1N5819 [MOTOROLA]

SCHOTTKY BARRIER RECTIFIERS 1 AMPERE 20, 30 and 40 VOLTS; 肖特基二极管1安培20 , 30和40伏
1N5819
型号: 1N5819
厂家: MOTOROLA    MOTOROLA
描述:

SCHOTTKY BARRIER RECTIFIERS 1 AMPERE 20, 30 and 40 VOLTS
肖特基二极管1安培20 , 30和40伏

肖特基二极管
文件: 总6页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by 1N5817/D  
SEMICONDUCTOR TECHNICAL DATA  
. . . employing the Schottky Barrier principle in a large area metal–to–silicon  
power diode. State–of–the–art geometry features chrome barrier metal,  
epitaxial construction with oxide passivation and metal overlap contact. Ideally  
suited for use as rectifiers in low–voltage, high–frequency inverters, free  
wheeling diodes, and polarity protection diodes.  
1N5817 and 1N5819 are  
Motorola Preferred Devices  
Extremely Low v  
F
Low Stored Charge, Majority Carrier Conduction  
Low Power Loss/High Efficiency  
SCHOTTKY BARRIER  
RECTIFIERS  
Mechanical Characteristics  
1 AMPERE  
20, 30 and 40 VOLTS  
Case: Epoxy, Molded  
Weight: 0.4 gram (approximately)  
Finish: All External Surfaces Corrosion Resistant and Terminal Leads are  
Readily Solderable  
Lead and Mounting Surface Temperature for Soldering Purposes: 220°C  
Max. for 10 Seconds, 1/16from case  
Shipped in plastic bags, 1000 per bag.  
Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to the  
part number  
Polarity: Cathode Indicated by Polarity Band  
Marking: 1N5817, 1N5818, 1N5819  
CASE 59–04  
MAXIMUM RATINGS  
Rating  
Symbol  
1N5817 1N5818 1N5819  
Unit  
Peak Repetitive Reverse Voltage  
Working Peak Reverse Voltage  
DC Blocking Voltage  
V
V
20  
30  
40  
V
RRM  
RWM  
R
V
Non–Repetitive Peak Reverse Voltage  
RMS Reverse Voltage  
V
24  
14  
36  
21  
48  
28  
V
V
A
RSM  
V
R(RMS)  
Average Rectified Forward Current (2)  
I
O
1.0  
(V  
R(equiv)  
θJA  
0.2 V (dc), T = 90°C,  
R L  
R
= 80°C/W, P.C. Board Mounting, see Note 2, T = 55°C)  
A
Ambient Temperature (Rated V (dc), P  
R
= 0, R  
= 80°C/W)  
T
A
85  
80  
75  
°C  
F(AV)  
θJA  
Non–Repetitive Peak Surge Current  
I
25 (for one cycle)  
A
FSM  
(Surge applied at rated load conditions, half–wave, single phase 60 Hz,  
= 70°C)  
T
L
Operating and Storage Junction Temperature Range (Reverse Voltage applied)  
Peak Operating Junction Temperature (Forward Current applied)  
THERMAL CHARACTERISTICS (2)  
T , T  
stg  
–65 to +125  
150  
°C  
°C  
J
T
J(pk)  
Characteristic  
Symbol  
Max  
Unit  
Thermal Resistance, Junction to Ambient  
R
80  
°C/W  
θJA  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (2)  
L
Characteristic  
Symbol  
1N5817 1N5818 1N5819  
Unit  
Maximum Instantaneous Forward Voltage (1)  
(i = 0.1 A)  
v
0.32  
0.45  
0.75  
0.33  
0.55  
0.875  
0.34  
0.6  
0.9  
V
F
F
(i = 1.0 A)  
F
(i = 3.0 A)  
F
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1)  
(T = 25°C)  
(T = 100°C)  
L
I
R
1.0  
10  
1.0  
10  
1.0  
10  
mA  
L
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.  
(2) Lead Temperature reference is cathode lead 1/32from case.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Rev 3  
Motorola, Inc. 1996  
125  
115  
NOTE 1 — DETERMINING MAXIMUM RATINGS  
40 30 23  
Reverse power dissipation and the possibility of thermal runaway  
must be considered when operating this rectifier at reverse voltages  
°
above 0.1 V  
equation (1).  
. Proper derating may be accomplished by use of  
RWM  
105  
95  
T
=
=
=
(1)  
T
– R  
P
– R P  
θJA R(AV)  
A(max)  
J(max)  
θJA F(AV)  
where T  
A(max)  
Maximum allowable ambient temperature  
Maximum allowable junction temperature  
(125°C or the temperature at which thermal  
runaway occurs, whichever is lowest)  
Average forward power dissipation  
R
(°C/W) = 110  
JA  
θ
T
J(max)  
80  
60  
P
P
=
=
=
F(AV)  
85  
75  
Average reverse power dissipation  
Junction–to–ambient thermal resistance  
R(AV)  
R
θJA  
Figures 1, 2, and 3 permit easier use of equation (1) by taking re-  
verse power dissipation and thermal runaway into consideration. The  
figures solve for a reference temperature as determined by equation  
(2).  
3.0  
4.0  
5.0  
