BCX70KLT1

更新时间:2024-09-18 02:09:11
品牌:MOTOROLA
描述:General Purpose Transistors

BCX70KLT1 概述

General Purpose Transistors 通用晶体管 小信号双极晶体管

BCX70KLT1 规格参数

是否Rohs认证: 不符合生命周期:Obsolete
包装说明:SMALL OUTLINE, R-PDSO-G3Reach Compliance Code:unknown
ECCN代码:EAR99HTS代码:8541.21.00.75
风险等级:5.03Is Samacsys:N
最大集电极电流 (IC):0.2 A基于收集器的最大容量:4.5 pF
集电极-发射极最大电压:45 V配置:SINGLE
最小直流电流增益 (hFE):100JEDEC-95代码:TO-236AB
JESD-30 代码:R-PDSO-G3JESD-609代码:e0
元件数量:1端子数量:3
最高工作温度:150 °C封装主体材料:PLASTIC/EPOXY
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):NOT SPECIFIED极性/信道类型:NPN
功耗环境最大值:0.225 W认证状态:Not Qualified
表面贴装:YES端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED晶体管元件材料:SILICON
标称过渡频率 (fT):125 MHz最大关闭时间(toff):800 ns
最大开启时间(吨):150 nsVCEsat-Max:0.55 V
Base Number Matches:1

