MOTOROLA  
 
Packaging  
Pin-out and Package Information  
41  
61  
DR  
V
CCS  
MD7  
MD6  
MD5  
MD4  
GND  
MD3  
MD2  
MD1  
V
MODC/NMI  
MODB/IRQB  
MODA/IRQA  
RESET  
(Bottom View)  
MISO/SDA  
D
GND  
S
V
CCP  
PCAP  
GNDP  
PINIT  
CCD  
MD0  
GND  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
MRD  
MWR  
MA17/MCS1/MRAS  
MA16/MCS2/MCAS  
GND  
D
Q
V
CCQ  
EXTAL  
SCK/SCL  
MA0  
MA1  
MA2  
MA3  
GND  
Orientation Mark  
21  
A
1
Note: An OVERBAR indicates the signal is asserted when the  
voltage = ground (active low). To simplify locating the pins,  
each fifth pin is shaded in the illustration.  
Figure 3-2 Bottom View  
MOTOROLA  
DSP56007/D  
3-3  
Packaging  
Pin-out and Package Information  
Table 3-1 DSP56007 Pin Identification by Pin Number  
Pin #  
Signal Name  
GND  
Pin #  
28  
Signal Name  
Pin #  
55  
Signal Name  
WSR  
1
V
CCQ  
A
2
MCS0  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
GND  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
SDI1  
Q
3
MA15/ MCS3  
MA14  
PINIT  
GND  
SDI0  
4
DSO  
P
5
MA13  
PCAP  
DSI/ OS0  
DSCK/ OS1  
DR  
6
V
V
CCP  
CCA  
7
MA12  
GND  
S
8
GND  
MISO/ SDA  
RESET  
MD7  
A
9
V
MD6  
CCQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
MODA/ IRQA  
MODB/ IRQB  
MODC/ NMI  
MD5  
Q
MA11  
MA10  
MA9  
MD4  
GND  
MD3  
MD2  
MD1  
D
V
CCS  
MA8  
MOSI/ HA0  
SS/ HA2  
HREQ  
GND  
MA7  
A
V
CCD  
V
GND  
MD0  
GND  
CCA  
S
MA6  
MA5  
MA4  
GND  
MA3  
MA2  
MA1  
MA0  
SDO2  
SDO1  
SDO0  
D
GPIO3  
GPIO2  
GPIO1  
GPIO0  
MRD  
V
A
CCS  
SCKT  
WST  
SCKR  
MWR  
GND  
MA17/ MCS1/  
MRAS  
Q
26  
27  
SCK/ SCL  
EXTAL  
53  
54  
V
80  
MA16/ MCS2/  
MCAS  
CCQ  
GND  
S
3-4  
DSP56007/D  
MOTOROLA  
Packaging  
Pin-out and Package Information  
Table 3-2 DSP56007 Pin Identification by Signal Name  
Signal Name  
Pin #  
Signal Name  
Pin #  
Signal Name  
Pin #  
DR  
DSCK  
DSI  
61  
60  
59  
58  
27  
1
MA5  
MA6  
19  
18  
16  
14  
13  
12  
11  
7
MRD  
MWR  
NMI  
OS0  
77  
78  
39  
59  
60  
32  
30  
36  
26  
51  
49  
26  
35  
57  
56  
47  
46  
45  
42  
6
MA7  
DSO  
MA8  
EXTAL  
MA9  
OS1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MA10  
MA11  
MA12  
MA13  
MA14  
MA15  
MA16  
MA17  
MCAS  
MCS0  
MCS1  
MCS2  
MCS3  
MD0  
PCAP  
PINIT  
RESET  
SCK  
A
A
A
A
D
D
P
8
15  
21  
66  
72  
31  
10  
29  
52  
34  
44  
54  
76  
75  
74  
73  
41  
42  
43  
37  
38  
25  
24  
23  
22  
20  
5
4
SCKR  
SCKT  
SCL  
3
80  
79  
80  
2
SDA  
Q
Q
Q
SDI0  
SDI1  
SDO0  
SDO1  
SDO2  
SS  
GND  
GND  
GND  
79  
80  
3
S
S
S
GPIO0  
GPIO1  
GPIO2  
GPIO3  
HA0  
71  
69  
68  
67  
65  
64  
63  
62  
35  
37  
38  
39  
41  
79  
MD1  
V
V
V
CCA  
CCA  
CCD  
MD2  
17  
70  
33  
9
MD3  
MD4  
V
CCP  
CCQ  
CCQ  
CCQ  
HA2  
MD5  
V
V
V
HREQ  
IRQA  
IRQB  
MA0  
MD6  
28  
53  
40  
48  
55  
50  
MD7  
MISO  
MODA  
MODB  
MODC  
MOSI  
MRAS  
V
V
CCS  
CCS  
MA1  
WSR  
WST  
MA2  
MA3  
MA4  
MOTOROLA  
DSP56007/D  
3-5  
Packaging  
Pin-out and Package Information  
Table 3-3 DSP56007 Power Supply Pins  
Pin #  
Signal Name  
Circuit Supplied  
Address Bus Buffers  
6
V
CCA  
17  
1
GND  
A
D
Q
8
15  
21  
70  
66  
72  
9
V
Data Bus Buffers  
Internal Logic  
CCD  
GND  
V
CCQ  
28  
53  
10  
29  
52  
33  
31  
40  
48  
34  
44  
54  
GND  
V
PLL  
CCP  
GND  
P
S
V
Serial Ports  
CCS  
GND  
3-6  
DSP56007/D  
MOTOROLA  
Packaging  
Pin-out and Package Information  
L
60  
41  
61  
40  
B
P
B
-A-  
-B-  
L
B
V
-A,B,D-  
DETAIL A  
DETAIL A  
21  
80  
F
1
20  
-D-  
A
M
S
S
S
0.20  
0.05  