7.0  
10  
15  
20  
2.0  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Figure 1. Maximum Reference Temperature  
1N5817  
T
R
= T  
– R P  
J(max)  
Substituting equation (2) into equation (1) yields:  
= T – R P  
θJA F(AV)  
Inspection of equations (2) and (3) reveals that T is the ambient  
temperature at which thermal runaway occurs or where T = 125°C,  
when forward power is zero. The transition from one boundary condi-  
tion to the other is evident on the curves of Figures 1, 2, and 3 as a  
differenceintherateofchangeoftheslopeinthevicinityof115°C. The  
dataofFigures1, 2, and3isbasedupondcconditions. Foruseincom-  
mon rectifier circuits, Table 1 indicates suggested factors for an equiv-  
alent dc voltage to use for conservative design, that is:  
θJA R(AV)  
(2)  
125  
115  
T
A(max)  
R
(3)  
R
40  
23  
30  
J
°
105  
95  
R
(°  
C/W) = 110  
80  
θ
JA  
60  
(4)  
V
= V x F  
in(PK)  
R(equiv)  
ThefactorFisderivedbyconsideringthepropertiesofthevariousrec-  
tifier circuits and the reverse characteristics of Schottky diodes.  
85  
EXAMPLE:FindT  
A(max)  
for1N5818operatedina12–voltdcsupply  
usingabridgecircuitwithcapacitivefiltersuchthatI  
=0.4A(I  
=
75  
DC  
F(AV)  
= 80°C/W.  
3.0  
4.0  
5.0  
7.0  
10  
15  
20  
30  
0.5 A), I  
/I  
= 10, Input Voltage = 10 V  
, R  
(FM) (AV)  
(rms) θJA  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Step 1. Find V  
Step 1. Find  
. Read F = 0.65 from Table 1,  
R(equiv)  
Figure 2. Maximum Reference Temperature  
1N5818  
V
= (1.41)(10)(0.65) = 9.2 V.  
R(equiv)  
Step 2. Find T from Figure 2. Read T = 109°C  
R
R
Step 1. Find @ V = 9.2 V and R  
= 80°C/W.  
R
F(AV)  
θJA  
from Figure 4. **Read P  
Step 3. Find P  
= 0.5 W  
F(AV)  
125  
115  
40  
I
(FM)  
30  
23  
@
= 10 and I  
= 0.5 A.  
F(AV)  
I
°
(AV)  
Step 4. Find T  
Step 4. Find T  
from equation (3).  
= 109 – (80) (0.5) = 69°C.  
A(max)  
A(max)  
105  
95  
R
(°C/W) = 110  
θ
JA  
**Values given are for the 1N5818. Power is slightly lower for the  
1N5817 because of its lower forward voltage, and higher for the  
1N5819.  
80  
60  
85  
75  
4.0  
5.0  
7.0  
10  
15  
20  
30  
40  
V
, DC REVERSE VOLTAGE (VOLTS)  
R
Figure 3. Maximum Reference Temperature  
1N5819  
Table 1. Values for Factor F  
Full Wave, Bridge  
Half Wave  
Circuit  
Full Wave, Center Tapped*†  
Load  
Resistive  
Capacitive*  
Resistive  
Capacitive  
Resistive  
1.0  
Capacitive  
Sine Wave  
Square Wave  
0.5  
1.3  
0.5  
0.65  
0.75  
1.3  
1.5  
0.75  
1.5  
0.75  
1.5  
*Note that V  
2.0 V .  
in(PK)  
Use line to center tap voltage for V  
.
R(PK)  
in  
2
Rectifier Device Data  
90  
80  
70  
5.0  
Sine Wave  
BOTH LEADS TO HEATSINK,  
EQUAL LENGTH  
=
π
(Resistive Load)  
I
3.0  
2.0  
(FM)  
I
(AV)  
5
Capacitive  
Loads  
10  
20  
1.0  
0.7  
0.5  
{
dc  
60  
50  
40  
MAXIMUM  
SQUARE WAVE  
TYPICAL  
0.3  
0.2  
T
125°C  
J
30  
20  
10  
0.1  
0.07  
0.05  
1
1/8  
1/4  
3/8  
1/2  
5/8  
3/4  
7/8  
1.0  
0.2  
0.4  
0.6  
0.8 1.0  
2.0  
4.0  
L, LEAD LENGTH (INCHES)  
I
, AVERAGE FORWARD CURRENT (AMP)  
F(AV)  
Figure 4. Steady–State Thermal Resistance  
Figure 5. Forward Power Dissipation  
1N5817–19  
1.0  
0.7  
0.5  
0.3  
0.2  
Z
p
= Z  
r(t)  
JL  
θ
JL(t)  
θ
P
P
pk  
pk  
DUTY CYCLE, D = t /t  
p
1
0.1  
t
PEAK POWER, P , is peak of an  
pk  
equivalent square power pulse.  
TIME  
0.07  
0.05  
t
R 1  
where  
T
= P  
[D + (1 – D)  
r(t + t ) + r(t ) – r(t )]  
JL  
pk  
θ
JL  
1
p
p
1
0.03  
0.02  
T
= the increase in junction temperature above the lead temperature  
JL  
r(t) = normalized value of transient thermal resistance at time, t, from Figure 6, i.e.:  
r(t) = r(t + t ) = normalized value of transient thermal resistance at time, t + t  
.
1
p
1
p
0.01  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
t, TIME (ms)  
50  
100  
200  
500  
1.0k  
2.0k  
5.0k  
10k  
Figure 6. Thermal Response  
Mounting Method 3  
Mounting Method 1  
NOTE 2 — MOUNTING DATA  
Data shown for thermal resistance junction–to–ambient (R  