BCX70KLT1 数据手册

通过下载BCX70KLT1数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Order this document  
by BCX70GLT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN Silicon  
COLLECTOR  
3
1
BASE  
2
3
EMITTER  
MAXIMUM RATINGS  
1
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
Symbol  
Value  
Unit  
Vdc  
2
V
CEO  
V
CBO  
V
EBO  
45  
45  
Vdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
EmitterBase Voltage  
5.0  
200  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
C
mAdc  
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
BCX70GLT1 = AG; BCX70JLT1 = AJ; BCX70KLT1 = AK  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
CollectorEmitter Breakdown Voltage  
V
45  
Vdc  
Vdc  
(BR)CEO  
(I = 2.0 mAdc, I = 0)  
C
E
EmitterBase Breakdown Voltage  
(I = 1.0 Adc, I = 0)  
V
5.0  
(BR)EBO  
E
C
Collector Cutoff Current  
I
CES  
(V  
CE  
(V  
CE  
= 32 Vdc)  
= 32 Vdc, T = 150°C)  
20  
20  
nAdc  
Adc  
A
Emitter Cutoff Current  
(V = 4.0 Vdc, I = 0)  
I
20  
nAdc  
EBO  
EB  
1. FR5 = 1.0  
C
0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
Thermal Clad is a trademark of the Bergquist Company  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
(I = 10 Adc, V  
C CE  
h
FE  
= 5.0 Vdc)  
BCX70G  
BCX70J  
BCX70K  
40  
100  
(I = 2.0 mAdc, V  
= 5.0 Vdc)  
= 1.0 Vdc)  
BCX70G  
BCX70J  
BCX70K  
120  
250  
380  
220  
460  
630  
C
CE  
(I = 50 mAdc, V  
BCX70G  
BCX70J  
BCX70K  
60  
90  
100  
C
CE  
CollectorEmitter Saturation Voltage  
(I = 50 mAdc, I = 1.25 mAdc)  
V
V
Vdc  
Vdc  
Vdc  
CE(sat)  
0.55  
0.35  
C
B
(I = 10 mAdc, I = 0.25 mAdc)  
C
B
BaseEmitter Saturation Voltage  
(I = 50 mAdc, I = 1.25 mAdc)  
BE(sat)  
0.7  
0.6  
1.05  
0.85  
C
C
B
B
(I = 50 mAdc, I = 0.25 mAdc)  
BaseEmitter On Voltage  
(I = 2.0 mAdc, V = 5.0 Vdc)  
V
0.55  
0.75  
BE(on)  
C
CE  
SMALLSIGNAL CHARACTERISTICS  
Current–Gain — Bandwidth Product  
f
125  
MHz  
pF  
T
(I = 5.0 Vdc, f = 100 MHz)  
V
C = 10 mAdc, CE  
Output Capacitance  
(V = 10 Vdc, I = 0, f = 1.0 MHz)  
C
4.5  
obo  
CB  
C
SmallSignal Current Gain  
h
fe  
(I = 2.0 mAdc, V  
C
= 5.0 Vdc, f = 1.0 kHz)  
BCX70G  
BCX70J  
BCX70K  
125  
250  
350  
250  
500  
700  
CE  
Noise Figure  
NF  
6.0  
dB  
(I = 0.2 mAdc, V  
= 5.0 Vdc, R = 2.0 k, f = 1.0 kHz, BW = 200 Hz)  
S
C
CE  
SWITCHING CHARACTERISTICS  
Turn–On Time  
(I = 10 mAdc, I = 1.0 mAdc)  
C
t
t
150  
800  
ns  
ns  
on  
B1  
Turn–Off Time  
(I = 1.0 mAdc, V  
B2  
off  
= 3.6 Vdc, R1 = R2 = 5.0 k, R = 990)  
L
BB  
EQUIVALENT SWITCHING TIME TEST CIRCUITS  
+3.0 V  
+3.0 V  
t
10 < t < 500 µs  
DUTY CYCLE = 2%  
1
1
300 ns  
DUTY CYCLE = 2%  
+10.9 V  
<1.0 ns  
275  
275  
+10.9 V  
10 k  
10 k  
0
0.5 V  
<1.0 ns  
C
< 4.0 pF*  
C < 4.0 pF*  
S
S
9.1 V  
1N916  
*Total shunt capacitance of test jig and connectors  
Figure 1. Turn–On Time  
Figure 2. Turn–Off Time  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
20  
10  
100  
I
= 1.0 mA  
300  
BANDWIDTH = 1.0 Hz  
C
BANDWIDTH = 1.0 Hz  
= 0  
50  
20  
I
= 1.0 mA  
R
≈∞  
R
C
S
S
µA  
300 µA  
100 µA  
10  
5.0  
7.0  
5.0  
100  
µA  
2.0  
1.0  
10  
µA  
30  
µA  
0.5  
0.2  
30  
µA  
3.0  
2.0  
10 µA  
0.1  
10  
20  
50  
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
10  
20  
50  
100  
200  
500  
1 k  
2 k  
5 k  
10 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 3. Noise Voltage  
Figure 4. Noise Current  
NOISE FIGURE CONTOURS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
500 k  
200 k  
1 M  
500 k  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
100 k  
50 k  
200 k  
100 k  
50 k  
20 k  
20 k  
10 k  
10 k  
5 k  
2.0 dB  
1.0 dB  
5 k  
2 k  
2 k  
1 k  
3.0 dB  
4.0 dB  