C
A-B  
A-B  
D
D
A-B  
J
N
S
H
S
M
0.20  
D
M
E
M
S
S
0.20  
C
A-B  
D
DETAIL C  
SECTION B-B  
C
DATUM  
-H-  
PLANE  
0.01  
-C-  
SEATING  
PLANE  
H
M
G
CASE 841B-01  
ISSUE O  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
13.90  
13.90  
2.15  
MAX  
14.10  
14.10  
2.45  
U
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
0.22  
0.38  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
2.00  
0.22  
2.40  
0.33  
F
BOTTOM OF THE PARTING LINE.  
T
G
H
J
K
L
M
N
P
0.65 BSC  
4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT  
-
0.25  
0.23  
0.95  
DATUM PLANE -H-.  
DATUM  
PLANE  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
0.13  
0.65  
-H-  
R
SEATING PLANE -C-.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
12.35 BSC  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
PER SIDE. DIMENSIONS A AND B DO  
55  
0.13  
105  
0.17  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
0.325 BSC  
AT DATUM PLANE -H-.  
Q
R
S
05  
0.13  
16.95  
0.13  
05  
16.95  
0.35  
75  
0.30  
17.45  
-
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
K
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
Q
W
T
X
U
V
W
X
-
17.45  
0.45  
DETAIL C  
1.6 REF  
Figure 3-3 80-pin Quad Flat Pack (QFP) Mechanical Information  
MOTOROLA  
DSP56007/D  
3-7  
Packaging  
Ordering Drawings  
ORDERING DRAWINGS  
Complete mechanical information regarding DSP56007 packaging is available by  
facsimile through Motorola's Mfax™ system. Call the following number to obtain  
information by facsimile:  
(602) 244-6591  
The Mfax automated system requests the following information:  
The receiving facsimile telephone number including area code or country  
code  
The caller’s Personal Identification Number (PIN)  
Note: For first time callers, the system provides instructions for setting up a PIN,  
which requires entry of a name and telephone number.  
The type of information requested:  
Instructions for using the system  
A literature order form  
Specific part technical information or data sheets  
Other information described by the system messages  
A total of three documents may be ordered per call.  
The DSP56007 80-pin QFP package mechanical drawing is referenced as 841B-01.  
3-8  
DSP56007/D  
MOTOROLA  
SECTION 4  
DESIGN CONSIDERATIONS  
THERMAL DESIGN CONSIDERATIONS  
An estimation of the chip junction temperature, T , in °C can be obtained from the  
J
equation:  
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
T = ambient temperature ˚C  
A
R
= package junction-to-ambient thermal resistance ˚C/ W  
θJA  
P = power dissipation in package  
D
Historically, thermal resistance has been expressed as the sum of a junction-to-case  
thermal resistance and a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
R
R
R
= package junction-to-ambient thermal resistance ˚C/ W  
= package junction-to-case thermal resistance ˚C/ W  
= package case-to-ambient thermal resistance ˚C/ W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the  
θJC  
thermal environment to change the case-to-ambient thermal resistance, R  
. For  
θCA  
example, the user can change the air flow around the device, add a heat sink, change  
the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change  
the thermal dissipation capability of the area surrounding the device on a PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow  
is dissipated through the case to the heat sink and out to the ambient environment.  
For ceramic packages, in situations where the heat flow is split between a path to the  