the mountings shown is to be used as typical guideline values for pre-  
liminary engineering, or in case the tie point temperature cannot be  
measured.  
P.C. Board with  
1–1/2x 1–1/2″  
copper surface.  
P.C. Board with  
1–1/2x 1–1/2″  
copper surface.  
) for  
θJA  
L = 3/8  
L
L
TYPICAL VALUES FOR R  
IN STILL AIR  
θJA  
Lead Length, L (in)  
Mounting  
Method  
R
θJA  
1/8  
1/4  
1/2  
3/4  
1
2
3
52  
67  
65  
80  
72  
87  
85  
°C/W  
°C/W  
°C/W  
BOARD GROUND  
PLANE  
100  
Mounting Method 2  
50  
L
L
VECTOR PIN MOUNTING  
Rectifier Device Data  
3
NOTE 3 — THERMAL CIRCUIT MODEL  
(For heat conduction through the leads)  
R
R
R
R
R
R
θS(K)  
θ
S(A)  
θ
L(A)  
T
θ
J(A)  
θ
J(K)  
θ
L(K)  
T
T
A(K)  
A(A)  
P
D
T
T
L(K)  
T
T
L(A)  
C(A)  
J
C(K)  
Use of the above model permits junction to lead thermal resistance  
for any mounting configuration to be found. For a given total lead  
length, lowest values occur when one side of the rectifier is brought  
as close as possible to the heatsink. Terms in the model signify:  
(Subscripts A and K refer to anode and cathode sides, respectively.)  
Values for thermal resistance components are:  
R
= 100°C/W/in typically and 120°C/W/in maximum  
= 36°C/W typically and 46°C/W maximum.  
θL  
R
θJ  
T
= Ambient Temperature  
= Lead Temperature  
T = Case Temperature  
C
A
T
T = Junction Temperature  
J
L
R
R
R
= Thermal Resistance, Heatsink to Ambient  
= Thermal Resistance, Lead to Heatsink  
= Thermal Resistance, Junction to Case  
θS  
θL  
θJ  
P
= Power Dissipation  
D
125  
115  
1 Cycle  
20  
T
= 70°C  
L
f = 60 Hz  
10  
105  
95  
7.0  
T
= 100°C  
C
5.0  
85  
3.0  
2.0  
Surge Applied at  
Rated Load Conditions  
25°C  
75  
1.0  
2.0  
3.0  
5.0 7.0 10  
20  
30  
40 70 100  
NUMBER OF CYCLES  
1.0  
0.7  
0.5  
Figure 8. Maximum Non–Repetitive Surge Current  
30  
20  
T
= 125°C  
J
0.3  
0.2  
15  
100°C  
5.0  
3.0  
2.0  
0.1  
75°C  
1.0  
0.5  
0.07  
0.05  
25°C  
0.3  
0.2  
0.03  
0.02  
0.1  
1N5817  
1N5818  
1N5819  
0.05  
0.03  
0.1  
0.2 0.3 0.4 0.5  
0.6  
0.7 0.8 0.9 1.0 1.1  
0
4.0  
8.0  
12  
16  
20  
24  
28  
32  
36  
40  
v , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)  
F
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 7. Typical Forward Voltage  
Figure 9. Typical Reverse Current  
4
Rectifier Device Data  
NOTE 4 — HIGH FREQUENCY OPERATION  
200  
100  
Since current flow in a Schottky rectifier is the result of majority carri-  
er conduction, it is not subject to junction diode forward and reverse re-  
covery transients due to minority carrier injection and stored charge.  
Satisfactory circuit analysis work may be performed by using a model  
consistingofanidealdiodeinparallelwithavariablecapacitance. (See  
Figure 10.)  
Rectification efficiency measurements show that operation will be  
satisfactory up to several megahertz. For example, relative waveform  
rectificationefficiency is approximately 70 percent at 2.0 MHz, e.g., the  
ratio of dc power to RMS power in the load is 0.28 at this frequency,  
whereas perfect rectification would yield 0.406 for sine wave inputs.  
However, in contrast to ordinary junction diodes, the loss in waveform  
efficiency is not indicative of power loss: it is simply a result of reverse  
current flow through the diode capacitance, which lowers the dc output  
voltage.  
1N5817  
1N5818  
1N5819  
70  
50  
30  
20  
T
= 25°C  
J
f = 1.0 MHz  
10  
0.4 0.6 0.8 1.0  
2.0  
4.0 6.0 8.0 10  
20  
40  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 10. Typical Capacitance  
Rectifier Device Data  
5
PACKAGE DIMENSIONS  
B
NOTES:  
1. ALL RULES AND NOTES ASSOCIATED WITH  
JEDEC DO–41 OUTLINE SHALL APPLY.  
2. POLARITY DENOTED BY CATHODE BAND.  
3. LEAD DIAMETER NOT CONTROLLED WITHIN F  
DIMENSION.  
D
K
MILLIMETERS  
INCHES  
A
DIM  
A
B
D
K
MIN  
5.97  
2.79  
0.76  
27.94  
MAX  
6.60  
3.05  
0.86  
–––  
MIN  
MAX  
0.260  
0.120  
0.034  
–––  
0.235  
0.110  
0.030  
1.100  
K
CASE 59–04  
ISSUE M  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
1N5817/D  