2.0 dB  
3.0 dB  
5.0 dB  
8.0 dB  
6.0 dB  
10 dB  
500  
1 k  
500  
200  
100  
50  
200  
100  
10  
20 30  
50 70 100  
200 300  
A)  
500 700 1 k  
10  
20 30  
50 70 100  
200 300  
A)  
500 700 1 k  
I
, COLLECTOR CURRENT (  
µ
I
, COLLECTOR CURRENT (µ  
C
C
Figure 5. Narrow Band, 100 Hz  
Figure 6. Narrow Band, 1.0 kHz  
500 k  
200 k  
10 Hz to 15.7 kHz  
100 k  
50 k  
Noise Figure is defined as:  
20 k  
2
R
n S  
2
1 2  
2
e
n
4KTR  
4KTR  
I
S
10 k  
5 k  
NF  
20 log  
10  
S
1.0 dB  
e
= Noise Voltage of the Transistor referred to the input. (Figure 3)  
= Noise Current of the Transistor referred to the input. (Figure 4)  
n
2 k  
1 k  
2.0 dB  
I
n
3.0 dB  
–23  
= Boltzman’s Constant (1.38 x 10  
K
T
R
j/°K)  
500  
= Temperature of the Source Resistance (°K)  
5.0 dB  
8.0 dB  
= Source Resistance (Ohms)  
200  
100  
50  
S
20 30  
50 70 100  
200 300  
500 700 1 k  
10  
I
, COLLECTOR CURRENT (µA)  
C
Figure 7. Wideband  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL STATIC CHARACTERISTICS  
400  
200  
T
= 125°C  
J
25°C  
55°C  
100  
80  
60  
V
V
= 1.0 V  
= 10 V  
CE  
CE  
40  
0.004 0.006 0.01  
0.02 0.03 0.05 0.07 0.1  
0.2 0.3  
0.5 0.7 1.0  
3.0  
2.0  
5.0 7.0 10  
20  
30  
50 70 100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 8. DC Current Gain  
1.0  
0.8  
100  
T
= 25°C  
A
T
= 25°C  
J
I
= 500  
400  
µ
A
B
PULSE WIDTH = 300  
DUTY CYCLE 2.0%  
µ
s
80  
60  
µA  
300  
200  
µA  
I
= 1.0 mA  
10 mA  
50 mA  
100 mA  
C
0.6  
0.4  
0.2  
0
µ
A
40  
20  
0
100  
µA  
0.002 0.005 0.01 0.02 0.05 0.1 0.2  
0.5 1.0 2.0  
5.0 10 20  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I
, BASE CURRENT (mA)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
B
CE  
Figure 9. Collector Saturation Region  
Figure 10. Collector Characteristics  
1.4  
1.2  
1.6  
0.8  
0
*APPLIES for I /I  
h  
/2  
T
= 25  
°
C
C B  
FE  
J
25°C to 125°C  
1.0  
0.8  
0.6  
0.4  
*
for V  
CE(sat)  
VC  
V
BE(sat)  
@ I /I = 10  
C B  
55°C to 25°C  
0.8  
1.6  
2.4  
V
@ V = 1.0 V  
CE  
BE(on)  
25°C to 125°C  
0.2  
0
55°C to 25°C  
for V  
BE  
VB  
0.2  
V
@ I /I = 10  
C B  
CE(sat)  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
0.1  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
I
, COLLECTOR CURRENT (mA)  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 11. “On” Voltages  
Figure 12. Temperature Coefficients  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL DYNAMIC CHARACTERISTICS  
300  
200  
1000  
V
= 3.0 V  
/I = 10  
CC  
700  
500  
I
C B  
= 25°C  
t
s
T
J
100  
70  
300  
200  
50  
t
r
100  
70  
30  
20  
t
f
50  
t
@ V = 0.5 Vdc  
BE(off)  
d
V
= 3.0 V  
/I = 10  
10  
CC  
30  
20  
I
I
C B  
= I  
7.0  
5.0  
B1 B2  
= 25°C  
T
J
3.0  
1.0  
10  
1.0  
2.0 3.0  
I
5.0 7.0 10  
20 30  
50 70 100  
2.0 3.0  
5.0 7.0 10  
, COLLECTOR CURRENT (mA)  
C
20  
30  
50 70 100  
, COLLECTOR CURRENT (mA)  
I
C
Figure 13. Turn–On Time  
Figure 14. Turn–Off Time  
500  
10  
7.0  
5.0  
T
J
= 25°C  
f = 1.0 MHz  
T
= 25  
°
C
J
f = 100 MHz  
300  
200  
C
ib  
V
= 20 V  
CE  
5.0 V  
C
ob  
3.0  
2.0  
100  
70  
50  
1.0  
0.05 0.1  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50  
0.2  
0.5  
V , REVERSE VOLTAGE (VOLTS)  
R
1.0  
2.0  
5.0  
10  
20  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 15. Current–Gain — Bandwidth Product  
Figure 16. Capacitance  
20  
10  
200  
V
= 10 Vdc  
V
= 10 Vdc  
CE  
f = 1.0 kHz  
= 25  
CE  
f = 1.0 kHz  
= 25  
100  
h
200 @ I = 1.0 mA  
C
fe  
T
°C  
T
°C  
A
A
7.0  
5.0  
70  
50  
h
200 @ I = 1.0 mA  
C
fe  
3.0  
2.0  
30  
20  
1.0  
0.7  
0.5  
10  
7.0  
5.0  
0.3  
0.2  
3.0  
2.0  
0.1  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