case and an alternate path through the PCB, analysis of the device thermal  
performance may need the additional modeling capability of a system level thermal  
simulation tool.  
MOTOROLA  
DSP56007/D  
4-1  
Design Considerations  
Thermal Design Considerations  
The thermal performance of plastic packages is more dependent on the temperature  
of the PCB to which the package is mounted. Again, if the estimations obtained from  
do not satisfactorily answer whether the thermal performance is adequate, a  
R
θJA  
system level model may be appropriate.  
A complicating factor is the existence of three common ways for determining the  
junction-to-case thermal resistance in plastic packages:  
To minimize temperature variation across the surface, the thermal resistance  
is measured from the junction to the outside surface of the package (case)  
closest to the chip mounting area when that surface has a proper heat sink.  
To define a value approximately equal to a junction-to-board thermal  
resistance, the thermal resistance is measured from the junction to where the  
leads are attached to the case.  
If the temperature of the package case (T ) is determined by a thermocouple,  
T
the thermal resistance is computed using the value obtained by the equation  
(T – T )/ P .  
J
T
D
As noted above, the junction-to-case thermal resistances quoted in this data sheet are  
determined using the first definition. From a practical standpoint, that value is also  
suitable for determining the junction temperature from a case thermocouple reading  
in forced convection environments. In natural convection, using the junction-to-case  
thermal resistance to estimate junction temperature from a thermocouple reading on  
the case of the package will estimate a junction temperature slightly hotter than  
actual temperature. Hence, the new thermal metric, Thermal Characterization  
Parameter or Ψ , has been defined to be (T – T )/ P . This value gives a better  
JT  
J
T
D
estimate of the junction temperature in natural convection when using the surface  
temperature of the package. Remember that surface temperature readings of  
packages are subject to significant errors caused by inadequate attachment of the  
sensor to the surface and to errors caused by heat loss to the sensor. The  
recommended technique is to attach a 40-gauge thermocouple wire and bead to the  
top center of the package with thermally conductive epoxy.  
4-2  
DSP56007/D  
MOTOROLA  
Design Considerations  
Electrical Design Considerations  
ELECTRICAL DESIGN CONSIDERATIONS  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate logic voltage level (e.g., either GND or V ).  
CC  
Use the following list of recommendations to assure correct DSP operation:  
Provide a low-impedance path from the board power supply to each V  
pin on the DSP, and from the board ground to each GND pin.  
CC  
Use at least four 0.01–0.1 µF bypass capacitors positioned as close as  
possible to the four sides of the package to connect the V power source  
CC  
to GND.  
Ensure that capacitor leads and associated printed circuit traces that  
connect to the chip V and GND pins are less than 0.5 in per capacitor  
CC  
lead.  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers  
for V and GND.  
CC  
Because the DSP output signals have fast rise and fall times, PCB trace  
lengths should be minimal. This recommendation particularly applies to  
the address and data buses as well as the IRQA, IRQB, and NMI pins.  
Maximum Printed Circuit Board (PCB) trace lengths on the order of  