相关型号:

1N5819-1

HERMETIC AXIAL LEAD / MELF GENERAL PURPOSE RECTIFIER
SENSITRON

1N5819-13

Rectifier Diode, Schottky, 1 Element, 1A, 40V V(RRM), Silicon, DO-41, PLASTIC PACKAGE-2
DIODES

1N5819-1A-DO-41

1.0 AMP SCHOTTKY BARRIER RECTIFIERS
DGNJDZ

1N5819-1V

Rectifier Diode, Schottky, 1 Element, 1A, Silicon, HERMETIC SEALED PACKAGE-2
SENSITRON

1N5819-1X

Rectifier Diode, Schottky, 1 Element, 1A, Silicon, HERMETIC SEALED PACKAGE-2
SENSITRON

1N5819-1_08

HERMETIC AXIAL LEAD / MELF SCHOTTKY BARRIER DIODE
SENSITRON

1N5819-B

1.0A SCHOTTKY BARRIER RECTIFIER
WTE

1N5819-B

Rectifier Diode, Schottky, 1 Element, 1A, 40V V(RRM), Silicon, DO-41, ROHS COMPLIANT, PALSTIC PACKAGE-2
RECTRON

1N5819-B

Rectifier Diode, Schottky, 1 Element, 1A, Silicon
FRONTIER

1N5819-B

Axial Lead Schottky Diode
TE

1N5819-BP

Rectifier Diode, Schottky, 1 Element, 1A, 40V V(RRM), Silicon, DO-41, ROHS COMPLIANT, PLASTIC PACKAGE-2
MCC

1N5819-CA2-R

SCHOTTKY BARRIER DIODE
UTC