0.2  
0.5  
1.0  
I , COLLECTOR CURRENT (mA)  
C
2.0  
5.0  
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
C
Figure 17. Input Impedance  
Figure 18. Output Admittance  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
FIGURE 19A  
0.05  
DUTY CYCLE, D = t /t  
1 2  
P
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
(pk)  
0.02  
0.01  
0.03  
0.02  
t
READ TIME AT t (SEE AN–569)  
1
1
Z
T
= r(t)  
R
SINGLE PULSE  
θ
J(pk)  
JA(t)  
θ
JA  
t
2
– T = P  
Z
θJA(t)  
A
(pk)  
0.01  
0.01 0.02  
0.05 0.1 0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500 1.0 k 2.0 k  
5.0 k 10 k 20 k  
100 k  
50 k  
t, TIME (ms)  
Figure 19. Thermal Response  
4
10  
10  
10  
DESIGN NOTE: USE OF THERMAL RESPONSE DATA  
V
= 30 Vdc  
CC  
A train of periodical power pulses can be represented by the model  
as shown in Figure 19A. Using the model and the device thermal  
response the normalized effective transient thermal resistance of  
Figure 19 was calculated for various duty cycles.  
3
2
I
CEO  
To find Z  
steady state value R  
, multiply the value obtained from Figure 19 by the  
θJA(t)  
.
1
0
θJA  
10  
Example:  
The MPS3904 is dissipating 2.0 watts peak under the following  
conditions:  
I
CBO  
AND  
10  
t
= 1.0 ms, t = 5.0 ms. (D = 0.2)  
I
@ V  
= 3.0 Vdc  
1
2
CEX  
BE(off)  
–1  
10  
10  
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of  
r(t) is 0.22.  
–2  
The peak rise in junction temperature is therefore  
T = r(t) x P  
(pk) θJA  
For more information, see AN–569.  
–4  
0
–2  
0
0
+20 +40 +60 +80 +100 +120 +140 +160  
T , JUNCTION TEMPERATURE ( C)  
x R  
= 0.22 x 2.0 x 200 = 88°C.  
°
J
Figure 19A.  
400  
200  
100  
10  
µs  
The safe operating area curves indicate I –V limits of the  
CE  
1.0 ms  
C
transistor that must be observed for reliable operation. Collector load  
lines for specific circuits must fall below the limits indicated by the  
applicable curve.  
µs  
1.0 s  
100  
T
= 25°C  
C
The data of Figure 20 is based upon T  
= 150°C; T or T is  
C A  
dc  
J(pk)  
variable depending upon conditions. Pulse curves are valid for duty  
cyclesto10%providedT 150°C. T maybecalculatedfrom  
60  
40  
T
= 25°C  
A
dc  
J(pk)  
J(pk)  
the data in Figure 19. At high case or ambient temperatures, thermal  
limitations will reduce the power that can be handled to values less  
than the limitations imposed by second breakdown.  
20  
10  
T = 150°C  
J
CURRENT LIMIT  
THERMAL LIMIT  
SECOND BREAKDOWN LIMIT  
6.0  
4.0  
40  
2.0  
4.0 6.0 8.0 10  
20  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 20.  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BCX70GLT1/D  

BCX70KLT1 相关器件

型号 制造商 描述 价格 文档
BCX70KLT3 ONSEMI 200mA, 45V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB, CASE 318-08, 3 PIN 获取价格
BCX70KLX ALLEGRO Small Signal Bipolar Transistor, 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB 获取价格
BCX70KR ZETEX SOT23 NPN SILICON PLANAR SMALL SIGNAL TRANSISTOR 获取价格
BCX70KR ALLEGRO Transistor 获取价格
BCX70KR-P9 ZETEX SOT23 NPN SILICON PLANAR SMALL SIGNAL TRANSISTOR 获取价格
BCX70KRLK ALLEGRO Small Signal Bipolar Transistor, 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB 获取价格
BCX70KRLO ALLEGRO Small Signal Bipolar Transistor, 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB 获取价格
BCX70KRLT ALLEGRO Small Signal Bipolar Transistor, 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB 获取价格
BCX70KRLX ALLEGRO Small Signal Bipolar Transistor, 45V V(BR)CEO, 1-Element, NPN, Silicon, TO-236AB 获取价格
BCX70KRTA ZETEX Small Signal Bipolar Transistor, 0.2A I(C), 45V V(BR)CEO, 1-Element, NPN, Silicon 获取价格

BCX70KLT1 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6