6 inches are recommended.  
Consider all device loads as well as parasitic capacitance due to PCB  
traces when calculating capacitance. This is especially critical in systems  
with higher capacitive loads that could create higher transient currents in  
the V and GND circuits.  
CC  
All inputs must be terminated (i.e., not allowed to float) using CMOS  
levels, except as noted in Section 1.  
Take special care to minimize noise levels on the V  
and GND pins.  
CCP P  
If multiple DSP56007 devices are on the same board, check for cross-talk  
or excessive spikes on the supplies due to synchronous operation of the  
devices.  
MOTOROLA  
DSP56007/D  
4-3  
Design Considerations  
Power Consumption Considerations  
POWER CONSUMPTION CONSIDERATIONS  
Power dissipation is a key issue in portable DSP applications. Some of the factors  
which affect current consumption are described in this section. Most of the current  
consumed by CMOS devices is Alternating Current (AC), which is charging and  
discharging the capacitances of the pins and internal nodes.  
Current consumption is described by the formula:  
Equation 3: I = C × V × f  
where:  
C = node/ pin capacitance in farads  
V = voltage swing  
f = frequency of node/ pin toggle in hertz  
Example 4-1 Current Consumption  
For an I/ O pin loaded with 50 pF capacitance, operating at 5.25 V, and with a 88 MHz clock,  
toggling at its maximum possible rate (22 MHz), the current consumption is:  
Equation 4: I = 50 × 10–12 × 5.25 × 22 × 106 = 5.78mA  
The Maximum Internal Current (I max) value reflects the typical possible  
CCI  
switching of the internal buses on best-case operation conditions, which is not  
necessarily a real application case. The Typical Internal Current (I  
) value  
CCItyp  
reflects the average switching of the internal buses on typical operating conditions.  
For applications that require very low current consumption:  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
Connect the unused inputs to pull-up or pull-down resistors.  
Disable unused peripherals.  
Disable unused pin activity.  
4-4  
DSP56007/D  
MOTOROLA  
Design Considerations  
Power Consumption Considerations  
Current consumption test code:  
org  
p:RESET  
jmp  
MAIN  
org  
p:MAIN  
movep #$180000,x:$FFFD  
move  
move  
move  
move  
nop  
#0,r0  
#0,r4  
#$00FF,m0  
#$00FF,m4  
rep  
#256  
move  
rep  
r0,x:(r0)+  
#256  
mov  
clr  
r4,y:(r4)+  
a
move  
rep  
l:(r0)+,a  
#30  
mac  
x0,y0,a  
x:(r0)+,x0  
y:(r4)+,y0  
move  
jmp  
a,p:(r5)  
TP1  
TP1  
nop  
jmp  
MAIN  
MOTOROLA  
DSP56007/D  
4-5  
Design Considerations  
Power-Up Considerations  
POWER-UP CONSIDERATIONS  
To power-up the device properly, ensure that the following conditions are met:  
Stable power is applied to the device according to the specifications in Table  
2-3 (DC Electrical Characteristics).  
The external clock oscillator is active and stable.  
RESET is asserted according to the specifications in Table 2-7 (Reset, Stop,  
Mode Select, and Interrupt Timing).  
The following input pins are driven to valid voltage levels: DR, PINIT,  
MODA, MODB, and MODC.  
Care should be taken to ensure that the maximum ratings for all input voltages obey  
the restrictions on Table 2-1 (Maximum Ratings), at all phases of the power-up  
procedure. This may be achieved by powering the external clock, hardware reset, and  
mode selection circuits from the same power supply that is connected to the power  
supply pins of the chip.  
At the beginning of the hardware reset procedure, the device might consume  
significantly more current than the specified typical supply current. This is because of  
contentions among the internal nodes being affected by the hardware reset signal  
until they reach their final hardware reset state.  
4-6  
DSP56007/D  
MOTOROLA  
SECTION 5  
ORDERING INFORMATION  
Consult a Motorola Semiconductor sales office or authorized distributor to determine  
product availability and to place an order.  
Table 5-1 Ordering Information  
Supply  
Voltage  
Frequency  
(MHz)  
Part  
Package Type  
Pin Count  
Order Number  
1
2
DSPB56007  
5 V  
Quad Flat Pack  
(QFP)  
80  
50  
66  
88  
50  
66  
88  
DSPB56007FJ50  
DSPB56007FJ66  
DSPB56007FJ88  
DSPE56007FJ50  
DSPE56007FJ66  
DSPE56007FJ88  
DSPE56007  
5 V  
Quad Flat Pack  
(QFP)  
80  
Note:  
1. The DSPB56007 includes a generic factory-programmed ROM and may be used for RAM-based  
applications. For additional information on future part development, or to request specific ROM-  
based support, call your local Motorola Semiconductor sales office or authorized distributor.  
2. The DSPE56007 includes factory-programmed ROM containing support for Dolby Pro Logic and  
Lucasfilm THX applications. This part can be used only be customers licensed for Dolby Pro Logic  
and Lucasfilm THX. To request specific support for this chip, call your local Motorola Semiconductor  
sales office or authorized distributor.  
MOTOROLA  
DSP56007/D  
5-1  
OnCE, Mfax, and Symphony are trademarks of Motorola, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no  
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does  
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may  
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights  
of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support life, or for any other application in which the  
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent  
regarding the design or manufacture of the part. Motorola and  
are registered trademarks of Motorola, Inc.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/Europe/Locations Not Listed:  
Asia/Pacific:  
Japan:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
303-675-2140  
Motorola Semiconductors H.K. Ltd.  
8B Tai Ping Industrial Park  
51 Ting Kok Road  
Tai Po, N.T., Hong Kong  
852-26629298  
Nippon Motorola Ltd.  
Tatsumi-SPD-JLDC  
6F Seibu-Butsuryu-Center  
3-14-2 Tatsumi Koto-Ku  
Tokyo 135, Japan  
1 (800) 441-2447  
81-3-3521-8315  
Technical Resource Center:  
1 (800) 521-6274  
Mfax™:  
RMFAX0@email.sps.mot.com  
TOUCHTONE (602) 244-6609  
US & Canada ONLY (800) 774-1848  
Internet:  
http://www.motorola-dsp.com  
DSP Helpline  
dsphelp@dsp.sps.mot.com  

相关型号:

DSPB56L007FJ66

Digital Signal Processor
MOTOROLA

DSPC-8601-USBE

1-ch H.264 USB Video Capture Module with SDK
ADVANTECH

DSPC-8661-PCXE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH

DSPC-8661ACY01-AE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH

DSPC-8661ACY02-AE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH

DSPC-8661ACY03-AE

16-ch PCIe Versatile Video Processing Board with SDK
ADVANTECH

DSPC-8662-PCXE

8ch 3G-SDI Video Encoder Card with SDK
ADVANTECH

DSPC-8662H-PCXE

4-Ch HDMI PCIe Video Decoder Card with 4-ch 3G-SDI inputs and SDK
ADVANTECH

DSPC-8681

Half-length PCI Express Card with 4 TMS320C6678 DSPs
ADVANTECH

DSPC-8681-00A1E

Half-length PCI Express Card with 4 TMS320C6678 DSPs
ADVANTECH

DSPC-8681E-00A1E

Half-length PCI Express Card with 4 TMS320C6678 DSPs
ADVANTECH

DSPC-8681G2-00A2E

Half-length PCI Express Card with 4 TMS320C6678 DSPs
ADVANTECH